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Abstract

This article presents an investigation into exact and distorted similitudes and the related

scaling laws for the analysis of the dynamic response of rectangular flexural plates. The response

of a given model in similitude is determined from a generalization of the modal approach, which

allows the use the mode shapes and natural frequencies in order to establish scaling laws.

Analytical models of simply supported rectangular plates are used to produce both the original

and distorted model responses. Some highlights about the distribution of the natural frequencies,

the forced response and the energy response are given. The results show that with the proposed

methodology it is possible to reproduce with good confidence the response of the reference plate,

even if distorted models are used.
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1 Introduction

In many engineering applications, it is often desired to have assemblies to test some design choices

and/or to verify possible enhancements. Nevertheless, for certain objects sizes these verifications

can become very difficult. Thus, it is frequently required to change, if it is possible, the scales of

the models being tested.

This topic has emerged with strong evidence in most engineering fields (naval, aerospace, civil

and railway ones) where some investigations on new prototypes are highly necessary, often man-

datory. These prototypes should be able to move to sizes, easy to manage in a laboratory, by either

increasing or reducing the original ones. In these cases, it is very important to define similarity

conditions or scaling laws. Similarity conditions specify relations between a full-scale prototype and

its scaled models, whereas with analogies a given problem is solved by looking for similar equations.

A general view of the problems of similitude and analogies are presented in [1, 2].

Several studies have investigated the problem of predicting the dynamic characteristics of a

prototype from those of its scale models. Rezaeepazhand and Simitses [3] investigate the feasibility

of scaled models to predict the vibration response of laminated cylindrical shells. The authors

apply similitude theory to the governing equations of the structural system to develop similarity

conditions. According to the researchers, similitude theory, based on governing equations, is more

direct than the conventional method based on dimensional analysis. A similar investigation is

presented by Simitses [4] for a simply supported laminated plate subjected to transverse, buckling

and free vibration. Wu et al. [5] derive scaling laws using the principles of dimensional analysis

and similitude theory applied to the equations of motion in modal coordinates. The methodology

is validated using both free and forced vibrations of a uniform beam and a gantry crane. The same

approach is followed by Wu [6, 7, 8] to predict the response of flat plates under different boundary

conditions when they are subjected to dynamic moving loads. Singhatanadgid and Songkhla [9]

performe an experimental investigation on the predicted natural frequencies of a rectangular plate

using the results of its scaled models. Torkamani et al. [10] derive scaling laws based on the similarity
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theory to predict the natural frequencies of orthogonally stiffened cylindrical shells. Numerical and

experimental examples are used to validate the derived scaling laws.

De Rosa and Franco [11, 12] develope a scaling method that uses the Energy Distribution Ap-

proach (EDA) to predict the scaled responses of linear dynamic systems. This method, called

ASMA, represents an incomplete similitude, which focuses on the possibility to scale a given model

in order to generate artificially high modal overlap factor conditions while reducing the computa-

tional cost. The results are very attractive when comparing them to those obtainable with large

finite element models. A similar approach is followed by De Rosa et al. [13, 14, 15], where the

similitude is defined by invoking the EDA while scaling laws are identified by looking for equalities

in the structural responses. Particularly, in [13], some preliminary analysis, aimed at the complete

similitude for simple plate and assemblies of plates, are presented. In [14] recent and successful

steps involving simple vibro-acoustic systems: infinite flexural cylinder/finite flexural coupled with

the internal acoustics are presented. Lastly, in [15] the scaling between structural components with

different modal density is introduced (a coupled beam-plate system).

The present work focuses on tuning exact and distorted similitudes and the related scaling

laws for the analysis of the dynamic response of simple flat flexural plates. Thus, the attention is

concentrated on the possible developments concerning thin plates, [16, 17]. It has to be underlined

that chapter 19 in [16] is fully devoted to the similitudes of plates and shells, as well as the work

in [18].

Here, the response of a given model in similitude is determined from a generalization of the

modal approach, which allows the use of the mode shapes and natural frequencies in order to

establish scaling laws. Some highlights about the distribution of the natural frequencies and the

forced response are given for flat plates. Furthermore, some possibilities to assemble distorted

models are discussed, which are very interesting from an engineering point of view. Analytical

models are used throughput the whole work to produce both the original and distorted model

responses.

The results are very encouraging, especially considering that the modal approach, invoked
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here for the theoretical investigations, can be extended with relative simplicity to commercial

codes working with the Finite Element Methods. The complete procedure is named SAMSARA,

Similitude and Asymptotic Models for Structural-Acoustic Researches and Applications.

This work is the first in which the distorted similitudes are carefully analysed for engineering

purposes and in parallel some experimental investigations are already ongoing for validating the

these initial findings. SAMSARA is far to be considered a validated tool but the the results are

encouraging.

After these initial remarks, the work is continued in Section 2, which contains the general frame

of the modal response approach. The flat and unstiffened plate models are introduced in Section

3, where also the type of similitudes are defined. Section 4 presents the results in terms of the

variation of the main scaling parameters, additionally some considerations about the similitudes

for the energy response are also given. A concluding summary closes the work in Section 5.

2 Modal approach and similitudes

The response of a generic linear system can always be expressed in terms of its NM eigensolutions

through a summation. For a force located at a point S of the given spatial domain, the velocity

response at a point R is given as follows:

V (R,S;ω) = (jωF (ω))

NM∑
i=1

φi(R)φi(S)

µi
[(
ω2
i − ω2

)
+ jηiω2

i

] (1)

being φi, ωi, ηi and µi the i-th eigenvector, radian natural frequency, structural modal damping

and generalised mass, respectively. F (ω) represents the force amplitude, j the imaginary unit and

i the mode index. The force, f(S; t) is considered acting at a point S and is expressed as follows:

f(S; t) = F (ω)δ(S0 − S)ejωt (2)

being δ the Kronecker delta function and t the time coordinate. The velocity has been assumed in

the same form:

v(R,S; t) = V (R,S;ω)ejωt (3)

6



For the aims of the present work a useful simplification of the Eq. (1) can be used by assuming

that the modal damping is constant and also the force can be considered with a given constant

amplitude.

V (R,S;ω) = jωF

NM∑
i=1

φi(R)φi(S)

µi
[(
ω2
i − ω2

)
+ jηω2

i

] (4)

The velocity response for a generic system in similitude can be written as:

V̂ (R,S;ω) = jωF̂

NM∑
i=1

φ̂i(R)φ̂i(S)

µ̂i
[(
ω̂2
i − ω2

)
+ jη̂ω̂2

i

] (5)

The symbol (̂) will always denote the parameter in similitude.

Let define a set of scaling parameters, r, as the ratios of the similitude parameter to the original

one, thus: rF = F̂
F ; rη = η̂

η ; rω = ω̂i
ωi

; rmass = µ̂i
µi

. The spatial dependence, φi(R)φi(S), presents the

dimensionless positions of the source and receiver points and thus they do not need to be posed in

similitude. Some of the scaling parameters represent a choice, while others are derived from this

one.

The generic similitude can be rewritten as:

V̂ (R,S;ω) = jω rFF

NM∑
i=1

φi(R)φi(S)

rmassµi
[(
r2ωω

2
i − ω2

)
+ jrη ηr2ωω

2
i

] (6)

rearranging Eq. (6):

V̂ (R,S;ω) =

(
rF

rmassrω

)[
j

(
ω

rω

)
F

] NM∑
i=1

φi(R)φi(S)

µi

[(
ω2
i −

(
ω
rω

)2)
+ jrη ηω2

i

] (7)

If rη = 1, the response of the original system can be recovered from the response of its similitude:

V (R,S;ω) =
rmassrω
rF

V̂ (R,S; rωω) (8)

A final consideration is that any variation of the geometry and/or the material will alter the

distribution of the natural frequencies, it is further assumed that the boundary conditions and the

mode shapes are left unaltered.

Rather than trying to give further theoretical considerations, it is useful to pass to the invest-

igation on simple plate models.
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3 Application to flexural plates

The application of the modal approach is here reported to a homogeneous material rectangular

plate. The boundary conditions are such that the edges are all simply supported. The thickness

is h and the side lengths are Lx and Ly; the plate belongs to a generic Oxy reference plane. This

leads to the following expression:

V (R,S;ω) =
4jωF

ρLxLyh

NM∑
i=1

sin(miπxR
Lx ) sin(niπyR

Ly
) sin(miπxS

Lx ) sin(niπyS
Ly

)(
ω2
i − ω2

)
+ jηω2

i

(9)

where the integers mi and ni are the number of half waves of the i-th mode.

Introducing the dimensionless coordinates, ξ = x
Lx and ζ = y

Ly
:

V (ξR, ζR, ξS , ζS , ;ω) =
4jωF

ρLxLyh

NM∑
i=1

sin(miπξR) sin(niπζR) sin(miπξS) sin(niπζS)(
ω2
i − ω2

)
+ jηω2

i

(10)

with the natural frequencies:

ωi =

√
Eh2

12ρ(1− υ2)

[(
miπ

Lx

)2

+

(
niπ

Ly

)2
]

(11)

where E, υ and ρ denote the material Young modulus. Poisson modulus and mass density, respect-

ively.

In order to explore the achievable similitudes, a further choice has been made to keep the

material and damping values, rη = rE = rρ = 1. This is easily justified thinking to the extreme

engineering complexity of introducing also variation of the materials and the condition of the

damping.

Thus, only variation of the force and the sizes of the plates are investigated so that the generic

parent plate response can be written as:

V̂ (ξR, ζR, ξS , ζS , ;ω) =
4jωrFF

ρrxryrhLxLyh

NM∑
i=1

sin(miπξR) sin(niπζR) sin(miπξS) sin(niπζS)(
r2ωω

2
i − ω2

)
+ jηr2ωω

2
i

(12)

with,

ω̂i = rhh

√
E

12ρ(1− υ2)

[(
miπ

rxLx

)2

+

(
niπ

ryLy

)2
]

(13)
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Rearranging Eq. 12:

V̂ (ξR, ζR, ξS , ζS , ;ω) =
rF

rxryrhrω

4jF

ρLxLyh

(
ω

rω

) NM∑
i=1

sin(miπξR) sin(niπζR) sin(miπξS) sin(niπζS)(
ω2
i −

(
ω
rω

)2)
+ jηω2

i

(14)

thus,

V (ξR, ζR, ξS , ζS , ;ω) =
rxryrhrω

rF
V̂ (ξR, ζR, ξS , ζS , ; rωω) =

rmassrω
rF

V̂ (ξR, ζR, ξS , ζS , ; rωω) (15)

The parameter rF works as a simple correction factor. Thus, by looking at the last expression

and having in mind to keep the material and the damping, a generic parent plate can be investigated

in order to recover the response of the original one. The only condition to obtain an exact similitude

is that the natural frequencies of the parent plate can be written proportional to those of the original

plate. This can be accomplished if rx = ry, in this case:

ω̂i =
rh
r2x

√
Eh2

12ρ(1− υ2)

[(miπ

Lx

)2
+

(
niπ

Ly

)2
]

=
rh
r2x
ωi (16)

The parent plate is obtained by varying both the lengths of each sides and the thickness.

If rx = ry = rh a replica is obtained. If rx = ry for any rh a proportional side type of similitude

is obtained. Both are exact similitudes.

An avatar, that is a distorted similitude, is obtained for rx 6= ry

In the next section, the results will be reported for replicas, proportional side and avatar plates

in order to understand the several possibilities.

4 Results

The tests concern several plates summarised in Table I. Figure 1 presents a scheme of the plates.

The replica and the proportional sides types are exact similitudes, whereas the avatar types are

distorted ones.
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Table I: Plates

Plate Id Type of similitude Dimensions [m] Coefficients

Lx Ly h rx ry rh

M Reference Model 0.70 0.30 0.001 1 1 1

R Replica 2.10 0.90 0.003 3.0 3.0 3.0

E Proportional Sides 0.35 0.15 0.002 0.5 0.5 2.0

A1 Avatar 0.35 0.90 0.002 0.5 3.0 2.0

A2 Avatar 0.35 0.30 0.002 0.5 1.0 2.0

A3 Avatar 0.35 0.21 0.001 0.5 0.7 1.0

All the results, for a given couple of plates, are represented by three graphs: (i) the first relates

the natural frequencies of the reference plate and that in similitude, before and after remodulation;

(ii) the second reports the dimensionless responses of each plate; (iii) the last chart reports the

frequency response of each plate remodulated by using the scaling laws.

Specifically the label original on the natural frequencies charts means that the values of the

eigenvalues of both the reference plate and the related parent are reported. The scaling factor rω

is used to remodulated those frequencies associated to the parent plate. For exact similitudes, the

natural frequencies of the reference plate and those of the remodulated parent have to be equal.

The dimensionless responses serve to understand how different is the behaviour of each plate.

The frequency axis reports ωh/cL, being cL the longitudinal wave speed of the selected material.

The response axis presents the dimensionless group: V (ξR, ζR, ξS , ζS , ;ω)
ρLxLycL

F .

4.1 Modal response

4.1.1 Exact similitudes

Figures (2-7) present the expected results. In both the replica and the proportional sides cases, the

similitude models are able to recover exactly the response of the reference plate. It has to be again

underlined that the frequency axis has been scaled by rω and the response axis by rω rmass.
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The natural frequencies, after being remodulated, are perfectly located along the bisecting axis

of the natural frequencies charts, as presented in Figures (2) and (5). Furthermore, the responses

are perfectly collapsed after having remodulated the response values, too.

These are not surprising findings but represent a good check in view of the avatar responses.

4.1.2 Avatars

The first set of results concerns the relation between the reference plate and the first avatar. As

shown in Figure (8), this avatar is drastically different from the reference plate and thus the distri-

bution of the natural frequencies even after the remodulation does not present a good agreement.

The dimensionless responses, presented in Figure (9), confirm that the differences are huge. Nev-

ertheless, in the response of both plates presented in Figure (10), it is possible to see how the

remodulation allows recovering the response by using the reference plate for getting the avatar

response and viceversa. The results are quite acceptable from an engineering point of view up to

1000 Hz. For higher frequencies, the differences are increasingly great.

The second set, referring to the second avatar, presents only an altered value of ry while rx and

rh are the same as those used in the first avatar. This second avatar is less distorted than the first

one, and this can be read on each of the related Figures (11-13). Specifically, the approximation

is acceptable in all the investigated frequency ranges. Figure (13) shows that the second avatar

reproduces with a good confidence the response of the reference plate with the only exception of

the first peaks.

From an engineering point of view, the most interesting results are those referred to the third

avatar in which the thickness has been kept and both sides have been reduced. The results presented

in Figure (14) show that, even being different plates as demonstrated in Figure (15), the distribution

of the natural frequencies after remodulation is very close to the exact ones. Furthermore, the

recovered responses presented in Figure (16) are the best of the avatar group.
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4.2 Modal Density

Another useful parameter to analyse the results is the modal density, the statistical number of

modes resonating in a given frequency band. In case of flexural plates, it is a constant value and it

is given as simply as follows:

n ∝ Lx Ly
h

(17)

and thus for any model in similitude

n̂ ∝ rx ry
rh

Lx Ly
h

(18)

This is the situation for the plates reported in Table I:

Table II: Modal Density of Plates

Plate Id Type of similitude rh
rx ry

R Replica 0.33

E Proportional Sides 8.0

A1 Avatar 1.33

A2 Avatar 4.0

A3 Avatar 2.86

The models in complete similitudes, R and E, cannot be interpreted with the variations of the

modal densities since they replicated exactly the natural frequencies over wider or smaller frequency

ranges.

For the avatars, it is still under investigations the possibility to define an index of correlation in

order to compare the original and similitude responses, but the modal density can represent a first

useful support. In fact, the A2 is the worst of the group since it is associated to both large variations

of the modal density and the thickness. The A1 should be the best one since it is associated to

the minor variations of the modal density. Nevertheless, the A3 even having a value of the modal

12



density larger than the A1, keeps the original thickness and thus is associated to more acceptable

variation of the natural frequencies.

The initial lesson learnt from this simplified schemes is to consider avatars in which the natural

frequencies are distorted by modifying only the in-plane lengths and keeping the original thickness.

4.3 Energy response

A consideration is finally needed for the response of the plates for increasing excitation frequency. In

this case, the local behaviour disappears and the response becomes global. The Statistical Energy

Analysis, SEA [19], can be applied to estimate the flexural response of a plate:

V 2
SEA(ω) ≈ F 2

ρ2ωLxLyh3ωcLη
(19)

and thus by introducing the scaling parameters

V̂ 2
SEA(ω) ≈

(
r2f

rxryr3h

)
F 2

ρ2ωLxLyh3ωcLη
(20)

it is thus always possible to get a complete similitude between any couple of flexural plates. This

is here certified by including only a comparison between plates M and A3 in Figure (17).

5 Concluding remarks

This article presents an investigation into exact and distorted similitudes and the related scaling

laws for the analysis of the dynamic response of rectangular flexural plates. The response of a given

model in similitude is determined from a generalization of the modal approach, which allows the use

the mode shapes and natural frequencies in order to establish scaling laws. The complete procedure

is named SAMSARA, Similitude and Asymptotic Models for Structural-Acoustic Researches and

Applications. Analytical models of simply supported rectangular plates are used to produce both

the original and distorted model responses.

It is demonstrated that, if the original damping values and the distribution of natural frequencies

in the parent models are kept, then it is always possible to switch from the original model to the

13



parent model and viceversa, being the similitude complete. These conditions are fulfilled for the

replica and proportional side cases.

In the case of a distorted parent, the distribution of natural frequencies is altered when compared

to those of the original plate, and thus only a partial similitude is achieved. Nevertheless, even in

this case, it is possible to reproduce with good confidence the response of the reference plate. These

results are very encouraging, especially considering that the modal approach invoked here can be

extended with relative simplicity to commercial codes working with the Finite Element Methods.

Finally, it is shown that when the energy response of a plate is computed using statistical energy

analysis, it is always possible to get a complete similitude between any couple of flexural plates.

Further work is necessary to move to experimental validations tests, where the boundary and

damping conditions between the original and parent models are not necessarily the same.
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(a) (b)

(c) (d) (e) (f)

M R

E A1 A2 A3

Figure 1: Scheme of the plates: (a) Reference, (b) Replica, (c) Proportional Sides, (d) Avatar 1,

(e) Avatar 2, (e) Avatar 3.
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