

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA CIVIL DE MINAS

SELECCIÓN DE MÉTODOS DE EXPLOTACIÓN PARA VETAS ANGOSTAS

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL DE MINAS

SEBASTIÁN IGNACIO MURUAGA ROJAS

PROFESOR GUÍA:

HANS GÖPFERT HIELBIG

MIEMBROS DE LA COMISIÓN: GUSTAVO REYES BÓRQUEZ FRANCISCO CARRASCO JEREZ

SANTIAGO DE CHILE

2016

RESUMEN DE LA MEMORIA PARA OPTAR AL TITULO DE: Ingeniero Civil de Minas POR: Sebastián Ignacio Muruaga Rojas FECHA: 19/05/2016 PROFESOR GUIA: Hans Göpfert Hielbig

SELECCIÓN DE MÉTODOS DE EXPLOTACIÓN PARA VETAS ANGOSTAS

Debido a que existen diversos métodos de explotación que pueden ser aplicados en yacimientos con forma de vetas angostas, surge la siguiente interrogante: ¿Qué método entrega el mejor resultado técnico-económico para explotar vetas angostas?

En vista de lo anterior, el presente estudio tiene por objetivo desarrollar un modelo de selección de métodos de explotación para vetas angostas, en base a propiedades geotécnicas, estado tensional in situ y características geotécnicas del yacimiento. Cabe destacar que el modelo de selección considerará los métodos Sublevel Stoping y Sublevel Caving, como solución a métodos de explotación por relleno que resultan ser más costosos.

Entre los sistemas de selección de métodos de explotación disponibles en la literatura, se destaca el sistema de Nicholas por ser ampliamente utilizado en la industria, el cual descarta categóricamente la explotación de vetas angostas mediante el método Sublevel Caving. Por esta razón es necesaria la formulación de un modelo de selección específico para los métodos Sublevel Stoping y Sublevel Caving en vetas angostas.

La base del modelo de selección se sustenta en el método gráfico de estabilidad de Mathews, que permite diseñar unidades de explotación estables y en la zona de hundimiento para los métodos Sublevel Stoping y Sublevel Caving, respectivamente.

A continuación, la Tabla 1 presenta el modelo de selección diseñado para vetas angostas, que considera como parámetros de entrada la geometría, inclinación y condiciones geotécnicas del yacimiento en estudio.

Coometría Vegimiento	Inclinación: 60°			Inclinación: 90°		
(Altura y Corrida y Dotonoia)	Q' de Barton Modificado			Q' de Barton Modificado		
(Altura x Corrida x r otencia)	5,0	7,5	10,0	5,0	7,5	10,0
Forma 1: 500x80x10 m	Indefinido	SLS	SLS	SLS	SLS	SLS
Forma 2: 350x350x10 m	SLC	Indefinido	SLS	Indefinido	Indefinido	SLS
Forma 3: 500x500x10 m	SLC	SLC	SLC	SLC	SLC	Indefinido

Tabla 1: Modelo de Selección para Vetas Angostas

Las condiciones indicadas como "Indefinido" muestran incertidumbre para realizar la selección del método de explotación a través del modelo. En estos casos, se debe utilizar la herramienta de evaluación adjuntada en la parte posterior (CD-ROM), de modo que la selección en estos casos se define a través de un resultado económico.

Finalmente, para obtener más condiciones donde exista incertidumbre para seleccionar el método de explotación, se recomienda extender el estudio para inclinaciones de 70° y 80°; y valores intermedios de Q' entre 5,0 y 10,0.

ABSTRACT OF THESIS SUBMITTED TO OPT FOR THE DEGREE OF: Mining Engineer BY: Sebastián Ignacio Muruaga Rojas DATE: 19/05/2016 GUIADANCE PROFESSOR: Hans Göpfert Hielbig

SELECTION OF MINING METHOD FOR NARROW VEINS

Since there are many mining methods to apply to orebodies with narrow veins, the following question arises: Which method yields the best technical-economical result to exploit narrow veins?

In view of the above, the main objective of this study is the development of a selection model to determine mining methods for narrow veins, based on geotechnical properties, stress state in situ and geotechnical characteristics of the ore body. It is worth stressing that the model to select shall include Sublevel Stoping and Sublevel Caving as a solution to mining methods based on backfilling which are more expensive.

Among the selection systems of mining methods that are available in the literature it stands out the system of Nicholas for being broadly used in the industry, which categorically discard narrow vein mining with the Sublevel Caving method. Due to this it is necessary the formulation of a specific selection model for Sublevel Stoping and Sublevel Caving in narrow veins.

The foundation of the selection model is the Mathew's stability graphical method which allows designing stable mining units and in the caving zone for the Sublevel Stoping and Sublevel Caving methods, respectively.

Next, Table 1 presents the selection model designed for narrow veins that considers as input parameters the geometry, inclination angle and geotechnical conditions of the ore body to study.

One hadre Coometree	Inclination Angle: 60°			Inclination Angle: 90°		
(Height y Dow y Dowon)	Q' of Barton Modified			Q' of Barton Modified		
(Height x Kow x Fower)	5,0	7,5	10,0	5,0	7,5	10,0
Form 1: 500x80x10 m	Undefined	SLS	SLS	SLS	SLS	SLS
Form 2: 350x350x10 m	SLC	Undefined	SLS	Undefined	Undefined	SLS
Form 3: 500x500x10 m	SLC	SLC	SLC	SLC	SLC	Undefined
Table 1: Selection Model for Narrow Voins						

 Table 1: Selection Model for Narrow Veins

The conditions indicated as "Undefined" show uncertainty regarding the selection of the mining method throughout the model. In these cases, it must be used the assessment tool attached in the backside (CD-ROM), so the selection is to be defined through an economic result.

Finally, to obtain more conditions where there is uncertainty regarding the selection of the mining method, it is recommended to extend the study for inclination angles of 70° and 80° ; and intermediate values of Q' between 5,0 and 10,0.

A Dios, mi esposa, mi madre, mi abuela, familia y amigos

Gracias por todo

Los amo mucho

TABLA DE CONTENIDO

1	INT	RODUCCIÓN	.1
	1.1	Motivación	1
	1.2	Objetivos	1
	1.2.	1 Objetivo General	1
	1.2.	2 Objetivos Específicos	1
	1.3	Alcances	2
2	AN	TECEDENTES	.3
	2.1	Sublevel Stoping	3
	2.1.	1 Sublevel Retreat	6
	2.1.	2 Sill Retreat	7
	2.2	Sublevel Caving	8
	2.2.	1 Longitudinal Sublevel Caving	9
3	AN	ÁLISIS BIBLIOGRÁFICO	11
	3.1	Sistemas de Selección de Métodos de Explotación	11
	3.1.	1 Sistema de Boshkov y Wright	11
	3.1.	2 Sistema de Hartman	11
	3.1.	3 Sistema de Morrison	13
	3.1.4	4 Sistema de Laubscher	14
	3.1.	5 Sistema de Nicholas	15
	3.2	Parámetros de Diseño en Vetas Angostas	17
	3.2.	1 Calidad del Macizo Rocoso en Sublevel Stoping	18
	3.2.2	2 Calidad del Macizo Rocoso en Sublevel Caving	20
	3.3	Método Gráfico de Estabilidad de Mathews	20
	3.3.	1 Mathews (1980)	21
	3.3.	2 Potvin (1988)	21
	3.3.	3 Stewart & Forsyth (1995)	22
	3.3.4	4 Mawdesley (2001/2002)	22
4	ME	TODOLOGÍA	24
	4.1	Evaluación Económica Sublevel Stoping	24
	4.2	Evaluación Económica Sublevel Caving	24
5	MO	DELO DE SELECCIÓN	26
	5.1	Parámetros de Entrada	26
	5.1.	1 Geometría del Yacimiento	26

5.1	.2 Condiciones Geotécnicas	
5.1	.3 Estado Tensional	
5.1	.4 Orientación de las Estructuras	
5.1	.5 Orientación de la Unidad de Explotación	
5.2	Diseño Minero	
5.2	Diseño de Unidades de Explotación	
5.2.	Recuperación y Dilución Sublevel Stoping	
5.2	Recuperación y Dilución Sublevel Caving	
5.2	2.4 Diseño Minero	
5.2	2.5 Diseño de Perforación y Tronadura	
5.3	Evaluación Económica	
5.3	3.1 Vida Útil	
5.3	.2 Inversión Total	
5.3	Ingreso Anual	
5.3	Costo Anual	
5.4	Herramienta de Evaluación	55
5.4	.1 Planilla Sublevel Stoping	
5.4	.2 Planilla Sublevel Caving	
6 CA	SO DE ESTUDIO	
6.1	Parámetros de Entrada	
6.2	Diseño de Caserones	
6.2	Factor de Esfuerzos Sublevel Stoping (Factor A)	
6.2.	Factor de Esfuerzos Sublevel Caving (Factor A)	
6.2.	2.3 Factor B	64
6.2.	P.4 Factor C	65
6.2	2.5 Estabilidad de Caserones	66
6.3	Recuperación y Dilución Sublevel Stoping	67
6.4	Recuperación y Dilución Sublevel Caving	68
6.5	Diseño Minero	69
6.5	5.1 Sublevel Stoping	69
6.5	5.2 Sublevel Caving	69
6.6	Evaluación Económica	69
6.6	5.1 Sublevel Stoping	
6.6	5.2 Sublevel Caving	

7 RESUL	LTADOS	72
7.1 Cr	riterios de Selección Parámetros de Entrada	
7.1.1	Geometría del Yacimiento	
7.1.2	Características Geotécnicas	
7.1.3	Estado Tensional	
7.1.4	Orientación de las Estructuras	74
7.2 Re	esultados Evaluación Económica	
7.2.1	Forma de Yacimiento 1	
7.2.2	Forma de Yacimiento 2	77
7.2.3	Forma de Yacimiento 3	
8 ANÁLI	ISIS	79
9 CONCI	LUSIONES Y RECOMENDACIONES	
10 BIBI	LIOGRAFÍA	
11 ANE	EXOS	
11.1 Ar	nexo A: Inversión y Costo de Operación Planta de Procesamiento	
11.1.1	Inversión Planta de Procesamiento para SLS y SLC	
11.1.2	Costo de Operación Planta de Procesamiento para SLS y SLC	
11.2 Ar	nexo B: Dimensionamiento Flota de Equipos e Inversión Mina para SLS	
11.2.1	Carguío: Equipos LHD	
11.2.2	Transporte: Camión Bajo Perfil	
11.2.3	Perforación: Jumbo Radial	
11.2.4	Tronadura: Camión de Carga	
11.3 Ar	nexo C: Costo Mina	
11.3.1	Carguío	
11.3.2	Transporte	103
11.3.3	Perforación	106
11.3.4	Tronadura	110
11.4 Ar	nexo D: Resultados Modelo de Selección	
11.4.1	Forma Yacimiento 1	
11.4.2	Forma Yacimiento 2	
11.4.3	Forma Yacimiento 3	

ÍNDICE DE FIGURAS

Figura 1: Desarrollos característicos método Sublevel Stoping	4
Figura 2: Sublevel Stoping versión convencional (Hamrin, 2001)	5
Figura 3: Sublevel Stoping versión LBH (Long Blast Hole) (Hamrin, 2001)	5
Figura 4: Diseño Sublevel Stoping en yacimientos masivos (Pakalnis & Hughes, 2011)	6
Figura 5: Sublevel Stoping - Vetas Angostas (Bullock & Hustrulid, 2001)	6
Figura 6: Sublevel Stoping – Sublevel Retreat (Dominy, Phelps, Sangster & Camm, 1998)	7
Figura 7: Sublevel Stoping - Sill Retreat (Dominy, Phelps, Sangster & Camm, 1998)	7
Figura 8: Sublevel Caving versión convencional (Kvapil, 1992)	9
Figura 9: Longitudinal Sublevel Caving (1) (Hancock & Mattson, 1982)	9
Figura 10: Longitudinal Sublevel Caving (2) (Hancock & Mattson, 1982)	10
Figura 11: Sistema de Hartman (Hartman, 1987)	13
Figura 12: Sistema de Morrison (Morrison, 1976)	14
Figura 13: Sistema de Laubscher (Laubscher, 1981)	14
Figura 14: Calidad de la roca mineralizada en minas canadienses por SLS (Potvin & Hudyma,	,
1989)	19
Figura 15: Calidad de la roca caja en minas canadienses por SLS (Potvin & Hudyma, 1989)	19
Figura 16: Potencia vs Calidad de la roca mineralizada (Potvin & Hudyma, 1989)	20
Figura 17: Gráfico de Estabilidad de Mathews (Stewart & Forsyth, 1995)	21
Figura 18: Grafico de Estabilidad modificado de Potvin (Potvin, 1988)	21
Figura 19: Grafico de Estabilidad de Mathews modificado por Stewart y Forsyth (Stewart &	
Forsyth, 1995)	22
Figura 20: Gráfico de Estabilidad de Mathews para regresión logística (Mawdesley, Trueman	&
Whiten, 2001)	23
Figura 21: Gráfico de Estabilidad de Mathews para regresión logística con zona de caving	
(Mawdesley, 2002)	23
Figura 22: Geometría del Yacimiento	27
Figura 23: Estado tensional en la unidad de explotación	28
Figura 24: Planos de la Unidad de Explotación	29
Figura 25: Curvas de diseño para los planos Crown / End Wall (Stewart & Forsyth, 1995)	32
Figura 26: Curvas de diseño para los planos Hanging / Foot Wall (Stewart & Forsyth, 1995)	32
Figura 27: Gráfico Factor A (Mathews, 1980)	33
Figura 28: Parámetros Factor B (Mathews, 1980)	33
Figura 29: Gráfico Factor C (Mathews, 1980)	34
Figura 30: Funciones de probabilidad para las zonas Estable, Falla Mayor y Caving (Mawdesl	ley,
2002)	35
Figura 31: Contornos de isoprobabilidad, zona Estable (Mawdesley, 2002)	35
Figura 32: Limites de las zonas Estable, Falla Mayor y Caving (Mawdesley, 2002)	36
Figura 33: Vista general diseño Sublevel Stoping y tipos de pilares (Betoumay, 1989)	37
Figura 34: Esfuerzo inducido sobre pilares verticales (Hoek & Brown, 1980)	38
Figura 35: Nomograma espesor mínimo del pilar corona (Tavakoli, 1994)	39

Figura 36: Gráfico Esfuerzo inducido/Esfuerzo horizontal in situ vs Altura Unidad de	
Explotación/Ancho del pilar (Tavakoli, 1994)	. 39
Figura 37: Gráfico de Estabilidad de Mathews – ELOS (Clark, 1998)	. 41
Figura 38: Curvas de dilución de Kvapil (Kvapil, 1992)	. 41
Figura 39: Vista general diseño Sublevel Stoping	. 43
Figura 40: Vista general diseño Sublevel Caving	. 44
Figura 41: Diagrama de perforación y tronadura abanico de producción Sublevel Caving	. 48
Figura 42: Unidad de explotación cálculo Factor A	. 58
Figura 43: Evaluación razón de lados en curvas de diseño para el plano Crown (Stewart &	
Forsyth, 1995)	. 58
Figura 44: Evaluación factor de esfuerzos para el plano Crown (Mathews, 1980)	. 59
Figura 45: Evaluación razón de lados en curvas de diseño para los planos Hanging/Foot Wall	
(Stewart & Forsyth, 1995)	. 60
Figura 46: Evaluación factor de esfuerzos para el plano Hanging/Foot Wall (Mathews, 1980)	. 60
Figura 47: Evaluación razón de lados en curvas de diseño para el plano Side Wall (Stewart &	
Forsyth, 1995)	. 61
Figura 48: Evaluación factor de esfuerzos para el plano Side Wall (Mathews, 1980)	. 62
Figura 49: Función lineal Factor B	. 65
Figura 50: Diseño Sublevel Stoping Caso de Estudio	. 68
Figura 51: VAN por ritmo de producción, Sublevel Stoping	. 70
Figura 52: Resultados económico por ritmo de producción Sublevel Caving	. 71
Figura 53: Medidos de Esfuerzo Vertical bajo la superficie (Windsor, 2003)	. 74

ÍNDICE DE TABLAS

Tabla 1: Modelo de Selección para Vetas Angostas	ii
Tabla 2: Sistema de Boshkov y Wright (Boshkov & Wright, 1973)	12
Tabla 3: Clasificación de la Geometría y Distribución de Leyes del Cuerpo Mineralizado Sist	ema
de Nicholas (Nicholas, 1981)	15
Tabla 4: Clasificación Características Geotécnicas Sistema de Nicholas (Nicholas, 1981)	15
Tabla 5: Sistema de Nicholas (Nicholas, 1981)	16
Tabla 6: Sistema de Nicholas (Nicholas, 1981)	16
Tabla 7: Continuación Sistema de Nicholas (Nicholas, 1981)	17
Tabla 8: Clasificación de Barton Q'	18
Tabla 9: Parámetros de entrada modelo de selección	30
Tabla 10: Tipos de relajación	32
Tabla 11: Valores predictivos para las zonas Estable, Falla, Falla Mayor y Caving	36
Tabla 12: Comparación curvas de dilución de Kvapil con Mina Big Bell	42
Tabla 13: Criterios de estabilidad para etapas del Sublevel Caving en vetas angostas	42
Tabla 14: Diagramas de perforación y tronadura de los abanicos de producción en Sublevel	
Stoping	47
Tabla 15: Información diagramas de perforación y tronadura en Sublevel Stoping	47
Tabla 16: Información diagrama de perforación y tronadura Sublevel Caving	48
Tabla 17: Parámetros evaluación económica	48
Tabla 18: Datos de inversión planta de procesamiento de minerales (Infomine, 2011)	50
Tabla 19: Índice de precios al consumidor (año base 1983)	51
Tabla 20: Precios equipos mineros	51
Tabla 21: Dotación, precios, consumos y costos unitarios	54
Tabla 22: Datos de costos de operación de procesamiento de minerales (Infomine, 2011)	54
Tabla 23: Descripción planilla de cálculo para Sublevel Stoping	56
Tabla 24: Descripción planilla de cálculo para Sublevel Caving	56
Tabla 25: Parámetros de entrada caso de estudio	57
Tabla 26: Geometría unidades de explotación caso de estudio	57
Tabla 27: Resultados Factor B caso de estudio	65
Tabla 28: Resultados Factor C caso de estudio	65
Tabla 29: Resultados estabilidad Sublevel Stoping Caso de Estudio	66
Tabla 30: Resultado estabilidad Pre Caving caso de estudio	66
Tabla 31: Resultado estabilidad Caving caso de estudio	66
Tabla 32: Resultados dimensionamiento de pilares Sublevel Stoping caso de estudio	67
Tabla 33: Número de Unidades de Explotación en Sublevel Stoping caso de estudio	67
Tabla 34: Resultados dilución Sublevel Stoping caso de estudio	68
Tabla 35: Resultados dilución y recuperación Sublevel Caving caso de estudio	69
Tabla 36: Longitud labores típicas Sublevel Stoping caso de estudio	69
Tabla 37: Longitud secciones típicas Sublevel Caving caso de estudio	69
Tabla 38: Variables asociadas a la evaluación económica para Sublevel Stoping	71

Tabla 39: Variables asociadas a la evaluación económica para Sublevel Caving	71
Tabla 40: Estado tensional casos de estudio	74
Tabla 41: Parámetros de entrada Modelo de Selección	75
Tabla 42: Resultados Modelo de Selección Forma de Yacimiento 1	76
Tabla 43: Resultados Modelo de Selección Forma de Yacimiento 2	77
Tabla 44: Resultados Modelo de Selección Forma de Yacimiento 3	78
Tabla 45: Porcentaje de casos de estudio con un mejor resultado económico (VAN) por	forma de
yacimiento	79
Tabla 46: Porcentaje de preferencia inclinación 60°	80
Tabla 47: Porcentaje de preferencia inclinación 90°	80
Tabla 48: Condiciones preferentes Sublevel Stoping	81
Tabla 49: Condiciones preferentes Sublevel Caving	81
Tabla 50: Condiciones indiferentes para Sublevel Stoping y Sublevel Caving	81

1 INTRODUCCIÓN

1.1 Motivación

Para yacimientos de vetas angostas existen diferentes métodos de explotación que pueden ser aplicados, como Sublevel Stoping, Sublevel Caving, Cut & Fill, Shrinkage Stoping y Vertical Crater Retrat (VCR), entre otros.

Debido a que existe más de un método para explotar vetas angostas, la problemática a resolver consiste en determinar que método entrega un mejor resultado técnico económico de acuerdo a las propiedades del macizo rocoso, estado tensional in situ y características geométricas del yacimiento, dado que se trata de vetas angostas.

La problemática se resuelve mediante una evaluación económica a nivel conceptual para los métodos de explotación en estudio. De esta manera se determina el VAN que entrega cada método y se realiza un análisis comparativo para definir qué condiciones favorecen o desfavorecen a cada método en su aplicación en vetas angostas.

La comparación entre métodos de explotación se basa en un análisis económico, que considera distintas variables como la dilución, recuperación, ritmo de producción, selectividad y masividad.

Con este estudio se pretende formular una herramienta de evaluación para seleccionar el método de explotación adecuado para vetas angostas, como primera aproximación en el proceso de evaluación de proyectos mineros, especialmente en minería a mediana escala.

1.2 Objetivos

1.2.1 Objetivo General

Desarrollar un modelo de selección de métodos de explotación para vetas angostas en base a propiedades geotécnicas, estado tensional in situ y características geométricas del yacimiento. La selección del método de explotación se realizará entre Sublevel Stoping y Sublevel Caving, como solución a los métodos de explotación por relleno aplicados en vetas angostas, que resultan ser más costosos.

1.2.2 Objetivos Específicos

- Definir los parámetros geotécnicos y de diseño que sean favorables en la selección de los métodos Sublevel Stoping y Sublevel Caving para su aplicación en yacimientos de vetas angostas.
- Crear una herramienta de comparación para los métodos Sublevel Stoping y Sublevel Caving aplicado en yacimientos de vetas angostas, en base a condiciones económicas como la recuperación, dilución y ritmo de producción.

1.3 Alcances

El alcance de esta memoria necesario para cumplir con el objetivo propuesto, comprende los siguientes temas:

- Descripción general de los métodos de explotación Sublevel Stoping y Sublevel Caving
- Descripción de las variantes de los métodos de explotación Sublevel Stoping y Sublevel Caving aplicadas en yacimientos con forma de vetas angostas
- Revisión y análisis de los sistemas de selección de métodos de explotación que existen en la bibliografía y su aplicación en vetas angostas
- Caracterización de la calidad del macizo rocoso para los métodos Sublevel Stoping y Sublevel Caving aplicados en vetas angostas
- Revisión y análisis del método gráfico de estabilidad de Mathews desde su origen y su aplicación como herramienta de diseño para los métodos Sublevel Stoping y Sublevel Caving
- Definición y descripción de los parámetros de entrada del modelo de selección para los métodos Sublevel Stoping y Sublevel Caving aplicados en vetas angostas
- Desarrollo de la herramienta de evaluación, donde se detalla el diseño de unidades de explotación, recuperación, dilución, diseño minero y evaluación económica para los métodos Sublevel Stoping y Sublevel Caving aplicados en vetas angostas
- Desarrollo de un caso de estudio que muestra el funcionamiento y metodología de cálculo de la herramienta de evaluación
- Selección de los parámetros de entrada y presentación de los resultados de la herramienta de evaluación para los métodos Sublevel Stoping y Sublevel Caving
- Análisis de resultados y rangos de variación de los parámetros geotécnicos y de diseño para seleccionar métodos Sublevel Stoping y Sublevel Caving para vetas angostas

2 ANTECEDENTES

2.1 Sublevel Stoping

El Sublevel Stoping es un método de explotación minera en el cual se excava el mineral a través de abanicos verticales, generando una excavación de dimensiones más grandes denominada caserón. El mineral arrancado se recolecta y extrae en "embudos" o zanjas emplazadas en la base de la unidad de explotación.

Este método se aplica de preferencia en yacimientos de forma tabular verticales o subverticales con potencia superior a 10 m, donde los bordes o contactos del cuerpo mineralizado deben ser regulares.

El diseño del método Sublevel Stoping considera los siguientes parámetros y características:

- <u>Tamaño:</u> Preferentemente la potencia del cuerpo mineralizado debe ser superior a 10 m, sin embargo existen casos donde la potencia mínima de la unidad de explotación es de 3 m.
- <u>Forma:</u> La forma del cuerpo mineralizado donde se ubicarán las unidades de explotación deben ser preferentemente tabular y regular.
- <u>Buzamiento (Dip)</u>: El buzamiento del caserón debe ser mayor que el ángulo de reposo del material quebrado, es decir, mayor a 50°.
- <u>Geotecnia:</u> La resistencia de la roca mineralizada debe ser moderada a competente, mientras que la roca de caja (HW-FW) debe ser competente para evitar el aumento de la dilución externa. Las características del mineral van a determinar el tamaño de los pilares y bloques, que afectan la productividad de la unidad de explotación (Pakalnis 2002).
- <u>Tamaño de Pilares:</u> El propósito de los pilares es soportar y dividir los caserones, dentro del cuerpo mineralizado. El tamaño de los pilares es dependiente de los esfuerzos inducidos, estructuras, calidad del macizo rocoso y condiciones operacionales.
- <u>Luz del caserón:</u> La luz es diseñada para controlar la dilución externa y prevenir colapsos en los caserones o "air blast". El largo de la luz está regido principalmente por la calidad de la pared colgante (HW).
- <u>Selectividad</u>: La selectividad del método está limitada por zonas con material estéril, que pueden ser incorporadas como pilares. Los cambios que se producen en la geometría del cuerpo mineralizado se pueden abordar, modificando el patrón de perforación en cada subnivel.

Para llevar a cabo la extracción del mineral, el método Sublevel Stoping debe contar con los siguientes desarrollos:

- Un nivel base o nivel de producción consistente en una galería de transporte y estocadas de carguío que permiten habilitar los puntos de extracción
- Zanjas recolectoras de mineral que abarcan toda la extensión del nivel de producción

- Galerías o subniveles de perforación dispuestos en altura bajo distintas configuraciones conforme a la geometría del cuerpo mineralizado.
- Una galería de acceso a los subniveles de perforación emplazada en el límite posterior de la unidad de explotación
- Una chimenea a partir de la cual se excava el corte inicial (slot) que sirve como cara libre para las primeras tronaduras de producción

A continuación, la Figura 1 muestra los desarrollos característicos del método Sublevel Stoping descritos anteriormente.

Figura 1: Desarrollos característicos método Sublevel Stoping

El hecho de tener distintos subniveles conectados a través de una rampa o distintas unidades de explotación en producción, facilita la posibilidad de realizar operaciones unitarias por separado, sin generar interferencias operacionales.

A continuación la Figura 2 y Figura 3 presentan el método Sublevel Stoping en su versión convencional con perforaciones radiales y la versión LBH (Long Blast Hole) con perforaciones paralelas de mayor longitud, respectivamente.

Figura 2: Sublevel Stoping versión convencional (Hamrin, 2001)

Figura 3: Sublevel Stoping versión LBH (Long Blast Hole) (Hamrin, 2001)

Si bien se mencionó que el método Sublevel Stoping es aplicado en cuerpos con forma tabular, también es posible aplicarlo en yacimientos masivos o mantos de gran potencia, subdividiendo el macizo mineralizado en unidades de explotación separadas por pilares, tal como se muestra en la Figura 4.

Figura 4: Diseño Sublevel Stoping en yacimientos masivos (Pakalnis & Hughes, 2011)

El método Sublevel Stoping se puede aplicar como tal en la explotación de vetas angostas. Los puntos de extracción se posicionan en la base del futuro casero, pero el nivel de producción se construye fuera de los límites de mineralización.

Puesto que se trata de la explotación de una veta angosta que tiene una potencia baja, es posible tener unidades de explotación estables de mayores dimensiones. Operacionalmente la altura de la unidad de explotación está limitada por el largo de la perforación, pero se puede disponer de distintos subniveles de perforación dentro del caserón, tal como se muestra en la Figura 5.

Figura 5: Sublevel Stoping - Vetas Angostas (Bullock & Hustrulid, 2001)

Para la explotación de vetas angostas, existen otras variantes del método Sublevel Stoping, descritas a continuación:

2.1.1 Sublevel Retreat

La variante Sublevel Retreat ha sido empleada en la explotación de cuerpos mineralizados sub verticales con potencia de 3 m en las minas Wheal Jane y South Crofty, UK. La Figura 6 muestra

el diseño del método Sublevel Retreat, donde la perforación es radial ascendente y la extracción del mineral es desde el centro del cuerpo mineralizado hasta los bordes de la unidad de explotación.

Figura 6: Sublevel Stoping – Sublevel Retreat (Dominy, Phelps, Sangster & Camm, 1998)

2.1.2 Sill Retreat

La Figura 7 muestra el diseño de la variante denominada Sill Retreat, donde la perforación es descendente por lo que se requiere un nivel de perforación y un nivel de producción, a diferencia de la variante Sublevel Retreat, que requiere de un solo nivel para llevar a cabo las actividades de producción. La extracción del mineral se realiza en un sentido entre los bordes de la unidad de explotación.

Figura 7: Sublevel Stoping - Sill Retreat (Dominy, Phelps, Sangster & Camm, 1998)

2.2 Sublevel Caving

El Sublevel Caving es un método de explotación minera por hundimiento donde el material estéril superpuesto se derrumba y rellena el vacío que va dejando la extracción del cuerpo mineralizado. Este proceso se debe propagar hasta la superficie, creando así una cavidad o cráter de subsidencia. Si bien este método se aplica de preferencia en yacimientos con forma tabular vertical y de grandes dimensiones, existe una variante para la explotación de vetas angostas denominada Longitudinal Sublevel Caving.

En primera instancia se describirá en forma general el método Sublevel Caving, para luego describir su variante longitudinal, aplicada en yacimientos con forma de vetas angostas.

Para llevar a cabo la extracción, el cuerpo mineralizado se divide en subniveles espaciados verticalmente entre 10 a 20 m. En cada subnivel se desarrolla una red de galerías paralelas que cruzan transversalmente el cuerpo, a distancias entre 10 a 15 m. Luego, la extracción del mineral se realiza a partir de estos subniveles en una secuencia descendente.

El diseño del método Sublevel Caving considera los siguientes parámetros y características:

- <u>Distribución de leyes</u>: El yacimiento debe tener una distribución de leyes razonablemente uniforme, idealmente con una zona de baja ley alrededor del cuerpo mineralizado para minimizar el impacto de la dilución generada por la incorporación de material estéril.
- Forma: La forma del cuerpo mineralizado debe ser preferentemente tabular y regular.
- <u>Buzamiento (Dip)</u>: El buzamiento del cuerpo mineralizado debe ser mayor al ángulo de reposo del mineral tronado, para facilitar el escurrimiento gravitacional.
- <u>Geotecnia:</u> La roca mineralizada debe presentar condiciones de competencia suficientes para que las labores emplazadas en ella permanezcan estables con un mínimo de elementos de fortificación. En cambio la roca circundante debe ser poco competente para facilitar el proceso de hundimiento una vez iniciada la extracción de la roca mineralizada.
- <u>Selectividad</u>: El cuerpo mineralizado es extraído en su totalidad mediante perforación y tronadura convencional. Por lo tanto, este método de explotación tiene una selectividad menor.

Al igual que en Sublevel Stoping, el hecho de tener distintos subniveles conectados a través de una rampa, facilita la posibilidad de realizar las operaciones unitarias por separado, sin generar interferencias operacionales. A continuación, la Figura 8 presenta el método Sublevel Caving en su versión convencional.

Figura 8: Sublevel Caving versión convencional (Kvapil, 1992)

2.2.1 Longitudinal Sublevel Caving

El método Longitudinal Sublevel Caving permite la explotación de yacimientos con forma tabular vertical y de baja potencia. El diseño de esta variante considera que los subniveles de producción se posicionen uno sobre otro en distintas cotas y se extiendan hasta los bordes del cuerpo mineralizado, tal como se muestra en la Figura 9 y Figura 10.

Figura 9: Longitudinal Sublevel Caving (1) (Hancock & Mattson, 1982)

Figura 10: Longitudinal Sublevel Caving (2) (Hancock & Mattson, 1982)

3 ANÁLISIS BIBLIOGRÁFICO

Para desarrollar un modelo de selección de métodos de explotación en yacimientos con forma de vetas angostas, será necesario revisar los sistemas de selección existentes en la literatura con el objetivo de determinar las principales características que influyen en el proceso de selección.

3.1 Sistemas de Selección de Métodos de Explotación

Un método de explotación se caracteriza por combinar de una manera única las diversas operaciones unitarias para recuperar minerales con un valor económico.

De esta manera, el propósito de los sistemas de selección de métodos de explotación es proveer una directriz en la selección preliminar de acuerdo a las características del yacimiento, que corresponden principalmente a la distribución y forma de la mineralización, y a las características geotécnicas del macizo rocoso.

En términos generales, el mejor método de explotación será aquel cuya aplicación maximice el retorno económico sobre la inversión, sin perjudicar el medio ambiente.

A continuación, se describen los sistemas de selección de métodos de explotación presentes en la literatura y que se aplican en la actualidad, de acuerdo al Capítulo 6.3 del SME Mining Engineering Handbook: "Selection Process for Hard Rock Mining".

3.1.1 Sistema de Boshkov y Wright

El sistema de selección propuesto por Boshkov y Wright (1973) es uno de los primeros esquemas cualitativos, desarrollado para la selección de métodos de explotación subterráneos, tal como se muestra en la Tabla 2. El sistema asume que la posibilidad de desarrollar minería a cielo abierto está descartada y se basa en la potencia e inclinación del cuerpo mineralizado, y en la resistencia del macizo rocoso.

3.1.2 Sistema de Hartman

Hartman (1987) desarrolló un modelo de selección de métodos de explotación cualitativo en base a un diagrama de flujo que considera la geometría del yacimiento y las características geomecánicas del macizo rocoso donde se emplaza la zona mineralizada (Figura 11). Este sistema es similar al propuesto por Boshkov y Wright, pero incluye métodos de explotación a cielo abierto.

Sistema de Boshkov y Wright				
Type of ore Body	Dip	Strength of ore	Strength of Walls	Commonly Applied Methods of Mining
Thin beds	Flat	Strong	Strong	Open stopes with casual pillars
			-	Room-and-pillar
				Longwall
		Weak or strong	Weak	Longwall
Thick beds	Flat	Strong	Strong	Open stopes with casual pillars
			-	Room-and-pillar
		Weak or strong	Weak	Top slicing
		_		Sublevel caving
		Weak or strong	Strong	Underground glory hole
Very thick beds	NA	NA	NA	Same as for "Masses" below
Very narrow veins	Steep	Strong or weak	Strong or weak	Resuing
Narrow veins	Flat	NA	NA	Same as for thin beds
(widths up to	Steep	Strong	Strong	Open stopes
economic				Shrinkage stopes
length of stull)				Cut-and-fill stopes
			Weak	Cut-and-fill stopes
				Square-set stopes
		Weak	Strong	Open underhand stopes
				Square-set stopes
			Weak	Top slicing
				Square-set stopes
Wide veins	Flat	NA	NA	Same as for thick beds or masses
	Steep	Strong	Strong	Open underhand stopes
	-	-		Underground glory hole
				Shrinkage stopes
				Sublevel stoping
				Cut-and-fill stopes
				Combined methods
			Weak	Cut-and-fill stopes
				Top slicing
				Sublevel caving
				Square-set stopes
				Combined methods
		Weak	Strong	Open underhand stopes
			0	Top slicing
				Sublevel caving
				Block caving
				Square-set stopes
				Combined methods
			Weak	Top slicing
				Sublevel caving
				Square-set stopes
				Combined methods
Masses	NA	Strong	Strong	Underground glory hole
		U U		Shrinkage stopes
				Sublevel stoping
				Cut-and-fill
				Combined methods
	NA	Weak	Weak or strong	Top slicing
				Sublevel caving
				Block caving
				Square-set stopes
				Combined methods

Tabla 2: Sistema de Boshkov y Wright (Boshkov & Wright, 1973)

Sistema de Hartman

Figura 11: Sistema de Hartman (Hartman, 1987)

3.1.3 Sistema de Morrison

El sistema de selección propuesto por Morrison (1976) divide los métodos subterráneos en tres grupos básicos: (A) Sostenidos por pilares rígidos, (B) Subsidencia controlada y (C) Hundimiento (Figura 12). Las características consideradas para seleccionar el método de explotación corresponde a la potencia del cuerpo mineralizado, tipo de soporte y acumulación de energía de deformación.

Figura 12: Sistema de Morrison (Morrison, 1976)

3.1.4 Sistema de Laubscher

Laubscher (1981) desarrolló un proceso de selección de métodos de explotación basado en la clasificación de macizos rocosos, donde se ajustan los impactos generados por las actividades mineras sobre la resistencia del macizo. El esquema de Laubscher está dirigido a métodos de explotación subterráneos masivos, principalmente Block Caving y Open Stoping, haciendo énfasis en la hundibilidad. Los parámetros empleados para realizar la selección a través del sistema de Laubscher corresponden al grado de fracturamiento del macizo rocoso y la condición de las discontinuidades (Figura 13).

Figura 13: Sistema de Laubscher (Laubscher, 1981)

3.1.5 Sistema de Nicholas

El sistema propuesto por Nicholas (1981) selecciona los métodos de explotación factibles, de acuerdo a un ranking numérico, por lo que se trata de un sistema cuantitativo. Para emplear el sistema de Nicholas, el primer paso consiste en definir la geometría del cuerpo mineralizado y distribución de leyes utilizando la información de la Tabla 3. Luego se definen las características geotécnicas de la roca intacta y macizo rocoso utilizando la Tabla 4.

Sistema de Nicholas						
General shape/width						
Equi-dimensional (M)	All dimensions are on same order of magnitude.					
Platy–tabular (P/T)	Two dimensions are many times the thickness, which does not					
	usually exceed 100 m.					
Irregular (I)	Dimensions vary over short distances.					
	Ore thickness					
Narrow (N)	< 10 m					
Intermediate (I)	10–30 m					
Thick (T)	30–100 m					
Very thick (VT)	>100 m					
Plunge						
Flat (F)	$< 20^{\circ}$					
Intermediate (I)	20°-55°					
Steep (S)	> 55°					
	Grade distribution					
Uniform (U)	Grade at any point in deposit does not vary significantly from mean					
	grade for that deposit.					
Gradational (G)	Grade values have zonal characteristics, and the grades change					
	gradually from one to another.					
Erratic Grade (EG)	Values change radically over short distances and do not exhibit any					
	discernible pattern in their changes.					

 Tabla 3: Clasificación de la Geometría y Distribución de Leyes del Cuerpo Mineralizado Sistema de Nicholas (Nicholas, 1981)

Sistema de Nicholas					
Rock Substance Strength (uniaxial strength/overburden pressure)					
Weak (W)	<	8			
Moderate (M)	8 -	15			
Strong (S)	> 1	15			
Fracture frequency	No. of fractures/m % RQD				
Very Close (VC)	> 16	0 - 20			
Close (C)	10-16 20-40				
Wide (W)	3-10 40-70				
Very wide (VW)	< 3 70 - 100				
Fracture Shear Strength					
Weak (W)	Clean joint with smooth surface or fill with material with strength				
	less than rock substance strength				
Moderate (M)	Clean joint with rough surface				
Strong (S)	Joint filled with material that is equal to or stronger than rock				
	substance strength				

Tabla 4: Clasificación Características Geotécnicas Sistema de Nicholas (Nicholas, 1981)

Una vez definidas las características del yacimiento, se formula un ranking numérico para los métodos de explotación en estudio, sumando los valores presentados en la Tabla 5, Tabla 6 y Tabla 7.

Sistema de Nicholas													
Mining	General Shape		Ore Thickness				Ore Plunge			Grade Distribution			
Method	Μ	T/P	Ι	Ν	Ι	Т	VT	F	Ι	S	U	G	E
Open-pit mining	3	2	3	2	3	4	4	3	3	4	3	3	3
Block caving	4	0	2	-49	0	2	4	3	2	4	4	2	0
Sublevel stoping	2	2	1	1	2	4	3	2	1	4	3	3	1
Sublevel caving	3	4	1	-49	0	4	4	1	1	4	4	2	0
Longwall mining	-49	4	-49	4	0	-49	-49	4	0	-49	4	2	0
Room-and- pillar mining	0	4	2	4	2	-49	-49	4	1	0	3	3	3
Shrinkage stoping	2	2	1	1	2	4	3	2	1	4	3	2	1
Cut-and-fill stoping	0	4	2	4	4	0	0	0	3	4	3	3	3
Top slicing	3	3	0	-49	0	3	4	4	1	2	4	2	0
Square-set stoping	0	2	4	4	4	1	1	2	3	3	3	3	3

Tabla 5: Sistema de Nicholas (Nicholas, 1981)

Sistema de Nicholas										
Mining Method	Rock Su	ubstance S	Strength		Fracture	Spacing	Fracture Strength			
	W	Μ	S	VC	С	W	VW	W	Μ	S
Ore Zone										
Open-pit mining	3	4	4	2	3	4	4	2	3	4
Block caving	4	1	1	4	4	3	0	4	3	0
Sublevel stoping	-49	3	4	0	0	1	4	0	2	4
Sublevel caving	0	3	3	0	2	4	4	0	2	2
Longwall mining	4	1	0	4	4	0	0	4	3	0
Room-and-pillar mining	0	3	4	0	1	2	4	0	2	4
Shrinkage stoping	1	3	4	0	1	3	4	0	2	4
Cut-and-fill stoping	3	2	2	3	3	2	2	3	3	2
Top slicing	2	3	3	1	1	2	4	1	2	4
Square-set stoping	4	1	1	4	4	2	1	4	3	2
	•	•	•	Hangin	g Wall	•	•	•	•	
Open-pit mining	3	4	4	2	3	4	4	2	3	4
Block caving	4	2	1	3	4	3	0	4	2	0
Sublevel stoping	-49	3	4	-49	0	1	4	0	2	4
Sublevel caving	3	2	1	3	4	3	1	4	2	0
Longwall mining	4	2	0	4	4	3	0	4	2	0
Room-and-pillar mining	0	3	4	0	1	2	4	0	2	4
Shrinkage stoping	4	2	1	4	4	3	0	4	2	0
Cut-and-fill stoping	3	2	2	3	3	2	2	4	3	2
Top slicing	4	2	1	3	3	3	0	4	2	0
Square-set stoping	3	2	2	3	3	2	2	4	3	2

Tabla 6: Sistema de Nicholas (Nicholas, 1981)

Footwall										
Open-pit mining	3	4	4	2	3	4	4	2	3	4
Block caving	2	3	3	1	3	3	3	1	3	3
Sublevel stoping	0	2	4	0	0	2	4	0	1	4
Sublevel caving	0	2	4	0	1	2	3	0	2	4
Longwall mining	2	3	3	1	2	4	3	1	3	3
Room-and-pillar mining	0	2	4	0	1	3	3	0	3	3
Shrinkage stoping	2	3	3	2	3	3	2	2	2	3
Cut-and-fill stoping	4	2	2	4	4	2	2	4	4	2
Top slicing	2	3	3	1	3	3	3	1	2	3
Square-set stoping	4	2	2	4	4	2	2	4	4	2

Tabla 7: Continuación Sistema de Nicholas (Nicholas, 1981)

Los valores presentados anteriormente, representan la preferencia por alguna de las características para un método de explotación en particular. Los valores 3 y 4 indican que la característica es apropiada para un método de explotación, los valores 1 y 2 indican que la característica es medianamente apropiada para un método de explotación, el valor 0 indica que la característica no promueve el uso del método de explotación, mientras que el valor -49 indica que la característica debe ser completamente descartada para el método en estudio.

Al revisar los valores numéricos entregados por el sistema de Nicholas, se observa que en cuerpos mineralizados con potencia inferior a 10 m (Narrow), el valor asignado para el método Sublevel Stoping es 1, mientras que para Sublevel Caving el valor es -49. Por lo tanto, la comparación entre ambos métodos no es factible según el sistema de Nicholas para yacimientos con forma de vetas angostas.

A pesar de lo descrito anteriormente, existe la variante Longitudinal Sublevel Caving que permite la explotación de yacimientos con potencias inferiores a 10 metros, la cual no es considerada por el sistema de Nicholas, de modo que se justifica el hecho de crear un modelo de selección para los métodos Sublevel Stoping y Sublevel Caving en vetas angostas, bajo condiciones similares.

3.2 Parámetros de Diseño en Vetas Angostas

Debido a que la metodología de Nicholas no puede ser utilizada para la selección de los métodos de explotación Sublevel Stoping y Sublevel Caving en vetas angostas, será necesario desarrollar un modelo de selección que considere la variante Longitudinal Sublevel Caving y así realizar la comparación entre ambos métodos.

Al analizar los modelos de selección de métodos de explotación descritos en el capítulo anterior, el parámetro de entrada más común a la hora de seleccionar un método corresponde a la calidad del macizo rocoso. Por lo tanto, antes de desarrollar el modelo de selección, se determinará la calidad que debe tener el macizo rocoso para ser explotado a través de los métodos Sublevel Stoping y Sublevel Caving en yacimientos con forma de vetas angostas.

En el presente estudio, se empleará el sistema de clasificación de Barton modificado (Q') para determinar la calidad del macizo rocoso, el cual está compuesto por cuatro factores:

$$Q' = \frac{RQD}{J_n} \cdot \frac{J_r}{J_a}$$

Dónde:

- RQD: Rock Quality Designation
- Jn: Número de sistemas de discontinuidades
- Jr: Número de rugosidad de discontinuidades
- Ja: Número de alteración de discontinuidades

Además, la Tabla 8 muestra la descripción del macizo rocoso según la clasificación de Barton.

Clasificación de Barton								
Descripción del Macizo Rocoso	Q'							
Excepcionalmente Malo	0,001 - 0,01							
Extremadamente Malo	0,01 - 0,1							
Muy Malo	0, 1 - 1							
Malo	1-4							
Regular	4 - 10							
Bueno	10 - 40							
Muy Bueno	40 - 100							
Extremadamente Bueno	100 - 400							
Excepcionalmente Bueno	400 - 1.000							
Table 9. Clasificasión de Derten O'								

Tabla 8: Clasificación de Barton Q'

3.2.1 Calidad del Macizo Rocoso en Sublevel Stoping

En un estudio realizado a 34 minas canadienses explotadas mediante Sublevel Stoping, Potvin & Hudyma (1989) encontraron que la calidad de la roca mineralizada era buena a muy buena (Q' > 10) en el 85% de las operaciones (Figura 14). En cambio, la calidad de la roca para la pared colgante era pobre a muy pobre (Q' < 4) en el 50% de las operaciones (Figura 15).

Figura 14: Calidad de la roca mineralizada en minas canadienses por SLS (Potvin & Hudyma, 1989)

Figura 15: Calidad de la roca caja en minas canadienses por SLS (Potvin & Hudyma, 1989)

En el mismo estudio, Potvin & Hudyma (1989) estudiaron la potencia de las unidades de explotación respecto a la calidad del macizo rocoso (Figura 16), donde se determinó que en 7 de cada 9 operaciones que presentan una calidad de roca mineralizada regular a muy mala (Q' < 10), tienen una potencia inferior a 10 m. Por lo tanto, se puede emplear el método Sublevel Stoping en condiciones de roca regular a muy mala, para cuerpos mineralizados con forma de vetas angostas.

Figura 16: Potencia vs Calidad de la roca mineralizada (Potvin & Hudyma, 1989)

3.2.2 Calidad del Macizo Rocoso en Sublevel Caving

Para determinar la calidad del macizo rocoso en vetas angostas para Sublevel Caving, se utiliza el caso de estudio de la mina de oro Big Bell, ubicada a 540 km al noreste de la capital estatal de Perth, Australia.

El método de explotación adoptado corresponde al Longitudinal Sublevel Caving, donde se produce el hundimiento a través de la pared colgante (Hanging Wall). Los subniveles de producción están separados por intervalos verticales de 25 metros, donde se accede por el centro del cuerpo mineralizado hacia sus extremos.

Luego, el macizo rocoso se caracteriza por tener un valor medio Q' de 2,9 comprendido en un rango de 0,4 a 12,5 para la zona mineralizada y un valor medio Q' de 6,3 comprendido en un rango de 2,1 a 15,0 para la pared colgante.

En vista de lo anterior, es posible explotar vetas angostas mediante los métodos de Sublevel Stoping y Sublevel Caving en macizos rocosos con calidad entre 5 y 10 puntos según el sistema de Barton modificado.

3.3 Método Gráfico de Estabilidad de Mathews

Para desarrollar el modelo de selección de métodos de explotación en vetas angostas, sera necesario utilizar el método gráfico de estabilidad de Mathews para diseñar unidades de explotación ser estables en el caso del Sublevel Stoping e inestables en el caso del Sublevel Caving.

A continuación, se estudiara el método gráfico de Mathews y su aplicación como herramienta de diseño para los métodos de Sublevel Stoping y Sublevel Caving en vetas angostas.

3.3.1 Mathews (1980)

En el año 1980, Mathews introdujo una herramienta de diseño preliminar para caserones abiertos, basada en un gráfico que relaciona el número de estabilidad de Mathews (N) con el factor de forma o radio hidráulico (S). Luego, el gráfico de estabilidad de Mathews es dividido en tres zonas: Estable, Potencialmente Inestable y Potencialmente Caving, tal como se muestra en la Figura 17.

Figura 17: Gráfico de Estabilidad de Mathews (Stewart & Forsyth, 1995)

3.3.2 Potvin (1988)

En el año 1988 Potvin recolectó datos adicionales y modificó la forma de calcular el numero de estabilidad de Mathews (1980). En el gráfico de estabilidad modificado de Potvin (Figura 18), el número de zonas es reducido a dos: Estable y "Caved", esta última representa una zona inestable pero no necesariamente el estado de caving.

Figura 18: Grafico de Estabilidad modificado de Potvin (Potvin, 1988)

3.3.3 Stewart & Forsyth (1995)

En el año 1995, Stewart & Forsyth actualizaron el gráfico de estabilidad de Mathews y propusieron cuatro zonas: Potencialmente Estable, Potencialmente Inestable, Potencial Falla Mayor y Potencial Caving (Figura 19). La última zona fue aproximada por Stewart & Forsyth y está basada en el gráfico de hundibilidad de Laubscher. De este modo, se representa el verdadero estado de caving dentro del gráfico de estabilidad, en oposición a la zona "Caved" propuesta por Potvin (1988). Finalmente, Stewart y Forsyth concluyeron que no existen diferencias significativas entre los métodos de Mathews y Potvin para determinar la estabilidad de una unidad de explotación.

Figura 19: Grafico de Estabilidad de Mathews modificado por Stewart y Forsyth (Stewart & Forsyth, 1995)

3.3.4 Mawdesley (2001/2002)

En el año 2001 Mawdesley realizó un análisis de regresión logaritmica sobre una base de 400 datos que guardan relación con el método gráfico de estabilidad de Mathews, para delinear estadísticamente las zonas de estabilidad y determinar los contornos de isoprobabilidad de los escenarios Estable, Falla Menor y Falla Mayor (Figura 20). Gracias al uso de la regresión logística, la incertidumbre en la aplicación del método de Mathews puede ser cuantificada.

Figura 20: Gráfico de Estabilidad de Mathews para regresión logística (Mawdesley, Trueman & Whiten, 2001)

Luego, en el año 2002 Mawdesley recolectó datos provenientes de minas explotadas con métodos de caving y extendió el análisis de regresión logística para evaluar la hundibilidad. De esta manera, es posible delinear el contorno de isoprobabilidad para la zona de Caving (Figura 21).

Figura 21: Gráfico de Estabilidad de Mathews para regresión logística con zona de caving (Mawdesley, 2002)

En conclusión, para realizar el diseño preliminar de unidades de explotación para Sublevel Stoping y Sublevel Caving, se utilizará el método gráfico de estabilidad de Mathews en ambos casos como herramienta de diseño.

4 METODOLOGÍA

La metodología de trabajo considera los siguientes pasos secuenciales para formular el modelo de selección de un método de explotación para vetas angostas, aplicado en Sublevel Stoping o Sublevel Caving.

- 1. Definición de los parámetros de entrada.
- 2. Evaluación económica de los parámetros de entrada mediante la herramienta desarrollada para Sublevel Stoping y Sublevel Caving.
- 3. Comparación de los resultados económicos para Sublevel Stoping y Sublevel Caving.
- 4. Análisis de los resultados económicos para determinar las condiciones de aplicación de ambos métodos en la explotación de vetas angostas.

4.1 Evaluación Económica Sublevel Stoping

La herramienta para evaluar económicamente el método de explotación Sublevel Stoping en yacimientos con forma de vetas angostas considera el desarrollo de los pasos secuenciales que se describen a continuación.

- Diseño de la unidad de explotación en la zona estable según el método gráfico de estabilidad de Mathews. Para esto se determina una combinación de Radio Hidráulico y número de estabilidad de Mathews (N) dentro de la zona Estable, asociada a un conjunto de parámetros de entrada.
- 2. Estimación de la dilución no planeada a través de la aproximación empírica desarrollada por Clark (1998), que define el ELOS mediante la aplicación del método grafico de estabilidad de Mathews.
- 3. Diseño de losas y pilares verticales según la geometría del yacimiento, para separar las unidades de explotación de acuerdo a las metodologías desarrolladas por Tavakoli y Lunder & Pakalnis, respectivamente.
- 4. Determinación de la recuperación del método Sublevel Stoping de acuerdo a la metodología del área tributaria, considerando las dimensiones de los pilares, unidades de explotación y cuerpo mineralizado.
- 5. Diseño minero conceptual, para determinar la longitud de las galerías de acceso, niveles de producción y perforación.
- 6. Estimación de las reservas totales, incorporando la dilución, recuperación y diseño minero.
- 7. Evaluación económica del método Sublevel Stoping.

4.2 Evaluación Económica Sublevel Caving

La herramienta para evaluar económicamente el método de explotación Sublevel Caving en yacimientos con forma de vetas angostas considera el desarrollo de los pasos secuenciales que se describen a continuación.

1. Diseño de la unidad de explotación en la zona de hundimiento según el método gráfico de estabilidad de Mathews. Para esto se determina una combinación de Radio Hidráulico y

Número de estabilidad de Mathews (N) dentro de la zona de Caving (Stewart & Forsyth), asociada a un conjunto de parámetros de entrada.

- Se determina el criterio de extracción. Antes que el caserón alcance el estado de caving se sugiere un tiraje controlado, es decir, extraer solo el 40% en cada subnivel y luego un 70%. Después de alcanzar el estado de caving, se sugiere un tiraje más activo, de modo que se extrae el 100% en cada subnivel.
- 3. Estimación de la dilución y recuperación para el método Sublevel Caving gracias al ábaco de Kvapil (1992).
- 4. Diseño minero conceptual, para determinar la longitud de las galerías de acceso y subniveles de producción.
- 5. Estimación de las reservas totales, incorporando el diseño minero y los criterios de extracción.
- 6. Evaluación económica del método Sublevel Caving.
5 MODELO DE SELECCIÓN

En muchos casos, la geometría del cuerpo mineralizado corresponde a un factor dominante para identificar el método de explotación apropiado. Otro factor que influye en la selección de métodos de explotación son las características geotécnicas de la roca de caja y de mineralización.

La mayoría de los modelos de selección utilizan estos factores como parámetros de entrada y generan como respuesta más de un método de explotación para un yacimiento en particular, de modo que son considerados como una primera aproximación al inicio de un proyecto minero.

El modelo de selección de métodos de explotación que se desarrollará en la presente memoria, es particular para la explotación de vetas angostas a través de Sublevel Stoping o Sublevel Caving y considera una respuesta económica como indicador para realizar la comparación y selección.

5.1 Parámetros de Entrada

En el desarrollo del modelo de selección los parámetros de entrada empleados corresponden a la geometría del yacimiento, características geotécnicas del macizo rocoso, estado de esfuerzos *in situ* y orientación de las discontinuidades.

Gracias a estos parámetros, es posible definir las dimensiones de las unidades de explotación a través del método gráfico de estabilidad de Mathews, dependiendo del caso de estudio (Sublevel Stoping o Sublevel Caving). Además, la geometría de la unidad de explotación se debe ajustar a la geometría del yacimiento, para que la orientación de ambos sea la misma y así maximizar la recuperación.

Para desarrollar el modelo de selección, es necesario que los parámetros de entrada sean los mismos para Sublevel Stoping y Sublevel Caving, con el objetivo de obtener una comparación entre métodos válida.

A continuación se presentan en mayor detalle los parámetros de entrada para el modelo de selección.

5.1.1 Geometría del Yacimiento

Los parámetros de entrada relacionados con la geometría del yacimiento corresponden a la altura, potencia, corrida e inclinación. Debido a que el modelo de selección está desarrollado para vetas angostas, se determina que el cuerpo mineralizado tiene una potencia inferior a 10 metros e inclinación mayor o igual a 60°, de acuerdo a los parámetros de diseño que comparten los métodos de explotación en estudio. Cabe destacar que la inclinación se define como el ángulo que se forma entre la pared colgante con la línea horizontal imaginaria, tal como se muestra en la Figura 22.

Figura 22: Geometría del Yacimiento

5.1.2 Condiciones Geotécnicas

Los parámetros de entrada relacionados con las condiciones geotécnicas del macizo rocoso corresponden a:

- Resistencia a la compresión uniaxial de la roca de caja en MPa (UCS Roca Caja)
- Resistencia a la compresión uniaxial de la zona mineralizada en MPa (UCS Mineralización)
- Q' de Barton (Modificado)

La calidad del macizo rocoso se puede clasificar de acuerdo al sistema de clasificación de Barton modificado (Q'). Este parámetro, está compuesto por 4 factores:

$$Q' = \frac{RQD}{J_n} \cdot \frac{J_r}{J_a}$$

Dónde:

- RQD: Rock Quality Designation
- Jn: Número de sistemas de discontinuidades
- Jr: Número de rugosidad de discontinuidades
- Ja: Número de alteración de discontinuidades

Según los alcances del presente estudio, no es importante el detalle de cálculo para estimar el valor de Q'. Como parámetro de entrada basta con entregar un valor exacto de Q' para el modelo de selección.

De acuerdo al análisis bibliográfico para la aplicación de Sublevel Stoping en vetas angostas, es posible diseñar unidades de explotación estables en yacimientos con potencia cercana a los 10 metros con valores de Q' superiores a 5.

La aplicación del Sublevel Caving en vetas angostas se basa en las características de la mina de oro Big Bell, donde el valor medio Q' para la zona mineralizada es 2,9 con un rango de 0,4 a 12,5 y el valor medio Q' en la pared colgante es 6,3 con un rango de 2,1 a 15,0.

En el diseño de caserones, el factor más importante que determina la estabilidad de este corresponde a la calidad de la pared colgante. Para la mina Big Bell, el mecanismo de hundimiento se produce gracias al colapso de esta pared en la medida que avanza la explotación, denominado "Hanging Wall Caving". Es por esta razón, que es importante tener en cuenta la calidad del macizo rocoso para llevar a cabo diseños que se adecuan a las características de cada método. Por lo tanto, el parámetro de entrada Q' está limitado entre 5 y 10 para la explotación de vetas angostas mediante Sublevel Stoping y Sublevel Caving.

5.1.3 Estado Tensional

Los parámetros de entrada relacionados con estado tensional in situ, corresponden a los esfuerzos orientados sigma vertical (σ_V), sigma horizontal 1 (σ_{H1}) y sigma horizontal 2 (σ_{H2}), tal como se muestran en la Figura 23.

Figura 23: Estado tensional en la unidad de explotación

5.1.4 Orientación de las Estructuras

El parámetro de entrada relacionado con la orientación de las estructuras corresponde al ángulo que se forma entre el plano de una unidad de explotación con un set estructural.

Las unidades de explotación están compuestas por 4 planos: Hanging Wall, Foot Wall, Crown y End/Side Wall; tal como se muestra en la Figura 24.

Figura 24: Planos de la Unidad de Explotación

Dentro del macizo rocoso existe más de un set estructural, por ende para cada cara se debe escoger el set que más desfavorezca la estabilidad de la unidad de explotación. Una vez definido el set crítico para cada cara, se determina su orientación y se ingresa como parámetro de entrada en el modelo de selección.

5.1.5 Orientación de la Unidad de Explotación

La orientación de la unidad de explotación no será considerada propiamente tal como un parámetro de entrada, sino más bien como una resultante de la inclinación y dirección del cuerpo mineralizado. Es necesario mencionar este ítem, ya que resulta indispensable en la determinación de la estabilidad de las unidades de explotación a través del método gráfico de Mathews.

Para determinar la orientación de los planos que componen una unidad de explotación, se consideran los siguientes supuestos:

 Las unidades de explotación diseñadas para Sublevel Stoping y Sublevel Caving se ajustan perfectamente en los límites geométricos del yacimiento. Esto quiere decir que la inclinación de los planos Hanging/Foot Wall corresponde a la misma del yacimiento. De este modo es posible obtener la inclinación de los planos Hanging/Foot Wall mediante las siguientes expresiones: $Orientación_{Hanging Wall} = Inclinación_{Yacimiento}$ $Orientación_{Foot Wall} = 180 - Inclinación_{Yacimiento}$

 El plano End/Side Wall tiene una inclinación de 90° y el plano Crown tiene una inclinación de 0° respecto a la horizontal.

Finalmente, la Tabla 9 entrega un resumen con los parámetros de entrada que se van a emplear en el modelo de selección.

Item	Parámetros de Entrada	Unidad de Medida
Geometría del Yacimiento	Altura	m
	Potencia	m
	Corrida	m
	Inclinación	0
Condiciones Geotécnicas	UCS Roca Caja	MPa
	UCS Mineralización	MPa
	Q' de Barton	-
Estado Tensional	$\sigma_{\rm V}$	MPa
	σ _{H1}	MPa
	σ _{H2}	MPa
Orientación de las Estructuras	Hanging Wall	0
	Foot Wall	0
	Crown	0
	End/Side Wall	0

Tabla 9: Parámetros de entrada modelo de selección

5.2 Diseño Minero

A continuación, se desarrollará en detalle todos los ítems relacionados con la herramienta de evaluación asociados al diseño minero para los métodos Sublevel Stoping y Sublevel Caving en vetas angostas.

5.2.1 Diseño de Unidades de Explotación

Los parámetros de entrada se definieron en base al diseño de unidades de explotación a través del método gráfico de estabilidad de Mathews, aplicado en Sublevel Stoping y Sublevel Caving.

Antes de realizar cualquier cálculo, es necesario proponer las medidas de la unidad de explotación en estudio, ya que se trata de un proceso iterativo. Cabe destacar, que las medidas propuestas no corresponden a parámetros de entrada, ya que se adecuan a los criterios de diseño de cada método de explotación.

Para determinar la estabilidad o inestabilidad de una unidad de explotación mediante esta metodología, es necesario calcular dos factores: el número de estabilidad de Mathews (N) y el radio hidráulico (RH) para los planos que conforman la unidad de explotación.

El número de estabilidad de Mathews (N) se define como:

$$N = Q' \times A \times B \times C$$

Donde:

- A : Factor de Esfuerzos
- B : Factor de Orientación de Discontinuidades
- C : Factor de Ajuste por Gravedad
- Q' : Q de Barton Modificado

Luego, el radio hidráulico (RH) se define como:

$$RH = \frac{A}{P}$$

Donde:

- A : Área de la cara de la unidad de explotación en estudio
- P : Perímetro de la cara de la unidad de explotación en estudio

A continuación, se detallará la forma de calcular los factores A, B y C mediante métodos empíricos. No será necesario entrar en detalle en la determinación del RH, ya que es directo y simple.

5.2.1.1 Factor A: Factor de Esfuerzos

El factor A mide el efecto del fracturamiento por esfuerzos, de modo que guarda directa relación con la condición de esfuerzos inducidos alrededor de una excavación y la resistencia a la compresión uniaxial de la roca intacta. El rango de valores que abarca el Factor A está comprendido entre 0,1 y 1,0.

Para determinar el factor de esfuerzos de los planos que componen la unidad de explotación, en primer lugar se determina el estrés inducido en el punto medio de cada plano en estudio mediante curvas de diseño.

Stewart y Forsyth (1995) introdujeron las curvas de diseño para determinar el estrés inducido en todos los planos que componen la unidad de explotación. La Figura 25 y Figura 26, muestran las curvas de diseño empleadas en los planos Crown/End Wall y Hanging/Foot Wall, respectivamente.

En el caso de que el estrés inducido sea negativo el Factor A tomará el valor de 1, a menos que exista relajación total o tangencial donde el Factor A será 0,7 (Tabla 10).

Figura 25: Curvas de diseño para los planos Crown / End Wall (Stewart & Forsyth, 1995)

Figura 26: Curvas de diseño para los planos Hanging / Foot Wall (Stewart & Forsyth, 1995)

Tipo de Relajación	Factor A
Relajación Total:	07
Al menos dos esfuerzos principales sean menor a 0,2 MPa	0,7
Relajación Tangencial:	
Al menos un esfuerzo principal sea menor a 0,2 MPa y	0,7
paralelo dentro de 20° respecto a la pared del caserón	
Tabla 10: Tipos de relajación	

Una vez que se obtiene el esfuerzo inducido para cada plano, se determina el Factor A mediante el gráfico de la Figura 27, donde se evalúa el cociente entre la resistencia a la compresión uniaxial (UCS) y el máximo esfuerzo inducido en compresión. Cabe destacar que para la evaluación del Crown/Side Wall se utilizará el UCS para la roca mineralizada, en cambio en el plano Hanging/Foot Wall se empleará el UCS para la roca caja.

Figura 27: Gráfico Factor A (Mathews, 1980)

5.2.1.2 Factor B: Factor de Orientación de Discontinuidades

El ángulo que se forma entre el plano de una unidad de explotación y su respectivo set principal de discontinuidades, es utilizado para determinar el factor de orientación (Figura 28). Se define el set principal de discontinuidades, como aquel que tiene mayor influencia sobre la estabilidad de la unidad de explotación para cada plano en estudio.

Figura 28: Parámetros Factor B (Mathews, 1980)

5.2.1.3 Factor C: Factor de Ajuste por Gravedad

La orientación de los planos que componen la unidad de explotación, influyen en su estabilidad. Para medir este efecto, se determina el factor de ajuste por gravedad a través de la siguiente expresión (Figura 29):

Figura 29: Gráfico Factor C (Mathews, 1980)

$$C = 8 - 7 \cos \alpha$$

Donde α corresponde al ángulo que se forma entre el plano de la unidad de explotación y la horizontal. En el caso de que α sea mayor a 90°, el Factor de ajuste por gravedad será 8.

5.2.1.4 Estabilidad de las Unidades de Explotación

La herramienta para determinar la estabilidad de las unidades de explotación para Sublevel Stoping y Sublevel Caving corresponde al método gráfico de estabilidad de Mathews, mediante un análisis de regresión logística propuesto por Mawdesley (2001).

La regresión logística provee de un método para calcular la probabilidad de estabilidad de una unidad de explotación. También muestra como esta probabilidad es alterada por cambios en la calidad del macizo rocoso o en los esfuerzos inducidos. El análisis de regresión permite definir estadísticamente distintas zonas de estabilidad, optimizando el número de datos a las zonas correctas y minimizando la clasificación errónea.

Los datos son especificados a través de tres variables: Radio Hidráulico, número de estabilidad de Mathews y zona de estabilidad. Luego, la regresión logística de estos datos se adecua a un modelo de probabilidad para generar valores predictivos (Logit Values) y así se determinar las zonas de Estabilidad, Falla, Falla Mayor y Caving, tal como se muestra en la Figura 30.

Figura 30: Funciones de probabilidad para las zonas Estable, Falla Mayor y Caving (Mawdesley, 2002)

La ventaja de la regresión logística es que provee probabilidades predictivas sobre la ocurrencia de eventos, basados en un modelo logístico. El uso de las probabilidades predictivas permite la construcción de contornos de isoprobabilidad, que en el gráfico de estabilidad de Mathews representa la probabilidad estimada de la ocurrencia de un evento, tal como se muestra en la Figura 31 para la zona Estable.

Figura 31: Contornos de isoprobabilidad, zona Estable (Mawdesley, 2002)

Luego, se determinan los límites que dividen las zonas de Estabilidad, Falla y Falla Mayor y Caving, presentados en la Figura 32.

Figura 32: Limites de las zonas Estable, Falla Mayor y Caving (Mawdesley, 2002)

Para establecer las zonas de estabilidad en el gráfico de Mathews, se asume un valor predictivo de 0,84 para separar la zona Estable con la zona de Falla/Falla Mayor, donde existe un 60% de probabilidad de que las unidades de explotación sean estables de acuerdo a la información presente en la Figura 30. Luego, para separar la zona de Falla/Falla Mayor con la zona de Caving se asume un valor predictivo de 0,16, donde la probabilidad de colapso que tienen las unidades de explotación corresponde a un 60%.

A continuación, la Tabla 11 muestra el resto de los valores predictivos que separan las zonas de estabiliadad.

Zona	Valor Predictivo
Caving	< 0,16
Falla Mayor	0,16-0,36
Falla	0,36 - 0,84
Estable	> 0,84

Tabla 11: Valores predictivos para las zonas Estable, Falla, Falla Mayor y Caving

Para determinar el diseño de las unidades de explotación, en el caso del Sublevel Stoping se estiman valores predictivos que sean mayores a 0,85 para todos los planos en estudio. En cambio, en el caso del Sublevel Caving, se espera que al menos un plano en estudio presente un valor predictivo inferior a 0,16.

Finalmente, para estimar los valores predictivos se tienen los siguientes formulismos:

 $z = 2,96 - 1,44 \ln RH + 0,79 \ln N$

$$p = \frac{1}{1 + e^{-z}}$$

Donde:

- RH : Radio Hidráulico
- N : Número de estabilidad de Mathwes
- z : Valor predictivo
- p : Valor predictivo probabilístico

5.2.2 Recuperación y Dilución Sublevel Stoping

El diseño minero para Sublevel Stoping en vetas angostas considera que las unidades de explotación se dispongan una al lado de otra a lo largo y ancho del cuerpo mineralizado, separadas por pilares tal como se muestra en la Figura 33. De este modo, es posible determinar la recuperación del método a través del Área Tributaria, si se conocen las dimensiones de los pilares.

Figura 33: Vista general diseño Sublevel Stoping y tipos de pilares (Betoumay, 1989)

Para realizar el diseño de pilares, se adopta como criterio de diseño un factor de seguridad superior a 1,3 de acuerdo a las recomendaciones de Lunder & Pakalnis (1996) para caserones abiertos.

En general, el procedimiento para determinar las dimensiones de los pilares es iterativo y consta de los siguientes pasos:

- 1. Determinación de las dimensiones iniciales del pilar
- 2. Estimación del esfuerzo inducido sobre el pilar
- 3. Determinación de la resistencia del pilar
- 4. Estimación del factor de seguridad del pilar, dividiendo la resistencia de este sobre el esfuerzo inducido
- 5. Verificación del factor de seguridad del pilar mayor a 1,3. En caso contrario se repite el procedimiento con otras dimensiones del pilar.

5.2.2.1 Pilares Verticales

El diseño de pilares verticales (Rib Pillar) se determina a través del método propuesto por Lunder & Pakalnis, puesto que considera el confinamiento sobre el pilar. Antes de estimar el esfuerzo inducido sobre el pilar, se determina la razón entre el área tributaria del pilar y el área del pilar mediante la siguiente expresión:

$$\frac{\text{\acute{A}rea Tributaria}}{\text{\acute{A}rea del Pilar}} = \frac{w_p + w_o}{w_p}$$

Donde w_p y w_o corresponden al ancho del pilar y ancho de la sección excavada respectivamente (Figura 34).

Figura 34: Esfuerzo inducido sobre pilares verticales (Hoek & Brown, 1980)

Luego el esfuerzo inducido sobre el pilar se estima de acuerdo al siguiente formulismo:

$$\sigma_{inducido} = \sigma_{v} \times \left[\frac{Area\ Tributaria}{Area\ del\ Pilar}\right] = \sigma_{v} \times \left[\frac{w_{p} + w_{o}}{w_{p}}\right]$$

Para determinar la resistencia del pilar (S) mediante la metodología de Lunder & Pakalnis (1996) se estiman dos parámetros correspondientes al confinamiento promedio del pilar (C_{pav}) y la fricción del pilar (K), a través de las siguientes expresiones:

$$C_{pav} = 0.46 \times \left[\log \frac{w}{h} + 0.75 \right]^{\left[\frac{1.4}{(w/h)} \right]}$$
$$K = \tan \left[a \cos \left(\frac{1 - C_{pav}}{1 + C_{pav}} \right) \right]$$

Donde:

- w : Ancho del pilar (m)
- h : Altura del pilar (m)

Luego se calcula la resistencia del pilar (S):

$$S = k \times \sigma_{ci} \times (C_1 + K \times C_2)$$

Donde:

- k : Factor de relación (0,44)
- σ_{ci} : Resistencia a la compresión de la roca intacta [MPa]
- $C_1 y C_2$: Constantes derivadas empíricamente ($C_1=0,68 y C_2=0,52$)

5.2.2.2 Pilares Horizontales

El diseño de pilares horizontales (Crown Pillar) se determina a través del método creado por Tavakoli (1994), puesto que el pilar se considera como una viga empotrada en sus dos extremos.

En primer lugar, se emplea el nomograma de la Figura 35 para determinar el espesor mínimo que debe tener el pilar, como primera aproximación.

Figura 35: Nomograma espesor mínimo del pilar corona (Tavakoli, 1994)

El esfuerzo inducido se obtiene evaluando la razón de la altura de la unidad de explotación con el espesor del pilar en el gráfico de la Figura 36

Figura 36: Gráfico Esfuerzo inducido/Esfuerzo horizontal in situ vs Altura Unidad de Explotación/Ancho del pilar (Tavakoli, 1994)

Luego, la resistencia del pilar corona (S) se determina a través de las siguientes expresiones, utilizando el sistema Q de Barton y RMR de Laubscher.

$$RMS(S) = IRS \times \left(\frac{RMR_L - P(IRS)}{80}\right) \times 0.8$$
$$RMR_L = 0.9 \times RMR_B + 2$$
$$RMR_B = 9 \cdot \ln Q + 44$$
$$Q = Q' \times \frac{J_w}{SRF}$$

Donde:

- RMS : Resistencia del Macizo Rocoso (MPa)
- IRS : Resistencia a la Roca Intacta (MPa)
- RMR_L : Rock Mass Rating de Laubscher
- P(IRS) : Puntaje Resistencia a la Roca Intacta
- RMR_B : Rock Mass Rating de Bieniawski
- Q : Q de Barton
- Q' : Q de Barton Modificado
- J_W : Factor de Agua
- SRF : Strength Reduction Factor

Debido a que el modelo de selección considera el valor de Q', se asume que el factor de agua (J_W) y factor de esfuerzos (SFR) tienen un valor igual a 1. Por lo tanto, se cumple que el valor de Q es igual al de Q' para efectos de cálculo de la resistencia del pilar corona.

Una vez definidas las dimensiones de los pilares, se obtiene la recuperación del método Sublevel Stoping mediante el Área Tributaria, tal como se muestra en la siguiente expresión:

$$Recuperación_{SLS} = \frac{(Altura_{UE} \times Corrida_{UE})}{(Altura_{UE} + Ancho_{Pilar Horizontal})(Corrida_{UE} + Ancho_{Pilar Vertical})} [\%]$$

Donde UE corresponde a la Unidad de Explotación

Respecto a la dilución en Sublevel Stoping, se utiliza el modelo de Clark (1998) presentado en la Figura 37, que permite estimar la dilución para los planos Hanging/Foot Wall en macizos con calidad de roca Q' entre 4,2 y 12,5.

Si el modelo de Clark se utiliza en macizos rocosos con mejor o peor calidad, las curvas del modelo tienden a sobre o sub estimar la dilución, respectivamente. Debido a que el estudio se realiza en macizos con calidad de roca Q' entre 5 y 10, la aplicación del modelo de Clark es factible.

Figura 37: Gráfico de Estabilidad de Mathews - ELOS (Clark, 1998)

De acuerdo al modelo de Clark, para una combinación entre radio hidráulico y número de estabilidad de Mathews se determina el valor del ELOS, que corresponde a la profundidad promedio del sobrequiebre para los planos Hanging/Foot Wall. Con este valor, es posible estimar la dilución a través de la siguiente expresión:

$$Dilucion (\%) = \frac{Estéril (ton)}{Mineral (ton)} = \frac{ELOS (m)}{Potencia Unidad de Explotación (m)} \times 100$$

5.2.3 Recuperación y Dilución Sublevel Caving

La recuperación y dilución en Sublevel Caving se determina a través de las curvas de dilución creadas por Kvapil (Figura 38).

Figura 38: Curvas de dilución de Kvapil (Kvapil, 1992)

Los autores Player & Perera (2005) realizaron un análisis de la dilución y recuperación para la variante Longitudinal Sublevel Caving, empleando datos de la mina Big Bell. El estudio determinó que la extracción promedio de la mina era de 108%, donde un 84% correspondía a mineral y el 24% restante a estéril. Comparando estos resultados con las curvas de dilución de Kvapil, los autores concluyeron que la variante Longitudinal Sublevel Caving para la mina Big Bell se comporta de acuerdo a la curva de buena extracción (Tabla 12).

	Kvapil (1992)				
Mina Big Bell	Buena Intermedia Mala				
108	110	110	110		
84	83	75	65		
24	27	35	45		
	Mina Big Bell 108 84 24	Mina Big Bell Buena 108 110 84 83 24 27	Kvapil (1992) Mina Big Bell Buena Intermedia 108 110 110 84 83 75 24 27 35		

Tabla 12: Comparación curvas de dilución de Kvapil con Mina Big Bell

Por lo tanto, el modelo de selección para Sublevel Caving considera la curva de buena extracción de Kvapil.

Para realizar la extracción en vetas angostas mediante Sublevel Caving se considerarán 3 etapas, definidas como: Esponjamiento, Pre Caving y Caving. A continuación, la Tabla 13 muestra los criterios para diseñar las unidades de explotación en cada etapa de acuerdo al método gráfico de estabilidad de Mathews:

Etapa	Zona	Valor Predictivo
Esponjamiento	Estable/Falla	> 0,36
Pre Caving	Falla Mayor	0,16-0,36
Caving	Caving	< 0,16

Tabla 13: Criterios de estabilidad para etapas del Sublevel Caving en vetas angostas

Una vez estimadas las dimensiones de las unidades de explotación para cada etapa, se determina el ritmo de extracción. De este modo se obtiene la recuperación y dilución del método.

La primera etapa en la explotación de vetas angostas a través del método Sublevel Caving, corresponde a la etapa de Esponjamiento, la cual se define por extraer el 40% del abanico de producción. La razón es que en primera instancia la extracción se realiza de manera paulatina, para alcanzar un radio hidráulico que represente el estado de caving. De acuerdo a la curva de buena extracción de Kvapil, a una tasa de extracción del 40%, se obtiene una recuperación de 40% y 0% de dilución.

Luego, en la medida que se avanza en la explotación de subniveles, se desarrolla la etapa de Pre Caving, la cual se define por extraer el 70% del abanico de producción. La razón del aumento en la tasa de extracción se debe a que la pared colgante alcanza la zona de Falla Mayor, ya que esta presenta un radio hidráulico mayor respecto a la etapa anterior. De acuerdo a la curva de buena extracción de Kvapil, a una tasa de extracción del 70%, se tiene una recuperación de 65% y 5% de dilución.

Finalmente, la etapa de Caving se define por extraer el 100% del abanico de producción. La razón es que se alcanza la zona de caving, nuevamente por un aumento en el radio hidráulico de

la pared colgante. De acuerdo a la curva de buena extracción de Kvapil, a una tasa de extracción del 100%, se tiene una recuperación de 80% y 20% de dilución.

5.2.4 Diseño Minero

Para realizar el diseño minero en vetas angostas, para los métodos Sublevel Stoping y Sublevel Caving, se adoptarán los siguientes supuestos:

- El yacimiento se encuentra a 500 m de profundidad.
- Existe una galería de acceso principal con una pendiente del 10%, que llega hasta la cota inferior del yacimiento.
- Las galerías de acceso principal, producción y perforación son de 5 m de ancho por 5 m de alto. Además, estas se encuentran emplazadas en el plano Foot Wall, por seguridad ante un posible deslizamiento.

5.2.4.1 Diseño Minero en Sublevel Stoping

El diseño minero en Sublevel Stoping está definido principalmente por las dimensiones de los pilares horizontales y verticales que dividen las unidades de explotación. A continuación, la Figura 39 muestra una vista general del método Sublevel Stoping, para un yacimiento en forma de veta angosta a 500 m bajo la superficie.

Figura 39: Vista general diseño Sublevel Stoping

Debido a las dimensiones del yacimiento y unidades de explotación, es posible determinar la longitud de las galerías de acceso principal, producción y perforación, a través de las siguientes expresiones:

$$Longitud_{Galeria\ Principal} = \frac{(Profundidad_{Yacimiento} + Altura_{Yacimento})}{Pendiente}$$

 $Longitud_{Galeria\ Producción} = N^{\circ}_{Unidades\ de\ Explotación} \times Corrida_{Unidad\ de\ Explotación}$

Longitud_{Galeria Perforación}

 $= N^{\circ}_{Niveles \, por \, U. \, de \, Explotación} \times N^{\circ}_{U. \, de \, Explotación} \times Corrida_{U. \, de \, Explotación}$

5.2.4.2 Diseño Minero en Sublevel Caving

El diseño minero en Sublevel Caving está basado en la mina Big Bell, Australia; que emplea la variante Longitudinal Sublevel Caving para vetas angostas. El diseño se compone de subniveles dispuestos uno sobre otro en intervalos de 25 metros, para que las perforaciones radiales no superen los 20 metros de largo y así evitar grandes desviaciones. La Figura 40 muestra una vista general del método Sublevel Caving para un yacimiento en forma de veta angosta a 500 metros bajo la superficie.

Figura 40: Vista general diseño Sublevel Caving

La galería de acceso principal queda definida de la misma forma que en Sublevel Stoping. De acuerdo a las características del Sublevel Caving, las galerías de producción y perforación son las mismas. Estas se construyen al centro del yacimiento y se extienden hasta los extremos, creando subniveles de producción/perforación independientes. De este modo se obtiene una mayor flexibilidad operacional en cada subnivel.

A continuación, se presenta la fórmula para determinar la longitud de las galerías de producción/perforación.

$$Longitud_{Galerias Producción/Perforación} = \frac{Altura_{Yacimiento} \cdot Corrida_{Yacimiento}}{Altura_{Subniveles}}$$

5.2.5 Diseño de Perforación y Tronadura

Para realizar el diseño de perforación y tronadura en vetas angostas, para los métodos Sublevel Stoping y Sublevel Caving, se adoptarán los siguientes supuestos:

- Se realizan perforaciones radiales en forma de abanicos desde los subniveles de perforación. El diseño de perforación y tronadura en vetas angostas contempla perforaciones de 3 pulgadas de diámetro y no superan los 20 metros de largo, para evitar grandes desviaciones.
- Se utiliza ANFO como explosivo con una densidad de 0,8 g/cc.
- Los abanicos de producción tienen un factor de carga entre 300 a 400 g/ton.

El diseño de tronadura en ambos métodos considera la metodología AECL para perforaciones radiales, empleando las siguientes expresiones:

$$B \times S = \frac{L \cdot M_c}{H \cdot K}$$
$$L = H - 20 \cdot D$$
$$S = 1,3 \times B$$
$$J = 0,2 \times B$$

Donde:

- B = Burden (m)
- S = Espaciamiento (m)
- L = Largo columna explosiva (m)
- J = Pasadura (m)
- H = Largo promedio barrenos (m)
- M_C = Factor de carga lineal (kg/m)
- K = Factor de carga (kg/m³)
- D = Diámetro barreno (m)

Para determinar el largo del barreno sin carga explosiva (Taco), se utilizan las siguientes fórmulas:

$$T_s = 20 \cdot D$$
$$T_m = 50 \cdot D$$
$$T_l = 125 \cdot D$$

La metodología para aplicar los distintos tipos de tacos indica que si T_m excede dos tercios del largo de la perforación, entonces se utiliza T_s . De lo contrario, si T_1 excede dos tercios del largo

de la perforación, los tacos se alternan entre T_s y T_m hasta que la perforación sea más larga que 1,5 veces T_1 .

5.2.5.1 Diseño de Perforación y Tronadura en Sublevel Stoping

Para cumplir con la restricción de que el largo de la perforación no supere los 20 m, el nivel de perforación en Sublevel Stoping no puede abarcar más de 40 metros de altura. Por ende, será necesario más de un nivel de perforación en unidades de explotación con altura mayor a 40 m.

A continuación, la Tabla 14 presenta los diagramas de perforación para las distintas alturas de los abanicos de producción. Además, la Tabla 15 presenta información adicional de cada diagrama, donde se considera la pasadura de las perforaciones y asi estimar los metros perforados por abanico de producción.

Diagrama	Burden (m)	Espaciamiento (m)	Pasadura (m)	Metros Perforados Totales (m)	Factor de Carga (g/ton)
Altura: 25 m	1,66	2,16	0,33	154	376
Altura: 30 m	1,69	2,20	0,34	190	391
Altura: 35 m	1,72	2,23	0,34	224	374
Altura: 40 m	1,74	2,30	0,35	265	383

Tabla 15: Información diagramas de perforación y tronadura en Sublevel Stoping

5.2.5.2 Diseño de Perforación y Tronadura en Sublevel Caving

La perforación y tronadura en Sublevel Caving se realiza mediante perforaciones radiales ascendentes, tal como se muestra en la Figura 41. Este diseño será utilizado independiente de las dimensiones del yacimiento. Además, la Tabla 16 presenta la información adicional del diagrama de perforación, donde se considera la pasadura para estimar los metros perforados por abanico de producción.

Figura 41: Diagrama de perforación y tronadura abanico de producción Sublevel Caving

Diagrama	Burden	Espaciamiento	Pasadura	Metros Perforados	Factor de Carga
	(m)	(m)	(m)	Totales (m)	(g/ton)
Altura: 25 m	1,76	2,28	0,35	166	390

Tabla 16: Información diagrama de perforación y tronadura Sublevel Caving

5.3 Evaluación Económica

La evaluación económica contempla un yacimiento de cobre en forma de veta angosta. A continuación, la Tabla 17 muestra los parámetros económicos a utilizar, relacionados con el proceso del cobre.

Parámetros	Unidad	Valor
Precio del Cobre	(US\$/lb)	3,0
Costo de Fundición y Refinación	(US\$/lb)	0,17
Tasa de Actualización Anual	(%)	8,0
Ley Media de Cobre	(%)	2,5 / 3,0 / 4,0
Recuperación Metalúrgica	(%)	85,0
Días de Operación al Año	(Día/Año)	360

Tabla 17: Parámetros evaluación económica

Se utiliza el VAN como indicador para realizar la evaluación económica, por lo que se consideran todas las inversiones y costos asociados a los procesos de extracción y procesamiento

del mineral. No así el proceso de refinación, de modo que su costo de operación se resta al precio de venta del cobre.

Independiente del método de explotación, se estudiarán distintos ritmos de producción para determinar la vida útil, la inversión total, el ingreso anual y el costo anual. Estas variables serán utilizadas para estimar el mayor VAN y así determinar el ritmo de producción óptimo de los métodos Sublevel Stoping y Sublevel Caving.

Para realizar la evaluación económica para los métodos en estudio, se adoptan los siguientes supuestos:

- Se consideran ritmos de producción entre 200 a 16.000 tpd, con intervalos de 200 tpd.
- Las inversiones asociadas a equipos mineros y construcción se realizan en el año 0.
- La producción se inicia en el año 1 y es constante para todos los años. Por lo tanto, la evaluación no considera periodo de "Ramp Up"

A continuación, se definen las 4 variables para determinar el mayor VAN, de acuerdo a las características de cada método.

5.3.1 Vida Útil

La vida útil en Sublevel Stoping, se determina a través de los siguientes formulismos:

 $Recursos_{Totales} = (Corrida \times Potencia \times Altura)_{Yacimiento} \times Densidad_{Roca}$

 $Reservas_{Totales} = Recursos_{Totales} \times Recuperación_{SLS} \times (1 + Dilucion_{HW} + Dilucion_{FW})$

$$Vida \ Util \ [anos] = \frac{Reservas_{Totales}}{Ritmo \ de \ Producción \times 360}$$

En el caso del Sublevel Caving, se calculan tres vidas útiles. La primera corresponde al periodo de Esponjamiento donde la explotación se demora en alcanzar el radio hidráulico adecuado, de modo que el ritmo de producción es moderado. La segunda corresponde al periodo de Pre Caving donde se aumenta el ritmo de producción hasta alcanzar un radio hidráulico necesario para inducir el hundimiento. Finalmente, la tercera corresponde al periodo de Caving, con una extracción más intensa.

Para determinar la vida útil de la etapa de Esponjamiento, se tienen las siguientes expresiones:

 $Recursos_{Esponjamiento}$

$$= (Corrida \times Potencia \times Altura)_{Caserón Esponiamiento} \times Densidad Roca$$

 $Reservas_{Esponjamiento} = Recursos_{Esponjamiento} \times \% Extracción_{Esponjamiento}$

 $Vida \, \acute{\text{U}til}_{Esponjamiento} = \frac{Reservas_{Esponjamiento}}{Ritmo \ de \ Producci\acute{\text{o}n} \times 360}$

La vida útil de la etapa Pre Caving, se estima de la siguiente forma:

Recursos_{Pre Caving}

 $= (Corrida \times Potencia \times Altura)_{Caserón Pre Caving} \times Densidad Roca$ $- Recursos_{Esponjamiento}$

 $Reservas_{Pre\ Caving} = Recursos_{Pre\ Caving} \times \% Extracción_{Pre\ Caving}$

 $Vida \ \acute{U}til_{Pre \ Caving} = \frac{Reservas_{Pre \ Caving}}{Ritmo \ de \ Producci\acute{o}n \times 360}$

Para la vida útil de la etapa Caving, se tiene:

 $Recursos_{Post \ Caving} = Recursos_{Totales} - Recursos_{Pre \ Caving} - Recursos_{Esponjamiento}$

 $Reservas_{Post \ Caving} = Recursos_{Post \ Caving} \times \% \ Extracción_{Post \ Caving}$

 $Vida \, \acute{U}til_{Post \ Caving} = \frac{Reservas_{Post \ Caving}}{Ritmo \ de \ Producción \times 360}$

Finalmente, para obtener la vida útil en Sublevel Caving se suman las vidas útiles de las tres etapas.

5.3.2 Inversión Total

La inversión total corresponde al costo destinado a la construcción de túneles, construcción de la planta de procesamiento y adquisición de equipos mineros. La metodología para determinar la inversión total es la misma para los métodos Sublevel Stoping y Sublevel Caving.

La construcción de túneles considera un costo unitario de 5.000 US\$/m para una sección de 5,0 x 5,0 m. Por lo tanto, la inversión para este ítem se determina a través de la siguiente expresión:

$Inversión_{Desarrollos} = 5.000 \times Largo Total_{Desarrollos}$

El tratamiento del mineral de cobre considera los procesos de chancado, molienda y flotación. Para determinar la inversión de la planta de procesamiento se utilizará la información de la Tabla 18, que muestra los montos de inversión para distintos ritmos de procesamiento de minerales. Esta información es obtenida del modelo de costos de Infomine en el año 2011.

Ritmo de Procesamiento de Minerales	Inversión Planta de Procesamiento de Minerales
(tpd)	(MUS\$)
500	15,89
1.000	21,95
2.000	31,10
5.000	52,19
10.000	90,29
20.000	167,06

 Tabla 18: Datos de inversión planta de procesamiento de minerales (Infomine, 2011)

Para determinar la inversión de la planta para un ritmo de procesamiento en particular, se ajustan los datos presentados en la tabla anterior de acuerdo a la siguiente expresión.

$Inversión_{Planta} = 285.829 \times Ritmo \ de \ Producción[tpd]^{0,628}$

Para actualizar el valor de la inversión al año 2015, se calcula la diferencia porcentual de los índices de precios del consumidor entre los años 2011 y 2015, usando como base el año 1983. (Tabla 19).

Año	Índice de Precios al Consumidor (Año Base 1983)	Diferencia (%)
2011	220,2	Q 0/
2015	237,7	0%

Tabla 19: Índice de precios al consumidor (año base 1983)

De este modo, la siguiente expresión muestra la inversión de la planta de procesamiento actualizada a precios del año 2015, considerando el porcentaje de aumento producto de la inflación.

Inversion $Planta_{Actualizada} = 1,08 \times Inversion_{Planta}$

En el Anexo A se presentan los valores de la inversión planta para los ritmos de explotación considerados en la evaluación económica.

Finalmente, para determinar la inversión en la adquisición de equipos mineros se estima la flota de equipos necesaria para cubrir los requerimientos de producción y programa de perforación. A continuación, se presenta la expresión para estimar el monto de inversión en equipos mineros:

Inversion_{Equipos Mineros}

 $= Flota_{LHD} \cdot Precio_{LHD} + Flota_{Camión Bajo Perfil} \cdot Precio_{Camión Bajo Perfil} + Flota_{Jumbo} \cdot Precio_{Jumbo} + Flota_{Camión de Carga} \cdot Precio_{Camión de Carga}$

El detalle del cálculo de la flota de equipos para las 4 operaciones unitarias se encuentra en el Anexo B, donde los equipos LHD y Camión Bajo Perfil dependen del ritmo de producción, en cambio, los equipos Jumbo y Camión de Carga dependen del programa de perforación.

La Tabla 20 muestra los precios unitarios de los equipos mineros utilizados en la evaluación económica para los métodos Sublevel Stoping y Sublevel Caving.

Equipo Minero	Precio Unitario (US\$)
LHD	950.000
Camión Bajo Perfil	1.100.000
Jumbo Radial	850.000
Camión de Carga	650.000
T 11 40 D	

Tabla 20: Precios equipos mineros

Debido a que no se considera un periodo de Ramp Up, es necesario contar con una mayor cantidad de equipos Jumbo y Camiones Fábrica en el caso del método Sublevel Caving para las etapas de Esponjamiento y Pre Caving. Esta situación ocurre producto de una mayor preparación de abanicos de producción en las etapas previas al hundimiento, con el fin de mantener un ritmo de producción constante.

5.3.3 Ingreso Anual

El Ingreso Anual es constante durante la vida útil de la mina, ya que la evaluación económica no considera un periodo de Ramp Up. Antes de estimar el Ingreso Anual, se determina la ley media diluida para los métodos en estudio.

En el caso del Sublevel Stoping, la ley media diluida se determina a través de la siguiente expresión:

$$Ley \ Media_{Diluida} = \frac{(Ley \ Media/100)}{(1 + Dilución_{HW} + Dilución_{FW})}$$

En el caso del Sublevel Caving, cada etapa que integra el diseño minero (Esponjamiento, Pre Caving y Caving) presenta su propia ley media diluida. Esto se debe a que los ritmos de extracción y valores de dilución son diferentes para las tres etapas consideradas, pero comparten la misma fórmula para determinar la ley media diluida:

$$Ley Media_{Diluida} = \frac{Recuperación \times (Ley Media/100)}{(Recuperación + Dilución)}$$

Finalmente, el Ingreso Anual en Sublevel Stoping y Sublevel Caving se estima mediante la siguiente expresión:

Ingreso Anual

 $= Ritmo_{Producción} \times 360 \times Recuperacion_{Metalúrgica} \\ \times (Precio_{Cu} - Costo_{Refinación}) \times Ley Media_{Diluida} \times Factor_{Conversión}$

El factor de conversión es 2.204,6 y corresponde a la transformación de toneladas a libras.

5.3.4 Costo Anual

El Costo Anual está compuesto por el costo mina, costo planta y costo de construcción de las galerías al interior de las unidades de explotación. Los dos primeros costos dependen del ritmo de producción, en cambio el último costo depende del diseño minero de cada método de explotación. La metodología para estimar el costo anual es la misma para los métodos Sublevel Stoping y Sublevel Caving.

5.3.4.1 Costo Mina

El costo mina está compuesto por el costo anual de las cuatro operaciones unitarias asociadas a la extracción del mineral:

```
Costo_{Mina} = Costo_{Carguio} + Costo_{Transporte} + Costo_{Perforación} + Costo_{Tronadura}
```

Cada operación unitaria tiene su propia estructura de costos, de acuerdo a los insumos, suministros, mano de obra y mantención que utiliza:

Costo_{Carguío y Transporte}

 $= Costo_{Operadores} + Costo_{Mantenedores} + Costo_{Petróleo} + Costo_{Agua Limpieza} + Costo_{Neumáticos} + Costo_{Repuestos}$

Costo_{Perforación}

 $= Costo_{Operadores} + Costo_{Mantenedores} + Costo_{Petróleo} + Costo_{Agua Limpieza}$ $+ Costo_{Agua Consumo} + Costo_{Energía} + Costo_{Aceros} + Costo_{Neumáticos}$

Costo_{Tronadura}

 $= Costo_{Operadores} + Costo_{Mantenedores} + Costo_{Petróleo} + Costo_{Agua Limpieza}$ $+ Costo_{Energia} + Costo_{Neumáticos} + Costo_{Explosivo} + Costo_{Accesorios}$

A continuación, se presenta el detalle de la estructura de costos para las operaciones unitarias descritas anteriormente. Existen costos que se repiten, por lo que se incluyen solo una vez.

Costo_{Operadores}

$$= Dotación Total_{Operadores} \times Factor_{Reemplazo} \times Tarifa_{Operadores} \times Flota_{Operativa}$$

Costo_{Mantenedores}

 $= (Dotación Total_{Ayudantes} + Dotación Total_{Maestros}) \times Factor_{Reemplazo}$ $\times Tarifa_{Mantenedores} \times Flota_{Mantención}$

Costo_{Agua Consumo}

 $= Consumo_{Agua Industrial} \times Tiempo_{Operativo} \times Precio_{Agua Industrial} \times Flota_{Operativa} \times 360$

 $Costo_{Aceros} = Costo Unitario_{Aceros} \times Tiempo_{Operativo} \times Rendimiento_{Perforadora} \times Flota_{Operativa} \times 360$

 $Costo_{Accesorios} = \frac{(Precio_{APD} + Precio_{Detonador}) \times Ritmo_{Producción} \times 360}{Factor_{Conversion Ton/barreno}}$

 $Costo_{Petróleo} = Consumo_{Petroleo} \times Tiempo_{Operativo} \times Precio_{Petroleo} \times Flota_{Operativa} \times 360$

 $Costo_{Agua\ Limpieza} = Consumo_{Agua\ Limpieza} \times Precio_{Agua\ Industrial} \times Flota_{Operativa}$

 $Costo_{Energía} = Consumo_{Energía} \times Tiempo_{Operativo} \times Precio_{Energía} \times Flota_{Operativa} \times 360$

 $Costo_{Neumáticos} = Consumo Unitario_{Neumáticos} \times Tiempo_{Operativo} \times Flota_{Operativa} \times 360$

 $Costo_{Repuestos} = Consumo Unitario_{Repuestos} \times Tiempo_{Operativo} \times Flota_{Operativa} \times 360$

 $Costo_{Explosivo} = Factor de Carga \times Precio_{Explosivo} \times Ritmo_{Producción} \times 360$

Ítem	Unidad	Carguío	Transporte	Perforación	Tronadura
Dotación Operadores	N° Operadores/Equipo	4	4	4	6
Dotación Ayudantes	N° Ayudantes/Equipo	4	4	8	4
Dotación Mantenedores	N° Maestros/Equipo	8	8	2	2
Factor de Reemplazo	-	1,1	1,1	1,1	1,1
Tarifa Operadores	US\$/año	47.500	47.500	47.500	47.500
Tarifa Mantenedores	US\$/año	35.600	35.600	35.600	35.600
Precio Petróleo	US\$/1	0,8	0,8	0,8	0,8
Precio Agua Industrial	US\$/m ³	0,5	0,5	0,5	0,5
Precio Energía	US\$/KW	-	-	0,103	0,103
Precio Iniciador (APD)	US\$/un.	-	-	-	1,26
Precio Detonador	US\$/un.	-	-	-	6,2
Precio Explosivo	US\$/kg	-	-	-	0,8
Costo Unitario Aceros	US\$/mb	-	-	10	-
Costo Unitario Neumáticos	US\$/h	12	20	12	6,5
Costo Unitario Repuestos	US\$/h	36	8	50	-
Consumo Agua Industrial	m ³ /hora	-	-	3	-
Consumo Agua Limpieza	m³/año	100	200	100	100
Consumo Energía	KW/h	-	-	122	50
Consumo Petróleo	l/hora	30	57	2	5

La Tabla 21 muestra los valores de los factores que componen cada expresión:

Tabla 21: Dotación, precios, consumos y costos unitarios

En el Anexo C se encuentra el detalle con los cálculos para determinar el costo mina de cada operación unitaria según el ritmo de producción.

5.3.4.2 Costo Planta

Al igual que la inversión de la planta de procesamiento, para estimar el costo de operación se utilizará la información de la Tabla 22, que muestra los costos unitarios para distintos ritmos de procesamiento de minerales. Esta información es obtenida del modelo de costos de Infomine en el año 2011.

Ritmo de Procesamiento de Minerales (tpd)	Costo de Operación Planta de Procesamiento de Minerales (MUS\$)
500	24,64
1.000	18,63
2.000	14,65
5.000	11,69
10.000	10,24
20.000	9,12

Tabla 22: Datos de costos de operación de procesamiento de minerales (Infomine, 2011)

Para determinar el costo de operación para un ritmo de procesamiento en particular, se ajustan los datos presentados en la tabla anterior de acuerdo a la siguiente expresión.

Costo Planta_{Unitario} = $118,8 \times Ritmo \ de \ Producción[tpd]^{-0,266}$

Luego, el costo de operación anual de la planta se obtiene mediante la multiplicación del costo unitario por el ritmo de producción y los días de operación al año. Finalmente, se actualiza el costo de la planta a precios del año 2015, empleando el mismo porcentaje de aumento que en la inversión de la planta:

En el Anexo A se encuentra el detalle del costo de operación de la planta para cada ritmo de producción.

5.3.4.3 Costo Construcción

El costo anual de construcción corresponde al de todas las galerías que se encuentren al interior de las unidades de explotación. El costo de las galerías es de 5.000 US\$/m para una sección de 5x5 m, de modo que la siguiente expresión determina el costo de construcción anual.

 $Costo_{Construccion} = \frac{5.000 \times Largo Total_{Galerias de Producción}}{Vida Util}$

5.4 Herramienta de Evaluación

Para determinar el diseño minero y la evaluación económica se desarrolló una herramienta de evaluación en formato Excel para los métodos Sublevel Stoping y Sublevel Caving.

El funcionamiento de la planilla consiste en ingresar los parámetros de entrada que designe el usuario para obtener un resultado económico en forma de VAN.

Si bien la presente memoria se enfoca en el estudio de yacimientos con forma de vetas angostas, el usuario puede extender el uso de la herramienta de evaluación a yacimientos tabulares de mayor potencia para los métodos de explotación Sublevel Stoping y Sublevel Caving, por lo que se adjunta una copia de la herramienta de evaluación en la parte posterior de la presente memoria (Formato CD-ROM).

A continuación se describe el contenido de la planilla para los métodos de explotación en estudio.

5.4.1 Planilla Sublevel Stoping

La Tabla 23 presenta las hojas de cálculo que componen la planilla y su respectiva descripción para el método Sublevel Stoping.

Hoja de Cálculo	Descripción			
Parámetros de Entrada	Se ingresan los parámetros de entrada relacionados con la geometría del caserón, condición			
	de esfuerzos, características geotécnicas de la roca intacta y macizo rocoso, información de			
	sets estructurales y dimensiones del cuerpo mineralizado.			
Factor A	Determinación del Factor A de acuerdo a los parámetros de entrada			
Factor B	Determinación del Factor B de acuerdo a los sets estructurales			
Factor C	Determinación del Factor C de acuerdo a la inclinación de las caras de la unidad de			
	explotación			
Estabilidad Caserón	Se estima la estabilidad de las caras que componen la unidad de explotación. Si alguna			
	cara no presenta la condición de "Estable", se debe cambiar la geometría del caserón en la			
	hoja de cálculo "Parámetros de Entrada"			
Pilares	Se diseña y estima la estabilidad de los pilares horizontales y verticales			
Dilución	Estimación de la dilución de acuerdo a los parámetros de entrada			
Recuperación	Determinación de la recuperación según la geometría de la unidad de explotación y cuerpo			
	mineralizado			
Evaluación Económica	Estimación del máximo VAN respecto a los distintos ritmos de producción			
Inversión Mina	Estimación de la inversión en equipos mineros para los distintos ritmos de producción			
Costo Mina	Estimación del costo de operación mina para los distintos ritmos de producción			
Inv. y Costo Planta	Estimación de la inversión y costo de operación de la planta de procesamiento para los			
	distintos ritmos de producción			
P&T Radial	Diseño del diagrama de perforación y tronadura			
Tabla 23: Descripción planilla de cálculo para Sublevel Stoping				

5.4.2 Planilla Sublevel Caving

La Tabla 24 presenta las hojas de cálculo que componen la planilla y su respectiva descripción para el método Sublevel Stoping

Hoja de Cálculo	Descripción
Parámetros de Entrada	Se ingresan los parámetros de entrada relacionados con la geometría del caserón, condición
	de esfuerzos, características geotécnicas de la roca intacta y macizo rocoso, información de
	sets estructurales y dimensiones del cuerpo mineralizado.
Factor A	Determinación del Factor A de acuerdo a los parámetros de entrada
Factor B	Determinación del Factor B de acuerdo a los sets estructurales
Factor C	Determinación del Factor C de acuerdo a la inclinación de las caras de la unidad de
	explotación
Estabilidad Caserón	Se estima la estabilidad de las caras que componen la unidad de explotación para las
	condiciones "Pre Caving" y "Caving". Si alguna cara no presenta alguna de las
	condiciones mencionadas, se debe cambiar la geometría del caserón en la hoja de cálculo
	"Parámetros de Entrada"
Dilución	Estimación de la dilución de acuerdo a la política de extracción
Evaluación Económica	Estimación del máximo VAN respecto a los distintos ritmos de producción
Inversión Mina	Estimación de la inversión en equipos mineros para los distintos ritmos de producción
Costo Mina	Estimación del costo de operación mina para los distintos ritmos de producción
Inv. y Costo Planta	Estimación de la inversión y costo de operación de la planta de procesamiento para los
	distintos ritmos de producción
P&T Radial	Diseño del diagrama de perforación y tronadura

Tabla 24: Descripción planilla de cálculo para Sublevel Caving

6 CASO DE ESTUDIO

Para tener una mejor comprensión del funcionamiento de la herramienta de evaluación, a continuación se desarrollará un ejemplo con el detalle de los cálculos efectuados para el diseño minero y la evaluación económica, que muestra la metodología de evaluación para los métodos Sublevel Stoping y Sublevel Caving.

6.1 Parámetros de Entrada

La Tabla 25 muestra los parámetros de entrada que serán considerados en el caso de estudio.

Ítem	Parámetros de Entrada	Valor
Geometría del Yacimiento	Altura (m)	500
	Corrida (m)	500
	Potencia (m)	10
	Inclinación (grados)	75°
Condiciones Geotécnicas	UCS Roca Caja (MPa)	200
	UCS Mineralización (MPa)	150
	Q' de Barton	10
Estado Tensional	$\sigma_{\rm V}$ (MPa)	20
	σ_{H1} (MPa)	10
	σ_{H2} (MPa)	10
Orientación de las Estructuras	Crown (grados)	90°
	Hanging Wall (grados)	20°
	Foot Wall (grados)	160°
	Side Wall (grados)	0°

Tabla 25: Parámetros de entrada caso de estudio

6.2 Diseño de Caserones

Como primera aproximación, la Tabla 26 muestra la geometría de las unidades de explotación para Sublevel Stoping y Sublevel Caving. Cabe destacar que la geometría de las unidades de explotación no es un parámetro de entrada, sino que una resultante de un proceso iterativo. Esto quiere decir que se deben encontrar las medidas de la unidad de explotación; que en el caso del Sublevel Stoping deben ser estables y para Sublevel Caving inestables según el método gráfico de estabilidad de Mathews. En este último, se debe definir la geometría para las etapas de Pre Caving y Caving.

Geometría Unidad	Sublaval Staning	Sublevel Caving	
de Explotación	Sublevel Stoping	Pre Caving	Caving
Altura (m)	50	125	325
Potencia (m)	10	10	10
Corrida (m)	50	500	500
Inclinación (grados)	75°	75°	75°

Tabla 26: Geometría unidades de explotación caso de estudio

6.2.1 Factor de Esfuerzos Sublevel Stoping (Factor A)

La Figura 42 se utiliza como apoyo para desarrollar el cálculo del factor de esfuerzos en todas las caras que componen la unidad de explotación.

Figura 42: Unidad de explotación cálculo Factor A

6.2.1.1 Crown

Considerando la parte superior del plano vertical, se tiene que:

$$K = \frac{\sigma_{H2}}{\sigma_V} = \frac{10 MPa}{20 MPa} = 0,5$$
Razón de Lados = $\frac{Altura}{Potencia} = \frac{50 m}{10 m} = 5$

Luego, se evalúa la razón de lados en el gráfico de la Figura 25 (Pág. 32) para estimar la razón σ_1/σ_V , que corresponde a 0,85 (Figura 43).

Figura 43: Evaluación razón de lados en curvas de diseño para el plano Crown (Stewart & Forsyth, 1995) A través de la relación obtenida se puede determinar el valor del esfuerzo inducido (σ_1):

$$\sigma_1 = 0.85 \times 20 = 17 MPa$$

Una vez que se conoce el valor de σ_1 , se estima la razón entre la resistencia a la compresión uniaxial de la roca mineralizada y el máximo esfuerzo inducido; que en este caso corresponde a:

$$Razón = \frac{UCS_{Mineralización}}{\sigma_1} = \frac{150 MPa}{17 MPa} = 8,9$$

La última etapa para determinar la magnitud del factor de esfuerzos consiste en evaluar el valor de la razón anterior en el gráfico de la Figura 27 (Pág. 33), que en este caso equivale a 0,87 (Figura 44).

Figura 44: Evaluación factor de esfuerzos para el plano Crown (Mathews, 1980)

6.2.1.2 Hanging/Foot Wall

Considerando los planos horizontal y vertical, se obtienen dos estimaciones para determinar el factor de esfuerzos, donde el valor más bajo es utilizado. En primer lugar, para el plano vertical se tiene que:

$$K = \frac{\sigma_{H2}}{\sigma_V} = \frac{10 MPa}{20 MPa} = 0,5$$
Razón de Lados = $\frac{Altura}{Potencia} = \frac{50 m}{10 m} = 5$

En este caso se utiliza el gráfico de la Figura 26 (Pág. 32) para estimar la razón σ_1/σ_V , que corresponde a 0,68 (Figura 45).

Siguiendo el mismo procedimiento anterior, se tienen los siguientes valores:

$$\sigma_{1} = 0.68 \times 20 = 13.6 MPa$$

$$Razón = \frac{UCS_{Roca \ Caja}}{\sigma_{1}} = \frac{200 \ MPa}{13.6 \ MPa} = 14.7$$

20

De este modo se evalúa el valor de la razón en el gráfico de la Figura 46 para obtener el factor de esfuerzos, que en este caso equivale a 1,0.

Figura 46: Evaluación factor de esfuerzos para el plano Hanging/Foot Wall (Mathews, 1980)

En el caso del plano horizontal se obtienen los siguientes resultados:

$$K = \frac{\sigma_{H2}}{\sigma_{H1}} = \frac{10 \ MPa}{10 \ MPa} = 1,0$$

$$Razón \ de \ Lados = \frac{Corrida}{Potencia} = \frac{50 \ m}{10 \ m} = 5$$

Con estos datos, se estima la razón σ_1/σ_{H1} a través del gráfico de la Figura 45, que corresponde a 0,27. De este modo se tiene que:

$$\sigma_1 = 0,27 \times 10 = 2,7 MPa$$

$$Razón = \frac{UCS_{Roca \ Caja}}{\sigma_1} = \frac{200 MPa}{2,7 MPa} = 75,0$$

Luego se evalúa el valor de la razón en el gráfico de la Figura 46 para obtener el factor de esfuerzos, que en este caso equivale a 1,0. Por lo tanto, independiente del plano en que se realiza la evaluación el factor de esfuerzos corresponde a 1,0 para los planos Hanging Wall y Foot Wall.

6.2.1.3 Side Wall

Considerando el plano horizontal, se determinan los siguientes valores:

$$K = \frac{\sigma_{H2}}{\sigma_{H1}} = \frac{10 MPa}{10 MPa} = 1,0$$
Razón de Lados = $\frac{Corrida}{Potencia} = \frac{50 m}{10 m} = 5$

Luego, se evalúa la razón de lados en el gráfico de la Figura 47 para estimar la razón σ_1/σ_{H1} , que corresponde a 2,30.

Continuando con el mismo procedimiento anterior, se obtienen los siguientes valores:

$$\sigma_1 = 2,3 \times 10 = 23 MPa$$

$$Razón = \frac{UCS_{Mineralización}}{\sigma_1} = \frac{150 MPa}{23 MPa} = 6,5$$
De este modo se evalúa el valor de la razón en el gráfico de la Figura 48 para obtener el factor de esfuerzos en el plano Side Wall, que en este caso equivale a 0,61.

Figura 48: Evaluación factor de esfuerzos para el plano Side Wall (Mathews, 1980)

6.2.2 Factor de Esfuerzos Sublevel Caving (Factor A)

6.2.2.1 Crown

Antes de calcular el factor de esfuerzos para los planos de la unidad de explotación asociada al método Sublevel Caving, se deben ajustar las curvas del gráfico de la Figura 25 (Pág. 32) ya que no permiten evaluar razones de lados superiores a 8.

- $K = 0.5 \rightarrow y = 0.4984 \times \ln x + 0.0283$
- $K = 1,0 \rightarrow y = 0,9778 \times \ln x + 0,8186$
- $K = 1,5 \rightarrow y = 1,4620 \times \ln x + 1,6968$
- $K = 2,0 \rightarrow y = 2,0265 \times \ln x + 2,3378$

De la misma forma que en Sublevel Stoping y considerando las dimensiones de la unidad de explotación para el estado de "Caving", se obtienen los siguientes valores:

$$K = \frac{\sigma_{H2}}{\sigma_V} = \frac{10 MPa}{20 MPa} = 0.5$$

Razón de Lados =
$$\frac{Altura}{Potencia} = \frac{325 m}{10 m} = 32,5$$

Se utiliza la ecuación con K = 0,5 para estimar la razón σ_1/σ_V , que corresponde a 1,76. A través de esta relación se determina el valor del esfuerzo inducido (σ_1):

$$\sigma_1 = 1,76 \times 20 = 35,3 MPa$$

Una vez que se conoce el valor de σ_1 , se estima la razón entre la resistencia a la compresión uniaxial de la roca mineralizada y el máximo esfuerzo inducido, que en este caso corresponde a:

$$Razón = \frac{UCS_{Mineralización}}{\sigma_1} = \frac{150 MPa}{30,4 MPa} = 5,7$$

Finalmente, utilizando el gráfico de la Figura 27 (Pág. 33) se determina que el factor de esfuerzos corresponde a 0,51. En el caso del estado de "Pre Caving", el factor de esfuerzos es de 0,75.

6.2.2.2 Hanging/Foot Wall

En primer lugar se deben ajustar las curvas del gráfico de la Figura 26 (Pág. 32), ya que nuevamente no es posible evaluar las razones de lados superiores a 8.

- $K = 0.5 \rightarrow y = -0.102 \times \ln x + 0.9476$
- $K = 1,0 \rightarrow y = -0,136 \times \ln x + 0,5632$
- $K = 1,5 \rightarrow y = -0,203 \times \ln x + 0,1092$
- $K = 2,0 \rightarrow y = -0,149 \times \ln x 0,3441$

Considerando las dimensiones de la unidad de explotación para el estado de "Caving" en el plano vertical, se obtienen los siguientes valores:

$$K = \frac{\sigma_{H2}}{\sigma_V} = \frac{10 MPa}{20 MPa} = 0,5$$
Razón de Lados = $\frac{Altura}{Potencia} = \frac{325 m}{10 m} = 32,5$

Luego, se utiliza la ecuación para K = 0,5 para determinar la razón σ_1/σ_V , que corresponde a 0,59. A través de esta relación se calcula el valor del esfuerzo inducido (σ_1) y la razón entre la resistencia a la compresión uniaxial de la roca mineralizada y el máximo esfuerzo inducido.

$$\sigma_1 = 0,59 \times 20 = 11,9 MPa$$

$$Razón = \frac{UCS_{Roca Caja}}{\sigma_1} = \frac{200 MPa}{11,9 MPa} = 16,8$$

De este modo, utilizando el gráfico de la Figura 27 (Pág. 33) se determina que el factor de esfuerzos corresponde a 1,0. En el caso del plano horizontal, se tiene que:

$$K = \frac{\sigma_{H2}}{\sigma_{H1}} = \frac{10 MPa}{10 MPa} = 1,0$$

$$Razón \ de \ Lados = \frac{Corrida}{Potencia} = \frac{500 \ m}{10 \ m} = 50$$

Utilizando la ecuación para K = 1,0 se estima la razón σ_1/σ_{H1} , que corresponde a 0,03. De este modo se determinan los siguientes valores:

$$\sigma_1 = 0.03 \times 10 = 0.3 MPa$$

$$Razón = \frac{UCS_{Roca Caja}}{\sigma_1} = \frac{200 MPa}{0.3 MPa} = 641$$

Finalmente, el factor de esfuerzos también es de 1,0 para el plano horizontal.

Bajo el supuesto de que existe relajación total debido a que las dimensiones de las unidades de explotación son muy grandes para Sublevel Caving, se asume un factor de esfuerzos de 0,7 para los estados de "Caving" y "Pre Caving".

6.2.2.3 Side Wall

Aplicando el mismo procedimiento anterior, considerando las dimensiones del estado de "Caving", se obtienen los siguientes valores:

$$K = \frac{\sigma_{H2}}{\sigma_{H1}} = \frac{10 MPa}{10 MPa} = 1,0$$

$$Razón \ de \ Lados = \frac{Corrida}{Potencia} = \frac{500 \ m}{10 \ m} = 50$$

$$\sigma_1 = 4,6 \times 10 = 46 \ MPa$$

$$Razón = \frac{UCS_{Mineralización}}{\sigma_1} = \frac{150 \ MPa}{46 \ MPa} = 4,3$$

Por lo tanto el factor de esfuerzos corresponde a 0,36. En el caso del estado de "Pre Caving", este valor es el mismo.

6.2.3 Factor B

Para determinar el Factor B de cualquier ángulo comprendido entre 0° y 90° , se construye una función lineal con los valores típicos, tal como se muestra en la Figura 49.

Figura 49: Función lineal Factor B

A pesar de que existe diferencia en el tamaño de las unidades de explotación para Sublevel Stoping y Sublevel Caving, estos tienen la misma orientación. Por lo tanto, el Factor B será el mismo para cada plano, en ambos casos. La Tabla 27 presenta el resultado con los valores del Factor B, de acuerdo a los parámetros de entrada del caso de estudio.

Factor B							
Plano Angulo Set c/r Plano Sublevel Stoping Sublevel Caving							
Crown	90°	1,00	1,00				
Hanging Wall	20°	0,30	0,30				
Foot Wall	160°	1,00	1,00				
Side Wall	0°	0,50	0,50				

Tabla 27: Resultados Factor B caso de estudio

6.2.4 Factor C

El único parámetro de entrada que se considerara para estimar el factor C, corresponde a la inclinación del yacimiento. De acuerdo al desarrollo del caso de estudio, la inclinación de las unidades de explotación corresponde a 75° respecto a la horizontal.

La inclinación del plano Hanging Wall es la misma que el yacimiento, y para determinar la inclinación del plano Foot Wall se considera el suplemento de valor del plano Hangwing Wall.

Finalmente, como supuesto se tiene que para los planos Crown y Side Wall, la inclinación corresponde a 0° y 90°, respectivamente. La Tabla 28 muestra el Factor C para cada plano.

	Factor C							
Plano Angulo Plano c/r Horizontal Sublevel Stoping Sublevel Caving								
Crown	0°	1,0	1,0					
Hanging Wall	75°	6,2	6,2					
Foot Wall	105°	8,0	8,0					
Side Wall	90°	8,0	8,0					

Tabla 28: Resultados Factor C caso de estudio

6.2.5 Estabilidad de Caserones

Para determinar la estabilidad de las unidades de explotación, se estiman los valores predictivos a través de las siguientes expresiones.

$$z = 2,96 - 1,44 \ln RH + 0,79 \ln N$$
$$p = \frac{1}{1 + e^{-z}}$$

Donde:

- RH : Radio Hidráulico
- N : Número de estabilidad de Mathwes
- z : Valor predictivo
- p : Valor predictivo probabilístico

La Tabla 29, muestra el resultado de estabilidad para Sublevel Stoping, en donde todos los planos deben ser estables. Esto quiere decir que el valor predictivo probabilístico (p) debe ser mayor o igual a 0,85.

Factor A	Factor B	Factor C	N'	RH	Z	р	Zona
0,87	1,00	1,0	8,7	4,2	2,6	0,93	Estable
1,00	0,30	6,2	18,6	12,5	1,6	0,84	Estable
1,00	1,00	8,0	80,0	12,5	2,8	0,94	Estable
0,61	0,50	8,0	24,3	4,2	3,4	0,97	Estable
	Factor A 0,87 1,00 1,00 0,61	Factor A Factor B 0,87 1,00 1,00 0,30 1,00 1,00 0,61 0,50	Factor A Factor B Factor C 0,87 1,00 1,0 1,00 0,30 6,2 1,00 1,00 8,0 0,61 0,50 8,0	Factor A Factor B Factor C N' 0,87 1,00 1,0 8,7 1,00 0,30 6,2 18,6 1,00 1,00 8,0 80,0 0,61 0,50 8,0 24,3	Factor A Factor B Factor C N' RH 0,87 1,00 1,0 8,7 4,2 1,00 0,30 6,2 18,6 12,5 1,00 1,00 8,0 80,0 12,5 0,61 0,50 8,0 24,3 4,2	Factor A Factor B Factor C N' RH Z 0,87 1,00 1,0 8,7 4,2 2,6 1,00 0,30 6,2 18,6 12,5 1,6 1,00 1,00 8,0 80,0 12,5 2,8 0,61 0,50 8,0 24,3 4,2 3,4	Factor A Factor B Factor C N' RH Z p 0,87 1,00 1,0 8,7 4,2 2,6 0,93 1,00 0,30 6,2 18,6 12,5 1,6 0,84 1,00 1,00 8,0 80,0 12,5 2,8 0,94 0,61 0,50 8,0 24,3 4,2 3,4 0,97

Tabla 29: Resultados estabilidad Sublevel Stoping Caso de Estudio

El resultado de estabilidad para Sublevel Caving, se determina a partir de las etapas Pre Caving y Caving. En la etapa de Pre Caving, al menos un plano en evaluación debe cumplir con un valor predictivo probabilístico (p) menor o igual a 0,36 (Tabla 30) y para la etapa de Caving, al menos un plano en evaluación debe cumplir con un valor predictivo probabilístico (p) menor o igual a 0,16 (Tabla 31).

Plano	Factor A	Factor B	Factor C	N'	RH	Ζ	р	Zona
Crown	0,75	1,00	1,00	7,50	4,90	2,30	0,91	Estable
Hanging Wall	0,70	0,30	6,19	12,07	50,00	-0,71	0,33	Falla Mayor
Foot Wall	0,70	1,00	8,00	52,00	50,00	0,45	0,61	Falla
Side Wall	0,36	0,50	8,00	14,4	4,63	2,90	0,95	Estable

Tabla 30: Resultado estabilidad Pre Caving caso de estudio

Plano	Factor A	Factor B	Factor C	N'	RH	Z	р	Zona
Crown	0,51	1,00	1,00	5,10	4,90	2,00	0,88	Estable
Hanging Wall	0,70	0,30	6,19	12,07	98,48	-1,69	0,16	Caving
Foot Wall	0,70	1,00	8,00	52,00	98,48	-0,53	0,37	Falla Mayor
Side Wall	0,36	0,50	8,00	14,40	4,85	2,80	0,94	Estable
		T 11 44 D						

Tabla 31: Resultado estabilidad Caving caso de estudio

En vista de los resultados anteriores, la geometría propuesta cumple con los parámetros de estabilidad para los métodos Sublevel Stoping y Sublevel Caving.

6.3 Recuperación y Dilución Sublevel Stoping

La recuperación para el método de explotación Sublevel Stoping se determina a través del concepto del área tributaria, de modo que es necesario calcular las dimensiones de los pilares verticales y horizontales.

Antes de iniciar cualquier cálculo, se proponen las dimensiones de los pilares, ya que se trata de un proceso iterativo. La Tabla 32, muestra los resultados de los pilares horizontales y verticales que cumplen con un factor de seguridad mayor o igual a 1,3.

Dimensionamiento de Pilares Sublevel Stoping					
Pilar Vertical		Pilar Horizontal			
Ancho Pilar (w _p)	30 m	Ancho Excavación (Roof Span)	50 m		
Altura Pilar (h)	50 m	Espesor Pilar (T)	16 m		
Ancho Excavación (w _o)	50 m	Altura Excavación (w _o)	50 m		
Esfuerzo Inducido (σ_i)	53,3 MPa	Razón w _o /T	3,1		
Confinamiento Pilar (C _{pav})	0,1	Razón σ_i / σ_{H1}	2,6		
Fricción Pilar (K)	0,44	Esfuerzo Inducido (σ_i)	25,6 MPa		
Resistencia Pilar (S)	69,5 MPa	Resistencia Pilar	66,4 MPa		
Factor de Seguridad	1,3	Factor de Seguridad	2,6		

Tabla 32: Resultados dimensionamiento de pilares Sublevel Stoping caso de estudio

Luego, se determina el número de unidades de explotación dispuestas de manera horizontal y vertical, respetando las dimensiones de los pilares y del yacimiento en estudio. La Tabla 33, muestra el número de unidades de explotación al interior de un yacimiento de 500 x 500 x 10 m (Corrida, Altura, Potencia).

Unidades de Explotación V	erticales	Unidades de Explotación Horizontales		
Número de Caserones	7	Número de Caserones	6	
Número de Pilares	7	Número de Pilares	6	
Caserón Adicional	1	Caserón Adicional	0	
Altura último caserón (m)	38	Corrida último caserón (m)	0	

Tabla 33: Número de Unidades de Explotación en Sublevel Stoping caso de estudio

La Figura 50 muestra la distribución de las unidades de explotación en el yacimiento. Cabe destacar que en la última fila las unidades tienen 38 metros de altura. El criterio para adoptar la última fila y/o columna de unidades de explotación, es que debe existir al menos 30 m desde el último pilar hasta el borde del yacimiento. Es por esta razón que en la última columna no existen unidades de explotación con medidas especiales, ya que solo sobran 20 m desde el último pilar vertical.

Figura 50: Diseño Sublevel Stoping Caso de Estudio

Con el diseño finalizado, se determina la recuperación del método Sublevel Stoping a través del Área Tributaria:

$$Area Tributaria = \frac{Area Total Unidades de Explotación}{Area Yacimiento} = \frac{116.400 m^2}{250.000 m^2} = 47 \%$$

La Tabla 34 muestra los valores del ELOS en las paredes de la unidad de explotación para estimar la dilución no planeada:

Superficie	N'	RH	ELOS (m)	Dilución (%)		
Hanging Wall	18,6	12,5	1,0	10%		
Foot Wall	80,0	12,5	0,1	1%		
Table 24. Described and Plant's Cables of Charles and the start's						

Tabla 34: Resultados dilución Sublevel Stoping caso de estudio

6.4 Recuperación y Dilución Sublevel Caving

Se estiman los valores de recuperación y dilución en Sublevel Caving para las etapas de Esponjamiento, Pre Caving y Caving por separado, a través de la curva de extracción de Kvapil presentada en la Figura 38 (Pág. 41). Luego, la Tabla 35 muestra los valores de recuperación y dilución para las etapas en estudio.

Etapa	Altura (m)	Corrida (m)	Potencia (m)	Recuperación (%)	Dilución (%)
Esponjamiento	125	500	10	40%	0%
Pre Caving	200	500	10	65%	5%
Caving	175	500	10	80%	20%

Tabla 35: Resultados dilución y recuperación Sublevel Caving caso de estudio

6.5 Diseño Minero

6.5.1 Sublevel Stoping

De acuerdo a la geometría de las unidades de explotación y cuerpo mineralizado del caso de estudio, la Tabla 36 muestra la longitud total de galerías, asociadas al diseño del Sublevel Stoping en vetas angostas. Las longitudes de las labores en estudio se obtienen utilizando las fórmulas desarrolladas en el capítulo 5.2.4.1 (Diseño Minero en Sublevel Stoping).

Sección	Longitud (m)
Galería de Acceso Principal	10.000
Galerías de Producción	2.400
Galerías de Perforación	4.800

Tabla 36: Longitud labores típicas Sublevel Stoping caso de estudio

Puesto que las unidades de explotación en Sublevel Stoping tienen una altura de 50 m, se utilizan dos subniveles de perforación. De este modo, se emplea el diagrama de perforación y tronadura correspondiente a 25 m de altura.

6.5.2 Sublevel Caving

La Tabla 37 muestra la longitud total de galerías, asociadas al diseño del Sublevel Caving en vetas angostas. Cabe destacar que el nivel de producción es el mismo que el nivel de perforación, por lo que se considera solo una vez. Las longitudes de las labores en estudio de obtienen utilizando las fórmulas desarrolladas en el capítulo 5.2.4.2 (Diseño Minero en Sublevel Caving).

Sección	Longitud (m)		
Galería de Acceso Principal	10.000		
Galerías de Producción/Perforación	10.000		
	101		

Tabla 37: Longitud secciones típicas Sublevel Caving caso de estudio

6.6 Evaluación Económica

Para realizar la evaluación económica se consideran los parámetros económicos presentados en el capítulo anterior (Tabla 17, Pág. 48), donde se considera una tasa de actualización anual del 8%. De acuerdo a las dimensiones del yacimiento del caso de estudio, la ley de cobre corresponde al 2,5%.

Tal como se mencionó en el capítulo anterior, para determinar el VAN para los métodos Sublevel Stoping y Sublevel Caving, será necesario determinar la vida útil, la inversión mina, planta y desarrollos, el ingreso anual y el costo de operación anual, para ritmos de producción entre 200 a 16.000 tpd.

6.6.1 Sublevel Stoping

Para determinar el VAN en el método de Sublevel Stoping, se empleará la siguiente expresión:

$$VAN = -I + \sum_{n=1}^{n=VU} \frac{(IA - CA)}{(1+i)^n}$$

Donde:

- I : Inversión Total (Inversión Desarrollos + Inversión Mina + Inversión Planta)
- VU : Vida Útil
- IA : Ingreso anual
- CA : Costo anual (Costo Mina + Costo Planta)
- i : Tasa de actualización anual (8%)

Debido a que la inversión total, vida útil, ingreso anual y costo anual dependen del ritmo de producción, la metodología de cálculo para estimar estos parámetros es mostrada en los anexos A, B y C.

Luego, como resultado de la evaluación económica, la Figura 51 presenta el VAN de cada ritmo de producción en estudio, para el método Sublevel Stoping.

Figura 51: VAN por ritmo de producción, Sublevel Stoping

El ritmo de producción óptimo corresponde a 2.800 tpd, asociado a un VAN de 52,8 MUS\$. La Tabla 38 muestra las 4 variables asociadas a la evaluación económica para el ritmo de producción óptimo.

Vida Útil	Inversión	Ingreso Anual	Costo Anual
(años)	(MUS\$)	(MUS\$)	(MUS\$)
3	158,8	120,4	

Tabla 38: Variables asociadas a la evaluación económica para Sublevel Stoping

6.6.2 Sublevel Caving

Para determinar el VAN en el método de Sublevel Caving, se empleará la misma metodología que en Sublevel Stoping, presentada en la sección anterior.

La Figura 52 presenta el resultado económico para cada ritmo de producción empleando el método Sublevel Caving.

Figura 52: Resultados económico por ritmo de producción Sublevel Caving

El ritmo de producción optimo corresponde a 3.000 tpd, asociado a un VAN de 125,1 MUS\$. La Tabla 39 muestra las 4 variables de cada etapa del Sublevel Caving asociadas a la evaluación económica para el ritmo de producción óptimo.

Etapa	Vida Útil (años)	Inversión (MUS\$)	Ingreso Anual (MUS\$)	Costo Anual (MUS\$)
Esponjamiento	1		143,2	62,6
Pre Caving	2	136,8	132,9	50,3
Caving	2		114,5	45,4

Tabla 39: Variables asociadas a la evaluación económica para Sublevel Caving

7 RESULTADOS

Existen muchas combinaciones de parámetros de entrada para presentar los resultados del modelo de selección. Con el objetivo de realizar un trabajo conciso, se determinan los parámetros de entrada que sean representativos del presente caso de estudio. A continuación, se presentan los criterios de selección para los parámetros de entrada.

7.1 Criterios de Selección Parámetros de Entrada

7.1.1 Geometría del Yacimiento

Los parámetros de entrada que definen la geometría del yacimiento corresponden a la altura, corrida, potencia e inclinación. Para simplificar la problemática a resolver se asume que el valor de la potencia del yacimiento es de 10 m, a pesar que el modelo de selección permita potencias inferiores. Por lo tanto, la potencia corresponde a un dato y no un parámetro de entrada.

Los métodos Sublevel Stoping y Sublevel Caving son aplicables en yacimientos con inclinación mayor a 60° . Además, se cumple la condición de que a mayor ángulo de inclinación, mayor será la estabilidad de la unidad de explotación. Por lo tanto, se consideran 2 inclinaciones como parámetros de entrada: 60° y 90° ; ya que representan una situación de estabilidad desfavorable, respectivamente.

Finalmente, se consideran 3 formas de yacimiento definidas por la altura y corrida de este. Cada forma representa una situación en particular, descrita a continuación:

- <u>Forma 1 (Altura: 500 m, Corrida: 80 m)</u>: Forma de yacimiento que favorece al método Sublevel Stoping, ya que su diseño considera solo pilares horizontales en la mayoría de los casos y no permite que el método Sublevel Caving alcance radios hidráulicos mayores para extraer el mineral con tasas más altas. Para obtener resultados económicos positivos, se asume que la ley de cobre en este tipo de yacimiento es de 4,0%.
- <u>Forma 2 (Altura: 350, Corrida: 350 m):</u> Forma de yacimiento que no favorece a ningún método en particular, ya que el diseño del método Sublevel Stoping considera pilares verticales y horizontales entre unidades de explotación, generando una menor recuperación. En el caso del método Sublevel Caving es posible alcanzar radios hidráulicos mayores a diferencia de la forma 1, pero sin tener certeza de lograr el estado de "Caving" para extraer el mineral con tasas más altas. Para obtener resultados económicos positivos, se asume que la ley de cobre en este tipo de yacimiento es de 3,0%.
- <u>Forma 3 (Altura: 500 m, Corrida: 500 m)</u>: Forma de yacimiento que favorece al método Sublevel Caving, ya que puede alcanzar radios hidráulicos mayores a diferencia de las formas 1 y 2 para lograr el estado de "Caving" y así extraer el mineral con tasas más altas. Para obtener resultados económicos positivos, se asume que la ley de cobre en este tipo de yacimiento es de 2,5%.

7.1.2 Características Geotécnicas

Los parámetros de entrada que definen las características geotécnicas del yacimiento en estudio corresponden a la resistencia a la compresión uniaxial de la roca caja y mineralizada (UCS Roca Caja y UCS Mineralización); y el Q' de Barton Modificado.

Para la resistencia a la compresión uniaxial, se consideran 2 combinaciones que representan situaciones favorables y desfavorables para los métodos de explotación, presentadas a continuación.

<u>UCS 1 (Roca Caja: 200 MPa, Mineralización: 150 MPa):</u> Propiedades de roca intacta que representa una buena resistencia. Esta condición favorece al método Sublevel Stoping ya que es posible diseñar unidades de explotación más grandes y pilares más resistentes, lo que se traduce en una mejor recuperación.

<u>UCS 2 (Roca Caja: 120 MPa, Mineralización: 100 MPa):</u> Propiedades de roca intacta que representa una resistencia intermedia. Esta condición favorece al método Sublevel Caving, de acuerdo a las propiedades características de la mina Big Bell que emplea el método Longitudinal Sublevel Caving para la explotación de vetas angostas

Respecto al parámetro Q', se consideran 3 valores para realizar el estudio: Q' = 5,0; 7,5 y 10,0. A continuación se presentan los criterios para definir estos valores:

Q' = 5: Este valor representa una descripción de la calidad del macizo rocoso mala. De este modo, es más fácil aplicar el método Sublevel Caving debido a una mayor inestabilidad de las unidades de explotación.

Q' = 7,5: Este valor representa una situación intermedia en que no se tiene certeza de que favorezca a alguno de los métodos en estudio.

Q' = 10: Este valor representa una descripción de la calidad del macizo rocoso regular a buena. De este modo, es más fácil aplicar el método Sublevel Stoping debido a una mayor estabilidad de las unidades de explotación.

7.1.3 Estado Tensional

Los parámetros de entrada relacionados con el estado tensional corresponden al esfuerzo vertical (σ_V), esfuerzo horizontal 1 (σ_{H1}) y esfuerzo horizontal 2 (σ_{H2}). La primera restricción que se asume, considera que el valor del esfuerzo horizontal 1 es igual al esfuerzo horizontal 2. Esto se debe a que el esfuerzo horizontal 1 pierde relevancia en la determinación de la estabilidad de las unidades de explotación, ya que apunta hacia el Side Wall. En cambio, el sigma horizontal 2 es más importante ya que su dirección apunta hacia el Hanging/Foot Wall, que corresponden a las caras más críticas al momento de determinar la estabilidad de las unidades de explotación.

Luego, para estudiar las distintas combinaciones entre el esfuerzo vertical y el esfuerzo horizontal 2, se definen los valores de la constante k, que representa el cociente entre el esfuerzo horizontal con el esfuerzo vertical. En la realidad, es muy difícil que k sea igual a 1, por lo que

automáticamente se descarta este valor. De este modo, solo se considerarán valores de k iguales a 0,5 y 1,5.

A lo largo del tiempo, se han realizado mediciones del esfuerzo vertical en distintas minas alrededor del mundo, reportadas por Hoek & Brown (1978) y actualizadas por Windsor (2003). A continuación, la Figura 53 presenta los resultados correspondientes a 900 mediciones.

Figura 53: Medidos de Esfuerzo Vertical bajo la superficie (Windsor, 2003)

Al observar la figura anterior, las mediciones del esfuerzo vertical se ajustan linealmente a la siguiente expresión, donde z corresponde a la profundidad bajo la superficie en metros.

$$\sigma_V = 0.027 \cdot z$$

Debido a que el yacimiento en estudio se encuentra a 500 m de profundidad, el esfuerzo vertical corresponde a 13,5 MPa. Esto conduce a dos casos de estudio que se muestran a continuación en la Tabla 40.

Estado Tensional	Esfuerzo vertical (σ_V)	Esfuerzo horizontal 1 (σ _{H1})	Esfuerzo horizontal 2 (σ_{H2})
Caso 1 (k = 0,5)	13,5 MPa	6,75 MPa	6,75 MPa
Caso 2 (k = 1,5)	13,5 MPa	20,25 MPa	20,25 MPa

Tabla 40: Estado tensional casos de estudio

7.1.4 Orientación de las Estructuras

Los parámetros de entrada relacionados con la orientación de las estructuras corresponden al ángulo que se forma entre la cara de la unidad de explotación con el set de estructuras crítico. Para simplificar los casos de estudio se asume que los planos Hanging y Foot Wall comparten el mismo set crítico, al igual que los planos Side Wall y Crown. De este modo, solo es necesaria la orientación de las estructuras respecto a los planos Crown y Hanging Wall, ya que a partir de estos se determina la orientación para el resto de los planos.

Debido a que los planos Side Wall y Crown tienen menor relevancia que los planos Hanging y Foot Wall para determinar la estabilidad de las unidades de explotación, la orientación de las estructuras para estos planos no es considerada como parámetro de entrada. Por lo tanto, la orientación de las estructuras para los planos Crown y Side Wall corresponde a 90° y 0°, respectivamente.

En el caso de los planos Hanging y Foot Wall se consideran 3 casos de estudios: 20° , 60° y 90° ; ya que representan una situación de estabilidad desfavorable, intermedia y favorable, respectivamente.

Finalmente, la Tabla 41 muestra los parámetros de entrada considerados en el modelo de selección con sus respectivos valores.

Ítem	Parámetros de Entrada	Valor
Geometría del Yacimiento	Altura (m)	80, 350 y 500
	Corrida (m)	80, 350 y 500
	Inclinación (grados)	60° y 90°
Condiciones Geotécnicas	UCS Roca Caja (MPa)	200 y 120
	UCS Mineralización (MPa)	150 y 100
	Q' de Barton	5; 7,5 y 10
Estado Tensional	$\sigma_{\rm V}$ (MPa)	13,5
	σ_{H2} (MPa)	6,75 y 20,25
Orientación de las Estructuras	Hanging Wall (grados)	20°, 60° y 90°

Tabla 41: Parámetros de entrada Modelo de Selección

7.2 Resultados Evaluación Económica

Para obtener los resultados de la evaluación económica, se realizó el mismo procedimiento presentado en el capítulo 6, donde se ingresan los parámetros de entrada y se obtiene el VAN para los métodos Sublevel Stoping y Sublevel Caving.

Debido a las múltiples combinaciones generadas entre los parámetros de entrada, los resultados se presentan de acuerdo a la forma del yacimiento. A continuación, la Tabla 42, Tabla 43 y Tabla 44 muestran los resultados de la evaluación económica para las formas de yacimiento 1, 2 y 3 con inclinación de 60° . En el Anexo D se incluyen los resultados para las 3 formas de yacimiento en estudio con inclinación de 90° .

Geometría Yacimiento	Caracter	rísticas Geot	técnicas	Estado 7	Fensional	Orientación Set	VA	AN
Inclinación	UCS _{RC}	UCS _{MIN}	Q'	σν	$\sigma_{\rm H2}$	HW	SLS	SLC
(°)	(MPa)	(MPa)	(-)	(MPa)	(MPa)	(°)	(MUS\$)	(MUS\$)
60	200	150	5,0	13,5	6,75	20	-15,18	0,35
60	200	150	5,0	13,5	6,75	60	2,27	-17,33
60	200	150	5,0	13,5	6,75	90	2,90	-17,33
60	200	150	5,0	13,5	20,25	20	-21,23	0,35
60	200	150	5,0	13,5	20,25	60	-10,21	-17,33
60	200	150	5,0	13,5	20,25	90	-9,69	-17,33
60	200	150	7,5	13,5	6,75	20	3,30	-13,54
60	200	150	7,5	13,5	6,75	60	3,31	-17,33
60	200	150	7,5	13,5	6,75	90	3,93	-17,33
60	200	150	7,5	13,5	20,25	20	-9,86	-17,33
60	200	150	7,5	13,5	20,25	60	0,62	-17,33
60	200	150	7,5	13,5	20,25	90	0,91	-17,33
60	200	150	10,0	13,5	6,75	20	5,65	-17,33
60	200	150	10,0	13,5	6,75	60	17,14	-17,33
60	200	150	10,0	13,5	6,75	90	27,78	-17,33
60	200	150	10,0	13,5	20,25	20	1,64	-17,33
60	200	150	10,0	13,5	20,25	60	3,78	-17,33
60	200	150	10,0	13,5	20,25	90	4,08	-17,33
60	120	100	5,0	13,5	6,75	20	-18,62	1,43
60	120	100	5,0	13,5	6,75	60	-2,73	-17,33
60	120	100	5,0	13,5	6,75	90	3,23	-17,33
60	120	100	5,0	13,5	20,25	20	-26,89	1,43
60	120	100	5,0	13,5	20,25	60	-18,78	-17,33
60	120	100	5,0	13,5	20,25	90	-18,50	-17,33
60	120	100	7,5	13,5	6,75	20	2,17	-12,27
60	120	100	7,5	13,5	6,75	60	3,31	-17,33
60	120	100	7,5	13,5	6,75	90	3,62	-17,33
60	120	100	7,5	13,5	20,25	20	-24,48	-12,27
60	120	100	7,5	13,5	20,25	60	-12,60	-17,33
60	120	100	7,5	13,5	20,25	90	-12,29	-17,33
60	120	100	10,0	13,5	6,75	20	4,05	-17,33
60	120	100	10,0	13,5	6,75	60	6,11	-17,33
60	120	100	10,0	13,5	6,75	90	17,48	-17,33
60	120	100	10,0	13,5	20,25	20	-13,53	-17,33
60	120	100	10,0	13,5	20,25	60	-12,29	-17,33
60	120	100	10,0	13,5	20,25	90	-6,18	-17,33

7.2.1 Forma de Yacimiento 1

Tabla 42: Resultados Modelo de Selección Forma de Yacimiento 1

Geometría Yacimiento	Caracter	rísticas Geot	técnicas	Estado 7	Fensional	Orientación Set	VA	AN
Inclinación	UCS _{RC}	UCS _{MIN}	Q'	σv	$\sigma_{\rm H2}$	HW	SLS	SLC
(°)	(MPa)	(MPa)	(-)	(MPa)	(MPa)	(°)	(MUS\$)	(MUS\$)
60	200	150	5,0	13,5	6,75	20	37,74	89,69
60	200	150	5,0	13,5	6,75	60	62,85	63,30
60	200	150	5,0	13,5	6,75	90	66,35	58,14
60	200	150	5,0	13,5	20,25	20	26,78	89,69
60	200	150	5,0	13,5	20,25	60	52,70	63,30
60	200	150	5,0	13,5	20,25	90	52,95	58,14
60	200	150	7,5	13,5	6,75	20	62,00	78,88
60	200	150	7,5	13,5	6,75	60	73,83	53,02
60	200	150	7,5	13,5	6,75	90	84,70	43,71
60	200	150	7,5	13,5	20,25	20	45,17	78,88
60	200	150	7,5	13,5	20,25	60	61,56	53,02
60	200	150	7,5	13,5	20,25	90	62,42	43,71
60	200	150	10,0	13,5	6,75	20	68,36	75,37
60	200	150	10,0	13,5	6,75	60	72,64	43,71
60	200	150	10,0	13,5	6,75	90	92,93	39,61
60	200	150	10,0	13,5	20,25	20	59,93	75,37
60	200	150	10,0	13,5	20,25	60	61,33	43,71
60	200	150	10,0	13,5	20,25	90	64,14	39,61
60	120	100	5,0	13,5	6,75	20	28,25	89,69
60	120	100	5,0	13,5	6,75	60	59,68	63,30
60	120	100	5,0	13,5	6,75	90	65,68	58,14
60	120	100	5,0	13,5	20,25	20	8,07	89,69
60	120	100	5,0	13,5	20,25	60	14,21	63,30
60	120	100	5,0	13,5	20,25	90	15,17	58,14
60	120	100	7,5	13,5	6,75	20	46,56	78,88
60	120	100	7,5	13,5	6,75	60	70,00	53,02
60	120	100	7,5	13,5	6,75	90	71,39	43,71
60	120	100	7,5	13,5	20,25	20	20,04	78,88
60	120	100	7,5	13,5	20,25	60	33,02	53,02
60	120	100	7,5	13,5	20,25	90	44,02	43,71
60	120	100	10,0	13,5	6,75	20	59,04	75,37
60	120	100	10,0	13,5	6,75	60	70,70	43,71
60	120	100	10,0	13,5	6,75	90	72,12	39,61
60	120	100	10,0	13,5	20,25	20	16,95	75,37
60	120	100	10,0	13,5	20,25	60	46,59	43,71
60	120	100	10,0	13,5	20,25	90	47,14	39,61

7.2.2 Forma de Yacimiento 2

Tabla 43: Resultados Modelo de Selección Forma de Yacimiento 2

Geometría Yacimiento	Caracter	rísticas Geot	técnicas	Estado 7	Fensional	Orientación Set	VA	AN
Inclinación	UCS _{RC}	UCS _{MIN}	Q'	σv	$\sigma_{\rm H2}$	HW	SLS	SLC
(°)	(MPa)	(MPa)	(-)	(MPa)	(MPa)	(°)	(MUS\$)	(MUS\$)
60	200	150	5,0	13,5	6,75	20	59,07	163,44
60	200	150	5,0	13,5	6,75	60	124,15	137,75
60	200	150	5,0	13,5	6,75	90	141,17	128,30
60	200	150	5,0	13,5	20,25	20	58,38	163,44
60	200	150	5,0	13,5	20,25	60	72,66	137,75
60	200	150	5,0	13,5	20,25	90	73,76	128,30
60	200	150	7,5	13,5	6,75	20	99,17	158,56
60	200	150	7,5	13,5	6,75	60	125,85	122,77
60	200	150	7,5	13,5	6,75	90	147,20	115,48
60	200	150	7,5	13,5	20,25	20	81,83	158,56
60	200	150	7,5	13,5	20,25	60	104,46	122,77
60	200	150	7,5	13,5	20,25	90	105,57	115,48
60	200	150	10,0	13,5	6,75	20	121,64	149,16
60	200	150	10,0	13,5	6,75	60	128,40	109,87
60	200	150	10,0	13,5	6,75	90	151,77	104,29
60	200	150	10,0	13,5	20,25	20	98,06	149,16
60	200	150	10,0	13,5	20,25	60	101,66	109,87
60	200	150	10,0	13,5	20,25	90	102,85	104,29
60	120	100	5,0	13,5	6,75	20	40,86	163,44
60	120	100	5,0	13,5	6,75	60	98,94	137,75
60	120	100	5,0	13,5	6,75	90	121,04	128,30
60	120	100	5,0	13,5	20,25	20	22,82	163,44
60	120	100	5,0	13,5	20,25	60	36,29	137,75
60	120	100	5,0	13,5	20,25	90	36,60	128,30
60	120	100	7,5	13,5	6,75	20	81,83	158,56
60	120	100	7,5	13,5	6,75	60	95,21	122,77
60	120	100	7,5	13,5	6,75	90	103,44	115,48
60	120	100	7,5	13,5	20,25	20	44,20	158,56
60	120	100	7,5	13,5	20,25	60	56,61	122,77
60	120	100	7,5	13,5	20,25	90	68,05	115,48
60	120	100	10,0	13,5	6,75	20	95,35	149,16
60	120	100	10,0	13,5	6,75	60	108,54	109,87
60	120	100	10,0	13,5	6,75	90	128,89	104,29
60	120	100	10,0	13,5	20,25	20	53,02	149,16
60	120	100	10,0	13,5	20,25	60	66,37	109,87
60	120	100	10,0	13,5	20,25	90	84,21	104,29

7.2.3 Forma de Yacimiento 3

Tabla 44: Resultados Modelo de Selección Forma de Yacimiento 3

8 ANÁLISIS

En términos generales, los sistemas de selección de métodos de explotación utilizan como parámetros de entrada la geometría, orientación y características geotécnicas del cuerpo mineralizado. En vista de lo anterior, el análisis de los resultados consiste en determinar las condiciones de aplicación que tienen en común los métodos Sublevel Stoping y Sublevel Caving para la explotación de vetas angostas.

En primera instancia se determina el comportamiento de los métodos de acuerdo a la orientación y geometría del yacimiento. Empleando los resultados de la evaluación económica presentados en la sección anterior, la Tabla 45 muestra el porcentaje de los casos de estudio donde se obtuvo un mejor resultado económico (VAN) entre los métodos Sublevel Stoping o Sublevel Caving. El término N/A (No Aplica) corresponde al porcentaje de los casos de estudio donde ninguno de los métodos en estudio alcanzó un resultado económico positivo.

	Inclinación	Forma 1	Forma 2	Forma 3
Sublevel Stoping		55,6%	47,2%	16,7%
Sublevel Caving	60°	11,1%	52,8%	83,3%
N/A		33,3%	0,0%	0,0%
Sublevel Stoping		72,2%	58,3%	36,1%
Sublevel Caving	90°	0,0%	41,7%	63,9%
N/A]	27.8%	0.0%	0.0%

Tabla 45: Porcentaje de casos de estudio con un mejor resultado económico (VAN) por forma de yacimiento

Al analizar los valores de la tabla anterior, cuando la inclinación cambia de 60° a 90°, el porcentaje de los casos estudiados aumenta para la explotación de vetas angostas por el método Sublevel Stoping, independiente de la geometría del yacimiento, mientras que la explotación mediante el método Sublevel Caving disminuye. Esta situación es factible, ya que el aumento en la inclinación de las unidades de explotación mejora las condiciones de estabilidad.

En términos generales existe incertidumbre respecto a la selección del método de explotación para la forma de yacimiento 2 debido a que los porcentajes de preferencia para los métodos en estudio son similares, independiente de la inclinación. De este modo, es necesario considerar las características geotécnicas del macizo rocoso para crear un modelo de selección más confiable y acotar las condiciones donde existe incertidumbre para la aplicación de los métodos Sublevel Stoping y Sublevel Caving en vetas angostas.

A continuación, la Tabla 46 y Tabla 47 presentan el porcentaje de los casos de estudio donde se prefiera la explotación mediante alguno de los métodos en estudio para inclinaciones de 60° y 90°, incluyendo las características geotécnicas. Es válido indicar que la siguiente clasificación es definitiva puesto que considera los parámetros de entrada típicos empleados en la mayoría de los modelos de selección de métodos disponibles en la literatura.

	Q'	Forma 1	Forma 2	Forma 3	
Sublevel Stoping		25,0%	16,7%	8,3%	
Sublevel Caving	5,0	33,3%	83,3%	91,7%	
N/A		41,7%	0,0%	0,0%	
Sublevel Stoping		66,7%	58,3%	8,3%	
Sublevel Caving	7,5	0,0%	41,7%	91,7%	
N/A		33,3%	0,0%	0,0%	
Sublevel Stoping		75,0%	66,7%	25,0%	
Sublevel Caving	10,0	0,0%	33,3%	75,0%	
N/A		25,0%	0,0%	0,0%	
Tabla 46: Porcentaje de preferencia inclinación 60°					

abla 46	: Porcentaje de	preferencia	inclinación	60 °
---------	-----------------	-------------	-------------	-------------

	Q'	Forma 1	Forma 2	Forma 3
Sublevel Stoping		58,3%	41,7%	16,7%
Sublevel Caving	5,0	0,0%	58,3%	83,3%
N/A		41,7%	0,0%	0,0%
Sublevel Stoping		75,0%	58,3%	33,3%
Sublevel Caving	7,5	0,0%	41,7%	66,7%
N/A		25,0%	0,0%	0,0%
Sublevel Stoping		91,7%	75,0%	58,3%
Sublevel Caving	10,0	0,0%	25,0%	41,7%
N/A		8,3%	0,0%	0,0%

Tabla 47: Porcentaje de preferencia inclinación 90°

De acuerdo a los resultados anteriores, se observa que existen seis casos de estudio donde los métodos Sublevel Stoping y Sublevel Caving presentan una proporción similar en porcentajes de preferencia, por lo tanto existe incertidumbre en la selección del método de explotación. Bajo estas condiciones, la selección del método se debe estudiar de manera directa a través de la herramienta de evaluación para vetas angostas.

Para el resto de los casos de estudio la selección del método de explotación se obtiene de manera directa, ya que la preferencia por algún método de explotación es evidente. Además se cumple que para macizos rocosos de calidad regular (Q' entre 7,5 y 10,0) e inclinación vertical (80° - 90°) se prefiera el método Sublevel Stoping para yacimientos de vetas angostas. En cambio, para macizos rocosos de mala calidad (Q' entre 5,0 y 7,5) e inclinación sub vertical (60° - 70°) se prefiere el método Sublevel Caving.

9 CONCLUSIONES Y RECOMENDACIONES

De acuerdo al análisis realizado en el capítulo anterior, se definen las condiciones de aplicación de los métodos Sublevel Stoping y Sublevel Caving, para la explotación de vetas angostas.

El método Sublevel Stoping es aplicable preferentemente por sobre el método Sublevel Caving bajo las siguientes condiciones (Tabla 48):

Geometría del Yacimiento (Altura x Corrida x Potencia)	Inclinación	Q' de Barton Modificado
Forma 1: 500x80x10 (m)	60°	7,5
Forma 1: 500x80x10 (m)	60°	10,0
Forma 1: 500x80x10 (m)	90°	5,0
Forma 1: 500x80x10 (m)	90°	7,5
Forma 1: 500x80x10 (m)	90°	10,0
Forma 2: 350x350x10 (m)	60°	10,0
Forma 2: 350x350x10 (m)	90°	10,0

El método Sublevel Caving es aplicable preferentemente por sobre el método Sublevel Stoping bajo las siguientes condiciones (Tabla 49):

Geometría del Yacimiento (Altura x Corrida x Potencia)	Inclinación	Q' de Barton Modificado
Forma 2: 350x350x10 (m)	60°	5,0
Forma 3: 500x500x10 (m)	60°	5,0
Forma 3: 500x500x10 (m)	60°	7,5
Forma 3: 500x500x10 (m)	60°	10,0
Forma 3: 500x500x10 (m)	90°	5,0
Forma 3: 500x500x10 (m)	90°	7,5

 Tabla 49: Condiciones preferentes Sublevel Caving

Luego, las condiciones en que no existe preferencia por alguno de los métodos en estudio se presentan a continuación en la Tabla 50.

Geometría del Yacimiento (Altura x Corrida x Potencia)	Inclinación	Q' de Barton Modificado
Forma 1: 500x80x10 (m)	60°	5,0
Forma 2: 350x350x10 (m)	60°	7,5
Forma 2: 350x350x10 (m)	90°	5,0
Forma 2: 350x350x10 (m)	90°	7,5
Forma 3: 500x500x10 (m)	90°	10,0

Tabla 50: Condiciones indiferentes para Sublevel Stoping y Sublevel Caving

Debido a que hay incertidumbre en la selección del método de explotación para las condiciones presentadas anteriormente, se debe utilizar la herramienta de evaluación. De este modo, la selección queda definida a través de un resultado económico.

El hecho de encontrar condiciones de aplicación similares para los métodos Sublevel Stoping y Sublevel Caving en vetas angostas, contradice en parte el modelo de selección de Nicholas, que descarta por completo la utilización del método Sublevel Caving en vetas angostas, debido a que no considera la variante longitudinal.

Finalmente, para obtener más condiciones donde exista incertidumbre para seleccionar el método de explotación, se recomienda extender el estudio para inclinaciones de 70° y 80°; y valores intermedios de calidad de macizo Q' entre 5,0 y 10,0.

10 BIBLIOGRAFÍA

- 1. Bullock, R.L. "Comparison of Underground Mining Methods", Chapter 6.5. SME Mining Engineering Handbook. 2011.
- 2. Dominy, S.C, Phelps, R.F, Sangster & C.J, Camm, G.S. "Narrow Vein Mining Techniques in the United Kingdom". Underground Operators Conference. Townsville. 1998.
- 3. Dunstan, G & Power, G. "Sublevel Caving", Chapter 13.9. SME Mining Engineering Handbook. 2011.
- 4. Camm, T.W. "Simplified Cost Models For Prefeasibility Mineral Evaluations". Information Circular. U.S. Bureau of Mines. 1991.
- 5. Carter, P.G. "Selection Process for Hard-Rock Mining", Chapter 6.3. SME Mining Engineering Handbook. 2011.
- 6. Clark, L.M. "Minimizing Dilution in Open Stope Mining with a Focus on Stope Design and Narrow Vein Longhole Blasting". Master of Applied Science Thesis. The University of British Columbia. 1998.
- Cantallopts, J, Castillo, E & Rojas, D. "Caracterización de los Costos de la Gran Minería del Cobre". Comisión Chilena del Cobre. 2015.
- 8. Hamrin, H. "Underground Mining Methods and Applications", Chapter 1. Underground Mining Methods: Engineering Fundamentals and International Case Studies. Society for Mining, Metallurgy, and Exploration, Inc. 2011.
- 9. Hancock, F.T & Mattson, R.S. "Sublevel Caving at Granduc", Chapter 4. Underground Mining Methods Handbook. 1973.
- Holmberg, R, Hustrulid, W & Cunningham, C. "Blast Design for Underground Mining Applications", Chapter 72. Underground Mining Methods: Engineering Fundamentals and International Case Studies. Society for Mining, Metallurgy, and Exploration, Inc. 2011.
- 11. Hughes, R, Lecomte, E & Mitri, H.S. "Factors Influencing Unplanned Ore Dilution in Narrow Vein Longitudinal Mining". SME Annual Meeting. 2010.
- 12. Hustrulid, W & Kvapil, R. "Sublevel Caving Past and Future". 5th International Conference and Exhibition on Mass Mining. Lulea, Sweden, 2008.
- 13. Karzulovic, A, Galeb, M & Quiñones, L. "Evaluación de la Experiencia Adquirida durante el Desarrollo y Explotación de los Paneles I y II de la Mina Rio Blanco". Informe Técnico, División Andina Codelco Chile. 1991.
- 14. Kvapil, R. "Sublevel Caving", Chapter 20.2. SME Mining Engineering Handbook. 1992.
- 15. Lunder, P.J & Pakalnis, R.C. "Determination of the Strength of Hard-Rock Mine Pillars". Technical Paper. CIM Bulletin, Vol. 90, N° 1013. 1997.
- 16. Mawdesley, C. "Predicting Cave Initiation and Propagation in Block Caving Mines". Doctor of Philosophy Thesis. University of Queensland, Brisbane. 2002.
- 17. Mawdesley, C, Trueman, R & Whiten, W.J. "Extending the Mathews Stability Graph for Open-Stope Design". The Institution of Mining and Metallurgy. 2001.
- 18. Pakalnis, R.C & Hughes, P.B. "Sublevel Stoping", Chapter 13.4. SME Mining Engineering Handbook. 2011.

- Player, J. "Longitudinal Sublevel Caving, Big Bell Mine", Chapter 45. Underground Mining Methods: Engineering Fundamentals and International Case Studies. Society for Mining, Metallurgy, and Exploration, Inc. 2011
- Player, J & Perera, V. "A back Analysis of Dilution and Recovery in Longitudinal Sublevel Caving". 5 th International Conference and Exhibition on Mass Mining. Lulea, Sweden, 2008.
- 21. Potvin, Y & Hudyma, M. "Open Stope Mining in Canada". MassMin Proceedings. Brisbane, Australia, 2000.
- 22. Stebbins, S.A. "Surface Mine Models, Underground Mine Models, Placer Mine Models, and Mill Models". CostMine 2011. Infomine USA, Inc. 2011.
- 23. Stewart, S.W & Forsyth, W.W. "The Mathews Method for Open Stope Design". Technical Paper. CIM Bulletin, Vol. 88, N° 992. 1995.
- 24. Tavakoli, M. "Undergrown Metal Mine Crown Pillar Stability Analysis". Doctor of Philosophy Thesis. Department of Civil and Mining Engineering. University of Wollongong. 1994.

11 ANEXOS

11.1 Anexo A: Inversión y Costo de Operación Planta de Procesamiento

11.1.1 Inversión Planta de Procesamiento para SLS y SLC

Para determinar la inversión de la planta de procesamiento, que depende del ritmo de procesamiento, se utilizará la siguiente expresión actualizada a precios del año 2015:

 $Inversión_{Planta} = 1,08 \times 285.829 \times Ritmo \ de \ Producción[tpd]^{0,628}$

Luego, la siguiente tabla muestra los montos de inversión para ritmos de procesamiento entre 200 a 16.000 tpd.

Ritmo de Producción (tpd)	Inversión (MUS\$)	Ritmo de Producción (tpd)	Inversión (MUS\$)
200	8,60	8.200	88,55
400	13,29	8.400	89,90
600	17,14	8.600	91,24
800	20,53	8.800	92,57
1.000	23,62	9.000	93,88
1.200	26,49	9.200	95,19
1.400	29,18	9.400	96,48
1.600	31,73	9.600	97,77
1.800	34,17	9.800	99,04
2.000	36,51	10.000	100,30
2.200	38,76	10.200	101,56
2.400	40,93	10.400	102,81
2.600	43,04	10.600	104,04
2.800	45,10	10.800	105,27
3.000	47,09	11.000	106,49
3.200	49,04	11.200	107,70
3.400	50,94	11.400	108,91
3.600	52,81	11.600	110,10
3.800	54,63	11.800	111,29
4.000	56,42	12.000	112,47
4.200	58,17	12.200	113,65
4.400	59,90	12.400	114,81
4.600	61,59	12.600	115,97
4.800	63,26	12.800	117,12
5.000	64,90	13.000	118,27
5.200	66,52	13.200	119,41
5.400	68,12	13.400	120,54
5.600	69,69	13.600	121,67
5.800	71,24	13.800	122,79
6.000	72,78	14.000	123,90
6.200	74,29	14.200	125,01
6.400	75,79	14.400	126,12
6.600	77,27	14.600	127,21
6.800	78,73	14.800	128,30
7.000	80,18	15.000	129,39
7.200	81,61	15.200	130,47
7.400	83,02	15.400	131,55
7.600	84,42	15.600	132,62
7.800	85,81	15.800	133,68
8.000	87,19	16.000	134,74

11.1.2 Costo de Operación Planta de Procesamiento para SLS y SLC

Para determinar el costo de operación de la planta de procesamiento, que depende del ritmo de procesamiento, se utilizará la siguiente expresión actualizada a precios del año 2015:

Costo Planta_{Unitario} = $1,08 \times 118,8 \times Ritmo \ de \ Producción[tpd]^{-0,266}$

Luego, la siguiente tabla muestra los costos de operación para ritmos de procesamiento entre 200 a 16.000 tpd.

Ritmo de Producción	Costo Operación	Ritmo de Producción	Costo Operación
(tpd)	(US\$/ton)	(tpd)	(US\$/ton)
200	31,33	8.200	11,67
400	26,05	8.400	11,59
600	23,39	8.600	11,52
800	21,67	8.800	11,45
1.000	20,42	9.000	11,38
1.200	19,45	9.200	11,32
1.400	18,67	9.400	11,25
1.600	18,02	9.600	11,19
1.800	17,46	9.800	11,13
2.000	16,98	10.000	11,07
2.200	16,56	10.200	11,01
2.400	16,18	10.400	10,95
2.600	15,84	10.600	10,90
2.800	15,53	10.800	10,84
3.000	15,24	11.000	10,79
3.200	14,99	11.200	10,74
3.400	14,75	11.400	10,69
3.600	14,52	11.600	10,64
3.800	14,32	11.800	10,59
4.000	14,12	12.000	10,54
4.200	13,94	12.200	10,50
4.400	13,77	12.400	10,45
4.600	13,61	12.600	10,41
4.800	13,45	12.800	10,36
5.000	13,31	13.000	10,32
5.200	13,17	13.200	10,28
5.400	13,04	13.400	10,24
5.600	12,91	13.600	10,20
5.800	12,79	13.800	10,16
6.000	12,68	14.000	10,12
6.200	12,57	14.200	10,08
6.400	12,46	14.400	10,04
6.600	12,36	14.600	10,01
6.800	12,26	14.800	9,97
7.000	12,17	15.000	9,94
7.200	12,08	15.200	9,90
7.400	11,99	15.400	9,87
7.600	11,91	15.600	9,83
7.800	11,82	15.800	9,80
8.000	11,74	16.000	9,77

11.2 Anexo B: Dimensionamiento Flota de Equipos e Inversión Mina para SLS

A continuación se presentan los resultados del dimensionamiento de la flota de equipos para las operaciones unitarias de carguío, transporte, perforación y tronadura para el método Sublevel Stoping. De este modo, es posible determinar el monto de inversión mina para ritmos de producción entre 200 y 16.000 tpd.

En el caso del Sublevel Caving el dimensionamiento de la flota de equipos se encuentra disponible en la herramienta de evaluación (Ver CD-ROM).

11.2.1 Carguío: Equipos LHD

La siguiente tabla muestra algunos de los parámetros que serán necesarios para estimar la flota de equipos de carguío, que guardan relación con las características del equipo LHD, el diseño minero y características del material a transportar.

Parámetros LHD: Scooptram ST710			
Parámetro	Unidad	Valor	
Capacidad Balde	m ³	3,2	
Velocidad LHD Vacío	km/h	8,0	
Velocidad LHD Lleno	km/h	6,0	
Velocidad LHD Vacío	m/min	133,3	
Velocidad LHD Lleno	m/min	100,0	
Densidad de Roca In Situ	ton/m ³	2,6	
Esponjamiento	%	30%	
Densidad de Roca Tronada	ton/m ³	2,0	
Distancia de Viaje (Corrida)	m	50,0	
Toneladas por Balde	ton	6,4	

Luego, se determina el tiempo de viaje cargado y descargado, utilizando los siguientes formulismos:

$$Tiempo \ de \ Viaje_{Cargado} = \frac{Distancia \ de \ Viaje}{Velocidad \ LHD_{Lleno}} = \frac{50 \ m}{100 \ m/min} = 0,5 \ min$$
$$Tiempo \ de \ Viaje_{Descargado} = \frac{Distancia \ de \ Viaje}{Velocidad \ LHD_{Vacio}} = \frac{50 \ m}{133 \ m/min} = 0,4 \ min$$

Con estos tiempos estimados, es posible determinar el tiempo de ciclo de carguío, el número de ciclos por hora y el rendimiento del equipo LHD, utilizando las siguientes expresiones. Luego, la siguiente tabla muestra los valores de los parámetros mencionados.

 $\begin{aligned} \text{Tiempo de Ciclo}_{Carguio} \\ &= T_{carga} + T_{viaje\ cargado} + T_{descarga} + T_{viaje\ descargado} \\ &+ T_{retrasos,\ esperas\ y\ maniobras} \\ N^{\circ} \ \text{Ciclos\ por\ Hora} = \frac{60}{Tiempo\ de\ \text{Ciclo}_{Carguio}} \\ \text{Rendimiento}_{LHD} = \frac{N^{\circ} \ \text{Ciclos\ por\ Hora} \times \rho_{roca} \times Capacidad_{Balde}}{(1 + Esponjamiento)} \\ 87 \end{aligned}$

Rendimiento LHD: Scooptram ST710			
Parámetro	Unidad	Valor	
Tiempo de Carga	min	0,5	
Tiempo de Viaje Cargado	min	0,5	
Tiempo de Descarga	min	0,5	
Tiempo de Viaje Descargado	min	0,4	
Retrasos, Esperas y Maniobras	min	1,0	
Tiempo de Ciclo de Carguío	min	2,9	
N° de Ciclos por Hora	#	20,9	
Rendimiento LHD	ton/horas	133,6	

Luego, utilizando los datos que se muestran en la siguiente tabla, se determina la capacidad de carguío del equipo LHD a través de la fórmula que se muestra a continuación.

 $Capacidad \ de \ Carguio_{LHD} = \frac{Turnos}{Dia} \times \frac{Horas}{Turnos} \times Rendimiento_{LHD} \times U \times F. \ O \times D. \ M$

Parámetros Dimensionamiento de Flota LHD: Scooptram ST710					
Parámetros Unidad Valor					
Tiempo Cronológico	días/año	365			
Tiempo Hábil	días/año	360			
Turnos	turnos/día	2,0			
Horas Operativas	horas/turno	12,0			
Utilización	%	80%			
Factor Operacional	%	80%			
Horas Efectivas	horas/turno	7,7			
Carquía Efactiva	ton/turno	1.026			
Carguio Electivo	ton/día	2.052			
Capacidad de Carguío	ton/año	738.562			
Disponibilidad Mecánica	%	75%			

A continuación, se emplea la siguiente expresión para obtener la flota de equipos según el ritmo de producción:

 $Flota \ de \ Equipos_{LHD} = \frac{Ritmo \ de \ Producción}{Capacidad \ de \ Carguío_{LHD}}$

Finalmente, la siguiente tabla muestra la flota de equipos por ritmo de producción y la inversión en equipos LHD, donde el precio unitario es de 950.000 US\$.

Dimensionamiento de Flota LHD					
Ritmo	Flota	Inversión	Ritmo	Flota	Inversión
(tpd)	11000	(MUS\$)	(tpd)	11000	(MUS\$)
200	1	0,95	8.200	6	5,70
400	1	0,95	8.400	6	5,70
600	1	0,95	8.600	6	5,70
800	1	0,95	8.800	6	5,70
1.000	1	0,95	9.000	6	5,70
1.200	1	0,95	9.200	6	5,70
1.400	1	0,95	9.400	7	6,65
1.600	2	1,90	9.600	7	6,65
1.800	2	1,90	9.800	7	6,65
2.000	2	1,90	10.000	7	6,65
2.200	2	1,90	10.200	7	6,65
2.400	2	1,90	10.400	7	6,65
2.600	2	1,90	10.600	7	6,65
2.800	2	1,90	10.800	8	7,60
3.000	2	1,90	11.000	8	7,60
3.200	3	2,85	11.200	8	7,60
3.400	3	2,85	11.400	8	7,60
3.600	3	2,85	11.600	8	7,60
3.800	3	2,85	11.800	8	7,60
4.000	3	2,85	12.000	8	7,60
4.200	3	2,85	12.200	8	7,60
4.400	3	2,85	12.400	9	8,55
4.600	3	2,85	12.600	9	8,55
4.800	4	3,80	12.800	9	8,55
5.000	4	3,80	13.000	9	8,55
5.200	4	3,80	13.200	9	8,55
5.400	4	3,80	13.400	9	8,55
5.600	4	3,80	13.600	9	8,55
5.800	4	3,80	13.800	9	8,55
6.000	4	3,80	14.000	10	9,50
6.200	5	4,75	14.200	10	9,50
6.400	5	4,75	14.400	10	9,50
6.600	5	4,75	14.600	10	9,50
6.800	5	4,75	14.800	10	9,50
7.000	5	4,75	15.000	10	9,50
7.200	5	4,75	15.200	10	9,50
7.400	5	4,75	15.400	11	10.45
7.600	5	4,75	15.600	11	10.45
7.800	6	5,70	15.800	11	10.45
8.000	6	5,70	16.000	11	10,45

11.2.2 Transporte: Camión Bajo Perfil

La siguiente tabla muestra algunos de los parámetros que serán necesarios para estimar la flota de equipos de transporte, que guardan relación con las características del camión bajo perfil, el diseño minero y características del material a transportar. La distancia de viaje corresponde al promedio entre la distancia mínima y máxima según el caso de estudio del capítulo 6.

Parámetros Camión Bajo Perfil: Minetruck MT2010			
Parámetro	Unidad	Valor	
Capacidad Tolva	m ³	10,8	
Velocidad Camión Vacío	km/h	14,0	
Velocidad Camión Lleno	km/h	10,0	
Velocidad Camión Vacío	m/min	233,3	
Velocidad Camión Lleno	m/min	166,7	
Densidad de Roca In Situ	ton/m ³	2,6	
Esponjamiento	%	0,3	
Densidad de Roca Tronada	ton/m ³	2,0	
Distancia de Viaje	m	7500	
Toneladas por Tolva	ton	21,6	

Luego, se determina el tiempo de carguío y tiempo de viaje cargado y descargado, utilizando los siguientes formulismos:

$$\begin{split} & Tiempo \ de \ Carga = Entero\left(\frac{Capacidad_{Camión}}{Capacidad_{LHD}}\right) \times Tiempo \ Ciclo_{LHD} \\ & Tiempo \ de \ Viaje_{Cargado} = \frac{Distancia \ de \ Viaje}{Velocidad \ Camión_{Lleno}} = \frac{7500 \ m}{166 \ m/min} = 45 \ min \\ & Tiempo \ de \ Viaje_{Descargado} = \frac{Distancia \ de \ Viaje}{Velocidad \ Camión_{Vacio}} = \frac{7500 \ m}{233 \ m/min} = 32 \ min \end{split}$$

Con estos tiempos estimados, es posible determinar el tiempo de ciclo de transporte, el número de ciclos por hora y el rendimiento del equipo de transporte, utilizando las siguientes expresiones. Luego, la siguiente tabla muestra los valores de los parámetros mencionados.

$$\begin{split} \text{Tiempo de Ciclo}_{Carguio} \\ &= T_{carga} + T_{viaje\ cargado} + T_{descarga} + T_{viaje\ descargado} \\ &+ T_{retrasos,\ esperas\ y\ maniobras} \end{split}$$

$$N^{\circ}$$
 Ciclos por Hora = $\frac{60}{Tiempo \ de \ Ciclo_{Carguío}}$

$$Rendimiento_{Camión Bajo Perfil} = \frac{N^{\circ} Ciclos por Hora \times \rho_{roca} \times Capacidad_{Tolva}}{(1 + Esponjamiento)}$$

Rendimiento Camión Bajo Perfil: Minetruck MT2010				
Parámetro	Unidad	Valor		
Toneladas por Balde	ton	6,4		
Toneladas por Tolva	ton	21,6		
Numero de Pases	#	4,0		
Tiempo de Ciclo LHD	min	2,9		
Tiempo de Carga Camión	min	11,5		
Tiempo de Viaje Cargado	min	45,0		
Descarga	min	0,5		
Tiempo de viaje descargado	min	32,1		
Retrasos, Esperas y Maniobras	min	1,0		
Tiempo de Ciclo de Transporte	min	90,1		
N° de Ciclos por Hora	#	0,7		
Rendimiento Camión	ton/hora	14,4		

Luego, utilizando los datos que se muestran en la siguiente tabla, se determina la capacidad de carguío del equipo de transporte a través de la fórmula que se muestra a continuación.

 $Capacidad \ Transporte_{Camión} = \frac{Turnos}{Día} \times \frac{Horas}{Turnos} \times Rendimiento_{Camión} \times U \times F.O \times D.M$

Parámetros Dimensionamiento de Flota Camión Bajo Perfil: Minetruck MT2010				
Parámetros Unidad Valor				
Tiempo Cronológico	días/año	365		
Tiempo Hábil	días/año	360		
Turnos	turnos/día	2,0		
Horas Operativas	horas/turno	12,0		
Utilización	%	75%		
Factor Operacional	%	75%		
Horas Efectivas	horas/turno	6,8		
Carquía Efactiva	ton/turno	97		
Cargulo Electivo	ton/día	194		
Capacidad de Transporte	ton/año	69.873		
Disponibilidad Mecánica	%	75%		

A continuación, se emplea la siguiente expresión para obtener la flota de equipos según el ritmo de producción:

 $Flota \ de \ Equipos_{Camión \ Bajo \ Perfil} = \frac{Ritmo \ de \ Producción}{Capacidad \ Transporte_{Camión \ Bajo \ Perfil}}$

Finalmente, la siguiente tabla muestra la flota de equipos por ritmo de producción y la inversión en camiones de bajo perfil, donde el precio unitario es de 1.100.000 US\$.

Dimensionamiento de Flota Camión Bajo Perfil					
Ritmo (tpd)	Flota	Inversión (MUS\$)	Ritmo (tpd)	Flota	Inversión (MUS\$)
200	2	2,20	8.200	57	62,70
400	3	3,30	8.400	58	63,80
600	5	5,50	8.600	60	66,00
800	6	6,60	8.800	61	67,10
1.000	7	7,70	9.000	62	68,20
1.200	9	9,90	9.200	64	70,40
1.400	10	11,00	9.400	65	71,50
1.600	11	12,10	9.600	66	72,60
1.800	13	14,30	9.800	68	74,80
2.000	14	15,40	10.000	69	75,90
2.200	16	17,60	10.200	71	78,10
2.400	17	18,70	10.400	72	79,20
2.600	18	19,80	10.600	73	80,30
2.800	20	22,00	10.800	75	82,50
3.000	21	23,10	11.000	76	83,60
3.200	22	24,20	11.200	77	84,70
3.400	24	26,40	11.400	79	86,90
3.600	25	27,50	11.600	80	88,00
3.800	27	29,70	11.800	82	90,20
4.000	28	30,80	12.000	83	91,30
4.200	29	31,90	12.200	84	92,40
4.400	31	34,10	12.400	86	94,60
4.600	32	35,20	12.600	87	95,70
4.800	33	36,30	12.800	88	96,80
5.000	35	38,50	13.000	90	99,00
5.200	36	39,60	13.200	91	100,10
5.400	38	41,80	13.400	93	102,30
5.600	39	42,90	13.600	94	103,40
5.800	40	44,00	13.800	95	104,50
6.000	42	46,20	14.000	97	106,70
6.200	43	47,30	14.200	98	107,80
6.400	44	48,40	14.400	99	108,90
6.600	46	50,60	14.600	101	111,10
6.800	47	51,70	14.800	102	112,20
7.000	49	53,90	15.000	104	114,40
7.200	50	55,00	15.200	105	115,50
7.400	51	56,10	15.400	106	116,60
7.600	53	58,30	15.600	108	118,80
7.800	54	59,40	15.800	109	119,90
8.000	55	60,50	16.000	110	121,00

11.2.3 Perforación: Jumbo Radial

La siguiente tabla muestra algunos de los parámetros que serán necesarios para estimar la flota de equipos de perforación, que guardan relación con las características del jumbo radial, el diseño de perforación y tronadura y las características del material a perforar. Los metros perforados por abanico corresponden al diseño de 25 m de altura, según el caso de estudio del capítulo 6.

Parámetros Jumbos Radial			
Parámetro	Unidad	Valor	
Área Galería Nivel de Perforación	m ²	15	
Diámetro de perforación	pulgadas	3,0	
Burden	m	1,7	
Espaciamiento	m	2,2	
Metros Perforados por Abanico	m	154	
Número de Perforaciones por Abanico	#	22	
Densidad Roca	ton/m ³	2,6	
Volumen por Ring	m ³	390	
Toneladas por Ring	ton	1.013	
Factor de Roca	ton/mb	6,6	

Luego, se determina el tiempo de perforación por barreno, utilizando el siguiente formulismo:

$\label{eq:tempo} \textit{Tiempo de Perforación} = \frac{\textit{Largo Promedio Perforación}}{\textit{Tasa de Penetración}}$

Con este tiempo estimado, es posible determinar el tiempo de ciclo de perforación, el número de ciclos por hora y el rendimiento del equipo de perforación, utilizando las siguientes expresiones. Luego, la siguiente tabla muestra los valores de los parámetros mencionados.

$$Tiempo \ de \ Ciclo_{Perforación} = T_{Perforación} + T_{retrasos, \ esperas \ y \ maniobras}$$
$$N^{\circ} \ Ciclos \ por \ Hora = \frac{60}{Tiempo \ de \ Ciclo_{Perforación}}$$

 $Rendimiento_{lumbo} = N^{\circ}$ Ciclos por Hora × Largo Promedio Perforación × Factor_{Roca}

Rendimiento Jumbo Radial			
Parámetro	Unidad	Valor	
Tasa de penetración (100 mm)	m/min	0,7	
Largo Promedio Barreno	m	7,0	
Tiempo de Perforación por barreno	min	10,0	
Retrasos, Esperas y Maniobras	min	1,0	
Tiempo de Ciclo de Perforación	min	11,0	
N° de Ciclos por Hora	#	5,5	
Rendimiento Perforadora	mb/hora	38,2	
Rendimiento Perforadora	ton/hora	252	

Luego, utilizando los datos que se muestran en la siguiente tabla, se determina la capacidad de perforación del jumbo a través de la fórmula que se muestra a continuación.

$$Capacidad \ Perforación = \frac{Turnos}{Dia} \times \frac{Horas}{Turnos} \times Rendimiento_{Jumbo} \times U \times F.0 \times D.M$$

Parámetros Dimensionamiento de Flota Jumbo Radial			
Parámetros	Unidad	Valor	
Tiempo Cronológico	días/año	365	
Tiempo Hábil	días/año	360	
Turnos	turnos/día	2,0	
Horas Operativas	horas/turno	12,0	
Utilización	%	50%	
Factor Operacional	%	50%	
Horas Efectivas	horas/turno	3,0	
Darforación Efectiva	mb/turno	115	
Perforación Electiva	mb/día	229	
Capacidad de Perforación	mb/año	82.461	
Disponibilidad Mecánica	%	75%	

A continuación, se emplea la siguiente expresión para obtener la flota de equipos según el ritmo de producción:

 $Flota \ de \ Equipos_{Jumbo} = \frac{Ritmo \ de \ Producción}{Capacidad \ Perforación}$

Finalmente, la siguiente tabla muestra la flota de equipos por ritmo de producción y la inversión en jumbos radiales, donde el precio unitario es de 850.000 US\$.

Dimensionamiento de Flota Jumbo Radial					
Ritmo	Flata	Inversión	Ritmo	Flata	Inversión
(tpd)	riota	(MUS\$)	(tpd)	Flota	(MUS\$)
200	1	0,85	8.200	7	5,95
400	1	0,85	8.400	7	5,95
600	1	0,85	8.600	7	5,95
800	1	0,85	8.800	8	6,80
1.000	1	0,85	9.000	8	6,80
1.200	1	0,85	9.200	8	6,80
1.400	2	1,70	9.400	8	6,80
1.600	2	1,70	9.600	8	6,80
1.800	2	1,70	9.800	8	6,80
2.000	2	1,70	10.000	9	7,65
2.200	2	1,70	10.200	9	7,65
2.400	2	1,70	10.400	9	7,65
2.600	3	2,55	10.600	9	7,65
2.800	3	2,55	10.800	9	7,65
3.000	3	2,55	11.000	9	7,65
3.200	3	2,55	11.200	10	8,50
3.400	3	2,55	11.400	10	8,50
3.600	3	2,55	11.600	10	8,50
3.800	4	3,40	11.800	10	8,50
4.000	4	3,40	12.000	10	8,50
4.200	4	3,40	12.200	10	8,50
4.400	4	3,40	12.400	10	8,50
4.600	4	3,40	12.600	11	9,35
4.800	4	3,40	12.800	11	9,35
5.000	5	4,25	13.000	11	9,35
5.200	5	4,25	13.200	11	9,35
5.400	5	4,25	13.400	11	9,35
5.600	5	4,25	13.600	11	9,35
5.800	5	4,25	13.800	12	10,20
6.000	5	4,25	14.000	12	10,20
6.200	5	4,25	14.200	12	10,20
6.400	6	5,10	14.400	12	10,20
6.600	6	5,10	14.600	12	10,20
6.800	6	5,10	14.800	12	10,20
7.000	6	5,10	15.000	13	11,05
7.200	6	5,10	15.200	13	11,05
7.400	6	5,10	15.400	13	11,05
7.600	7	5,95	15.600	13	11,05
7.800	7	5,95	15.800	13	11,05
8.000	7	5,95	16.000	13	11,05

11.2.4 Tronadura: Camión de Carga

La siguiente tabla muestra algunos de los parámetros que serán necesarios para estimar la flota de camiones de carga, que guardan relación con el diseño de perforación y tronadura y las características del material a tronar. La cantidad de explosivo por abanico corresponde al diseño de 25 m de altura, según el caso de estudio del capítulo 6.

Parámetros Camión de Carga			
Parámetro	Unidad	Valor	
Diámetro de perforación	pulgadas	3,0	
Burden	m	1,7	
Espaciamiento	m	2,2	
Cantidad de Explosivo por Abanico	ton	0,38	
Densidad del Anfo	ton/m ³	0,9	
Densidad de Roca	ton/m ³	2,6	
Factor de Carga	g/ton	376	
Factor de Roca	ton/barreno	46,1	

Luego, se determina el tiempo de ciclo de carguío de explosivo por perforación, utilizando el siguiente formulismo:

Tiempo de Ciclo_{Carguío Exp.} = $T_{primado} + T_{carguío} + T_{tapado} + T_{retrasos, esperas y maniobras}$

Con este tiempo estimado, es posible determinar el número de ciclos por hora y el rendimiento del equipo de carguío de explosivo, utilizando las siguientes expresiones. Luego, la siguiente tabla muestra los valores de los parámetros mencionados.

$$N^{\circ}$$
 Ciclos por Hora = $\frac{60}{Tiempo \ de \ Ciclo_{Carguío \ Explosivo}}$

 $Rendimiento_{Camión \ de \ Carga} = N^{\circ} \ Ciclos \ por \ Hora \times Factor_{Roca}$

Rendimiento Camión de Carga			
Parámetro	Unidad	Valor	
Tiempo de Primado	min	1,0	
Tiempo de Carguío de Explosivo	min	5,0	
Tiempo de Tapado	min	2,0	
Retrasos, Esperas y Maniobras	min	1,0	
Tiempo de Ciclo Carguío de Explosivos	min	9,0	
N° de Barrenos Cargados por Hora	#	6,7	
Rendimiento Camión de Carga	ton/hora	307	

Luego, utilizando los datos que se muestran en la siguiente tabla, se determina la capacidad de carguío de explosivo a través de la fórmula que se muestra a continuación.

 $Capacidad \ Carguío \ de \ Explosivo$ $= \frac{Turnos}{Día} \times \frac{Horas}{Turnos} \times Rendimiento_{Camión \ de \ Carga} \times U \times F.O \times D.M$

Parámetros Dimensionamiento de Flota Camión Fabrica			
Parámetros	Unidad	Valor	
Tiempo Cronológico	días/año	365	
Tiempo Hábil	días/año	360	
Turnos	turnos/día	2,0	
Horas Operativas	horas/turno	12,0	
Utilización	%	50%	
Factor Operacional	%	60%	
Horas Efectivas	horas/turno	3,6	
Comencia Efectivo	ton/turno	1.105	
Carguio Electivo	ton/día	2.210	
Capacidad de Carguío de Explosivo	ton/año	795.764	
Disponibilidad Mecánica	%	75%	

A continuación, se emplea la siguiente expresión para obtener la flota de equipos según el ritmo de producción:

 $Flota \ de \ Equipos_{Camión \ de \ Carga} = \frac{Ritmo \ de \ Producción}{Capacidad \ Carguío \ Explosivo}$

Finalmente, la siguiente tabla muestra la flota de equipos por ritmo de producción y la inversión en camión de carga, donde el precio unitario es de 650.000 US\$.
Dimens	ionamie	ento de Flota	Camión	de Carga	ı
Ritmo	Flata	Inversión	Ritmo	Flata	Inversión
(tpd)	riota	(US\$)	(tpd)	riota	(US\$)
200	1	0,65	8.200	5	3,25
400	1	0,65	8.400	5	3,25
600	1	0,65	8.600	5	3,25
800	1	0,65	8.800	5	3,25
1.000	1	0,65	9.000	5	3,25
1.200	1	0,65	9.200	6	3,90
1.400	1	0,65	9.400	6	3,90
1.600	1	0,65	9.600	6	3,90
1.800	1	0,65	9.800	6	3,90
2.000	2	1,30	10.000	6	3,90
2.200	2	1,30	10.200	6	3,90
2.400	2	1,30	10.400	6	3,90
2.600	2	1,30	10.600	6	3,90
2.800	2	1,30	10.800	6	3,90
3.000	2	1,30	11.000	7	4,55
3.200	2	1,30	11.200	7	4,55
3.400	2	1,30	11.400	7	4,55
3.600	2	1,30	11.600	7	4,55
3.800	3	1,95	11.800	7	4,55
4.000	3	1,95	12.000	7	4,55
4.200	3	1,95	12.200	7	4,55
4.400	3	1,95	12.400	7	4,55
4.600	3	1,95	12.600	7	4,55
4.800	3	1,95	12.800	8	5,20
5.000	3	1,95	13.000	8	5,20
5.200	3	1,95	13.200	8	5,20
5.400	3	1,95	13.400	8	5,20
5.600	4	2,60	13.600	8	5,20
5.800	4	2,60	13.800	8	5,20
6.000	4	2,60	14.000	8	5,20
6.200	4	2,60	14.200	8	5,20
6.400	4	2,60	14.400	8	5,20
6.600	4	2,60	14.600	9	5,85
6.800	4	2,60	14.800	9	5,85
7.000	4	2,60	15.000	9	5,85
7.200	4	2,60	15.200	9	5,85
7.400	5	3,25	15.400	9	5,85
7.600	5	3,25	15.600	9	5,85
7.800	5	3,25	15.800	9	5,85
8.000	5	3,25	16.000	9	5,85

11.3 Anexo C: Costo Mina

A continuación se presentan los resultados del costo mina asociado a las operaciones unitarias de carguío, transporte, perforación y tronadura para el método Sublevel Stoping. En el caso del Sublevel Caving el costo mina se encuentra disponible en la herramienta de evaluación (Ver CD-ROM).

11.3.1 Carguío

A continuación, las siguientes tablas muestran los parámetros necesarios para determinar el costo de la operación unitaria de carguío.

Precios Operación U	U nitaria Car g	guío
Costo Agua Industrial	US\$/m ³	0,5
Tarifa Operadores	US\$/año	47.500
Petróleo Diésel	US\$/l	0,8
Tarifa Mantenedores	US\$/año	35.600

Consum	Consumos Operación Unitaria Carguío									
Operador LHD	Dotación por Turno	1,0	-							
	Dotación Total	4,0	-							
	Factor de Reemplazo	4,4	-							
Mantenedor Mecánico	Dotación por Turno	2,0	-							
LHD	Dotación Total	8,0	-							
	Factor de Reemplazo	8,8	-							
Ayudante Mecánico	Dotación por Turno	1,0	-							
LHD	Dotación Total	4,0	-							
	Factor de Reemplazo	4,4	-							
Suministros	Petróleo	30	l/hora							
	Agua Limpieza	100	m³/año							
Insumos	Neumáticos	12	US\$/hora							
	Repuestos	36	US\$/hora							

El costo de la operación de carguío, se puede estimar a través de la siguiente expresión.

```
Costo_{Carguio} = Costo_{Operadores} + Costo_{Mantenedores} + Costo_{Petróleo} + Costo_{Agua Limpieza} + Costo_{Neumáticos} + Costo_{Repuestos}
```

Donde:

Costo_{Operadores}

 $= Dotación Total_{Operadores} \times Factor_{Reemplazo} \times Tarifa_{Operadores} \\ \times Flota_{Operativa}$

Costo_{Mantenedores}

 $= (Dotación Total_{Ayudantes} + Dotación Total_{Maestros}) \times Factor_{Reemplazo}$ $\times Tarifa_{Mantenedores} \times Flota_{Mantención}$

 $Costo_{Petróleo} = Consumo_{Petroleo} \times Tiempo_{Operativo} \times Precio_{Petroleo} \times Flota_{Operativa} \times 360$

 $Costo_{Agua\ Limpieza} = Consumo_{Agua\ Limpieza} \times Precio_{Agua\ Industrial} \times Flota_{Operativa}$

 $Costo_{Neum \acute{a}ticos} = Consumo \ Unitario_{Neum \acute{a}ticos} \times Tiempo_{Operativo} \times Flota_{Operativa} \times 360$

 $Costo_{Repuestos} = Consumo Unitario_{Repuestos} \times Tiempo_{Operativo} \times Flota_{Operativa} \times 360$

Finalmente, la siguiente tabla muestra el desglose de los costos que pertenecen a la operación de carguío según el ritmo de producción, que varía entre 200 a 16.000 tpd.

Ritmo	Flota	Flota	Costo						
(tnd)	(Onerativa)	(Mantención)	Operador	Mantenedor	Petróleo	Agua	Neumáticos	Repuestos	Operación
(tpu)	(Operativa)	(infunction)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/ton)
200	0,10	1,00	209.000	469.920	12.938	50	6.469	19.406	10,00
400	0,19	1,00	209.000	469.920	25.875	50	12.938	38.813	5,29
600	0,29	1,00	209.000	469.920	38.813	50	19.406	58.219	3,72
800	0,39	1,00	209.000	469.920	51.750	50	25.875	77.625	2,93
1.000	0,49	1,00	209.000	469.920	64.688	50	32.344	97.031	2,46
1.200	0,58	1,00	209.000	469.920	77.625	50	38.813	116.438	2,14
1.400	0,68	1,00	209.000	469.920	90.563	50	45.281	135.844	1,92
1.600	0,78	1,00	209.000	469.920	103.500	50	51.750	155.250	1,75
1.800	0,88	1,00	209.000	469.920	116.438	50	58.219	174.656	1,62
2.000	0,97	1,00	418.000	469.920	129.375	50	64.688	194.063	1,81
2.200	1,07	1,00	418.000	469.920	142.313	100	71.156	213.469	1,69
2.400	1,17	1,00	418.000	469.920	155.250	100	77.625	232.875	1,60
2.600	1,27	1,00	418.000	469.920	168.188	100	84.094	252.281	1,52
2.800	1,36	1,00	418.000	469.920	181.125	100	90.563	271.688	1,45
3.000	1,46	1,00	418.000	469.920	194.063	100	97.031	291.094	1,39
3.200	1,56	1,00	418.000	469.920	207.000	100	103.500	310.500	1,34
3.400	1,66	1,00	418.000	469.920	219.938	100	109.969	329.906	1,30
3.600	1,75	1,00	418.000	469.920	232.875	100	116.438	349.313	1,26
3.800	1,85	1,00	418.000	469.920	245.813	100	122.906	368.719	1,22
4.000	1,95	1,00	627.000	469.920	258.750	100	129.375	388.125	1,33
4.200	2,05	1,00	627.000	469.920	271.688	150	135.844	407.531	1,30
4.400	2.14	1.00	627.000	469.920	284.625	150	142.313	426.938	1.26
4.600	2.24	1.00	627.000	469.920	297.563	150	148.781	446.344	1.23
4.800	2.34	1.00	627.000	469.920	310.500	150	155.250	465.750	1.21
5.000	2,44	1,00	627.000	469.920	323.438	150	161.719	485.156	1,18
5.200	2.53	1.00	627.000	469.920	336.375	150	168.188	504.563	1.16
5.400	2,63	1,00	627.000	469.920	349.313	150	174.656	523.969	1,14
5.600	2.73	1.00	627.000	469.920	362.250	150	181.125	543.375	1.12
5.800	2.83	1.00	627.000	469.920	375.188	150	187.594	562.781	1.10
6.000	2.92	1.00	836.000	939.840	388.125	150	194.063	582.188	1.39
6.200	3.02	2.00	836.000	939.840	401.063	200	200.531	601.594	1.37
6.400	3.12	2.00	836.000	939.840	414.000	200	207.000	621.000	1.34
6.600	3.22	2.00	836.000	939.840	426.938	200	213.469	640.406	1.32
6.800	3.31	2.00	836.000	939.840	439.875	200	219.938	659.813	1.30
7.000	3.41	2.00	836.000	939.840	452.813	200	226.406	679.219	1.28
7.200	3.51	2.00	836.000	939.840	465.750	200	232.875	698.625	1.26
7,400	3,61	2,00	836.000	939.840	478.688	200	239.344	718.031	1.24
7.600	3.70	2.00	836.000	939.840	491.625	200	245.813	737,438	1.22
7.800	3.80	2.00	1.045.000	939.840	504.563	200	252.281	756.844	1.28
8.000	3,90	2,00	1.045.000	939.840	517.500	200	258.750	776.250	1,26

D:4	Flata	Ela4a	Costo						
KILMO (trnd)	Flota (Operative)	Flota (Montonoión)	Operador	Mantenedor	Petróleo	Agua	Neumáticos	Repuestos	Operación
(tpa)	(Operativa)	(Mantencion)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/ton)
8.200	4,00	2,00	1.045.000	939.840	530.438	200	265.219	795.656	1,24
8.400	4,09	2,00	1.045.000	939.840	543.375	250	271.688	815.063	1,23
8.600	4,19	2,00	1.045.000	939.840	556.313	250	278.156	834.469	1,21
8.800	4,29	2,00	1.045.000	939.840	569.250	250	284.625	853.875	1,20
9.000	4,39	2,00	1.045.000	939.840	582.188	250	291.094	873.281	1,18
9.200	4,48	2,00	1.045.000	939.840	595.125	250	297.563	892.688	1,17
9.400	4,58	2,00	1.045.000	939.840	608.063	250	304.031	912.094	1,16
9.600	4,68	2,00	1.045.000	939.840	621.000	250	310.500	931.500	1,15
9.800	4,78	2,00	1.254.000	939.840	633.938	250	316.969	950.906	1,19
10.000	4,87	2,00	1.254.000	939.840	646.875	250	323.438	970.313	1,18
10.200	4,97	2,00	1.254.000	939.840	659.813	250	329.906	989.719	1,17
10.400	5,07	2,00	1.254.000	939.840	672.750	300	336.375	1.009.125	1,16
10.600	5,17	2,00	1.254.000	939.840	685.688	300	342.844	1.028.531	1,15
10.800	5,26	2,00	1.254.000	939.840	698.625	300	349.313	1.047.938	1,14
11.000	5,36	2,00	1.254.000	939.840	711.563	300	355.781	1.067.344	1,13
11.200	5,46	2,00	1.254.000	939.840	724.500	300	362.250	1.086.750	1,12
11.400	5,56	2,00	1.254.000	939.840	737.438	300	368.719	1.106.156	1,11
11.600	5,65	2,00	1.254.000	939.840	750.375	300	375.188	1.125.563	1,10
11.800	5,75	2,00	1.463.000	1.409.760	763.313	300	381.656	1.144.969	1,25
12.000	5,85	2,00	1.463.000	1.409.760	776.250	300	388.125	1.164.375	1,24
12.200	5,95	2,00	1.463.000	1.409.760	789.188	300	394.594	1.183.781	1,23
12.400	6,04	3,00	1.463.000	1.409.760	802.125	350	401.063	1.203.188	1,22
12.600	6,14	3,00	1.463.000	1.409.760	815.063	350	407.531	1.222.594	1,21
12.800	6,24	3,00	1.463.000	1.409.760	828.000	350	414.000	1.242.000	1,20
13.000	6,34	3,00	1.463.000	1.409.760	840.938	350	420.469	1.261.406	1,19
13.200	6,43	3,00	1.463.000	1.409.760	853.875	350	426.938	1.280.813	1,18
13.400	6,53	3,00	1.463.000	1.409.760	866.813	350	433.406	1.300.219	1,17
13.600	6,63	3,00	1.672.000	1.409.760	879.750	350	439.875	1.319.625	1,20
13.800	6,73	3,00	1.672.000	1.409.760	892.688	350	446.344	1.339.031	1,19
14.000	6,82	3,00	1.672.000	1.409.760	905.625	350	452.813	1.358.438	1,18
14.200	6,92	3,00	1.672.000	1.409.760	918.563	350	459.281	1.377.844	1,17
14.400	7,02	3,00	1.672.000	1.409.760	931.500	400	465.750	1.397.250	1,17
14.600	7,12	3,00	1.672.000	1.409.760	944.438	400	472.219	1.416.656	1,16
14.800	7,21	3,00	1.672.000	1.409.760	957.375	400	478.688	1.436.063	1,15
15.000	7,31	3,00	1.672.000	1.409.760	970.313	400	485.156	1.455.469	1,14
15.200	7,41	3,00	1.672.000	1.409.760	983.250	400	491.625	1.474.875	1,14
15.400	7,51	3,00	1.672.000	1.409.760	996.188	400	498.094	1.494.281	1,13
15.600	7,60	3,00	1.881.000	1.409.760	1.009.125	400	504.563	1.513.688	1,16
15.800	7,70	3,00	1.881.000	1.409.760	1.022.063	400	511.031	1.533.094	1,15
16.000	7,80	3,00	1.881.000	1.409.760	1.035.000	400	517.500	1.552.500	1,14

11.3.2 Transporte

A continuación, las siguientes tablas muestran los parámetros necesarios para determinar el costo de la operación unitaria de transporte.

Precios Operación U	nitaria Transp	orte
Costo Agua Industrial	US\$/m ³	0,5
Tarifa Operadores	US\$/año	47.500
Petróleo Diésel	US\$/l	0,8
Tarifa Mantenedores	US\$/año	35.600

Consumos	Consumos Operación Unitaria Transporte								
Operador Camión Bajo	Dotación por Turno	1,0	-						
Perfil	Dotación Total	4,0	-						
	Factor de Reemplazo	4,4	-						
Maestro Mecánico Camión	Dotación por Turno	2,0	-						
Bajo Perfil	Dotación Total	8,0	-						
	Factor de Reemplazo	8,8	-						
Ayudante Mecánico	Dotación por Turno	1,0	-						
Camión Bajo Perfil	Dotación Total	4,0	-						
	Factor de Reemplazo	4,4	-						
Suministros	Petróleo	57	l/hora						
	Agua Limpieza	200	m³/año						
Insumos	Neumáticos	20	US\$/hora						
	Repuestos	8	US\$/hora						

El costo de la operación de transporte, se puede estimar a través de la siguiente expresión.

Costo_{Transporte}

 $= Costo_{Op.} + Costo_{Mant.} + Costo_{Petróleo} + Costo_{Agua} + Costo_{Neu} + Costo_{Rep}$

Donde:

Costo_{Operadores}

 $= Dotación Total_{Operadores} \times Factor_{Reemplazo} \times Tarifa_{Operadores} \times Flota_{Operativa}$

 $Costo_{Mantenedores}$

```
= (Dotación Total_{Ayudantes} + Dotación Total_{Maestros}) \times Factor_{Reemplazo} 
\times Tarifa_{Mantenedores} \times Flota_{Mantención}
```

 $Costo_{Petróleo} = Consumo_{Petroleo} \times Tiempo_{Operativo} \times Precio_{Petroleo} \times Flota_{Operativa} \times 360$

 $Costo_{Agua\ Limpieza} = Consumo_{Agua\ Limpieza} \times Precio_{Agua\ Industrial} \times Flota_{Operativa}$

 $Costo_{Neumáticos} = Consumo Unitario_{Neumáticos} \times Tiempo_{Operativo} \times Flota_{Operativa} \times 360$

 $Costo_{Repuestos} = Consumo Unitario_{Repuestos} \times Tiempo_{Operativo} \times Flota_{Operativa} \times 360$

Finalmente, la siguiente tabla muestra el desglose de los costos que pertenecen a la operación de transporte según el ritmo de producción, que varía entre 200 a 16.000 tpd.

D'4			Costo	Costo	Costo	Costo	Costo	Costo	
Ritmo	Flota	Flota	Operador	Mantenedor	Petróleo	Agua	Neumáticos	Repuestos	Costo Operacion
(tpa)	(Operativa)	(Mantencion)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/ton)
200	1,03	1,00	418.000	469.920	228.362	200	100.159	40.063	17,49
400	2,06	1,00	627.000	469.920	456.724	300	200.317	80.127	12,78
600	3,09	2,00	836.000	939.840	685.086	400	300.476	120.190	13,38
800	4,12	2,00	1.045.000	939.840	913.448	500	400.635	160.254	12,05
1.000	5,15	2,00	1.254.000	939.840	1.141.810	600	500.794	200.317	11,25
1.200	6,18	3,00	1.463.000	1.409.760	1.370.171	700	600.952	240.381	11,81
1.400	7,21	3,00	1.672.000	1.409.760	1.598.533	800	701.111	280.444	11,28
1.600	8,24	3,00	1.881.000	1.409.760	1.826.895	900	801.270	320.508	10,87
1.800	9,27	4,00	2.090.000	1.879.680	2.055.257	1.000	901.429	360.571	11,29
2.000	10,30	4,00	2.299.000	1.879.680	2.283.619	1.100	1.001.587	400.635	10,96
2.200	11,33	4,00	2.508.000	1.879.680	2.511.981	1.200	1.101.746	440.698	10,70
2.400	12,37	5,00	2.717.000	2.349.600	2.740.343	1.300	1.201.905	480.762	11,02
2.600	13,40	5,00	2.926.000	2.349.600	2.968.705	1.400	1.302.063	520.825	10,80
2.800	14,43	5,00	3.135.000	2.349.600	3.197.067	1.500	1.402.222	560.889	10,60
3.000	15,46	6,00	3.344.000	2.819.520	3.425.429	1.600	1.502.381	600.952	10,87
3.200	16,49	6,00	3.553.000	2.819.520	3.653.790	1.700	1.602.540	641.016	10,69
3.400	17,52	6,00	3.762.000	2.819.520	3.882.152	1.800	1.702.698	681.079	10,54
3.600	18,55	7,00	3.971.000	3.289.440	4.110.514	1.900	1.802.857	721.143	10,76
3.800	19,58	7,00	4.180.000	3.289.440	4.338.876	2.000	1.903.016	761.206	10,62
4.000	20,61	7,00	4.389.000	3.289.440	4.567.238	2.100	2.003.175	801.270	10,49
4.200	21,64	8,00	4.598.000	3.759.360	4.795.600	2.200	2.103.333	841.333	10,69
4.400	22,67	8,00	4.807.000	3.759.360	5.023.962	2.300	2.203.492	881.397	10,57
4.600	23,70	8,00	5.016.000	3.759.360	5.252.324	2.400	2.303.651	921.460	10,46
4.800	24,73	9,00	5.225.000	4.229.280	5.480.686	2.500	2.403.810	961.524	10,63
5.000	25,76	9,00	5.434.000	4.229.280	5.709.048	2.600	2.503.968	1.001.587	10,53
5.200	26,79	9,00	5.643.000	4.229.280	5.937.410	2.700	2.604.127	1.041.651	10,43
5.400	27,82	10,00	6.061.000	4.699.200	6.165.771	2.800	2.704.286	1.081.714	10,70
5.600	28,85	10,00	6.270.000	4.699.200	6.394.133	2.900	2.804.444	1.121.778	10,60
5.800	29,88	10,00	6.479.000	5.169.120	6.622.495	3.000	2.904.603	1.161.841	10,74
6.000	30,91	11,00	6.688.000	5.169.120	6.850.857	3.100	3.004.762	1.201.905	10,65
6.200	31,94	11,00	6.897.000	5.169.120	7.079.219	3.200	3.104.921	1.241.968	10,57
6.400	32,97	11,00	7.106.000	5.639.040	7.307.581	3.300	3.205.079	1.282.032	10,69
6.600	34,00	12,00	7.315.000	5.639.040	7.535.943	3.500	3.305.238	1.322.095	10,61
6.800	35,03	12,00	7.524.000	5.639.040	7.764.305	3.600	3.405.397	1.362.159	10,54
7.000	36,07	13,00	7.733.000	6.108.960	7.992.667	3.700	3.505.556	1.402.222	10,65
7.200	37,10	13,00	7.942.000	6.108.960	8.221.029	3.800	3.605.714	1.442.286	10,58
7.400	38,13	13,00	8.151.000	6.108.960	8.449.390	3.900	3.705.873	1.482.349	10,51
7.600	39,16	14,00	8.360.000	6.578.880	8.677.752	4.000	3.806.032	1.522.413	10,62
7.800	40,19	14,00	8.569.000	6.578.880	8.906.114	4.100	3.906.190	1.562.476	10,55
8.000	41,22	14,00	8.778.000	6.578.880	9.134.476	4.200	4.006.349	1.602.540	10,49

D' 4	T-1-4-	T-L-4-	Costo	Costo	Costo	Costo	Costo	Costo	Control Constitution
Kitmo	Flota	Flota (Mantanaián)	Operador	Mantenedor	Petróleo	Agua	Neumáticos	Repuestos	Costo Operación
(ιρα)	(Operativa)	(Mantencion)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/año)	(US\$/ton)
8.200	42,25	15,00	8.987.000	7.048.800	9.362.838	4.300	4.106.508	1.642.603	10,59
8.400	43,28	15,00	9.196.000	7.048.800	9.591.200	4.400	4.206.667	1.682.667	10,53
8.600	44,31	15,00	9.405.000	7.048.800	9.819.562	4.500	4.306.825	1.722.730	10,47
8.800	45,34	16,00	9.614.000	7.518.720	10.047.924	4.600	4.406.984	1.762.794	10,57
9.000	46,37	16,00	9.823.000	7.518.720	10.276.286	4.700	4.507.143	1.802.857	10,51
9.200	47,40	16,00	10.032.000	7.518.720	10.504.648	4.800	4.607.302	1.842.921	10,46
9.400	48,43	17,00	10.241.000	7.988.640	10.733.010	4.900	4.707.460	1.882.984	10,55
9.600	49,46	17,00	10.450.000	7.988.640	10.961.371	5.000	4.807.619	1.923.048	10,50
9.800	50,49	17,00	10.659.000	7.988.640	11.189.733	5.100	4.907.778	1.963.111	10,45
10.000	51,52	18,00	10.868.000	8.458.560	11.418.095	5.200	5.007.937	2.003.175	10,53
10.200	52,55	18,00	11.077.000	8.458.560	11.646.457	5.300	5.108.095	2.043.238	10,48
10.400	53,58	18,00	11.286.000	8.458.560	11.874.819	5.400	5.208.254	2.083.302	10,43
10.600	54,61	19,00	11.704.000	8.928.480	12.103.181	5.500	5.308.413	2.123.365	10,57
10.800	55,64	19,00	11.913.000	8.928.480	12.331.543	5.600	5.408.571	2.163.429	10,52
11.000	56,67	19,00	12.122.000	9.398.400	12.559.905	5.700	5.508.730	2.203.492	10,59
11.200	57,70	20,00	12.331.000	9.398.400	12.788.267	5.800	5.608.889	2.243.556	10,55
11.400	58,74	20,00	12.540.000	9.398.400	13.016.629	5.900	5.709.048	2.283.619	10,51
11.600	59,77	20,00	12.749.000	9.868.320	13.244.990	6.000	5.809.206	2.323.683	10,58
11.800	60,80	21,00	12.958.000	9.868.320	13.473.352	6.100	5.909.365	2.363.746	10,53
12.000	61,83	21,00	13.167.000	9.868.320	13.701.714	6.200	6.009.524	2.403.810	10,49
12.200	62,86	21,00	13.376.000	10.338.240	13.930.076	6.300	6.109.683	2.443.873	10,56
12.400	63,89	22,00	13.585.000	10.338.240	14.158.438	6.400	6.209.841	2.483.937	10,52
12.600	64,92	22,00	13.794.000	10.338.240	14.386.800	6.500	6.310.000	2.524.000	10,48
12.800	65,95	22,00	14.003.000	10.808.160	14.615.162	6.600	6.410.159	2.564.063	10,54
13.000	66,98	23,00	14.212.000	10.808.160	14.843.524	6.700	6.510.317	2.604.127	10,51
13.200	68,01	23,00	14.421.000	10.808.160	15.071.886	6.900	6.610.476	2.644.190	10,47
13.400	69,04	24,00	14.630.000	11.278.080	15.300.248	7.000	6.710.635	2.684.254	10,53
13.600	70,07	24,00	14.839.000	11.278.080	15.528.610	7.100	6.810.794	2.724.317	10,49
13.800	71,10	24,00	15.048.000	11.278.080	15.756.971	7.200	6.910.952	2.764.381	10,46
14.000	72,13	25,00	15.257.000	11.748.000	15.985.333	7.300	7.011.111	2.804.444	10,52
14.200	73,16	25,00	15.466.000	11.748.000	16.213.695	7.400	7.111.270	2.844.508	10,48
14.400	74,19	25,00	15.675.000	11.748.000	16.442.057	7.500	7.211.429	2.884.571	10,45
14.600	75,22	26,00	15.884.000	12.217.920	16.670.419	7.600	7.311.587	2.924.635	10,51
14.800	76,25	26,00	16.093.000	12.217.920	16.898.781	7.700	7.411.746	2.964.698	10,47
15.000	77,28	26,00	16.302.000	12.217.920	17.127.143	7.800	7.511.905	3.004.762	10,44
15.200	78,31	27,00	16.511.000	12.687.840	17.355.505	7.900	7.612.063	3.044.825	10,50
15.400	79,34	27,00	16.720.000	12.687.840	17.583.867	8.000	7.712.222	3.084.889	10,46
15.600	80,37	27,00	16.929.000	12.687.840	17.812.229	8.100	7.812.381	3.124.952	10,43
15.800	81,40	28,00	17.347.000	13.157.760	18.040.590	8.200	7.912.540	3.165.016	10,52
16.000	82,44	28,00	17.556.000	13.157.760	18.268.952	8.300	8.012.698	3.205.079	10,49

11.3.3 Perforación

A continuación, las siguientes tablas muestran los parámetros necesarios para determinar el costo de la operación unitaria de perforación.

Precios Operación Un	itaria Perfor	ación
Costo Agua Industrial	US\$/m ³	0,5
Tarifas Operadores	US\$/año	47.600
Petróleo Diésel	US\$/l	0,8
Energía	US\$/kW	0,1
Tarifa Mantenedores	US\$/año	35.600

Consumos (Operación Unitaria Perfor	ación	
Operador Jumbo Radial	Dotación por Turno	1,0	-
	Dotación Total	4,0	-
	Factor de Reemplazo	4,4	-
Ayudante Jumbo Radial	Dotación por Turno	1,0	-
	Dotación Total	4,0	-
	Factor de Reemplazo	4,4	-
Maestro Mecánico Jumbo	Dotación por Turno	0,5	-
Radial	Dotación Total	2,0	-
	Factor de Reemplazo	2,2	-
Ayudante Mecánico	Dotación por Turno	1,0	-
Jumbo Radial	Dotación Total	4,0	-
	Factor de Reemplazo	4,4	-
Suministros	Energía	122	kW/hora
	Petróleo	2	l/hora
	Agua Limpieza	100	m3/año
	Agua Consumo	3	m3/hora
Insumos	Neumáticos	12	US\$/hora
	Aceros	10	US\$/mb
	Repuestos	50	US\$/hora

El costo de la operación de perforación, se puede estimar a través de la siguiente expresión.

$Costo_{Perforación}$

```
= Costo_{Operadores} + Costo_{Mantenedores} + Costo_{Petróleo} + Costo_{Agua Limpieza} 
+ Costo_{Agua Consumo} + Costo_{Energía} + Costo_{Aceros} + Costo_{Neumáticos}
```

Donde:

 $Costo_{Operadores}$

 $= Dotación Total_{Operadores} \times Factor_{Reemplazo} \times Tarifa_{Operadores} \times Flota_{Operativa}$

$Costo_{Mantenedores}$

 $= (Dotación Total_{Ayudantes} + Dotación Total_{Maestros}) \times Factor_{Reemplazo}$ $\times Tarifa_{Mantenedores} \times Flota_{Mantención}$ Costo_{Agua Consumo}

 $= Consumo_{Agua Industrial} \times Tiempo_{Operativo} \times Precio_{Agua Industrial} \times Flota_{Operativa} \times 360$

 $Costo_{Aceros} = Costo Unitario_{Aceros} \times Tiempo_{Operativo} \times Rendimiento_{Perforadora} \times Flota_{Operativa} \times 360$

 $Costo_{Petróleo} = Consumo_{Petroleo} \times Tiempo_{Operativo} \times Precio_{Petroleo} \times Flota_{Operativa} \times 360$

 $Costo_{Agua\ Limpieza} = Consumo_{Agua\ Limpieza} \times Precio_{Agua\ Industrial} \times Flota_{Operativa}$

 $Costo_{Energía} = Consumo_{Energía} \times Tiempo_{Operativo} \times Precio_{Energía} \times Flota_{Operativa} \times 360$

 $Costo_{Neumáticos} = Consumo Unitario_{Neumáticos} \times Tiempo_{Operativo} \times Flota_{Operativa} \times 360$

 $Costo_{Repuestos} = Consumo Unitario_{Repuestos} \times Tiempo_{Operativo} \times Flota_{Operativa} \times 360$

Finalmente, la siguiente tabla muestra el desglose de los costos que pertenecen a la operación de perforación según el ritmo de producción, que varía entre 200 a 16.000 tpd.

D:4	Flata	Flata	Costo								
Kltmo (trrd)	Flota (Operativa)	Flota (Montonoión)	Operador	Mantenedor	Petróleo	Agua	Energía	Neumáticos	Aceros	Repuestos	Operación
(tpa)	(Operativa)	(Mantencion)	(US\$/año)	(US\$/ton)							
200	0,12	1,00	418.000	234.960	408	432	3.193	3.057	97.257	12.738	10,79
400	0,24	1,00	418.000	234.960	815	814	6.387	6.114	194.513	25.475	6,25
600	0,35	1,00	418.000	234.960	1.223	1.196	9.580	9.171	291.770	38.213	4,74
800	0,47	1,00	418.000	234.960	1.630	1.579	12.774	12.228	389.026	50.951	3,98
1.000	0,59	1,00	418.000	234.960	2.038	1.961	15.967	15.285	486.283	63.689	3,53
1.200	0,71	1,00	418.000	234.960	2.446	2.343	19.161	18.342	583.540	76.426	3,23
1.400	0,83	1,00	418.000	234.960	2.853	2.725	22.354	21.399	680.796	89.164	3,01
1.600	0,94	1,00	418.000	234.960	3.261	3.107	25.547	24.456	778.053	101.902	2,85
1.800	1,06	1,00	836.000	234.960	3.668	3.539	28.741	27.514	875.309	114.640	3,37
2.000	1,18	1,00	836.000	234.960	4.076	3.921	31.934	30.571	972.566	127.377	3,20
2.200	1,30	1,00	836.000	234.960	4.484	4.303	35.128	33.628	1.069.822	140.115	3,07
2.400	1,42	1,00	836.000	234.960	4.891	4.686	38.321	36.685	1.167.079	152.853	2,96
2.600	1,53	1,00	836.000	234.960	5.299	5.068	41.514	39.742	1.264.336	165.591	2,86
2.800	1,65	1,00	836.000	234.960	5.707	5.450	44.708	42.799	1.361.592	178.328	2,78
3.000	1,77	1,00	836.000	234.960	6.114	5.832	47.901	45.856	1.458.849	191.066	2,71
3.200	1,89	1,00	836.000	234.960	6.522	6.214	51.095	48.913	1.556.105	203.804	2,65
3.400	2,01	1,00	1.254.000	234.960	6.929	6.646	54.288	51.970	1.653.362	216.542	2,93
3.600	2,12	1,00	1.254.000	234.960	7.337	7.028	57.482	55.027	1.750.619	229.279	2,87
3.800	2,24	1,00	1.254.000	234.960	7.745	7.411	60.675	58.084	1.847.875	242.017	2,81
4.000	2,36	1,00	1.254.000	234.960	8.152	7.793	63.868	61.141	1.945.132	254.755	2,75
4.200	2,48	1,00	1.254.000	234.960	8.560	8.175	67.062	64.198	2.042.388	267.493	2,70
4.400	2,59	1,00	1.254.000	234.960	8.967	8.557	70.255	67.255	2.139.645	280.230	2,66
4.600	2,71	1,00	1.254.000	234.960	9.375	8.939	73.449	70.312	2.236.901	292.968	2,62
4.800	2,83	1,00	1.254.000	234.960	9.783	9.321	76.642	73.369	2.334.158	305.706	2,58
5.000	2,95	1,00	1.672.000	469.920	10.190	9.703	79.835	76.426	2.431.415	318.444	2,91
5.200	3,07	2,00	1.672.000	469.920	10.598	10.135	83.029	79.484	2.528.671	331.181	2,86
5.400	3,18	2,00	1.672.000	469.920	11.005	10.518	86.222	82.541	2.625.928	343.919	2,82
5.600	3,30	2,00	1.672.000	469.920	11.413	10.900	89.416	85.598	2.723.184	356.657	2,78
5.800	3,42	2,00	1.672.000	469.920	11.821	11.282	92.609	88.655	2.820.441	369.395	2,74
6.000	3,54	2,00	1.672.000	469.920	12.228	11.664	95.803	91.712	2.917.698	382.132	2,71
6.200	3,66	2,00	1.672.000	469.920	12.636	12.046	98.996	94.769	3.014.954	394.870	2,68
6.400	3,77	2,00	1.672.000	469.920	13.043	12.428	102.189	97.826	3.112.211	407.608	2,65
6.600	3,89	2,00	2.090.000	469.920	13.451	12.810	105.383	100.883	3.209.467	420.346	2,79
6.800	4,01	2,00	2.090.000	469.920	13.859	13.242	108.576	103.940	3.306.724	433.083	2,76
7.000	4,13	2,00	2.090.000	469.920	14.266	13.625	111.770	106.997	3.403.980	445.821	2,73
7.200	4,25	2,00	2.090.000	469.920	14.674	14.007	114.963	110.054	3.501.237	458.559	2,70
7.400	4,36	2,00	2.090.000	469.920	15.081	14.389	118.156	113.111	3.598.494	471.297	2,68
7.600	4,48	2,00	2.090.000	469.920	15.489	14.771	121.350	116.168	3.695.750	484.034	2,65
7.800	4,60	2,00	2.090.000	469.920	15.897	15.153	124.543	119.225	3.793.007	496.772	2,63
8.000	4,72	2,00	2.090.000	469.920	16.304	15.535	127.737	122.282	3.890.263	509.510	2,61

Ditmo	Flata	Flata	Costo								
KILMO (trad)	Flota (Operativa)	Flota (Montonoión)	Operador	Mantenedor	Petróleo	Agua	Energía	Neumáticos	Aceros	Repuestos	Operación
(tpa)	(Operativa)	(Mantencion)	(US\$/año)	(US\$/ton)							
8.200	4,84	2,00	2.508.000	469.920	16.712	15.917	130.930	125.339	3.987.520	522.248	2,73
8.400	4,95	2,00	2.508.000	469.920	17.120	16.300	134.124	128.396	4.084.777	534.985	2,70
8.600	5,07	2,00	2.508.000	469.920	17.527	16.732	137.317	131.454	4.182.033	547.723	2,68
8.800	5,19	2,00	2.508.000	469.920	17.935	17.114	140.510	134.511	4.279.290	560.461	2,66
9.000	5,31	2,00	2.508.000	469.920	18.342	17.496	143.704	137.568	4.376.546	573.199	2,64
9.200	5,43	2,00	2.508.000	469.920	18.750	17.878	146.897	140.625	4.473.803	585.936	2,62
9.400	5,54	2,00	2.508.000	469.920	19.158	18.260	150.091	143.682	4.571.059	598.674	2,60
9.600	5,66	2,00	2.508.000	469.920	19.565	18.642	153.284	146.739	4.668.316	611.412	2,58
9.800	5,78	2,00	2.926.000	704.880	19.973	19.024	156.477	149.796	4.765.573	624.149	2,75
10.000	5,90	2,00	2.926.000	704.880	20.380	19.407	159.671	152.853	4.862.829	636.887	2,73
10.200	6,02	3,00	2.926.000	704.880	20.788	19.839	162.864	155.910	4.960.086	649.625	2,71
10.400	6,13	3,00	2.926.000	704.880	21.196	20.221	166.058	158.967	5.057.342	662.363	2,69
10.600	6,25	3,00	2.926.000	704.880	21.603	20.603	169.251	162.024	5.154.599	675.100	2,67
10.800	6,37	3,00	2.926.000	704.880	22.011	20.985	172.445	165.081	5.251.856	687.838	2,65
11.000	6,49	3,00	2.926.000	704.880	22.418	21.367	175.638	168.138	5.349.112	700.576	2,63
11.200	6,60	3,00	2.926.000	704.880	22.826	21.749	178.831	171.195	5.446.369	713.314	2,62
11.400	6,72	3,00	3.344.000	704.880	23.234	22.132	182.025	174.252	5.543.625	726.051	2,70
11.600	6,84	3,00	3.344.000	704.880	23.641	22.514	185.218	177.309	5.640.882	738.789	2,69
11.800	6,96	3,00	3.344.000	704.880	24.049	22.896	188.412	180.366	5.738.138	751.527	2,67
12.000	7,08	3,00	3.344.000	704.880	24.456	23.328	191.605	183.424	5.835.395	764.265	2,65
12.200	7,19	3,00	3.344.000	704.880	24.864	23.710	194.798	186.481	5.932.652	777.002	2,64
12.400	7,31	3,00	3.344.000	704.880	25.272	24.092	197.992	189.538	6.029.908	789.740	2,62
12.600	7,43	3,00	3.344.000	704.880	25.679	24.474	201.185	192.595	6.127.165	802.478	2,61
12.800	7,55	3,00	3.344.000	704.880	26.087	24.856	204.379	195.652	6.224.421	815.216	2,60
13.000	7,67	3,00	3.762.000	704.880	26.495	25.239	207.572	198.709	6.321.678	827.953	2,67
13.200	7,78	3,00	3.762.000	704.880	26.902	25.621	210.766	201.766	6.418.935	840.691	2,66
13.400	7,90	3,00	3.762.000	704.880	27.310	26.003	213.959	204.823	6.516.191	853.429	2,64
13.600	8,02	3,00	3.762.000	704.880	27.717	26.435	217.152	207.880	6.613.448	866.167	2,63
13.800	8,14	3,00	3.762.000	704.880	28.125	26.817	220.346	210.937	6.710.704	878.904	2,62
14.000	8,26	3,00	3.762.000	704.880	28.533	27.199	223.539	213.994	6.807.961	891.642	2,60
14.200	8,37	3,00	3.762.000	704.880	28.940	27.581	226.733	217.051	6.905.217	904.380	2,59
14.400	8,49	3,00	3.762.000	704.880	29.348	27.964	229.926	220.108	7.002.474	917.118	2,58
14.600	8,61	3,00	4.180.000	939.840	29.755	28.346	233.119	223.165	7.099.731	929.855	2,69
14.800	8,73	3,00	4.180.000	939.840	30.163	28.728	236.313	226.222	7.196.987	942.593	2,68
15.000	8,85	3,00	4.180.000	939.840	30.571	29.110	239.506	229.279	7.294.244	955.331	2,67
15.200	8,96	3,00	4.180.000	939.840	30.978	29.492	242.700	232.336	7.391.500	968.069	2,65
15.400	9,08	4,00	4.180.000	939.840	31.386	29.924	245.893	235.394	7.488.757	980.806	2,64
15.600	9,20	4,00	4.180.000	939.840	31.793	30.306	249.087	238.451	7.586.014	993.544	2,63
15.800	9,32	4,00	4.180.000	939.840	32.201	30.688	252.280	241.508	7.683.270	1.006.282	2,62
16.000	9,44	4,00	4.180.000	939.840	32.609	31.071	255.473	244.565	7.780.527	1.019.020	2,61

11.3.4 Tronadura

A continuación, las siguientes tablas muestran los parámetros necesarios para determinar el costo de la operación unitaria de tronadura.

Precios Operación Unitaria Tronadura										
Costo Agua Industrial	US\$/m ³	0,5								
Tarifa Operadores	US\$/año	47.500								
Petróleo Diésel	US\$/1	0,8								
Energía	US\$/kW	0,1								
ANFO	US\$/kg	0,8								
Amplificador APD 300	US\$/un	1,3								
Detonador NONEL	US\$/un	6,2								
Tarifa Mantenedores	US\$/año	35.600								

Consumos Operación Unitaria Tronadura										
Operador Camión Fabrica	Dotación por Turno	1,0	-							
	Dotación Total	2,0	-							
	Factor de Reemplazo	2,2	-							
Ayudante Camión Fabrica	Dotación por Turno	2,0	-							
	Dotación Total	4,0	-							
	Factor de Reemplazo	4,4	-							
Maestro Mecánico Camión	Dotación por Turno	0,5	-							
Fabrica	Dotación Total	2,0	-							
	Factor de Reemplazo	2,2	-							
Ayudante Mecánico	Dotación por Turno	1,0	-							
Camión Fabrica	Dotación Total	4,0	-							
	Factor de Reemplazo	4,4	-							
Suministros	Energía	50	kW/hora							
	Petróleo	5	l/hora							
	Agua Limpieza	100	m ³ /año							
Insumos	Neumáticos	6,5	US\$/hora							

El costo de la operación de tronadura, se puede estimar a través de la siguiente expresión.

Costo_{Tronadura}

 $= Costo_{Operadores} + Costo_{Mantenedores} + Costo_{Petróleo} + Costo_{Agua Limpieza}$ $+ Costo_{Energia} + Costo_{Neumáticos} + Costo_{Explosivo} + Costo_{Accesorios}$

Donde:

Costo_{Operadores}

 $= Dotación Total_{Operadores} \times Factor_{Reemplazo} \times Tarifa_{Operadores} \times Flota_{Operativa}$

Costo_{Mantenedores}

 $= (Dotación Total_{Ayudantes} + Dotación Total_{Maestros}) \times Factor_{Reemplazo}$ $\times Tarifa_{Mantenedores} \times Flota_{Mantención}$

 $Costo_{Accesorios} = \frac{(Precio_{APD} + Precio_{Detonador}) \times Ritmo_{Producción} \times 360}{Factor_{Conversion Ton/barreno}}$

 $Costo_{Petróleo} = Consumo_{Petroleo} \times Tiempo_{Operativo} \times Precio_{Petroleo} \times Flota_{Operativa} \times 360$ $Costo_{Agua \ Limpieza} = Consumo_{Agua \ Limpieza} \times Precio_{Agua \ Industrial} \times Flota_{Operativa}$ $Costo_{Energía} = Consumo_{Energía} \times Tiempo_{Operativo} \times Precio_{Energía} \times Flota_{Operativa} \times 360$ $Costo_{Neumáticos} = Consumo \ Unitario_{Neumáticos} \times Tiempo_{Operativo} \times Flota_{Operativa} \times 360$

 $Costo_{Explosivo} = Factor de Carga \times Precio_{Explosivo} \times Ritmo_{Producción} \times 360$

Finalmente, la siguiente tabla muestra el desglose de los costos que pertenecen a la operación de tronadura según el ritmo de producción, que varía entre 200 a 16.000 tpd.

D:4	Flata	Flata	Costo								
Kltm0 (tnd)	Flota (Operative)	Flota (Montongión)	Operador	Mantenedor	Petróleo	Agua	Energía	Neumáticos	Explosivo	Accesorios	Operación
(tpa)	(Operativa)	(Mantencion)	(US\$/año)	(US\$/ton)							
200	0,08	1,00	313.500	234.960	835	50	1.072	1.357	21.633	11.664	8,13
400	0,16	1,00	313.500	234.960	1.670	50	2.145	2.713	43.266	23.327	4,32
600	0,24	1,00	313.500	234.960	2.505	50	3.217	4.070	64.899	34.991	3,05
800	0,32	1,00	313.500	234.960	3.340	50	4.289	5.427	86.532	46.654	2,41
1.000	0,40	1,00	313.500	234.960	4.174	50	5.362	6.784	108.165	58.318	2,03
1.200	0,48	1,00	313.500	234.960	5.009	50	6.434	8.140	129.798	69.981	1,78
1.400	0,56	1,00	313.500	234.960	5.844	50	7.506	9.497	151.431	81.645	1,60
1.600	0,64	1,00	313.500	234.960	6.679	50	8.578	10.854	173.064	93.308	1,46
1.800	0,72	1,00	313.500	234.960	7.514	50	9.651	12.210	194.697	104.972	1,36
2.000	0,81	1,00	313.500	234.960	8.349	50	10.723	13.567	216.330	116.635	1,27
2.200	0,89	1,00	313.500	234.960	9.184	50	11.795	14.924	237.963	128.299	1,20
2.400	0,97	1,00	627.000	234.960	10.019	50	12.868	16.280	259.595	139.963	1,51
2.600	1,05	1,00	627.000	234.960	10.854	100	13.940	17.637	281.228	151.626	1,43
2.800	1,13	1,00	627.000	234.960	11.689	100	15.012	18.994	302.861	163.290	1,37
3.000	1,21	1,00	627.000	234.960	12.523	100	16.085	20.351	324.494	174.953	1,31
3.200	1,29	1,00	627.000	234.960	13.358	100	17.157	21.707	346.127	186.617	1,26
3.400	1,37	1,00	627.000	234.960	14.193	100	18.229	23.064	367.760	198.280	1,21
3.600	1,45	1,00	627.000	234.960	15.028	100	19.301	24.421	389.393	209.944	1,18
3.800	1,53	1,00	627.000	234.960	15.863	100	20.374	25.777	411.026	221.607	1,14
4.000	1,61	1,00	627.000	234.960	16.698	100	21.446	27.134	432.659	233.271	1,11
4.200	1,69	1,00	627.000	234.960	17.533	100	22.518	28.491	454.292	244.935	1,08
4.400	1,77	1,00	627.000	234.960	18.368	100	23.591	29.848	475.925	256.598	1,05
4.600	1,85	1,00	627.000	234.960	19.203	100	24.663	31.204	497.558	268.262	1,03
4.800	1,93	1,00	940.500	234.960	20.038	100	25.735	32.561	519.191	279.925	1,19
5.000	2,01	1,00	940.500	234.960	20.872	150	26.808	33.918	540.824	291.589	1,16
5.200	2,09	1,00	940.500	234.960	21.707	150	27.880	35.274	562.457	303.252	1,14
5.400	2,17	1,00	940.500	234.960	22.542	150	28.952	36.631	584.090	314.916	1,12
5.600	2,25	1,00	940.500	234.960	23.377	150	30.024	37.988	605.723	326.579	1,09
5.800	2,34	1,00	940.500	234.960	24.212	150	31.097	39.345	627.356	338.243	1,07
6.000	2,42	1,00	940.500	234.960	25.047	150	32.169	40.701	648.989	349.906	1,05
6.200	2,50	1,00	940.500	234.960	25.882	150	33.241	42.058	670.622	361.570	1,04
6.400	2,58	1,00	940.500	234.960	26.717	150	34.314	43.415	692.255	373.234	1,02
6.600	2,66	1,00	940.500	234.960	27.552	150	35.386	44.771	713.888	384.897	1,01
6.800	2,74	1,00	940.500	234.960	28.387	150	36.458	46.128	735.521	396.561	0,99
7.000	2,82	1,00	940.500	234.960	29.221	150	37.531	47.485	757.154	408.224	0,98
7.200	2,90	1,00	1.254.000	469.920	30.056	150	38.603	48.841	778.786	419.888	1,18
7.400	2,98	1,00	1.254.000	469.920	30.891	150	39.675	50.198	800.419	431.551	1,16
7.600	3,06	2,00	1.254.000	469.920	31.726	200	40.747	51.555	822.052	443.215	1,14
7.800	3,14	2,00	1.254.000	469.920	32.561	200	41.820	52.912	843.685	454.878	1,12
8.000	3,22	2,00	1.254.000	469.920	33.396	200	42.892	54.268	865.318	466.542	1,11

D '4	El. 4	F L.4.	Costo								
	Flota	F lota	Operador	Mantenedor	Petróleo	Agua	Energía	Neumáticos	Explosivo	Accesorios	Operación
(ιpa)	(Operativa)	(Mantencion)	(US\$/año)	(US\$/ton)							
8.200	3,30	2,00	1.254.000	469.920	34.231	200	43.964	55.625	886.951	478.205	1,09
8.400	3,38	2,00	1.254.000	469.920	35.066	200	45.037	56.982	908.584	489.869	1,08
8.600	3,46	2,00	1.254.000	469.920	35.901	200	46.109	58.338	930.217	501.533	1,07
8.800	3,54	2,00	1.254.000	469.920	36.735	200	47.181	59.695	951.850	513.196	1,05
9.000	3,62	2,00	1.254.000	469.920	37.570	200	48.254	61.052	973.483	524.860	1,04
9.200	3,70	2,00	1.254.000	469.920	38.405	200	49.326	62.409	995.116	536.523	1,03
9.400	3,78	2,00	1.254.000	469.920	39.240	200	50.398	63.765	1.016.749	548.187	1,02
9.600	3,87	2,00	1.567.500	469.920	40.075	200	51.470	65.122	1.038.382	559.850	1,10
9.800	3,95	2,00	1.567.500	469.920	40.910	200	52.543	66.479	1.060.015	571.514	1,09
10.000	4,03	2,00	1.567.500	469.920	41.745	250	53.615	67.835	1.081.648	583.177	1,08
10.200	4,11	2,00	1.567.500	469.920	42.580	250	54.687	69.192	1.103.281	594.841	1,07
10.400	4,19	2,00	1.567.500	469.920	43.415	250	55.760	70.549	1.124.914	606.504	1,05
10.600	4,27	2,00	1.567.500	469.920	44.250	250	56.832	71.906	1.146.547	618.168	1,04
10.800	4,35	2,00	1.567.500	469.920	45.084	250	57.904	73.262	1.168.180	629.832	1,03
11.000	4,43	2,00	1.567.500	469.920	45.919	250	58.977	74.619	1.189.813	641.495	1,02
11.200	4,51	2,00	1.567.500	469.920	46.754	250	60.049	75.976	1.211.446	653.159	1,02
11.400	4,59	2,00	1.567.500	469.920	47.589	250	61.121	77.332	1.233.079	664.822	1,01
11.600	4,67	2,00	1.567.500	469.920	48.424	250	62.193	78.689	1.254.712	676.486	1,00
11.800	4,75	2,00	1.881.000	469.920	49.259	250	63.266	80.046	1.276.345	688.149	1,06
12.000	4,83	2,00	1.881.000	469.920	50.094	250	64.338	81.402	1.297.977	699.813	1,05
12.200	4,91	2,00	1.881.000	469.920	50.929	250	65.410	82.759	1.319.610	711.476	1,05
12.400	4,99	2,00	1.881.000	469.920	51.764	250	66.483	84.116	1.341.243	723.140	1,04
12.600	5,07	2,00	1.881.000	469.920	52.599	300	67.555	85.473	1.362.876	734.804	1,03
12.800	5,15	2,00	1.881.000	469.920	53.433	300	68.627	86.829	1.384.509	746.467	1,02
13.000	5,23	2,00	1.881.000	469.920	54.268	300	69.700	88.186	1.406.142	758.131	1,01
13.200	5,31	2,00	1.881.000	469.920	55.103	300	70.772	89.543	1.427.775	769.794	1,01
13.400	5,40	2,00	1.881.000	469.920	55.938	300	71.844	90.899	1.449.408	781.458	1,00
13.600	5,48	2,00	1.881.000	469.920	56.773	300	72.916	92.256	1.471.041	793.121	0,99
13.800	5,56	2,00	1.881.000	469.920	57.608	300	73.989	93.613	1.492.674	804.785	0,98
14.000	5,64	2,00	1.881.000	469.920	58.443	300	75.061	94.970	1.514.307	816.448	0,98
14.200	5,72	2,00	2.194.500	704.880	59.278	300	76.133	96.326	1.535.940	828.112	1,08
14.400	5,80	2,00	2.194.500	704.880	60.113	300	77.206	97.683	1.557.573	839.775	1,07
14.600	5,88	2,00	2.194.500	704.880	60.948	300	78.278	99.040	1.579.206	851.439	1,06
14.800	5,96	2,00	2.194.500	704.880	61.782	300	79.350	100.396	1.600.839	863.103	1,05
15.000	6,04	3,00	2.194.500	704.880	62.617	350	80.423	101.753	1.622.472	874.766	1,05
15.200	6,12	3,00	2.194.500	704.880	63.452	350	81.495	103.110	1.644.105	886.430	1,04
15.400	6,20	3,00	2.194.500	704.880	64.287	350	82.567	104.467	1.665.738	898.093	1,03
15.600	6,28	3,00	2.194.500	704.880	65.122	350	83.639	105.823	1.687.371	909.757	1,03
15.800	6,36	3,00	2.194.500	704.880	65.957	350	84.712	107.180	1.709.004	921.420	1,02
16.000	6,44	3,00	2.194.500	704.880	66.792	350	85.784	108.537	1.730.637	933.084	1,01

11.4 Anexo D: Resultados Modelo de Selección

A continuación, se presentan los resultados del modelo de selección para el resto de los parámetros de entrada definidos en el capítulo 7. La metodología de cálculo para obtener estos resultados es presentada en el caso de estudio del capítulo 6.

Geometría Yacimiento	Caracter	rísticas Geot	técnicas	Estado 7	Fensional	Orientación Set	VAN	
Inclinación	UCS _{RC}	UCS _{MIN}	Q'	σν	$\sigma_{\rm H2}$	HW	SLS	SLC
(°)	(MPa)	(MPa)	(-)	(MPa)	(MPa)	(°)	(MUS\$)	(MUS\$)
90	200	150	5,0	13,5	6,75	20	-3,30	-17,33
90	200	150	5,0	13,5	6,75	60	2,69	-17,33
90	200	150	5,0	13,5	6,75	90	14,80	-17,33
90	200	150	5,0	13,5	20,25	20	-2,51	-17,33
90	200	150	5,0	13,5	20,25	60	3,78	-17,33
90	200	150	5,0	13,5	20,25	90	4,08	-17,33
90	200	150	7,5	13,5	6,75	20	10,51	-17,33
90	200	150	7,5	13,5	6,75	60	17,14	-17,33
90	200	150	7,5	13,5	6,75	90	26,28	-17,33
90	200	150	7,5	13,5	20,25	20	2,55	-17,33
90	200	150	7,5	13,5	20,25	60	3,16	-17,33
90	200	150	7,5	13,5	20,25	90	4,66	-17,33
90	200	150	10,0	13,5	6,75	20	11,44	-17,33
90	200	150	10,0	13,5	6,75	60	27,78	-17,33
90	200	150	10,0	13,5	6,75	90	28,53	-17,33
90	200	150	10,0	13,5	20,25	20	3,78	-17,33
90	200	150	10,0	13,5	20,25	60	4,97	-17,33
90	200	150	10,0	13,5	20,25	90	5,79	-17,33
90	120	100	5,0	13,5	6,75	20	-9,79	-17,33
90	120	100	5,0	13,5	6,75	60	1,26	-17,33
90	120	100	5,0	13,5	6,75	90	13,17	-17,33
90	120	100	5,0	13,5	20,25	20	-18,13	-17,33
90	120	100	5,0	13,5	20,25	60	-17,30	-17,33
90	120	100	5,0	13,5	20,25	90	-17,02	-17,33
90	120	100	7,5	13,5	6,75	20	3,10	-17,33
90	120	100	7,5	13,5	6,75	60	18,50	-17,33
90	120	100	7,5	13,5	6,75	90	22,27	-17,33
90	120	100	7,5	13,5	20,25	20	-17,58	-17,33
90	120	100	7,5	13,5	20,25	60	-12,91	-17,33
90	120	100	7,5	13,5	20,25	90	-6,44	-17,33
90	120	100	10,0	13,5	6,75	20	3,10	-17,33
90	120	100	10,0	13,5	6,75	60	24,19	-17,33
90	120	100	10,0	13,5	6,75	90	25,91	-17,33
90	120	100	10,0	13,5	20,25	20	-2,73	-17,33
90	120	100	10,0	13,5	20,25	60	3,10	-17,33
90	120	100	10,0	13,5	20,25	90	4,05	-17,33

11.4.1 Forma Yacimiento 1

Geometría Yacimiento	Características Geotécnicas			Estado 7	Fensional	Orientación Set	VAN	
Inclinación	UCS _{RC}	UCS _{MIN}	Q'	σv	$\sigma_{\rm H2}$	HW	SLS	SLC
(°)	(MPa)	(MPa)	(-)	(MPa)	(MPa)	(°)	(MUS\$)	(MUS\$)
90	200	150	5,0	13,5	6,75	20	63,35	77,10
90	200	150	5,0	13,5	6,75	60	69,10	53,02
90	200	150	5,0	13,5	6,75	90	86,96	43,71
90	200	150	5,0	13,5	20,25	20	38,83	77,10
90	200	150	5,0	13,5	20,25	60	48,72	53,02
90	200	150	5,0	13,5	20,25	90	67,44	43,71
90	200	150	7,5	13,5	6,75	20	65,02	68,49
90	200	150	7,5	13,5	6,75	60	72,12	39,61
90	200	150	7,5	13,5	6,75	90	91,74	35,55
90	200	150	7,5	13,5	20,25	20	47,30	68,49
90	200	150	7,5	13,5	20,25	60	52,01	39,61
90	200	150	7,5	13,5	20,25	90	58,24	35,55
90	200	150	10,0	13,5	6,75	20	83,69	63,30
90	200	150	10,0	13,5	6,75	60	90,73	35,55
90	200	150	10,0	13,5	6,75	90	93,66	35,55
90	200	150	10,0	13,5	20,25	20	62,25	63,30
90	200	150	10,0	13,5	20,25	60	64,85	35,55
90	200	150	10,0	13,5	20,25	90	77,78	35,55
90	120	100	5,0	13,5	6,75	20	43,55	77,10
90	120	100	5,0	13,5	6,75	60	66,60	53,02
90	120	100	5,0	13,5	6,75	90	67,45	43,71
90	120	100	5,0	13,5	20,25	20	11,22	77,10
90	120	100	5,0	13,5	20,25	60	15,16	53,02
90	120	100	5,0	13,5	20,25	90	28,17	43,71
90	120	100	7,5	13,5	6,75	20	60,32	68,49
90	120	100	7,5	13,5	6,75	60	70,90	39,61
90	120	100	7,5	13,5	6,75	90	71,39	35,55
90	120	100	7,5	13,5	20,25	20	15,72	68,49
90	120	100	7,5	13,5	20,25	60	38,75	39,61
90	120	100	7,5	13,5	20,25	90	47,33	35,55
90	120	100	10,0	13,5	6,75	20	60,35	63,30
90	120	100	10,0	13,5	6,75	60	74,23	35,55
90	120	100	10,0	13,5	6,75	90	74,23	35,55
90	120	100	10,0	13,5	20,25	20	44,59	63,30
90	120	100	10,0	13,5	20,25	60	45,52	35,55
90	120	100	10.0	13.5	20.25	90	47.76	35.55

11.4.2 Forma Yacimiento 2

Geometría Yacimiento	Características Geotécnicas			Estado 7	Fensional	Orientación Set	VAN	
Inclinación	UCS _{RC}	UCS _{MIN}	Q'	σv	$\sigma_{\rm H2}$	HW	SLS	SLC
(°)	(MPa)	(MPa)	(-)	(MPa)	(MPa)	(°)	(MUS\$)	(MUS\$)
90	200	150	5,0	13,5	6,75	20	98,03	140,72
90	200	150	5,0	13,5	6,75	60	123,54	115,48
90	200	150	5,0	13,5	6,75	90	125,78	109,87
90	200	150	5,0	13,5	20,25	20	58,99	140,72
90	200	150	5,0	13,5	20,25	60	89,78	115,48
90	200	150	5,0	13,5	20,25	90	107,79	109,87
90	200	150	7,5	13,5	6,75	20	116,62	137,75
90	200	150	7,5	13,5	6,75	60	129,57	104,29
90	200	150	7,5	13,5	6,75	90	146,38	94,29
90	200	150	7,5	13,5	20,25	20	98,57	137,75
90	200	150	7,5	13,5	20,25	60	103,85	104,29
90	200	150	7,5	13,5	20,25	90	110,14	94,29
90	200	150	10,0	13,5	6,75	20	117,21	121,13
90	200	150	10,0	13,5	6,75	60	167,55	89,37
90	200	150	10,0	13,5	6,75	90	170,38	79,63
90	200	150	10,0	13,5	20,25	20	100,86	121,13
90	200	150	10,0	13,5	20,25	60	122,15	89,37
90	200	150	10,0	13,5	20,25	90	126,71	79,63
90	120	100	5,0	13,5	6,75	20	81,83	140,72
90	120	100	5,0	13,5	6,75	60	90,67	115,48
90	120	100	5,0	13,5	6,75	90	106,94	109,87
90	120	100	5,0	13,5	20,25	20	23,26	140,72
90	120	100	5,0	13,5	20,25	60	33,71	115,48
90	120	100	5,0	13,5	20,25	90	53,79	109,87
90	120	100	7,5	13,5	6,75	20	96,42	137,75
90	120	100	7,5	13,5	6,75	60	105,14	104,29
90	120	100	7,5	13,5	6,75	90	121,65	94,29
90	120	100	7,5	13,5	20,25	20	61,95	137,75
90	120	100	7,5	13,5	20,25	60	67,60	104,29
90	120	100	7,5	13,5	20,25	90	70,47	94,29
90	120	100	10,0	13,5	6,75	20	100,86	121,13
90	120	100	10,0	13,5	6,75	60	104,88	89,37
90	120	100	10,0	13,5	6,75	90	128,81	79,63
90	120	100	10,0	13,5	20,25	20	82,07	121,13
90	120	100	10,0	13,5	20,25	60	83,14	89,37
90	120	100	10.0	13.5	20.25	90	99.84	79.63

11.4.3 Forma Yacimiento 3