
PHYSICAL REVIEW E 93, 032205 (2016)
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We examine the transport of extended and localized excitations in one-dimensional linear chains populated by
linear and nonlinear symmetric identical n-mers (with n = 3, 4, 5, and 6), randomly distributed. First, we examine
the transmission of plane waves across a single linear n-mer, paying attention to its resonances, and looking for
parameters that allow resonances to merge. Within this parameter regime we examine the transmission of plane
waves through a disordered and nonlinear segment composed by n-mers randomly placed inside a linear chain.
It is observed that nonlinearity tends to inhibit the transmission, which decays as a power law at long segment
lengths. This behavior still holds when the n-mer parameters do not obey the resonance condition. On the other
hand, the mean square displacement exponent of an initially localized excitation does not depend on nonlinearity
at long propagation distances z, and shows a superdiffusive behavior ∼z1.8 for all n-mers, when parameters obey
the resonance merging condition; otherwise the exponent reverts back to the random dimer model value ∼z1.5.
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I. INTRODUCTION

One of the staples of modern condensed matter physics is
the well-known phenomenon of Anderson localization [1,2].
Roughly speaking it asserts that the presence of disorder tends
to localize the eigenfunctions of the system, thus impeding the
transport of excitations across it. In one and two dimensions
any amount of disorder will suffice to render all eigenfunctions
localized, causing a complete lack of transport. In three-
dimensional systems, there is a mobility edge separating the
localized from the extended wave functions. The Anderson
result was originally derived for a system of independent
electrons in the tight-binding approximation which are subject
to diagonal or off-diagonal disorder. A direct observation
of Anderson localization in a solid is hard since there are
many other competing effects: electron-electron interactions,
phonons, electron-phonon interactions, point and extended
defects, etc. However, there are other systems that fall outside
condensed matter and that can be described by tight-binding-
like equations. One example is optical waveguide arrays [3].
Usually, these arrays consist of dielectric channels put in
close proximity to each other forming a geometric array
in one or two dimensions. Each channel supports a single
electromagnetic mode and the overlapping of the evanescent
field of these modes gives rise to a transverse dynamics,
described by discrete equations, which are formally identical to
the tight-binding model equations. In fact, it was in this optical
analog that Anderson localization in one and two dimensions
was observed for the first time [4,5]. The reason is clear: In
the optical analog it is possible to introduce diagonal disorder
by simply changing the index of refraction of the guides, and
off-diagonal disorder is produced by changing the coupling
(distance) between guides. There are no other encumbering
effects like those encountered in a condensed matter setting.

Now, Anderson localization is based on the assumption
that disorder is “perfect” or uncorrelated. However, at the
beginning of the 1990s it was noted that, in systems with
correlated disorder, a degree of transport was still possible

[6–8]. For the specific case of correlated diagonal disorder,
Dunlap et al. examined the localization-delocalization transi-
tion for a random dimer model (RDM) consisting of a binary
alloy where one of the site energies is assigned at random
to pairs of lattice sites. In that case, and if the difference
between the site energies is smaller than a half bandwidth,
then a number of resonant wave vectors exist for which the
localization length of the states exceeds the size of the sample,
N , becoming effectively extended. The fraction of the states
that become extended in this manner is of the order of

√
N ,

and this leads to a mean square displacement, of an initially
localized excitation, that grows as t3/2. This effect has been
recently demonstrated experimentally in an optical setting
in Ref. [9]. Since then, the RDM has been generalized to
include the random trimer model [8], the random dimer-trimer
model [10],and the random binary n-mer model [11]. For the
particular case of the symmetric trimer, there are two possible
resonances and Giri et al. analyzed the possibility of merging
these two resonances, which has as a consequence an increase
of the width of the extended states. In the same vein, Huang
et al. [12] found that for the symmetric random trimer model
there is still diffusion even when the central site energy is
random.

In this work we consider a further generalization of
this model by considering larger “defects” (tetramers, pen-
tamers, hexamers) and more general symmetric site energy
distributions, and also by including nonlinear effects. For
the strictly homogeneous n-mer case, we observe the same
phenomenology as in the random dimer model. The reason for
this behavior is discussed at the end of Sec. III D. Thus, we
focus on inhomogeneous but symmetric n-mers, which display
interesting transport properties.

This paper is organized as follows: In Sec. II we consider
the transmission coefficient of plane waves across a single
defect (trimer, tetramer, pentamer, or hexamer) embedded in a
homogeneous chain and compute the region of parameters (site
energy distribution inside the n-mer) inside which it is possible
to adjust the position of the system resonances. In Sec. III we
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consider a disordered chain that contains a fraction (50%) of
identical n-mer defects, randomly distributed, and examine
the transmission coefficient as a function of the length of the
disordered region in the presence and absence of nonlinear
effects. In Sec. IV we study the transport dynamics of an
initially localized excitation, by measuring the asymptotic
exponent of the mean square displacement. Also we study
the effect of nonlinearity on these exponents. We conclude the
paper in Sec. V with a discussion of the main results.

II. THE MODEL

Let us consider a general excitation propagating on a lattice
whose dynamics is well described by the discrete nonlinear
Schrödinger (DNLS) equation

i
dψn

dz
= εnψn + V (ψn+1 + ψn−1) + χ |ψn|2ψn, (1)

where, in the optics domain, ψn is the amplitude of the electric
field on the nth waveguide, V is the coupling coefficient
between nearest-neighbor guides, εn is proportional to the
index of refraction of waveguide n, and χ is the nonlinear
(Kerr) parameter which has to be taken into account at high
electric field amplitudes. We look for stationary solutions of
the form ψn = Cne

iEz. After inserting this into Eq. (1), we
obtain

ECn + εnCn + V (Cn+1 + Cn−1) + χ |Cn|2Cn = 0. (2)

Note that changing the output amplitude is equivalent to
rescaling the nonlinearity coefficient, and vice versa. This is
seen from Eq. (2) rewritten as

Cn+1 = −[(E/V ) + (εn/V ) + (χ/V )|Cn|2]Cn − Cn−1. (3)

Under the scaling Cn → α Cn, this relation reads

Cn+1 = −[(E/V ) + (εn/V ) + (α2χ/V )|Cn|2]Cn − Cn−1,

(4)

which shows that changing Cn is equivalent to changing χ :
Cn → α Cn ⇐⇒ χ → α2χ . On the other hand, if we change
χ → αχ , the backward map reads

φn+1 = −[(E/V ) + (εn/V ) + (χ/V )|φn|2]φn − φn−1, (5)

where φ = √
αCn. That is, changing χ is equivalent to

changing Cn: χ → αχ ⇐⇒ Cn → Cn

√
α. This implies that

the transmission coefficient gets multiplied by α, T → α T . It
proves convenient to rewrite Eq. (2) as

Cn+1 = −(E + εn + χ |Cn|2)Cn − Cn−1, (6)

where, without loss of generality, we have taken V = 1. This
form is useful when considering transmission problems.

Let us now consider a chain segment between n = 0 and
n = m (m-mer), characterized by a site energy distribution
{εn} and a nonlinear coefficient χ , that is joined on both sides
to semi-infinite linear homogeneous chains, characterized by
εn = 0 = χ . We want to compute the transmission coefficient
of plane waves across this segment, or m-mer (see Fig. 1).
The incident wave has the form Cn = r0 exp[−ik(n − m)] +
r1 exp[ik(n − m)] for n � m (the wave comes “from the
right”). The transmitted wave is Cn = t exp[ik] for n �
0. Initial conditions are C0 = t and C−1 = t exp(ik), plus

εa εb εaεc εc εa εb εaεc εcεb

εa εb εaεbεa εaεb

FIG. 1. Site energy distribution of the several n-mers that popu-
late randomly a linear chain.

E = 2 cos(k). Now we resort to Eq. (6) and iterate it until
we determine r0 and r1. Based on this information, we deduce
the form of the transmission and reflection coefficient as

T = |t/r0|2 = |e2ik − 1|2
|Cm+1 − e−ikCm+2|2 , (7)

R = |r1/r0|2 = |Cm+2 − Cm+1e
−ik|2

|Cm+1 − e−ikCm+2|2 , (8)

where Cm+1 and Cm+2 are obtained from Eq. (6) by iteration.
The condition for a transmission resonance is given by R = 0;
that is,

|Cm+2 − Cm+1e
−ik| = 0. (9)

III. THE SINGLE n-MER (IMPURITY) CASE

Let us begin by considering a single linear (χ = 0) n-mer
and finding the conditions for transmission resonances to exist.
In general there are n − 1 of them, and we want to find a
parameter region where one can “control” said resonances,
for instance, to be able to merge two or more of them. As
we see later, this has an impact on the transport properties
of localized excitations in a disordered medium. The idea is
that in a chain populated at random with these n-mers, the
curvature around a given resonance determines the number of
states whose localization length is greater than the dimensions
of the chain. In that case, we have a fraction of states that are
effectively delocalized and can give rise to transport (electronic
or optical) as shown by Dunlap et al. for the case m = 2 [7]. For
our n-mers we hope that when two or more resonances merge,
the curvature around the common resonance will change the
number of delocalized states, changing in this manner the
asymptotic exponent of the mean square displacement of an
initially localized excitation.

A. Symmetric trimer

This case was already examined by Giri et al. [8], but we
present it here, in a slightly different manner. We consider
a segment formed by three sites located at n = 0, 1, and 2,
with site energies εa , εb, and εa (see Fig. 1). By using Eqs. (7)
and (8), we obtain the transmission and reflection coefficient as

T =
∣∣∣∣ (−1 + e2ik)

(−1 + e2ik) + e3ikε2
aεb + eikB − e2ikC

∣∣∣∣
2

, (10)

R =
∣∣∣∣∣

(
1 + ε2

a

)
εb − A cos (k) + 2εa cos (2k)

(−1 + e2ik) + e3ikε2
aεb + eikB − e2ikC

∣∣∣∣∣
2

, (11)
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FIG. 2. Parameter curves in εa − εb plane on which we have
merging of two resonances. The trimer curve (dashed line) is obtained
from the closed form solution (14), while the one for the tetramer
(solid line) is obtained numerical from Eq.(16).

where A, B, and C are listed in the Appendix. The resonance
condition (9) leads to the quadratic equation

4 cos (k)2εa + cos (k)
(− 2ε2

a − 2εaεb

) + εb + ε2
aεb − 2εa = 0.

(12)
After solving this equation one finds two resonances

cos (k) = εb + εa

2
±

√
p2 − 4q, (13)

where p = εb − εa and q = (εb/εa) − 2.

For p2 = 4q the two resonances merge into a single one [8]
when

εb = εa

[
8 + ε2

a

2 + ε2
a + 2

√
1 − ε2

a

]
, (14)

which is analogous to the result obtained previously by Giri
et al. The case of the homogeneous trimer, εa = εb = εc, gives
rise to a single resonance only and to transport properties
analogous to the ones obtained for the dimer case [7]. Thus,
it is not interesting to us and is not discussed here. Figure 2
shows the curve in parameter space where the two resonances
merge. The resonance curve ends at εa = 1, εb = 3.

B. Tetramer

Now we consider an n = 4 segment, with site energies
distributed in a symmetric manner as εaεbεbεa (see Fig. 1).
Proceeding as before, we compute the transmission and
reflection coefficients in closed form, obtaining

R =
∣∣∣∣Z − A cos (k) + B cos (2k) − 2εa cos (3k)

X − eikW − 2e3ikC + e2ikD + e4ikE

∣∣∣∣
2

, (15)

where the coefficients A, B, C, D, E, X, W , and Z are listed
in the Appendix.

The resonance condition is now a third-order algebraic
equation

0 = 8εa cos(k)3 − 4εa(εa + 2εb) cos (k)2

+{2εb[1 + εa(2εa + εb)] − 6εa} cos (k) − ε2
aε

2
b

− (εa + εb)2 + 2εa(εa + 2εb), (16)

which has three possible real solutions, corresponding to
three possible resonances. This equation admits a closed-form
solution which is, however, too cumbersome to be of practical
use. We resort to the more practical method of solving Eq. (16)
numerically and finding the parameter region, in the εa vs
εb plane, where the resonances (two or three of them) can
merge into a single one. To determine that, we set values
for εa and εb and collect all real solutions k that fulfill the
condition |ki − kj | � 10−6, where ki and kj are real solutions
of Eq. (16). When the condition is satisfied, we mark a dot
on the εa,εb plane. Results from this procedure are shown in
Fig. 2. The tetramer curve also ends at finite parameter values:
εa = 1.414, εb = 3.275. Thus, the curves for the trimer and
the tetramer are qualitatively similar, possibly due to the fact
that both have a center of symmetry. As mentioned before,
when one considers the homogeneous tetramer εaεaεaεa , all
four resonances appear separated from each other and it is not
possible to obtain any merging.

C. Pentamer

Now we consider a single segment with n = 5 embedded
in a linear chain and consider the symmetric site energy
distribution εcεaεbεaεc, placed on the sites n = 0, 1, 2, 3, and
4 of the chain (see Fig. 1). The transmission and reflection
coefficients can be casted in closed form as

T =
∣∣∣∣ −1 + e2ik

(K1 + eikA1 + e3ikB1 − e2ikC1)G1

∣∣∣∣
2

(17)

R =
∣∣∣∣ D

(K1 + eikA1 + e3ikB1 − e2ikC1)G1

∣∣∣∣
2

(18)

where coefficients D, A1, B1, C1, D1, E1, F1, G1, and K1 are
listed in the Appendix.

The resonance condition (R = 0) implies a fourth-order
algebraic equation for the wave vector k:

0 = 16εc cos (k)4 + 4
(−2ε2

c − 4εcεa − 2εcεb

)
cos (k)3

+ [
4εa + 4ε2

c (2εa + εb) + 2εc

(−2 + 4ε2
a + 8εaεb

)]
× {[

2ε2
c − εa(εa + εb) + 2εc(2εa + εb)

]
cos (k)2

− εcεa[εaεb + εc(εa + 2εb)]
}

cos (k) + ε2
c ε

2
aεb

+ (2εc − 2εa + εb) + εa

(−2ε2
c − 2εcεb + εaεb

)
. (19)

Thus, we have up to four resonances, which are found by a
similar numerical procedure as the one used in Sec. III B for
the tetramer. Results are shown in Fig. 3, which shows the
curves in the εa-εb parameter space, where merging of two
resonances is possible, for different values of εc. As expected,
for εc = 0 (blue line with red circles), which corresponds
to the symmetric trimer, the curve coincides quite well with
the analytic curve obtained by Giri et al. [see Eq. (14)]. By
changing the value of εc we are able to determine other curves
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FIG. 3. Parameter region in εa-εb plane for the (left) pentamer and (right) hexamer cases, where the merging of two resonances occurs, for
different values of εc. Each curve in brown corresponds to a progressive increase in εc from εc = 0 up to εc = 0.31, in steps of 0.01. The blue
curve denotes the case of the symmetric trimer while the red circles correspond to the numerical solution of Eq. (13) for the particular εc = 0
case.

in the εa-εb plane where the tuning is possible. From the figure
it seems that, by increasing εc in progressively smaller steps,
a whole allowed region will be obtained where tunability is
possible. It should be noted that merging of three or more
resonances was not observed.

D. Hexamer

Now we consider a single segment with n = 6 embedded in
a linear chain, with six site energies distributed symmetrically
as εcεaεbεbεaεc (see Fig. 1). As before, we can obtain closed
expressions for the transmission and refection coefficients:

T =
∣∣∣∣ −1 + e2ik

(−1 + eikH1)E2

∣∣∣∣
2

, (20)

R =
∣∣∣∣ D3

(−1 + eikH1)E2

∣∣∣∣
2

, (21)

where D3, H1, and E2 are defined in the Appendix.
The resonance condition implies a fifth-order algebraic

equation,

0 = ε2
c + 2εcεa − ε2

a − ε2
c ε

2
a + 2εcεb − 2εaεb

− 2ε2
c εaεb + ε2

b − 2εcεaε
2
b + ε2

aε
2
b + ε2

c ε
2
aε

2
b

− 32 cos (k)5εc + cos (k)4
(
16ε2

c + 32εcεa

+ 32εcεb

) + cos (k)3
(
40εc − 8εa − 16ε2

c εa

− 8εcε
2
a − 16ε2

c εb − 32εcεaεb − 8εcε
2
b

)
+ cos (k)2

(
2ε2

c + 4εcεa + 4ε2
a + 4ε2

c ε
2
a + 4εcεb

+ 8εaεb + 16ε2
c εaεb + 8εcε

2
aεb + 4ε2

c ε
2
b + 8εcεaε

2
b

)
+ cos (k)

(−10εc + 6εa + 8ε2
c εa + 2εcε

2
a − 2εb

+ 4ε2
c εb + 12εcεaεb − 4ε2

aεb − 4ε2
c ε

2
aεb + 4εcε

2
b

− 2εaε
2
b − 4ε2

c εaε
2
b − 2εcε

2
aε

2
b

)
, (22)

which is solved numerically to find the parameter region where
a merging of the resonances occurs. In Fig. 3 we plot the curves
in the εa-εb plane, for different values of εc. For εc = 0 we

reobtain the tetramer curve (for appropriate εa and εb values).
As in the pentamer case, it would seem that, as the sweep in
parameter εc becomes finer and finer, one would obtain a whole
continuous region where syntonization of two resonances is
possible.

As a conclusion of this section, we could say that,for a
given symmetric n-mer, there are at most n − 1 transmission
resonances and that it is possible to engineer a situation
where two of them merge, by a judicious choice of the site
energies. As the length of the segment is increased past
n = 6, the number of site energy parameters increases as
well, and the determination of the multidimensional resonance
region becomes hard to compute. Preliminary computations
for some special cases of longer n-mers show results that
agree qualitatively with the ones obtained so far. Interestingly
enough, the merging of three or more resonances was never
observed.

It should be noted that, in all n-mers examined (trimers,
tetramers, pentamers, and hexamers) that obey the merging
of resonances conditions (see Figs. 2 and 3), the reflection
coefficient near the resonance behaves as O(k − kc)4, where
kc is the resonant wave vector, i.e., where T = 1. On the
contrary, when the merging condition is not satisfied, we
have n − 1 resonances and around each one the reflection
coefficient behaves as O(k − kc)2, just as in the random dimer
model. These facts have profound consequences later, when we
consider transport across a disordered array of these n-mers.

IV. RANDOM SYSTEM (MANY n-MER IMPURITIES)

The resonance state guarantees that a single n-mer will be
transparent to the transmission of a plane wave at a special
wave vector (or energy). It is only natural to wonder whether
something of that nature can occur inside a random chain,
where the n-mers are placed at random. Obviously, the whole
chain will still be transparent at the resonant wave vector for
the single n-mer, but we wonder what happens for a general
excitation containing many wave vectors. At first it would seem
that Anderson localization would impede the transmission of
plane waves or the diffusion of a localized excitation. However,
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(a) (b)

(d)(c)

FIG. 4. Transmission coefficient |T |2 as a function of the energy
E for a single-realization disordered region of size L = 400 con-
taining randomly placed (a) single impurities and (b)–(d) pentamer
impurities, at %50 concentration: (a) εn ∈ [−0.25,0.25]; (b) εc = 0,
εa = 0.27, εb = 0.545 (symmetric trimer); (c) εc = 0.1, εa = 0.34,
εb = 0.465; and (d) εc = 0.23, εa = 0.45, εb = 0.511.

it was found that, for the random dimer model [7] and the
random trimer model [8], that around each resonance, there is
a small region containing states whose localization length is of
the order of the size of the system or larger. Thus, the system
allows the passage of an incoming wave whose energy is close
to the resonance energy or energies.

In this section we examine numerical results for the
transmission coefficients focusing on the pentamer (n = 5)
case. The behavior for the others n-mers is qualitatively
similar and is not shown for the sake of brevity. We consider
three site energy cases, for each one. Figure 4 shows the
transmission coefficient (for a single disorder realization)
in the absence of nonlinearity (χ = 0), vs the energy [E =
2 cos(k)] for some parameter values where it was possible to
merge two of the resonances discussed in the previous section.
Figure 4(a) corresponds to the pure Anderson case, with
single impurities randomly placed, with εn ∈ [−0.25,0.25].
Figure 4(b) corresponds to εc = 0, εa = 0.27, εb = 0.545.
This configuration is nothing else but the symmetric trimer.
Next we have the bona fide pentamer cases of Fig. 4(c)
with εc = 0.1, εa = 0.34, and εb = 0.465, and Fig. 4(d) with
εc = 0.23, εa = 0.45, and εb = 0.511. These three cases are
contained in the parameter region inside the rectangle shown
in Fig. 3. Clearly, an increment in the width of the plane-wave
transmission is observed, in comparison with the standard
Anderson case, shown in Fig. 4(a). This behavior was also
observed for all the other n-mers (not shown).

Thus, in the presence of disorder, and inside the resonance
regime, the transmission coefficient across a disordered chain

FIG. 5. Averaged transmission vs disordered length for some
representative pentamer cases. The thick dashed curve corresponds
to εc = 0.1, εa = 0.34, and εb = 0.465. The thin dashed line
corresponds to εc = 0.23, εa = 0.45, and εb = 0.511. The continuous
line corresponds to εc = 0, εa = 0.27, and εb = 0.545 (symmetric
trimer). All these values fall inside the rectangular region marked in
Fig. 3. Note the logarithmic scale on the vertical axis.

displays higher transmission values than in the pure Anderson
case, as expected.

A. Linear transmission as a function of system length

In the absence of correlations, Anderson localization
dominates and in this case it is well known that the trans-
mission coefficient decreases exponentially with the size of
the system [13]. In the presence of short-range correlations,
this image changes, as we will see.

Let us now consider the transmission coefficient of plane
waves through a chain segment of length L, characterized by a
site energy distribution {εn} and zero nonlinearity χ = 0, that
is joined on both sides to semi-infinite linear homogeneous
chains, characterized by having εn = 0 = χ . The segment
contains a fraction (50%) of identical pentamer (n = 5)
defects, randomly distributed. The site energy values {εn} are
taken as obeying the pentamer resonance condition, Eq. (19).

To compute numerically the transmission coefficient as a
function of length, we use Eq. (6), then Eq. (7), followed by
a double average over 200 disorder realizations and over all
wave vectors. In this manner we obtain a global estimate about
the transmissivity of the disordered chain. Results are shown
in Fig. 5. We see that the transmission decreases slower than
exponential and behaves as a power law: 〈T 〉 ∼ aL−b. The
values of a and b depend on the actual value of the {εn}.

A measure of the spatial extension of an eigenstate of our
system with correlated disorder is given by the participation
ratio (PR), defined as [14]

PR =
( ∑N

i |ci |2
)2

N
(∑N

i |ci |4
) , (23)

where N is the size of the system. For a completely localized
state, PR = O(1/N ), while for an extended state, PR = O(1).

In Fig. 6 we show the results of the computation of the PR
for three representative pentamer cases. Each point on Fig. 6
corresponds to the PR value at that energy and for a particular
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FIG. 6. Participation ratio as a function of energy for a number
of random realizations, for a chain of size L = 400, containing
50% of pentamer impurities: (a) εc = 0, εa = 0.27, and εb = 0.545
(symmetric trimer); (b) εc = 0.1, εa = 0.34, and εb = 0.465; and (c)
εc = 0.23, εa = 0.45, and εb = 0.511.

disorder realization. In total, 50 realizations were used for a
chain of 400 sites.

We note a clear difference in the amount of states effectively
extended that exist between the case of the symmetric trimer
[Fig. 6(a)] and the pentamer cases [Figs. 6(b) and 6(c)]. In the
latter, the width of the resonance is greater (see Fig. 4), leading
to a greater number of wave vectors with a mean free path of
the order of the system length, implying a greater transmission
coefficient, that is, a smaller decay of the transmission with
system size. Also we notice the presence of secondary peaks
in Figs. 6(a)–6(c). They cannot be attributed to standard Azbel
resonances [15] since the width of these scale as e−2L/ξ . Taking
ξ ∼ 100 and L = 400, we obtain a width of O(10−4). One
might conjecture that the presence of correlation in the disorder
might give rise to an enhanced degeneracy of the states as well
as a greater localization length. These two ingredients together
could produce and enhance Azbel resonance. The specific
width seems to depend on the details of the site energies inside
the n-mer.

As can be appreciated from Figs. 5 and 6 and from the
effective width of the extended states shown in Figs. 4, 5,
and 6 near the resonance energies of the system, there is a
higher probability for transmission of plane waves for the
symmetric pentamer (and hexamer) case in comparison to the
symmetric trimer case.

B. Nonlinear transmission as a function of system length

Let us now consider a chain segment of length L, char-
acterized by a site energy distribution {εn} and a nonlinear
coefficient χ , that is joined on both sides to semi-infinite linear
homogeneous chains, characterized by having εn = 0 = χ .
The segment contains a fraction (50%) of identical pentamer
(n = 5) defects, randomly distributed. We want to compute
the transmission coefficient of plane waves as a function of
the length of the segment. As in the linear case, the site
energy values {εn} are taken as obeying the pentamer resonance
condition, Eq. (19).

In the presence of nonlinearity we use Eq. (2):

ECn + (εn + χ |Cn|2)Cn + V (Cn+1 + Cn−1) = 0. (24)

Now, in general when one considers the propagation of a plane
wave across a disordered linear segment, the transmission
coefficient will be a function of the incident wave vector only,
for a fixed segment length and underlying disorder. The picture
changes, however, if one considers a nonlinear segment. Now,
the transmission coefficient depends also on the amplitude
of the incoming wave. If one sets up the computation of the
transmission in the usual manner, one finds that there is no
single output for a given input; i.e., there is multistability [16].
A way to circumvent this and obtain an estimate for the
effective transmission is to work in reverse: For a given k,χ and
a disordered realization of the segment, one fixes the output
amplitude, then iterates backwards until reaching the initial site
of the segment, and computes the transmissivity as the ratio
of the (fixed) output to the input. Figure 7 shows the average
transmission of plane waves through a nonlinear disordered
segment as a function of the segment length, for a fixed χ = 1,
for the pentamer case. For the hexamer case (not shown) the
plot is similar. Also, and according to the results from Sec. II,
this plot is equivalent to the one where the output transmission
T is kept constant while χ is varied (not shown).
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FIG. 7. Average transmission of plane waves through a nonlinear
disordered segment as a function of the segment length. Left: We
fix χ = 1 and vary the output transmission from top to bottom as
T = 0.1, 0.3, 0.5, 0.6, 0.8, and 1.0.

One way of visualizing the transmissivity of a given
segment is to use a single disorder realization and a given
wave vector k and nonlinear coefficient χ , and to compute the
transmission. If this is greater than an arbitrary critical amount,
the wave is said to be “passing,” and a black dot is marked in
the χ vs k plane; otherwise it is “nonpassing,” and no marking
is done. Typically, the critical amount separating the “passing”
from the “nonpassing” regime is of the order exp(L), where
L is the length of the segment. Figure 8 shows results of
this procedure carried out for a segment containing pentamer
impurities. We note the irregular, fractal-like shape, featuring
the presence of several branches, due to multistability [16,17].
In Table I, we show the fractal dimensions of the transmission
diagrams, computed by the method of box counting. These
fractal transmission shapes look quite similar to the ones
obtained for the case of Anderson disorder on a nonlinear
background [18]. At small nonlinearities, most of the waves
can pass, but their number decreases as nonlinearity is
increased, until some maximum value of χ is reached where
all the waves are nonpassing. Near the boundaries of the
passing-nonpassing regions there is extreme sensitivity in
transmission with χ and k. In Fig. 9 we plot the results for
the fitted averaged transmittance as a function of segment

TABLE I. Fractal dimension for each transmission diagram of
Fig. 8.

Fractal
Configuration dimension

(a) 1.703
(b) 1.785
(c) 1.777

FIG. 8. Transmitting (black) and nontransmitting (white) regions
for a symmetric pentamer with L = 400 for (a) εc = 0.1, εa = 0.34,
and εb = 0.465; (b) εc = 0.23, εa = 0.45, and εb = 0.511; and (c)
εc = 0, εa = 0.27, and εb = 0.545.

length L for pentamer and trimer cases, and for a couple
of nonlinearity values, taking 100 disorder realizations and
averaging over all wave vectors in 0 � k � π . As anticipated
from Figs. 4 and 5 we see that, for a given segment length
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c

a

f

d

b

e

FIG. 9. Fitted average transmittance 〈T 〉 ∼ exp(−b(χ )L) as a
function of segment length in the nonlinear regime and for L =
200 and averaged over 100 disorder realizations for three n-
mer cases. Dashed curves are for χ = 0.3 and continuous lines
are for χ = 0.7. (a) Pentamer with εc = 0.1, εa = 0.34, and
εb = 0.465, with fitting function b(χ ) = 0.068 + 0.55χ + 11.99χ2;
(b) pentamer with εc = 0.23, εa = 0.45, and εb = 0.511, with fitting
function b(χ ) = 0.108 + 3.97χ + 5.74χ2; (c) trimer with εc = 0.0,
εa = 0.27, and εb = 0.545, with fitting function b(χ ) = −0.270 +
17.53χ − 1.19χ 2; (d) pentamer with εc = 0.1, εa = 0.34, and
εb = 0.465, with fitting function b(χ ) = 0.068 + 0.55χ + 11.99χ2;
(e) pentamer with εc = 0.23, εa = 0.45, and εb = 0.511, with
fitting function b(χ ) = 0.108 + 3.97χ + 5.74χ2; and (f) trimer with
εc = 0.0, εa = 0.27, and εb = 0.545, with fitting function b(χ ) =
−0.270 + 17.53χ − 1.19χ 2. In all cases the statistical coefficient of
determination is around 0.99. Note the semilogarithmic scale.

L, the average transmission is greater for a pentamer than for
the trimer case. This tendency of higher transmission with the
length of the n-mer seems to quickly reach a saturation. For the
hexamer, the transmission curves are already very close to
the ones for the pentamer. For segment lengths 0 < L < 200
the transmittance curves behave as 〈T 〉 ∼ exp(−b(χ )L) to a
good accuracy, where b(χ ) is an increasing function of χ .
Figure 10 is similar to Fig. 9, except for much longer segment
lengths. In this case the curves seem to decay more slowly than
for short segments. More specifically, the behavior is now of
the form 〈T 〉 ∼ L−γ (χ) to a good accuracy, where γ (χ ) is
again an increasing function of χ . A simple quadratic fit for
both, b(χ ) and γ (χ ) result in a high goodness of fit, with a
determination coefficient very close to unity: ∼0.99 [19].

As a conclusion of this section, we can say that the presence
of nonlinearity tends to inhibit the propagation of extended
excitations. Also (not shown), the propagation does not depend
qualitatively on the type of n-mer used or whether the {εn}
values satisfy the merging of resonances condition. As we see
next, these results are in marked contrast with the results for
the localized excitation.

a

b

c

FIG. 10. Fitted average transmittance 〈T 〉 ∼ L−γ (χ ) as a function
of segment length in the nonlinear regime (χ = 0.3) and for
L = 30 000 and averaged over 100 disorder realizations for three
n-mer cases: (a) pentamer with εc = 0.1, εa = 0.34, and εb =
0.465, with fitting function γ (χ ) = 0.421 − 0.228χ + 3.102χ2; (b)
pentamer with εc = 0.23, εa = 0.45, and εb = 0.511, with fitting
function γ (χ ) = 0.575 − 1.651χ + 6.85χ2; and (c) trimer with
εc = 0.0, εa = 0.27, and εb = 0.545, with fitting function γ (χ ) =
0.718 − 0.86χ + 16.202χ 2. In all cases the statistical coefficient of
determination is around 0.99. Note the log-log scale.

V. PROPAGATION OF LOCALIZED EXCITATIONS IN THE
LINEAR AND NONLINEAR REGIMES

Having examined in the previous section the propagation
characteristics of an extended excitation across a nonlinear
medium populated with n-mers randomly placed, we now con-
sider the propagation of an excitation, which is initially placed
completely on a single site (n = n0) inside the disordered and
nonlinear medium. For a fixed value of χ and a given random
configuration of n-mers, we compute the behavior of its mean
square displacement (MSD) as a function of “time” z,

u(z) =
∑∞

n=−∞(n − n0)2|Cn(z)|2∑∞
n=−∞ |Cn(z)|2 , (25)

followed by an average over a number of disordered realiza-
tions, obtaining 〈u(z)〉. The system of equations (1) is solved
numerically with a fourth-order Runge-Kutta algorithm. Nu-
merical precision is checked by monitoring the conservation
of the norm

∑
n |Cn|2. Also, and in order to avoid deleterious

boundary effects, we use a self-expanding lattice [20]. At long
propagation distances, one expects the MSD to behave as
〈u(z)〉 ∼ zα , where α = 2 is a ballistic propagation, while α <

1(α > 1) denotes subdiffusive (superdiffusive) propagation.
Results are shown in Fig. 11 for three pentamer cases, where

for ease in visualization we have plotted 〈u(z)〉/zα , where α is
the exponent in the absence of nonlinearity. Notably, we find
that only five disorder realizations are needed to obtain 〈u(z)〉
to a good precision. Increasing the number of realizations does
not lead to any significant change. The behavior is of the form
〈u(z)〉 ∼ zα with α ∼ 1.8, regardless of nonlinearity, but seems
to depend weakly on the site energies {εa,εb,εc}.

Note that the vertical axis of each plot is different since
we are plotting 〈u(z)〉/zα vs z. For the first plot [Fig. 11(a)],
α = 1.81, and we notice that an increase in nonlinearity does

032205-8



TRANSPORT OF LOCALIZED AND EXTENDED . . . PHYSICAL REVIEW E 93, 032205 (2016)

χ = 0 χ = 3 χ = 5 χ = 6

(a) (b) (c)

FIG. 11. MSD for three pentamer cases: (a) εc = 0.0, εa = 0.27, and εb = 0.545 (symmetric trimer); (b) εc = 0.1, εa = 0.34, and εb =
0.465; and (c) εc = 0.23, εa = 0.45, and εb = 0.511, all taken from inside the region marked with a rectangle in Fig. 3.

not change the exponent, but decreases the “speed” of the
propagation. Next, in Fig. 11(b), α = 1.885. This value was
checked by running the computation up to zmax = 104. Here
too, as in Fig. 11(a), an increase in nonlinearity does not change
the asymptotic exponent for the MSD, but it does decrease
the propagation speed. Finally, in Fig. 11(c), we repeat what
we did in Fig. 11(b) for a different parameter set and this
time α = 1.8, almost the same as in Fig. 11(a). As before, an
increase in nonlinearity reduces the speed of propagation but
not the exponent. It should be emphasized that the site energy
values were taken from Fig. 3 and, thus, satisfy the merging
of resonances condition discussed in Sec. III. It should also
be mentioned that the same results are obtained for the other
n-mers (tetramers and hexamers).

The asymptotic independence of the MSD with nonlinearity
can be explained as follows: As the wave propagates inside the
segment, its amplitude decreases because of conservation of
the norm. This causes a decrease of |Cn(z)|2 and, therefore,
of the nonlinear term χ |Cn(z)|2 with the result that, at long
enough propagation distance z, its effect will be negligible.
That is why the propagation exponent is independent of χ .

Also, the effect of a decrease in the speed of the MSD with an
increase of χ can be attributed to the tendency of nonlinearity
to trap the wave in the vicinity of the initial site. The portion
of the wave that can propagate is smaller, and renormalizes
〈u(z)〉 to smaller values, but without affecting the propagation
exponent [18].

What happens to the exponents when the {εi} do not
fall on the resonance curves of Fig. 3, but instead they are
arbitrary? For simplicity, let us focus on the linear case
(χ = 0). In this case, as we can see from Fig. 12, as soon
as the {εi} do not fulfill the resonance condition but are
kept at relatively small values, the transmission exponent
becomes α = 1.5 which is characteristic of the random dimer
model. This is to be expected since in this case there are
only isolated resonances, each of which brings us back to
the random dimer phenomenology. Also, when the contrast
between the {εi} is large, Anderson localization sets in, as
Fig. 13 shows. This is also in agreement with the random dimer
phenomenology.

As a conclusion of this section, we can say that the
asymptotic exponent for the MSD of a localized excitation

5

4
3

1

6

2
1

2

3 5

6

FIG. 12. Left: MSD u(t)/vz1.5 vs V z for different values of the site energies {εi} for the pentamer case. Curves 1, 2, and 3, marked as
red dots on the right-hand side of the figure, correspond to cases that lie outside the resonance condition, while curves 4, 5, and 6, marked as
green dots on the right-hand side, fulfill the resonance condition. The values of the site energies are (1) εc = 0.01, εb = 0.55, and εa = 1.5;
(2) εc = 0.2, εb = 0.4, and εa = 0.2; (3) εc = 0.3, εb = 1.5, and εa = 0.8; (4) εc = 0.05, εb = 0.48, and εa = 0.775; (5) εc = 0.05, εb = 0.94,
and εa = 1.69; and (6) εc = 0.0, εb = 0.97, and εa = 2.53.
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65 4
31
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FIG. 13. Same as in Fig. 12, but this time including a new case: εc = 0.0, εb = 0.5, and εa = 7, marked as curve 7.

does not depend on nonlinearity, which merely decreases the
speed of propagation due to trapping effects. However, the
exponent does depend strongly on whether the site energies
inside the n-mers fulfill the resonance condition.

VI. DISCUSSION

We have examined the transport of extended and localized
excitations across one-dimensional linear chains embedded
with identical linear and nonlinear symmetric n-mers (trimers,
tetramers, pentamers, and hexamers), randomly distributed,
with a 50% concentration. First, we computed the transmission
coefficient of plane waves across a single n-mer, in closed
form (from the trimer up to the hexamer), which showed
n − 1 resonances. We attempted to obtain the values of the
site energies needed for two or more resonances to merge.
This merging is important since it determines the number of
states with a localization length greater than or equal to the
system length. However, we found that, at most, only two
resonances could be merged, implying that the propagation
characteristics of an initially localized excitation for all n-mers
would be similar to the one present in the previously studied
linear symmetric trimer. This turned out to be the case.

Concerning the transmission of plane waves across a
segment populated with nonlinear n-mers randomly placed
in the linear chain, we found that the behavior of all n-mers
was quite similar and, thus, we showed explicit results for
the pentamer (n = 5) case only. It should be emphasized that,
for all n-mers, the values of all site energies were chosen to
fulfill the resonance merging condition. We observed that the
presence of nonlinearity tended to inhibit the propagation of
extended excitations, regardless of the {εn} values and segment
length. But we also observed that this result did not change
if the values of the site energies inside the n-mer did not
satisfy the merging-of-resonances condition. For short chains
the transmissivity decayed exponentially with the segment
length; for long segments the transmissivity decayed as a
power law, with an exponent that increased with nonlinearity.
For the case of the diffusion of an initially localized excitation
inside the disordered and nonlinear segment, we found that

the asymptotic exponent for its MSD is nearly the same for
all n-mers, remaining close to the trimer value ∼z1.8. It seems
to depend weakly on the values of the site energies inside the
n-mer, but it does not depend on nonlinearity, which merely
decreases the speed of propagation due to trapping effects.
The exponent does, however, depend strongly on whether the
site energies inside the n-mer fulfill the resonance condition.
When the resonance condition is not satisfied, the exponent
reverts back to the random dimer model exponent, ∼z1.5. This
behavior is not hard to understand since when two resonances
are not merged, the curvature of each one around its respective
resonance is quadratic in the wave vector, the same as in the
random dimer model, thus leading to the same propagation
exponent. When two resonances are merged, the curvature of
the transmission curve becomes quartic in the wave vector,
leading to a similar exponent as in the symmetric trimer case,
α ∼ 1.8. It would seem that the fact that for all n-mers only
two resonances could be made to merge is responsible for the
rather similar transport properties of extended and localized
excitations for all n-mers.
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APPENDIX: COEFFICIENTS FOR THE TRANSMISSION
THROUGH VARIOUS SINGLE n-MERS

1. Trimer [Eq. (11)]

A = 2εa(εa + εb),

B = (2εa + εb),

C = εa(εa + e2ikεa + 2εb). (A1)
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2. Tetramer [Eq. (15)]

A = 2εb[1 + εa(2εa + εb)],

B = 2εa(εa + 2εb),

C = εaεb(εa + εb),

D = (−1 + ε2
a + 4εaεb + ε2

b

)
,

E = εa

(
εa + 2εb + εaε

2
b

)
,

X = 1 + e6ikε2
a − 2e5ikε2

aεb,

W = 2(εa + εb),

Z = ε2
a + 2εaεb + (

1 + ε2
a

)
ε2
b . (A2)

3. Pentamer [Eq. (17)]

D = F1 − E1 cos (k) + D1 cos (2k) − X1 cos (3k)

+ 2εc cos (4k), (A3)

where

A1 = εc + εa + εb,

B1 = εa(1 + εcεb),

C1 = −1 + εaεb + εc(εa + εb),

D1 = 2{εa[1 + εc(2εc + εa)]

+ εc(εc + 2εa)εb},
E1 = 2

{
εa(εa + εb) + ε2

c

(
1 + ε2

a + 2εaεb

)
+ εc[εb + εa(2 + εaεb)]

}
,

F1 = 2εcεa(εc + εa) + [
1 + 2εcεa

+ ε2
a + ε2

c

(
2 + ε2

a

)]
εb

G1 = 1 − eikεa + e2ikεc(εa − 2 cos k),

K1 = −1 + e5ikεc − e4ikεc(εa + εb),

X1 = 2εc(εc + 2εa + εb). (A4)

4. Hexamer [Eq. (24)]

D3 = {A2 − 2B2 cos (k) + 2C2 cos (2k)

− 2D2 cos (3k) + 2εc[εc + 2(εa + εb)] cos (4k)

− 2εc cos (5k)},
H1 = −1 + εb + eikεa[1 − εb + 2 cos (k)]

+ e2ikεcF2, (A5)

where

A2 = ε2
a + 2εaεb + (

1 + ε2
a

)
ε2
b + ε2

c

[
1 + ε2

a + 6εaεb

+ (
2 + ε2

a

)
ε2
b

] + 2εc[εb + εa(1 + 2εaεb + ε2
b )],

B2 = 2εcεa(εc + εa) + εb + 2
[
3εcεa + ε2

a

+ ε2
c

(
2 + ε2

a

)]
εb + [

εa + εc

(
1 + 2εcεa + ε2

a

)]
ε2
b ,

C2 = εa(εa + 2εb) + 2εc(εa + εb)(1 + εaεb)

+ ε2
c

(
1 + ε2

a + 4εaεb + ε2
b

)
,

D2 = εcε
2
a + εcεb(2εc + εb) + εa[1 + 2εc(εc + 2εb)],

E2 = −1 + eik{1 + εb − eikεa[1 + εb − 2 cos (k)]

+ e2ikεc[1 + εa + εa εb − 2(1 + εa + εb)

× cos (k) + 2 cos (2k)]},
F2 = (1 + εa(−1 + εb) − 2(−1 + εa + εb) cos (k)

+ 2 cos (2k)). (A6)
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