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ESTIMACIÓN DE PRESIÓN RELATIVA USANDO MEDICIONES DE VELOCIDAD
EN FLUJOS SANGUINEOS: ESTADO-DEL-ARTE Y NUEVOS ENFOQUES

El gradiente de presión a lo largo de vasos sanguíneos con estenosis es un índice clínico
importante para el diagnóstico de la severidad de patologías cardiovasculares. Mientras el
estándar clínico para su medida es una cateterización invasiva (medir directamente la presión
introduciendo un catéter en los vasos sanguíneos), la resonancia magnética de contraste
de fase ha emergido como una prometedora herramienta para permitir cuantificaciones no
invasivas de la presión relativa, ligando las medidas de velocidad (resueltas con alta resolución
espacial) con la presión relativa vía las ecuaciones de Navier–Stokes. El objetivo de este
trabajo es resumir, proponer y comparar distintos métodos de estimación de la presión relativa
a través de una estenosis. Para esto usaremos simulaciones numéricas del fluido sanguíneo.

Primero resumimos los métodos actuales para estimación de presión relativa, i.e. PPE,
STE y WERP. Luego de proponer algunas mejoras a estos métodos, proponemos otra familia
de métodos que integran las medidas sobre un volumen de control para recuperar la presión
relativa. Realizamos un estudio comparativo de los métodos existentes y de los propuestos
en este trabajo usando datos sintéticos perturbados en dimensión dos.

PPE consiste en resolver un problema de Poisson para la presión p, usando medidas de
velocidad de flujo sanguineo u : ∇p = f(u). STE le agrega un término de difusión a este
problema, agregando una velocidad ficticia w a divergencia nula. Esto lleva a resolver en
la práctica un problema de Stokes: −∆w + ∇p = f(u). Ambos enfoques entregan una
estimación de la presión en todo el dominio. En este trabajo proponemos integrar por partes
el lado derecho de STE, reduciéndo los ordenes de derivación de las medidas, reduciendo así
la propagación del ruido presente en las mediciones. Llamaremos a este método STEint.

Por otro lado, WERP toma un enfoque distinto, en el que solo pedimos la diferencia de
presión entre dos superficies basada en un balance de energía integral. Este método solo
requiere calcular integrales sobre el dominio utilizando la velocidad medida. Esto lo hace
muy superior en tiempo de cálculo, sin embargo, no obtenemos una estimación de la presión
en todo el dominio, sino que una estimación para la diferencia de presión media entre dos
superficie. En esta tesis también introducimos un nuevo enfoque inspirado en el WERP, que
llamamos IMRP: en vez de multiplicar por la velocidad e integrar para obtener un balance
de energía, multiplicamos por una función test auxiliar con el objetivo de obtener la presión
relativa a través de un balance integral de momento. Dos versiones serán P-IMRP y B-IMRP.

En síntesis, proponemos una serie de modificaciones de los algoritmos que estiman el salto
de presión que en general mejoran los métodos y se pueden resumir como:

• Integrar por partes para reducir el orden de derivación, disminuyendo la amplificación
del ruido.
• Usar funciones auxiliares distintas a las medidas y libres de ruido, para reducir la

varianza y el sesgo de los estimadores.
• Aproximar la velocidad en el tiempo t = (n + 1

2
)τ , donde τ es el paso de tiempo, con

un esquema un+ 1
2 = un+1+un

2
. Esto reduce la varianza de los estimadores.

Concluimos que los métodos más robustos son STEint B-IMRP.
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ESTIMATION OF RELATIVE PRESSURE FROM VELOCITY MEASUREMENTS IN
BLOOD FLOWS: STATE-OF-THE-ART AND NEW APPROACHES

Pressure gradients in stenotic blood vessels are an important clinical index for diagnosis
of the severity of cardiovascular pathologies. While the clinical gold standard for its mea-
surement is invasive catheterization (to measure pressure direcly introducing a catheter into
blood vessels), Phase-Contrast MR-Imaging has emerged as a promising tool for enabling a
non-invasive quantification of the relative pressures, by linking the (highly spatially resolved)
velocity measurements with the relative pressure via the incompressible Navier–Stokes equa-
tions. This work’s objective is to review, propose and compare different estimation methods
for pressure difference in a coarctation using numerical simulations of blood.

In this work we first provide a review of current methods for relative pressure estimation,
i.e. the PPE, STE and WERP. After proposing some improvements to these methods, we
present a family of approaches that integrate measurements over a control volume in order
to recover the relative pressure. We did a comparative study with existent and proposed
methods using synthetic data in 2D with noise.

PPE resolves a Poisson equation for pressure p using blood flow velocity data: ∇p = f(u).
STE adds a difusion term to this problem, adding a divergence-free perturbation w that
should be almost null. This is to solve a Stokes problem: −∆w + ∇p = f(u). Both
aproaches give a pressure estimation over the whole domain. In this work we propose to
integrate by parts the right hand side of STE, reducing derivation orders.

Alternatively, WERP takes a different aproach, where we only ask for the pressure differ-
ence between two surfaces based on an integral energy balance. This method only requires to
compute integrals over the domain using measured velocity, largely reducing its computation
time. However, we don’t get a pressure estimation over the whole domain, but a pressure dif-
ference estimation between two spatial points. In this work we also introduce a new aproach
inspired from WERP, which we called IMRP. Instead of multiplying by the flow velocity and
integrating to obtain an energy balance, we multiply by a auxiliary test function in order to
obtain the relative pressure from an integral momentum balance.

In this work we found a number of modifications for the pressure estimation algorithms
which, generally, improves the methods and can be summarized as follows.

• Integrate by parts to reduce derivation orders and noise amplification.
• Use noise-free auxiliary functions, different from measurements, to reduce the estimator

variance and bias.
• Approximate velocity in time t = (n + 1

2
)τ , where τ is the time step, with a scheme

un+ 1
2 = un+1+un

2
, this reduces estimator’s variance.

We conclude that the most robust methods are those with the improvements proposed in
this work, meaning: STE integrated by parts and IMRP using an auxiliary test function of
a Brinkman problem.

Naturally, these conclusions must be also validated with tridimensional simulations, but
this goes beyond the original objective of this work, which is a first step in that direction.
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Chapter 1

Introduction

Aortic coarctation is a congenital disease consisting of a stenosis of the aorta near its
arc (Figure 1.1). Pressure difference between before and after the stenosis is a standard
clinical measurement that serves to asses the severity of the pathology. It may be performed
several times during diagnosis and follow up [1], in order to determine the need of a surgical
intervention and/or a more intensive follow up.

Figure 1.1: Aortic coarctation illustration from http://www.ctisus.com/

Moreover, peak instantaneous gradient also determines clinically the chance of re-coarctation
after surgery [2, 3]. The most reliable procedure in clinical practice to obtain peak instanta-
neous pressure gradient involves the measurement of relative pressure invasively via catheteri-
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zation, which has restricted indications and should be avoided unless non-invasive evaluations
are inconclusive or discordant with clinical findings, given its potential risk [4].

Alternatively, Phase-Contrast Magnetic Resonance Imaging (PC-MRI) allows to obtain
three-dimensional, time-resolved measurements of the velocity field, allowing visualization
of complex blood flow patterns in large vessels and the heart [5]. Typical (recommended)
PC-MRI spatial and temporal resolutions go from 1.5 to 3 mm3 and 30− 40 ms, respectively
[6]. Hence, it has been natural to postulate methods to compute the relative pressures using
these measured velocities and the Navier–Stokes equations.

First in [7, 8], and revisited recently in the context of finite elements in [9], a relative
pressure field was reconstructed by directly plugging the velocity measurements into a Navier–
Stokes equation, and solving a Poisson equation for the pressure. This technique has the
drawback that it requires second derivatives to evaluate the viscosity term. This approach is
usually denoted by Pressure Poisson Estimator (PPE).

Recently in [10], the authors proposed to solve a Stokes problem, by adding a divergence-
free vector to the Navier–Stokes residual, which results in a mixed problem for this vector
and the pressure to be estimated. In the tests presented in [10], this technique gives better
approximation results than the PPE.

Also very recently in [11], a new relation between relative pressure and velocity mea-
surements was proposed by using the classical integral energy balance of the incompressible
Navier–Stokes equations. This has the advantage that only few integrals have to be eval-
uated, making it computationally more efficient with respect to the PPE solution, and it
only requires the first derivatives of the measured velocities. However, the authors indicated
some potential drawbacks: (i) the measurement terms are squared, amplifying the noise, in
particular for small in-/outflows, and (ii) it cannot be applied for simultaneous estimation of
relative pressure in multiple outlet geometries.

Next we formulate an alternative integral approach of the momentum balance for estimat-
ing relative pressures. Instead of testing the Navier–Stokes equations by the measurements
to obtain an energy-balance, we test it with an independent function, with the only require-
ments of zero divergence and zero normal component on the vessel walls, e.g. the solution of a
simple static Stokes problem. We show that this overcomes the drawbacks of the energy-like
approach of [11] in several numerical examples using synthetic data. Moreover, we prove that
the method delivers an unbiased estimate with respect to the noise-free solution.

The rest of this paper is organized as follows. In Chapter 2 we set up the pressure es-
timation problem. In Chapter 3 we revisit the state-of-the-art methods mentioned above
and propose some modifications that may improve their performance in Chapter 4. Then
in Chapter 5, we derive the family of integral momentum pressure estimators. In Chapter
6 we test all methods using synthetic data, including sensitivity to noise, spatial and tem-
poral subsampling. Finally in Chapter 7 we discuss the results, draw some conclusions and
perspectives.
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Chapter 2

The relative pressure estimation problem

Let us consider an incompressible, Newtonian fluid in a bounded domain Ω ⊂ Rd, d = 2, 3,
modeled by the incompressible Navier–Stokes equations with the velocity u(t) : Ω→ Rd and
the pressure p(t) : Ω→ R, t ∈ [0, T ]:{

ρ∂tu+ ρ(u ·∇)u− µ∆u+ ∇p = 0 in Ω× [0, T ],

∇ · u = 0 in Ω× [0, T ]
(2.1)

where ρ is the density and µ the dynamic viscosity. We also assume that the boundary of Ω
given by ∂Ω := Γ = Γi∪Γo∪Γw, with Γi∩Γo = ∅. Γi is the inlet boundary (typically the one
proximal to the heart), Γo the outlet (distal) boundary and Γw is the arterial wall boundary,
as in Figure 2.1. The task of the relative pressure estimation is to compute:

δp =
1

|Γo|

∫
Γo

p− 1

|Γi|

∫
Γi

p (2.2)

given (perturbed) measurements of u in Ω.

Figure 2.1: Aortic geometry with 60% coarctation. For a given geometry, we will call "coarc-
tation percentage", C% = 100(1− minimum width

maximum width)%.

As is obtained in Phase-Contrast MRI, we will assume that the velocity measurements are
available at h-spaced discrete points of the domain Ω, but we will be able to reconstruct them

3



everywhere by: (a) computing a mesh Th of the domain Ω using the measurement locations,
and then (b) interpolating the velocity components at every point in Ω using simple linear
piecewise finite element basis functions. Additionally, we will asume that these space-discrete
measurements will be available at N discrete measurement times t1, ..., tN at a constant time
interval τ . We will denote the measurements as u1

m, ...,u
N
m ∈ [P1

h]d, with Pkh the usual
piecewise continuous k-th order polinomial finite element space.

Moreover, for further analysis we assume that the measurements include a random, addi-
tive perturbation with respect to the ground truth velocity, i.e. unm = unh+εn, with unh ∈ [P1

h]d

a spatial subsampling of the true field u into [P1
h]d at observation time tn, and εn ∈ [P1

h]d a
discrete noise field, with all degrees-of-freedom independently identically distributed (i.i.d.)
following a normal distribution N (0, σ2).
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Chapter 3

State of the art of estimators

3.1 The Poisson Pressure Estimator (PPE)

The PPE, in the context of finite elements, is based on the assumption that the pressure
gradient ∇p satisfies a weak version of Equation (2.1). Hence, the estimated relative pressure
at time tn+1/2 := (tn + tn+1)/2 can be found as a solution of the following problem: Find
p
n+1/2
ppe ∈ Pkh , k ≥ 1, such that∫

Ω

∇pn+1/2
ppe ∇q = −ρ

τ

∫
Ω

(un+1
m − unm) ·∇q

−ρ
∫

Ω

(un+1/2
m ·∇un+1/2

m ) ·∇q

+µ

∫
Ω

∆un+1/2
m ·∇q (3.1)

for all q ∈ Pkh , and pppe = q = 0 on Γo.

Note that ∆um is zero on each element of the mesh since ∇um is piecewise constant by
element, but this is not true across the interfaces. Nevertheless, this term is usually neglected
in blood flows by arguing that the viscous part of the pressure gradient is negligible [12].

Then, the pressure drop at time tn+1/2 between the outlet and the inlet is evaluated with
Equation (2.2) using pn+1/2

ppe . Note that the midpoint time evaluation scheme allows a second
order approximation with respect to time and to reduce the noise variance of the measure-
ments un+1/2

m by a factor of 2 with respect to the original variance of the measurements unm.
We obtain this property using that E(unm) = 0, V(unm) = σ2, ∀n as following:

V(un+1/2
m ) = E

(
(un+1/2

m )2
)
−
(
E(un+1/2

m )
)2

= E

((
unm + un+1

m

2

)2
)

=
1

4

(
E
(
(unm)2)+ E

((
un+1
m

)2
)

+ E
(
(unm) ·

(
un+1
m

)))
=

1

4

(
σ2 + σ2 + 0

)
=
σ2

2
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This approach will be used for all the methods studied throughout the manuscript.

3.2 The Stokes estimator (STE)

The STE formulated in [10] consists in perturbing the Navier–Stokes equation with the
Laplacian of an auxiliar divergence-free velocity field w. This leads to a mixed problem for
the pressure, in terms of the measured velocity, instead of a Poisson problem as in the PPE.

The STE is formulated as follows for the time step tn+1/2. Find w ∈ [P1
h + bubble]d and

p
n+1/2
ste ∈ P1

h, such that∫
Ω

∇w : ∇ŵ −
∫

Ω

p
n+1/2
ste (∇ · ŵ) +

∫
Ω

(∇ ·w)q = −ρ
τ

∫
Ω

(un+1
m − unm) · ŵ

−ρ
∫

Ω

(un+1/2
m ·∇un+1/2

m ) · ŵ

+µ

∫
Ω

∆un+1/2
m · ŵ (3.2)

for all ŵ ∈ [P1
h + bubble]d and q ∈ P1

h, with w = ŵ = 0 on Γ. Then, the pressure drop at
time tn+1/2 between the outlet and the inlet is evaluated with Formula (2.2) using pn+1/2

ste .

Let b be a bubble base function, T a finite element and cT the centroid of that element.
Then b(cT ) = 1 and b(x) = 0, ∀x ∈ ∂T . We add a bubble test function to [P1

h]d to obtain an
inf-sup stable mixed formulation, thus, obtaining a well posed problem [13].

Note that, as for the PPE, the viscous term of the right-hand-side of (3.2) is not identically
zero, nevertheless, it is usually neglected in blood flows by arguing that the viscous part of
the pressure gradient is negligible [12].

3.3 The work-energy relative pressure estimator (WERP)

The starting point of the formulation of the WERP method introduced in [11] is the
classical energy relation of an incompressible Newtonian fluid, which can be obtained either
by writing the conservation law for the energy density ρu2/2 directly or multiplying (2.1) by
u and integrating over Ω. This relation reads

ρ

2

∫
Ω

∂t(|u|2) +
ρ

2

∫
Γ

(u · n)|u|2 + µ

∫
Ω

|∇u|2 +

∫
Γ

p (u · n)− µ
∫

Γ

(∇u · n) · u = 0 . (3.3)

with | · | denoting the Euclidian norm.

The WERP is then formulated by assuming that: (i) the measurements unm satisfy relation
(3.3), (ii) unm ·n ≈ 0 on Γw (i.e. the vessel walls nearly don’t move), (iii) the viscous forces on
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Γ are negligible, (iv) and the pressure is nearly constant on Γi and Γo. Doing so, the WERP
pressure estimator at time tn+1/2 is written as:

δpn+1/2
werp (un,n+1

m ) = − 1

Λ(u
n+1/2
m )

(
Ekin(un+1

m )− Ekin(unm) + Econv(u
n+1/2
m ) + Evisc(u

n+1/2
m )

)
(3.4)

with

Ekin(w) =
ρ

2τ

∫
Ω

|w|2 (3.5)

Econv(w) =
ρ

2

∫
Γi∪Γo

(w · n)|w|2 (3.6)

Evisc(w) = µ

∫
Ω

|∇w|2 − µ
∫

Γ

(∇w · n) ·w (3.7)

Λ(w) =

∫
Γi

w · n. (3.8)

As it is well known from numerical analysis, the use of the mid-point scheme in (3.4) does
not induce any perturbation compared with the time-continuous energy relation (3.3), inde-
pendently on the time step τ .

We can see that this formulation may be unstable at small in-/outflows due to the division
by Λ(u

n+1/2
m ). In other words, when the inflow is small, perturbations (e.g. due to the noise)

can induce large errors in Λ(u
n+1/2
m ) leading to an unphysical amplification of the estimated

relative pressure. Another relevant issue is that the WERP induces systematic shifts in
the pressure curve in the presence of noise, as we will see in the next section. Moreover,
the WERP can only by construction estimate relative pressure in geometries with only one
inflow and one outflow, due to the assumption unm · n ≈ 0

7



Chapter 4

Modified estimation methods

In this section, we present modifications of the STE and WERP methods, and we will see
later in the numerical examples that they can lead to improvements in the estimation results.

4.1 The integrated STE (STEint)

We propose to modify the STE method originally proposed in [10] and formulated in Equa-
tion (3.2) by taking advantage of the regularity of the auxiliar velocity field and integrating
by parts the convective and viscous term.

The STEint is formulated as follows for the time step tn+1/2. Find w ∈ [P1
h + bubble]d

and pn+1/2
stei ∈ P1

h, such that

∫
Ω

∇w : ∇ŵ −
∫

Ω

p
n+1/2
stei (∇ · ŵ) +

∫
Ω

(∇ ·w)q = −ρ
τ

∫
Ω

(un+1
m − unm) · ŵ

+ρ

∫
Ω

(un+1/2
m ·∇ŵ) · un+1/2

m

−µ
∫

Ω

∇un+1/2
m : ∇ŵ (4.1)

for all ŵ ∈ [P1
h + bubble]d and q ∈ P1

h, with w = ŵ = 0 on Γ.

Note that the boundary terms of the integration by parts do not appear since ŵ = 0. We
point out that this integration by parts is not obvious for the PPE method due to the lack
of enough regularity of ∇q in Equation (3.1) when standard finite element spaces are used
(like Pkh).

Then, the pressure drop at time tn+1/2 between the outlet and the inlet is evaluated with
Formula (2.2) using pn+1/2

stei .
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4.2 The Darcy (DAE) and the integrated Darcy (DAEint)
estimators

Note that, a similar alternative for the STE would be to use a Darcy formulation for w
instead of Stokes:

Let RT kh be the usual Raviart-Thomas finite element space of degree k. Then, find
w ∈ RT kh and pn+1/2

dae ∈ Pkh , k ≥ 0, such that∫
Ω

w · ŵ −
∫

Ω

p
n+1/2
dae (∇ · ŵ) +

∫
Ω

(∇ ·w)q = −ρ
τ

∫
Ω

(un+1
m − unm) · ŵ

−ρ
∫

Ω

(un+1/2
m ·∇un+1/2

m ) · ŵ

+µ

∫
Ω

∆un+1/2
m · ŵ (4.2)

for all ŵ ∈ RT kh and q ∈ Pkh , with w · n = ŵ · n = 0 on Γ. This approach has not been yet
reported, to the authors best knowledge.

Analogously to STEint, we can also integrate by parts the right-hand-side of DAE, and
formulate the following new estimator problem that we will call DAEint: Find w ∈ RT kh
and pn+1/2

daei ∈ Pkh , k ≥ 0, such that∫
Ω

w · ŵ −
∫

Ω

p
n+1/2
daei (∇ · ŵ) +

∫
Ω

(∇ ·w)q = −ρ
τ

∫
Ω

(un+1
m − unm) · ŵ

+ρ

∫
Ω

(un+1/2
m ·∇ŵ) · un+1/2

m

−ρ
∫

Γ

(un+1/2
m · n)(un+1/2

m · ŵ)

−µ
∫

Ω

∇un+1/2
m : ∇ŵ

+µ

∫
Γ

(∇un+1/2
m · n) · ŵ (4.3)

for all ŵ ∈ RT kh and q ∈ Pkh , with w · n = ŵ · n = 0 on Γ.

4.3 The corrected WERP (c-WERP)

In order to propose a correction for the WERP, we first need to analyze its bias. We
notice that this was not done in the original article [11].

ConsiderMΩ andKΩ the classical mass and stiffness finite element matrices for the Stokes
problem in Ω, respectively. Then, let us point out that the following identities hold:

E
(
ρ

2

∫
Ω

εn ·w
)

= 0 , E
(∫

Ω

∇w : ∇εn
)

= 0 (4.4)
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for any deterministic function w, and

E
(
ρ

2τ

∫
Ω

|εn|2
)

= σ2 tr(MΩ), E
(
µ

∫
Ω

|∇εn+1/2|2
)

=
σ2

2
tr(KΩ) . (4.5)

Note that for the last term, we use the fact that the variance of the nodal values of εn+1/2

are σ2/2.

The goal is now to compute E(δp
n+1/2
werp (un,n+1

m )). In order to perform such an analysis, we
include an additional assumption that Λ(u

n+1/2
m ) ≈ Λ(u

n+1/2
h ), which is reasonable if we are

interested in estimating the peak relative pressure, which typically is simultaneous to the
peak flow where the signal-to-noise ratio is best.

We proceed therefore as follows:

E(δpn+1/2
werp (un,n+1

m )) ≈ − 1

Λ(u
n+1/2
m )

E
(
Ekin(un+1

m )− Ekin(unm) + Econv(u
n+1/2
m ) + Evisc(u

n+1/2
m )

)
.

We now compute separately each term. First the kinetic part

E (Ekin(unm)) = E
(
ρ

2τ

∫
Ω

|unh + εn|2
)

=
ρ

2τ

∫
Ω

E
(
|unh|2 + 2unh · εn + |εn|2

)
= Ekin(unh) + σ2 tr(MΩ) .

Then, the convective part

E (Econv(u
n
m)) =

ρ

2

∫
Γi∪Γo

E
(
((unh + εn) · n)|unh + εn|2

)
=

ρ

2

∫
Γi∪Γo

E
(
(unh · n)

{
|unh|2 + 2unh · εn + |εn|2

}
+(εn · n)

{
|unh|2 + 2unh · εn + |εn|2

} )
= Econv(u

n
h) +

ρ

2

∫
Γi∪Γo

E
(
(unh · n)|εn|2 + 2(εn · n)(unh · εn)

)
= Econv(u

n
h) +Bconv(u

n
h, σ

2) .

where it can be easily shown that the very last (cubic) term in the second row vanishes due
to the standard result that the cube of a normal variable has also zero expected value. And
at last, the viscous part

E
(
Evisc(u

n+1/2
m )

)
= Evisc(u

n+1/2
h ) + µ

∫
Ω

2∇un+1/2
h : ∇εn+1/2 + |∇εn+1/2|2

= Evisc(u
n+1/2
h ) +

σ2

2
tr(KΩ) .
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Now, summing all the terms we obtain the following expression for the bias of the WERP
estimator

E(δpn+1/2
werp (un,n+1

m ))− δpn+1/2
werp (un,n+1

h ) ≈ − 1

Λ(u
n+1/2
m )

(
Bconv(u

n+1/2
h , σ2) +

σ2

2
tr(KΩ)

)
.

(4.6)
Note that Bconv(u

n
h, ε

n) depends on both real (unknown) spatially subsampled velocity un+1/2
h

and noise variance σ2, while the second term of the bias depends on σ2 and the geometry Ω
only.

From (4.6), in the case when the noise statistics are known, we propose a corrected version
of the WERP, what we will call c-WERP estimator

δp
n+1/2
c−werp(u

n,n+1
m )) = δpn+1/2

werp (un,n+1
m )) +

1

Λ(u
n+1/2
m )

σ2

2
tr(KΩ). (4.7)
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Chapter 5

Integral momentum relative pressure
estimators

In this section we derive a new formulation for the integral relative pressure estimator
based on a general class of test functions, and we will analyze it in terms of its bias.

5.1 Formulation

Assume that we have computed a discrete function v (in some finite element space in Th),
satisfying

∇ · v ≈ 0 , v · n = 0 on Γw (5.1)

If we multiply Equation (2.1) by v and we integrate over Ω

ρ

∫
Ω

∂tu · v︸ ︷︷ ︸
Ikin(∂tu)

+ ρ

∫
Ω

(u ·∇u) · v︸ ︷︷ ︸
Iconv(u)

+

∫
Ω

∇p · v︸ ︷︷ ︸
Ipres

−µ
∫

Ω

∆u · v︸ ︷︷ ︸
Ivisc(u)

= 0 . (5.2)

we obtain for each of the terms

Iconv(u) = −ρ
∫

Ω

(u ·∇v) · u+ ρ

∫
Γ

(u · n)(u · v) (5.3)

Ipres = −
∫

Ω

p(∇ · v) +

∫
Γ

p (v · n) =

∫
Γi∪Γo

p (v · n) (5.4)

Ivisc(u) = µ

∫
Ω

∇u : ∇v − µ
∫

Γ

(∇u · n) · v (5.5)

using standard integration by parts. We will only detail Iconv(u) and we will work in R2, but
it is similar for R3.
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Let ∇u =

[
∂xux ∂xuy
∂yux ∂yuy

]
and where (u ·∇u) is a notation for (∇uT ·u) with u a column

vector.

(u ·∇u) · v =
[
ux∂xux + uy∂yux ux∂xuy + uy∂yuy

]
·
[
vx
vy

]
= ux∂xuxvx + uy∂yuxvx + ux∂xuyvy + uy∂yuyvy

= ux(∂xuxvx + ∂xuyvy) + uy(∂yuxvx + ∂yuyvy)

= ux ((∂x(uxvx)− ux∂xvx) + (∂x(uyvy)− uy∂xvy))
+uy ((∂y(uxvx)− ux∂yvx) + (∂y(uyvy)− uy∂yvy))

= ux∂x(uxvx + uyvy) + uy∂y(uxvx + uyvy)

−u2
x∂xvx − uxuy∂xvy − uyux∂yvx − u2

y∂yvy

= ux∂x(u · v) + uy∂y(u · v)− αv

= u · (∇(u · v))− αv

With αv = −u2
x∂xvx − uxuy∂xvy − uyux∂yvx − u2

y∂yvy

So we have,

Iconv(u) = ρ

∫
Ω

u · (∇(u · v))− ρ
∫

Ω

αv

= −ρ
∫

Ω

(∇ · u)(u · v) + ρ

∫
Γ

(u · n)(u · v)− ρ
∫

Ω

αv

= ρ

∫
Γ

(u · n)(u · v)− ρ
∫

Ω

αv

assuming that ∇ · u = 0.

Now, lets see that we can write αv as (u ·∇v) · u.

(u ·∇v) · u =

([
ux uy·

] [∂xvx ∂xvy
∂yvx ∂yvy

])
·
[
ux
uy

]
=

[
ux∂xvx + uy∂yvx ux∂xvy + uy∂yvy·

]
·
[
ux
uy

]
= u2

x∂xvx + uxuy∂yvx + uyux∂xvy + u2
y∂yvy

= αv .

Therefore, we conclude

Iconv(u) = −ρ
∫

Ω

(u ·∇v) · u+ ρ

∫
Γ

(u · n)(u · v) .

The integral momentum relative pressure estimator (IMRP) is then formulated by assum-
ing that: (i) the measurements unm satisfy relation (5.2), (ii) the pressure is nearly constant
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on Γi and Γo. Doing so, the IMRP estimator at time tn+1/2 is formulated as:

δp
n+1/2
imrp (un,n+1

m ) = − 1

Λ(v)

(
Ikin(

un+1
m − unm

τ
) + Iconv(u

n+1/2
m ) + Ivisc(u

n+1/2
m )

)
. (5.6)

Note that the requirements on the test function in (5.1) serve only so that the pressure
field vanishes (up to the relative pressure) in (5.4).

Notice also that the integral of the measurements are multiplied by 1/Λ(v), which is
independent of the measurements. This is an advantage compared to the WERP for the
potential spurious amplifications for low flows. Another advantage will be clear after the
bias analysis. We also point out that we did not make any assumption on the velocity
measurements on the boundary Γw, as it was done for the WERP. Hence it is potentially
better at capturing the pressure gradient changes due to the wall deformation.

5.2 Choice of the test function

We propose the test function v as the solution of the following problems

P-IMRP: Weighting with a Poiseuille flow, i.e. a Stokes flow solution with unitary
Neumann load on Γi: Find v ∈ [P1

h + bubble]d and z ∈ P1
h,∫

Ω

∇v : ∇ψ +

∫
Ω

z∇ ·ψ +

∫
Ω

q∇ · v +

∫
Γi

ψ · n = 0 , (5.7)

for all ψ ∈ [P1
h + bubble]d and q ∈ P1

h, and with v = ψ = 0 on Γw.

B-IMRP: Weighting with a Brinkman flow solution with Dirichlet boundary conditions
for v · n. Find v ∈ [P1

h + bubble]d and z ∈ P1
h∫

Ω

v ·ψ+ν

∫
Ω

∇v : ∇ψ−ν
∫

Γ

ψ · (nᵀ∇v)+

∫
Ω

z∇ ·ψ+

∫
Ω

q∇ ·v+γ

∫
Γw

(v ·n)(ψ ·n) = 0 .

(5.8)
for all ψ ∈ [P1

h+bubble]d and q ∈ P1
h, and with v satisfying the Dirichlet boundary conditions

v · n = −1 on Γi, v · n = (|Γi|/|Γo|) on Γo. The scalar γ > 0 is only one large penalization
parameter.

The following remarks are in order:
Remark 1. It is not necessary to introduce any coefficient in the viscous term in 5.7 since
the IMRP estimator is insensitive to any constant scaling of the velocity field, see Equation
(5.6). Concerning the B-IMRP, note that the shape of the velocity field (and not only the
scaling) changes with the viscosity ν.
Remark 2. A further option would be to include convective terms for v. However, in our
numerical experiments, this gave worse approximation results of the IMRP than testing with
pure Stokes and Brinkman solutions. Therefore, we do not present any results for the sake
of the manuscript’s conciseness.
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Remark 3. The finite element spaces of the weighting functions are defined in terms of
standard mini elements. These are, however, not the only options. Alternatively, Taylor–
Hood or Scott–Vogelius (strongly zero-divergence) [14] mixed elements can be used. However,
the final relative pressure estimation does not considerably depend on the the order of the
finite element space used for the test function. Differences between the different spaces can
only be appreciated for coarse mesh spacing of the measurements, i.e. larger than 3 mm.

5.3 Analysis of the IMRP estimator bias

As proceeded for the WERP, the aim is to compute

E(δp
n+1/2
imrp (un,n+1

m )) = − 1

Λ(v)

(
E(Ikin(

un+1
m − unm

τ
)) + E(Iconv(u

n+1/2
m )) + E(Ivisc(u

n+1/2
m ))

)
.

We now compute separately each term by setting unm = unh + εn . First, from identities (4.4)
it follows directly that

E(Ikin(
un+1
m − unm

τ
)) = Ikin(

un+1
h − unh
τ

), E(Ivisc(u
n+1/2
m )) = Ivisc(u

n+1/2
h ).

while the convective term requires a more careful treatment. First, notice that the following
identity holds:

E((εni )2) = σ2
∑
`

(N`)
2 = σ2α , ∀ i = 1, . . . , d,

with εni ∈ P1
h denoting the i-th spatial component of the vector εn ∈ [P1

h]d, and N`(x) the
finite element shape function for the `-th degree-of-freedom of P1

h. Therefore, also using
identities (4.4) (and the Einstein summation convention) we proceed as follows:

E(Iconv(u
n
m)) = Iconv(u

n
h)− ρ

∫
Ω

E((εn ·∇v) · εn) + ρ

∫
Γ

E((εn · n)(εn · v))

= Iconv(u
n
h)− ρ

∫
Ω

E
(
εni
∂vi

∂xj
εnj

)
+ ρ

∫
Γ

E(εni niε
n
j vj)

= Iconv(u
n
h)− ρ

∫
Ω

E
(
(εni )2

) ∂vi

∂xi

+ ρ

∫
Γ

E
(
(εni )2

)
nivi

= Iconv(u
n
h)− ρσ2

∫
Ω

α∇ · v + ρσ2

∫
Γ

αv · n

Therefore, the IMRP estimator bias can be written as:

E(δp
n+1/2
imrp (un,n+1

m ))− δpn+1/2
imrp (un,n+1

h ) =
ρσ2

2Λ(v)
Bimrp(v) (5.9)

with
Bimrp(v) = −

∫
Ω

α∇ · v +

∫
Γ

αv · n.

We want to remark that this expression provides a closed form for the bias, and it is in-
dependent of the real velocity field and of the measurements. Therefore, it can be always
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evaluated a priori. In fact, in the numerical examples we will verify that the bias is absolutely
negligible with respect to the relative pressure, which is due to two reasons. Firstly, ∇ · v is
(numerically) zero. Secondly, for example in the case of B-IMRP we have

Bimrp(v) = −
∫

Ω

α∇ · v −
∫

Γi

α +
|Γi|
|Γo|

∫
Γo

α.

However, it holds that ∫
Γ

α =
∑
K

∫
ΓK

α|K =
∑
K

|ΓK |
∫

Γref

α̂|K

with Γref a reference surface element and α̂|K the transformation of α|K into the local coor-
dinates of Γref . Note that, by construction of the shape functions, α̂|K = α̂ are the same for
all K, so that the boundary terms in Bimrp(v) cancel out.
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Chapter 6

Numerical examples

6.1 Forward simulations

The synthetic measurements are obtained from a forward simulation in a stenotic tube
where inlet and outlet width are set to R = 2cm, see Figure 6.1. We consider a Dirichlet
boundary condition on Γi with a transient Womersley solution

uin(x) =
∑NW−1

k=0

(
4a((2k+1)2σε sin(ωt)−ω cos(ωt))

π(2k+1)((2k+1)4σ2
ε+ω2)

+ ωe−(2k+1)2σεt

)
sin
(
(2k + 1)π x−xmin

R

)
,

with a =
Pdrop
ρL

, σε = µπ2

4ρ(R
2 )

2 , NW = 50, L the length between the inlet and outlet of our

geometry, and Pdrop = 1877 bary, which was calibrated to obtain a peak flow rate of 333
cc/s at 200 ms without any stenosis, i.e. a straight tube. The frequency was chosen as
w = 1

400
1

ms in order to emulate a realistic cardiac output. Moreover, zero Neumann on Γo
and non-slip Dirichlet on Γw boundary conditions imposed. The physical parameters were
chosen as µ = 0.035 Poise and ρ = 1.0 gr/cm3.

The numerical solution of the reference problem was performed using a monolithic velocity-
pressure coupling. The space-semidiscretization was performed via standard inf-sup stable
linear+bubble finite elements for the velocity, and linear for the pressure [13] with a mesh
size of 0.5 mm. A backward Euler scheme was used for the time-semidiscretization with
time-step of 5 ms, with a semi-implicit treatment of the convective term, and we include a
Temam stabilization term to ensure Lyapunov stability of the solution in time [15]. At that
spatial refinement level, no volume or backflow convective instabilities were observed, so no
volume convective or backflow stabilization terms were included in order to not perturb the
original equation, so no SUPG [16] or backflow stabilization [17] were necessary.
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6.2 Synthetic measurements

We generated synthetic measurements (see Figure 6.1) considering the following pertur-
bations of the data:

• We consider consider additive Gaussian noise [18]. Standard deviation was chosen
as 10% of the peak velocity as it is usually done in clinical Phase-Contrast imaging
adjusting the expected peak velocity (called VENC parameter) [6].
• We considered realistic time subsampling of 20ms, and also using no temporal subsam-

pling for the sake of comparison.
• We considered spatial subsampling of 1mm, 2mm and 3mm.

6.3 Weighting functions for IMRP

As introduced in Section 5.2, we will use two types of testing functions with the IMRP: A
Poiseuille flow (Problem (5.7)), called P-IMRP; and a Brinkman flow (Problem (5.8)), called
B-IMRP. For the B-IMRP flow, we used a viscosity value of ν = µ = 0.035 for a simulation
and another value of ν = 10−4 · 0.035 for another, in order to make it more strongly differ
from the P-IMRP flow. In Figure 6.2 we can see P-IMRP and B-IMRP with ν = µ = 0.035.

6.4 Estimation results: noise-free measurements

We investigate first the sensitivity of the results to the spatial subsampling of the mea-
surements.

Note that the best methods turn out finally to be the P-IMRP, B-IMRP and STEint
methods. These are then assessed and compared with noisy measurements.
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(b) No noise - h = 1 mm (c) No noise - h = 2 mm (d) No noise - h = 3 mm

(e) 10% noise - h = 1 mm (f) 10% noise - h = 2 mm (g) 10% noise - h = 3 mm

Figure 6.1: Spatially subsampled measurements with and without noise at time t=0.2 sec-
onds.
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(a) P-IMRP - h=1mm (b) P-IMRP - h=2mm (c) P-IMRP - h=3mm

(d) B-IMRP - h=1mm (e) B-IMRP - h=2mm (f) B-IMRP - h=3mm

Figure 6.2: Test functions for IRMP for different spatial resolutions
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(a) Best methods: h = 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−30

−25

−20

−15

−10

−5

0

5

Time [s]

P
re

ss
ur

e 
D

iff
er

en
ce

 [m
m

H
g]

 

 

Ground truth
PPE
WERP
P−IMRP
B−IMRP
STE
DAE
STEint

(b) Best methods: h = 1
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(c) Best methods: h = 2
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(d) Best methods: h = 3

Figure 6.3: Noise-free estimations for best methods.
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6.5 Estimation results: noisy measurements

We performed the same study but including a 10% noise, meaning that the standard
deviation was chosen as σ = 0.1 ·maxn(‖unm‖`∞). We use 100 noise samples, and we present
the mean pressure curves in Figure 6.4, the standard deviations for peak pressure in Figure
6.5(a) and the mean preassure error with respect to the ground truth at peak pressure time
in Figure 6.5(b). Note that the standard deviation of the pressure estimations diminishes
linearly with the spatial discretization size h for all methods. These values are similar, except
for the WERP, which has around twice the standard deviation as the best methods (IMRP
and STEint). From Figure 6.5(b), the methods with the smallest errors in the mean relative
pressures are STEint, B-IMRP and P-IMRP.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−30

−25

−20

−15

−10

−5

0

5

Time [s]

P
re

ss
ur

e 
D

iff
er

en
ce

 [m
m

H
g]

 

 

Ground truth
PPE
WERP
P−IMRP
B−IMRP
STE
DAE
STEint

(a) Best Methods: h = 0.5
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(b) Best Methods: h = 1
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(c) Best Methods: h = 2
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(d) Best Methods: h = 3

Figure 6.4: Mean estimations with 10% noise for best methods.

Moreover, we verify that the WERP and c-WERP are unstable for small flows, and that
the the c-WERP reduces the bias of the estimator when we compare for the original fine
mesh of h = 0.5mm (Figure 6.6(a)). However, as we interpolated the velocity from P1b to
P1 elements, an interpolation error induces an underestimation of δp . By chance, with the
overestimation from noise, this underestimation makes WERP closer to ground truth than
c-WERP (Figure 6.6(b)).
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(b) Mean error

Figure 6.5: Standard deviation and mean error estimations with 10% noise and τ = 5ms for
best methods for different mesh refinement.
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(a) h = 0.5 - Fine mesh using elements P1b
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(b) h = 0.5 - Fine mesh using elemrnts P1 interpo-
lated from P1b

Figure 6.6: Correction effect for c-WERP in fine and coarse meshes.
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6.6 Estimation results: sensitivity to time subsampling
(including noise)

In Figure 6.7 we present methods B-IMRP and STEint with τ = 20ms. The first we
can remark is that the time subsampling do not have a relevant impact on the estimation.
Moreover, note that at the beginning and end of the cycle the estimator variance is smaller
than at peak pressure. This can be explained as follows: the dominating term at low Reynolds
numbers is the kinetic, and it’s variance is inversely proportional to 1/τ 2. This can be verified
when we split the different terms of the pressure gradient for the IMRP and analyze their
variances independently, see Figure 6.8 for an analysis of B-IMRP. We can also see that
viscous contribution is negligible in this geometry.

In Figure 6.9(a) and 6.9(b) we see that time undersampling does not change results in a
significant way.
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(a) h = 0.5 mm

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−30

−25

−20

−15

−10

−5

0

5

Time [s]

P
re

ss
ur

e 
D

iff
er

en
ce

 [m
m

H
g]

 

 

Ground truth
B−IMRP
STEint

(b) h = 1 mm
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(c) h = 2 mm
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(d) h = 3 mm

Figure 6.7: Mean estimations with 10% noise and 20 ms for B-IMRP and STEint.

6.7 Estimation results for a severe coarctation

A more severe coarctation could induce a greater viscous contribution for IMRP methods,
but as it is shown in Figure 6.11, the viscous term grows but it is still negligible with respect
to advection and kinetic terms. Note that to estimate peak pressure difference with B-IMRP,
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(a) h = 1mm, τ = 5ms
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(b) h = 1mm, τ = 20ms

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−30

−25

−20

−15

−10

−5

0

5

Time [s]

P
re

ss
u

re
 D

if
fe

re
n

ce
 [

m
m

H
g

]

 

 

Fine Kinetic
Coarse Kinetic
Fine Advection
Coarse Advection
Fine Viscous
Coarse Viscous

(c) h = 2mm, τ = 5ms
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(d) h = 2mm, τ = 20ms

Figure 6.8: Comparison between B-IMRP integral terms contribution for h = 1, 2mm, τ =
5, 20ms, 10% noise, for 60% coarctation.
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Figure 6.9: Standard deviation and mean error estimations with 10% noise and τ = 20ms
for best methods for different mesh refinement with 60% coarctation.
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for this example we only care about the convective term, since both kinetic term and viscous
terms are negligible.

In Figure 6.10, we show pressure estimation for the best methods. We can see that at 70%
coarctation, pressure difference grows rapidly to ∼ 55 mmHg, and Figure 6.12(a) shows us
that standard deviation grows for every method, but B-IMRP and STEint still being among
the best estimators. They also keep having the the smallest error in the mean in Figure
6.12(b).
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(a) Best methods: h = 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−60

−50

−40

−30

−20

−10

0

Time [s]
P

re
ss

ur
e 

D
iff

er
en

ce
 [m

m
H

g]
 

 

Ground truth
P−IMRP
B−IMRP
STE
STEint

(b) Best methods: h = 1
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(c) Best methods: h = 2
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(d) Best methods: h = 3

Figure 6.10: Mean estimations for best methods with 10% noise and 20 ms for a 70% coarc-
tation.
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(a) Integral terms contribution for 60% coarctation
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(b) Zoom for integral terms contribution for 60%
coarctation
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(c) Integral terms contribution for 70% coarctation
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(d) Zoom for integral terms contribution for 70%
coarctation

Figure 6.11: Comparison between B-IMRP integral terms contribution for h = 1mm, τ =
20ms, 10% noise, for 60% and 70% coarctations.
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Figure 6.12: Standard deviation and mean error estimations with 10% noise and τ = 20ms
for best methods for different mesh refinement with 70% coarctation.
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Chapter 7

Discussion and perspectives

PPE for an aortic coarctation was introduced in [9]. The authors tested this method with
a 3D tube and with a 3D aortic geometry without any coarctation. In [11], the authors
proposed WERP and compared it with Simplified Bernoulli, Unsteady Bernoulli and PPE
methods, using an aortic geometry with a small coarctation. In [10], they propose STE and
compared it with PPE, showing a great superiority in terms of error with noise of 0%, 5%
and 10%.

In this work, we detect a systematic noise bias for WERP, that was not considered in [9]
but was visible in Figure 7 of [9]. In addition, we propose a correction c-WERP that fixes
WERP’s bias. We proposed a new method called IMRP, improving robustness respect to
noise and mesh coarseness. Also we complement [10] by proposing a natural modification to
STE: integrating by parts the second derivatives in space and reducing derivation order. In
Table 7.1 we have a summary of the most important methods for this work.

Ranking Method Estimation Computational cost Mean error Std of the error
1 B-IMRP δp 1 1 1
1 P-IMRP δp 1 1 1
1 STEint p ∈ Ω 2 1 1
2 STE p ∈ Ω 2 2 1
3 WERP δp 1 3 2
4 PPE p ∈ Ω 2 4 1

Table 7.1: Summary of the most important methods. “Estimation” column tells where if
we obtain pressure over the whole domain (p ∈ Ω) or just a difference of pressure between
two surfaces (δp). “Computational cost”, “Mean error” and “Std of the error” columns divide
methods in categories, being 1 the one with best performance. In the same way, we propose
a global ranking for pressure estimation methods.

In this work we found a number of modifications for the pressure estimation algorithms
which, generally, improves the methods.

• Integrate by parts to reduce derivation orders and noise amplification.
• Use noise-free auxiliary functions, different from measurements, to reduce estimator’s
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variance and bias.
• Approximate velocity in time t = (n + 1

2
)τ , where τ is the time step, with a scheme

un+ 1
2 = un+1+un

2
, this reduces estimator’s variance.

We verify that c-WERP corrects well WERP’s bias when we don’t have numerical error
due to spatial resolution, but still it has a significantly large variance. This makes WERP
and c-WERP unaccurate compared to other methods.

Time subsampling does not induce major problems to pressure estimation. With a time
step of τ = 20 ms we obtain comparable results to τ = 5 ms. Having a bigger τ even reduces
variance where the kinetic contribution is greater. Unfortunately, peak pressure difference is
calculated when fluid aceleration is negligible (i.e. un+1−un

τ
≈ 0), so the kinetic term is also

negligible. Then, peak pressure difference variance is not reduced by taking a bigger time
step.

With a greater coarctation we obtain the same conclusions, the only difference is that peak
preassure difference is greater. Viscous term contributes more as coarctation level grows, but
it is still negligible.

We determine that among all these methods, B-IMRP and STEint are the most robust
options with respect to space, time undersampling and noise, as we can see in Figure 6.7.
B-IMRP is much faster to compute (since it need only one mixed problem solution), but it
gives us a peak pressure difference estimation between only two points. On the other hand,
STEint is more expensive computationaly but it gives a preassure estimation in the whole
geometry. This can be used later to obtain more relevant information in the future.

Another important contribution of this work is the systematic benchmark for noise and
spatial resolution. We show that for a fixed noise level, the pressure estimation improves as
h decreases.

Some future extensions of this work could be:

• Test this methods in 3D with synthetic data and then with real 4D flow measurements.
• Quantify estimators variance for any given geometry, space step h and measurements

variance.
• Study in a theoretical way why there is a consistent pressure difference underestimation

as our mesh is coarser.
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