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Resumen

En el campo de la cosmología, los vacíos son regiones del espacio cuya densidad es nota-
blemente menor que la densidad de fondo, abarcando distancias en el rango de 20–50 Mpc/h
(1 Mpc/h ∼ 2,10 × 1019 km). Los primeros vacíos fueron descubiertos en los primeros catá-
logos sistemáticos de galaxias lejanas a fines de la década de 1970. Sus propiedades han sido
reconocidas como críticas para la comprensión de la estructura a gran escala del universo.
Múltiples esfuerzos han sido destinados al estudio de los vacíos cósmicos para una mejor com-
prensión de las etapas tempranas y posterior evolución del universo a gran escala, mediante
el refinamiento y validación de los modelos cósmicos actuales. La tarea de detectar vacíos,
sin embargo, no es trivial y es subjetiva pues la definición de vacío es algo ambigua. Hasta
el día de hoy diversos autores continúan investigando este campo, por ejemplo mediante el
diseño de mejores algoritmos para detectarlos dentro de catálogos o surveys de galaxias.

Considerando lo anterior, hemos desarrollado un algoritmo de detección de vacíos basado
en teselaciones de Delaunay: el algoritmo DELFIN (DELaunay Edge Void FINder) que se
caracteriza por ser robusto, eficiente y extensible (tanto en 2-d y 3-d), aplicable en grandes
catálogos de galaxias. Hemos alcanzado estas características mediante modificaciones y ex-
tensiones sobre el algoritmo de Hervías et al. publicado en 2014. Nuestro algoritmo comparte
algunas similitudes elementales con otros trabajos, pero las teselaciones de Delaunay proveen
mayor maleabilidad y mejor rendimiento. Además, hemos validado nuestro algoritmo tanto
con datos artificiales como reales, evaluándonos frente a un algoritmo buscador de vacíos ya
existente (Foster y Nelson, 2008), con resultados alentadores. Tanto la implementación 2-d
como la implementación 3-d (bajo ciertos supuestos) corren en tiempo O(n log n), donde n
es el número de galaxias.

Finalmente, proponemos algunas áreas para futura investigación, a partir de las cuales este
algoritmo se vería beneficiado, así como también algunas sugerencias sobre cómo abordar y
resolver algunos problemas asociados.
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Abstract

In the field of cosmology, voids are regions in space whose density is noticeably lower than
the average, with usual dimensions in the range of 20–50 Mpc/h (1 Mpc/h ∼ 2.10 × 1019

km). They were discovered after the first systematic surveys of distant galaxies in the late
1970’s. Their properties have been identified as critical for the understanding of the large
scale structure of the universe. Several efforts have been directed towards the study of
cosmic voids for a better comprehension of the early stages and evolution of the large scale
universe, through the refinement and validation of the current cosmic models. The task of
identifying voids, however, is not trivial and is also subjective, as the definition of a void
is somewhat ambiguous. Even today, multiple authors continue research on this field, for
example, designing better void finding algorithms for application over both simulated and
observed sets of galaxies.

With this in mind, we have developed an algorithm based on Delaunay tessellations: the
DELFIN (DELaunay Edge Void FINder) algorithm, which is robust, efficient and extensible
(both in 2-d and 3-d), ready to be applied over large galaxy surveys. We have achieved
these features through adjustment and extension of several aspects of the 2014 algorithm
by Hervías et al. Our algorithm shares some essential properties with existing algorithms,
but Delaunay tessellations provide a more malleable and better performing environment.
We have completed the validation of the original algorithm by evaluating its output over
both artificial and real data sets, comparing our results with Foster and Nelson’s algorithm,
showing promising results. Both 2-d and 3-d (under certain assumptions) implementations
run analytically and empirically in time O(n log n), where n is the number of galaxies.

Lastly, we propose some areas for future research from which this algorithm would benefit,
as well as some suggestions on how to approach and solve some of the issues associated with
the algorithm.
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Introduction

Over the past few decades, several efforts have been directed to systematically map the
visible universe with the aim of providing public, high quality catalogs for research. Projects
such as the Sloan Digital Sky Survey (SDSS)[2] have identified both close and far objects
from roughly one third of the sky. These large databases are suitable for studies over the
large scale structure (LSS) of the universe, and in particular, serves as empirical evidence to
contrast with predictions about the evolution of the large scale universe from the Λ Cold Dark
Matter (or ΛCDM), the currently accepted cosmological model. One of its both observed and
predicted structural elements, cosmic voids, provide us with valuable information about the
nature of dark energy, and for this reason, several scholars have studied its properties. This
chapter will provide some background about cosmological voids, and introduce the goals and
scope of our work. It will also introduce some theoretical tools from the field of geometry:
the Delaunay and Voronoi tessellations.

Cosmological Voids

The first time I was asked about the topic of my thesis work, I found it rather difficult
to explain what a cosmological void was. In Spanish, my native language, and just as in
English, the word vacío (void) is usually understood as vacuum, and thus my interlocutors’
preconceived idea about voids was about absolute emptiness, while this is no longer the
consensed characterization. Probably a vestigial noun from the first definitions, it is still in
use, perhaps since void is more concise than underdense region or underdensity.

Cosmological voids are vast regions of space nearly devoid of galaxies surrounded by walls,
filaments and clusters of galaxies. Together, they comprise a bubbly, foam-like distribution of
galaxies, known as the large scale structure of the universe. Although roundish and initially
characterized as spheres, voids have more recently been described as potato-shaped and more
general polyhedron shapes[4, 12]. They also have a rich substructure as a consequence of void
merges and collapses during their formation. While diameters of voids defined by typical L∗
galaxies or more luminous are in the order of 10h−1 – 20h−1 Mpc, voids defined by rare
luminous galaxies can extend to diameters of 20h−1 – 50h−1 Mpc, and no upper limit has
been found. At lower scales, other studies[17] have found about 30 so called mini-voids,
with diameters of 0.7h−1 – 3.5h−1 Mpc. Albeit a more detailed definition for a cosmological
void would be highly relevant to this introduction to our work, there is no consensus on a
standard definition since there are many proposed variants for its boundaries, disjointness,
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and as described before, for its shape and size, among other features; without any particular
set of features being widely adopted[4, 7, 12].

Nevertheless, the study of cosmological voids is critical for the comprehension and refine-
ment of the current cosmological model, named Λ Cold Dark Matter (ΛCDM). According
to several authors[4, 14, 16], there are three main motives for the study of voids. Firstly,
their study itself helps us understand one of the main components of the LSS universe; these
studies serve as a probe to compare theoretical results with observations. Secondly, studies
over their shape, size and outflow provide constraints to ΛCDM, in particular over cosmo-
logical parameters such as the Hubble constant h, and provide information about the nature
of dark energy. And finally, cosmological voids are also a cleaner, more isolated environment
to study the evolution of galaxies.

Motivation

An increasing amount of galaxy redshift survey data is becoming available with surveys
such as the 2dF Galaxy Redshift Survey (2dFGRS)[5] and the Sloan Digital Sky Survey
(SDSS)[2]. These larger surveys allow for systematic study of cosmological voids, something
which was not possible before as previous survey coverage was not large enough to contain
a significant number of voids. In particular, the SDSS covers about one third of the celestial
sphere and it is composed of multiple smaller surveys with different goals and scope, with
the current generation (SDSS-IV) having started in 2014 and which will continue until 2020.
A different source of void data are those from simulations of the evolution of galaxies in the
universe, such as the Millennium Run[15], which are used to contrast cosmological models
with observations (see figure 1). Although their general features are consistent with obser-
vations, some discrepancies between simulations and observations have been detected, such
as an excessive number of void particles generated by ΛCDM compared to observations[13].

For these reasons, multiple void finder algorithms have been developed to help with sys-
tematic studies of large scale galaxy surveys, building their own void catalogs as a result.
These algorithms receive a sample of a galaxy survey such as SDSS as input, and produces
a set of voids present in the sample region. From these catalogs, other researchers may
retrieve interesting properties about voids, and they can also compare different algorithms
either from the catalogs itself or by using the void finders over the same data set. A major
issue when comparing these catalogs is that these algorithms have different shape restrictions
and border conditions for voids, some of them do not allow void galaxies in their interior,
and even the methods used to represent voids are different: some algorithms use unions of
cubes, others use polyhedra, spheres, etc. Some algorithms do not allow any intersection
between voids, while others produce hierarchies of voids where larger voids contain smaller
ones. They might also differ on the data used to identify voids; those which depend on dark
matter density may only be used over simulation data, for example. However, they all seem
to agree on voids having a very underdense center, and having very steep edges[4]. As a
consequence, it is not trivial to compare different void algorithms and special care must be
taken with inherent differences between their results.
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Figure 1: A 15 h−1Mpc thick slice of the Millennium Simulation[15] for z = 0.

One of the more recent void finder algorithms is DELFIN[8]. This algorithm is novel
in that it is the first of its kind to detect voids by direct use of Delaunay tessellations1, a
triangle (tetrahedron in 3-d) mesh formed by connecting each point (in the context of LSS,
a point would be a galaxy or a dark matter particle) to its natural neighbors. The algorithm
produces voids by grouping tetrahedra sharing an edge as long as this edge is the longest
of one of them. As with other algorithms based on Delaunay or Voronoi tessellations, its
simplicity and properties make it a very efficient solution while placing almost no constraints
over the shape and size of detected voids. However, a preliminary run of this algorithm over
a real data set shows several shortcomings: this algorithm fragments regions which other
algorithms would detect as a void, and also tends to produce spurious voids near to the
boundaries of the data set.

Objectives

Throughout this work, we intend to develop and validate a robust and efficient 3-d void
detecting algorithm, valid for application over large galaxy surveys, and compare it with well
known algorithms, based on the original version of DELFIN[8].

Specific Objectives

• Extend the original detection process in the DELFIN void finder algorithm by designing
and developing several criteria for subvoid joining.

1An earlier work did indeed use Delaunay tessellations to generate a density field estimator, but the
tessellation is lost after sampling the field in a grid.
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• Optimize the current implementation of DELFIN both by using better data structures
and by refactoring the current implementation.

• Design a correct and efficient criteria for identification of border voids, which are likely
to be part of a larger void, and thus should not be regarded as complete voids.

• Validate the resulting algorithm. The 3-d version of DELFIN has not been validated
before and the 2-d version, while already validated in a previous work[8], must be
revalidated after including the extensions mentioned above. In fact, one of the most
important objectives is the validation of the algorithm, given the extensions described
above.

Methodology

Our work has extended the DELFIN algorithm. Delaunay tessellations are a central
element of the DELFIN algorithm, and consequently, considering its features, this work is
based on them as well.

The main phases of this work will be:

1. A thorough literature review of existing void finders.

2. Setting an adequate void definition for the scope of this work.

3. Designing criteria to join voids and implementing them. Testing and selecting the most
appropriate criteria according to the void definition chosen earlier.

4. Correctness and performance evaluation with artificial data and real galaxy survey
data.

5. Validation using artificial data and through comparison with available algorithm im-
plementations.

6. Data structure/algorithm optimizations to reduce computation time. This includes
application of design methodologies on each implementation instance with the goal of
simplifying further extensions.

For our preliminary tests, artificial data will be used to evaluate edge cases and density
contrast tolerance. Data from SDSS will be used to compare our implementation with other
algorithms.
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Thesis Contents

This thesis is organized as follows: Chapter 1 covers previous work in the context of void
finders, along with some common essential geometrical tessellations. Chapter 2 describes
the 2-d DELFIN void finder algorithm, together with its validation, results and discussion.
Chapter 3 features a description the 3-d DELFIN void finder algorithm and its validation,
including a comparison of its results with Foster & Nelson[7] and a discussion of these results.
The final chapter summarizes our work and describes areas of this work left open for future
research.
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Chapter 1

Previous Work

As we saw in the previous chapter, there are several existing void finding algorithms.
During this chapter, we will provide a briefing on the void finders’ state of the art along with
other authors’ approaches to the void finding problem. We will highlight how each algorithm
influenced others and how they contributed to the void finding scene. But first, we will
introduce two geometrical tools used in several of these void finders: the Voronoi diagram
and the Delaunay tessellation.

1.1. Voronoi Diagram and Delaunay Tessellation

Given an d-dimensional space H and a finite set S of sites (points in H), the Dirichlet
tessellation or Voronoi diagram (VD) of S corresponds to the partition of H into regions,
one for each point in S, where each point p in the space belongs to the region associated with
the point in S closest to p. In other words, p belongs to the region associated with s ∈ S iff
there is no site ŝ ∈ S closer to p than s. We also define the set of natural neighbors of s as
those sites in S whose corresponding regions are adjacent to that of s.

The Delaunay tessellation (DT) is the dual of the Voronoi diagram (see figure 1.1). Given
an d-dimensional space H and a set S of points in H, the DT is a mesh formed by simplices
(triangles in 2-d space, tetrahedra in 3-d space) whose edges join pairs of natural neighbors.
Note that the simplices do not tessellate the entire space, but only the convex hull of the set
S. Additionally, the simplices from this tessellation satisfy the following restriction: given
any simplex t from a DT, no point s ∈ S lies in the interior of the d-dimensional ball
circumscribing t. Points, however, may lay over the surface of these simplices, and in fact,
each d-ball will indeed have at least d + 1 points lying on its surface: the d + 1 vertices
of the circumscribed simplex. The definition allows for additional points on the surface of
the circumballs, which is possible if there is an extra cospherical point; in this rare case, we
can still divide the resulting polyhedron into two or more simplices without breaking the
Delaunay restriction. From now on, we will restrict to d = 2 and d = 3, whose respective
simplices are triangles and tetrahedra.

6



(a) Voronoi diagram (b) Delaunay tessellation (c) Both tessellations

Figure 1.1: Voronoi diagram and Delaunay tessellation for a random set of 15 points. Note there is a
triangle edge for every pair of adjacent Voronoi cells. Circumcenters for the corresponding Delaunay
triangles are located in the three cell intersection for the corresponding Voronoi cells.

It is worth noting that the length of the edges in a Delaunay tessellation provide us with
rich information about local density. Every edge e in the tessellation is a chord for some ball
B devoid of any points in its interior. So as a chord, e must be of equal or lower length than
the diameter dB of B, implying the existence of an empty ball of diameter greater than or
equal to |e|.

Furthermore, for every Delaunay tetrahedron circumball B of radius rB, if its center is
inside the convex hull of the point set, then there is an associated edge in the DT of length
at least l = 2

√
6

3
rB, i.e., the edge length of a regular tetrahedron with B as its circumcircle.

The proof consists in fixing any three points p1, p2, p3 on an rB-radius ball forming a triangle
with edge lengths lower than l, and then noting that both the points p1, p2, p3 and the
locus of the points on the surface of the ball which are at a distance at most l from all three
vertices belong to the same semiball defined by a plane parallel to the triangle p1p2p3. Since,
by hypothesis, at least one of the DT tetrahedra must contain the center of the ball, such
tetrahedron cannot have all of its vertices on the same semiball (for any defining plane), we
may conclude that one of its edges must be of length at least l.

Although VDs are frequently used in the field of cosmology to identify high density re-
gions given a set of galaxies, we believe DTs are better suited to detect low density regions
without any loss of significant information since, as the dual of VDs, they are just a different
representation of the same information. VDs are composed of point-centered regions and
thus are better suited to detect high density regions, as opposed to DTs, whose simplices are
emptiness-centered regions, while still capturing density differences effectively and thus cap-
ture underdensities more naturally than VDs; in fact, from the definition we have given for
DTs, it corresponds exactly to the adjacency graph for Voronoi regions. Another advantage
of DTs is that, although more numerous, its base elements are simplices, whereas VDs are
formed by convex polyhedra which are usually harder and more costly to evaluate.

Still, there are some deficiencies of DTs compared to VDs. First of all, under small per-
turbations, the tessellation might change considerably, specifically in the case where natural
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neighbors change. While this is not a problem under VDs, where a change of natural neigh-
bors is reflected by a smooth transition between old and new adjacent cells with continuous
edge length changes, in DTs it means that edges and faces are respectively flipped in 2-d
and 3-d, a change which is not continuous and thus small variations in point locations are
more notorious in DTs than in their dual. However, this situation is very uncommon, as
(in a 3-d scenario) it would require at least 5 (almost) cospherical sites without any galaxy
on its circumball interior. Another problem with DTs in our opinion, is that they might be
less intuitive than VDs, specially in more than two dimensions, as its definition is not as
straightforward as with VDs.

1.2. Void Finders

General knowledge about voids’ presence has been around since the discovery of the
Boöotes void by Kirshner et al.[11]. Their importance quickly became apparent, and cur-
rently, as we mentioned earlier in page 2, study of voids is critical to fully comprehend the
large scale structure of the universe. Although the first voids were identified by visual in-
spection, the need for consistent void identification methods pushed towards more objective
alternatives, and several void finders were developed over the years. While more exhaustive
and deeper redshift surveys have been compiled, the information about the average shape
and size of these voids has been refined but is still open to improvement, and thus, void
finding tools are still being developed and improved.

The definition of the shape of a void is non trivial: since the gaps between galaxies are
considerable even in dense regions (in the order of Mpc), there must be some constraint
regulating a minimum width at any given point, to the point there is still no agreement on
which these constraints must be.

The first void finder algorithms were designed to find regions completely devoid of galaxies.
As modern surveys were obtained by more precise and powerful instruments, alternative
definitions were adopted: both theory predictions and observational surveys showed that the
interior of these voids are not empty but instead have a lower density of galaxies.

In fact, almost all recent works on voids use an overdensity parameter δ as:

δ =
ρ− ρ̄
ρ̄

(1.1)

where ρ̄ is the average density of the full sample and ρ is the average density of the described
void. For example, empty voids (such as those described in subsection 2.4.1) have an over-
density parameter equal to −1. Average overdensity values depend on the void definition
used, of course, but in general, it follows −1 ≤ δ ≤ −0.5.

How do void finders compare to each other? In 2008, the Aspen-Amsterdam void finder
comparison project[4] addressed this question by analyzing and comparing 13 different void
finding algorithms. One of the concerns they mentioned early in their publication was the
difficulty of comparing these heterogeneous void finders; having some of them work over
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galaxy information and others over the dark matter distribution (which cannot be measured
directly, and in fact has not been proven to exist), these methods do not even share the same
input data, and thus the latter group can only be used over data from ΛCDM simulations.
For that purpose, all algorithms were executed over a sample of the Millennium Run, an n-
body simulation representing the evolution of the universe from its early state to the current
age. While the spread of most results per void finder was significant, an expected consequence
of grouping together density based and geometry based algorithms, the resulting voids did
share some very general features; for example, the largest void was found by all 13 algorithms
and the galaxy overdensity showed a less extreme spread than anticipated.

While we will not compare them thoroughly here, we will describe the workings of some
of these algorithms, highlighting their contributions to the field.

1.2.1. Geometry Based Void Finders

Voidsearch Algorithm

This algorithm by Kauffmann and Fairall (1991)[10] first constructs a cubic grid of cell
size half the average distance between galaxies. A base void is formed by forming the largest
possible cube (with size at least double the grid size) from the empty and unused cubes in
the grid. From this cube, rectangular layers adjacent to a face are appended to the void,
with the added restriction of its area covering at least 2/3 of the void face, until no more
layers can be added. This is repeated until no more cubes can be built. This is one of the
earliest void finders, allowing no intersection between voids and no galaxies in their interior.

Void Finder Algorithm

This algorithm by El-Ad and Piran (1997)[6] is the base of other algorithms such as Hoyle
& Vogeley’s and Foster & Nelson’s. It consists on two phases, namely, the wall builder and
void finder phases.

In the wall builder phase, they define lm, the distance to a galaxy’s mth nearest galaxy.
From the average and standard deviation for lm, they define the wall separation distance
l = l̄m + βσm, with β = 1.5. If a galaxy has at least m other wall galaxies in a radius l,
then it is classified as a wall galaxy, otherwise, it is classified as a field galaxy. The value
m = 3 is used as they claim it is the minimal value allowing filtering of thin chains of galaxies.
Although unused, they also suggest drawing the edges between galaxies closer than l as visual
aid for analysis.

The void finder phase takes the wall galaxies (i.e., field galaxies are not considered) and
finds maximal empty balls starting from the center of each cube of a grid, with no wall
galaxies in its interior. These balls are found by expanding an empty ball until a galaxy
is on its surface. Then it is expanded in the direction defined by that galaxy towards the
center of the ball, until a second galaxy is on its surface. Once more, it is expanded in the
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direction defined by the midpoint of the two galaxies towards the center of the ball, until a
third galaxy is on its surface. Finally, it is expanded in the direction of the normal to the
plane containing the three galaxies towards the center of the ball, until a fourth galaxy is on
the surface of the ball.

These maximal balls are joined in several iterations, using decreasing values for di and
ξ = 0.85 (although the values for di are not clear in the article, a reasonable set of values for
di would be setting d0 to the largest diameter in the dataset and di+1 = ξdi). On the i-th
iteration, all previously unused balls of diameter greater than ξdi are detected. For this, the
previous method to detect maximal empty balls is used on a grid of cell size lcell = ξdi/

√
3,

starting from cell centers not contained in previously found voids. The cell size guarantees all
maximal balls of diameter greater than ξdi are found; smaller ones might be found, but such
balls are discarded, at least for now. Then, balls are grouped together under the following
conditions:

• At least one ball in a group must be of diameter greater than di; we will name the
largest in the group dmax.

• Other balls may be added as long as the intersection of its surface with the surface of
a ball of the group is a circumference of diameter greater than ξdmax.

Finally, any unused balls of diameter d > di are joined to an older void.

By classifying certain galaxies as field galaxies, this algorithm allows detection of non
empty voids without interference from isolated galaxies. Also, note that these maximal
balls correspond to Delaunay circumballs, and their surface intersections are exactly the
circumcircle of the shared face in the Delaunay triangulation, although it is unknown to us
if the authors knew about this fact.

Hoyle & Vogeley

The algorithm by Hoyle and Vogeley (2002)[9] is based on the void finder algorithm
described above. While the wall builder phase and the maximal ball retrieval process have
been taken from El-Ad & Piran’s work[6], the process is not iterative. Instead, there is a
single pass to detect balls on a grid of cell size lcell = l3, growing maximal balls from the
center of each empty cell.

Once all maximal balls have been detected, the void building process is quite different
as well. Spheres are evaluated in order, from largest to smallest. There are three possible
outcomes:

• If the ball does not overlap any voids by more than η1, it becomes a new void (always
the case for the largest ball).

• If it overlaps a single void by more than η1, it becomes a member of that void.

• If it overlaps more than one void by η1, then the ball is discarded.
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They select η1 = 10% claiming that voids obtained with it visually appear as distinct regions.
To prevent identifying wall gaps as voids, they also add a threshold of 10h−1 Mpc for the
minimum size of voids; only balls larger than this are evaluated as mentioned.

The last step of the algorithm is void volume enhancement. Balls smaller than 10h−1
Mpc are added to a void if they intersect one of its maximal balls by more than η2, unless
it overlaps with more than one void (in which case it is discarded). The value η2 = 50% is
used because it fills the void without changing the overall spherical shape of voids.

Foster & Nelson

The algorithm by Foster and Nelson (2008)[7] is based on the previously described Hoyle
and Vogeley’s algorithm. They have made a slight value change of l = l̄n + βσn from the
definition by El-Ad & Piran, using β = 2.0 instead of 1.5, and reduced the grid cell size by
half, allowing smaller balls to be part of a void.

However, the main difference from Hoyle & Vogeley is a more precise distinction between
possible outcomes during the void building process, evaluated in the following order:

1. If it overlaps more than one void by η3 each, then the ball is discarded.

2. If it overlaps a single void by more than η1, it becomes a member of that void.

3. If the ball does not overlap any voids, it becomes a new void (always the case for the
largest ball).

The first condition also replaces the condition set during void volume enhancement (see
subsection 1.2.1).

1.2.2. Watershed-based void finders

WVF

The Watershed Void Finder (WVF) algorithm, developed by Platen et al. (2007)[14]
involves a minimum of assumption about the scale, structure and shape of voids. It is based
upon the Watershed Transform, a well known technique used in geology and image processing.
A very condensed description of the algorithm is as follows:

1. A Delaunay Tessellation Field Estimator (DTFE) is used to define a density field over
the sample points (redshifts or N -body simulation particles). The density ρ at each
sampling point xi is defined as: ρ(xi) = 1+D

V (Wi)
where D = 3 is the space dimension and

V (Wi) is the sum of the volumes of the Delaunay tetrahedron having xi as a vertex.
The density in other points is defined by linear functions. If its vertices are x0, . . . , x3,
then the density at any point x = α0x0 + α1x1 + α2x2 + α3x3 in the tetrahedron (i.e.,
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with
∑

i∈{0,...,3} αi = 1) is:

ρ(x) = α0ρ(x0) + α1ρ(x1) + α2ρ(x2) + α3ρ(x3) (1.2)

2. Then, a sampling grid, whose cell size is in the order of the interparticle separation, is
constructed. For each cell, a number of random Montecarlo samples is chosen and the
cell density is defined as the average density at those samples.

3. The grid is filtered using a natural neighbor rank-ordered filtering, in which the den-
sity for each sample is replaced by the median, minimum or maximum of its natural
neighbors.

4. The image is discretized by uniformly partitioning the cumulative density distribution
and replacing each density for the corresponding value in the partition.

5. Using a 2-pixel opening and closing operation (respectively equivalent to a Minkowski
subtraction followed by a Minkowski addition, and a Minkowski addition followed by a
subtraction) noise is reduced even further.

6. The flooding procedure, based on the watershed transform, is applied: starting from
field minima (pixels surrounded exclusively by higher density pixels), the terrain is
flooded at increasing levels, adding the flooded points to the basin of the corresponding
minima. Each time a pixel is reached by two basins, it is identified as part of their
segmentation boundary. When all pixels have been flooded, we are left with void patches
which tessellate the whole region.

7. The patches are corrected by removing those segmentation boundaries whose density
is lower than the typical void underdensity ∆ = −0.8.

One of the most interesting properties of this algorithm is how it detects voids relatively
parameter free. This property makes it potentially capable of detecting voids of any size.
The usage of a density field also allows it to ignore the particular position of particles and
instead focus on their vicinity. These properties are shared with other algorithms based on
the watershed transform.

ZOBOV

The ZOnes Bordering on Voidness (ZOBOV) algorithm by Neyrinck (2008)[12], uses a
similar approach to WVF, but the Voronoi regions of the point set are used instead.

The algorithm begins by obtaining a density field over dark matter particles using a
Voronoi Tessellation Field Estimator (VTFE). VTFE is similar to DTFE, but the density
estimate for each particle p is 1/V (p), where V (p) is the volume of the Voronoi cell associated
with particle p. Then it applies a watershed transform-like process where, each Voronoi cell
is joined to its lowest density neighbor, resulting in regions named zones.

However, because of discreteness noise, these zones are fragments of what the eye would
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pick up as voids. For this reason, zones are joined by flooding each zone z, where the height
corresponds to the density of the Voronoi cell of lowest density (e.g., a less dense zone would
be deeper than a high density zone), until a zone deeper than z is about to be flooded. The
process stops at this point, and the flooded zones correspond to a void. If the starting zone
is the deepest, the process stops just before flooding the last zone, i.e., it contains all but the
most shallow zone).

Note that this algorithm generates overlapping voids; in fact, for every overlap, one of
the voids is a subset of the other. This property allows to form void hierarchies, which may
hint the void formation processes. For example, a void formed by the merging of two smaller
voids might be identified in this hierarchy as two different voids, with one of them as the
parent of the other in this void hierarchy.
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Chapter 2

The 2-d DELFIN Algorithm

In the first chapter, we have discussed some of the geometrical tools used by void finder
algorithms, as well as some of these void finders and their contributions to the field. In this
chapter will explain the original 2-d DELFIN algorithm[8], the enhancements we have made
since its publication, their validation and discussion.

2.1. The Original Algorithm

The void finder algorithm by Hervías et al., which we have named DELFIN (DELaunay
Edge Void FINder), is a fast and precise geometrical approach to the void finding problem.
It detects voids by identifying large, non-convex and generally empty regions in space from
the Delaunay tessellation of the dataset. Lower density regions in space will have a larger
space for an empty sphere inside them than on the rest of space; the same assumption is
made by Foster and Nelson[7].

From the previous assumption, the following question arises: Given a bounded volume
and a set of galaxies, how do we find the largest empty spheres in this volume? This is a well
known problem in computational geometry and its solution lies on the Delaunay tessellation
of the set S of points (galaxies).

Given a set of points S, for every circle C devoid of points in S, there is either a circumcircle
from a Delaunay triangle which is equal or larger in radius, or C is not completely inside
the convex hull of the set of points. This can be easily proven as the center of C must be
either outside the convex hull of S, or inside one of the Delaunay triangles t. In this last
case, C must be of equal or smaller radius than the circumcircle Ct of the containing triangle
t because the circumcircle maximizes the minimum distance to the vertices of t (among the
set of points inside t). Therefore, when considering the convex hull of S, the largest empty
spheres on its interior are exactly the circumcircles of the Delaunay triangles.

Now that we have fixed a space partition as our building blocks, the following steps would
be to choose:
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1. Which triangles should be kept as part of a void.

2. When should we consider two adjacent regions as part of the same void, and when
should we keep these regions separated.

In the context of void finding algorithms, the general approach has been detecting local
minimum densities, followed by expanding these minima towards less underdense regions until
a specific criterion is met. To our knowledge, all existing void finders follow this approach
in some way, an exception being ZOBOV, described in section 1.2.2, which organizes such
adjacent regions in a hierarchy. Nevertheless, ZOBOV still uses a watershed algorithm to
select those regions with the lowest local density, joining them towards more dense regions[12].
Platen et al.[14] also follows this pattern over grid cells.

In a similar style, the DELFIN algorithm starts building voids from our own definition of
local minima, which considers density over Delaunay edges only (edges connecting natural
neighbors). This makes sense since these longest edges guarantee the existence of an empty
circle with this edge as a chord1. Thus, its local minima are those edges which are the longest
for all triangles containing it.

Hereafter, we will use the term frontier of a void v as the set of edges shared between a
triangle in v and another one not in v.

Then, from each local minimum, it joins triangles adjacent to the void iff their longest
edge is one of the edges of the void frontier. The invariant here is that at any given time,
all of the longest edges for the triangles in the void at this step are inner (i.e. non frontier)
edges. This way, it will not allow any decreases in the local density as it moves away from
the starting least dense (but locally longest) edge since the invariant implies that every new
void triangle has a longest edge not longer than the longest edge of the void triangle it was
joined to. This process can be repeated until no neighboring triangle is connected by its
longest edge to a void, but it can be stopped earlier if some criterion is met.

However, if the final process is not stopped earlier by some criterion, these regions will
cover the whole convex hull of the point set, and thus some distinction must be made between
relevant voids and small, irrelevant variations in local density. For this reason, the algorithm
discards every region whose area is less than an user defined threshold value av, returning
the remaining regions as the output.

Special care must be taken at the boundaries of the data set: since we are working with
finite samples, the sampling at the boundaries is incomplete, providing incorrect local density
values. As a result, Delaunay triangulations tend to produce skewed triangles (with a large
circumcircle radius) close to the data set boundaries on straight (planar) boundaries (see
figure 2.2). Even if some voids detected adjacent to the boundary may be real voids, we
cannot ensure their completeness as their frontier is not well defined at the sample boundary.
We would like to distinguish or discard these voids, and for this reason, the original algorithm
evaluates triangles contained in the α-shape of the set of points only, for some value α
defined by the user. Discarding the α-shape is equivalent to discarding those triangles whose

1But not necessarily as its diameter; in the case of obtuse triangles, the circle having the longest edge as
its diameter always encloses the obtuse vertex.
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circumcircle C possesses a radius of length greater or equal than −1/α.

Algorithm 1: Original DELFIN Algorithm
read the Delaunay triangulation inside the alpha shape;
read threshold_value;
void_list = ∅;
order triangles by longest-edge;
repeat

get the two unused triangles t1, t2 that share the longest-edge;
triangle_set = [t1, t2];
label t1, t2 as used;
foreach t neighbor of triangle_set do

if The longest edge of t is in the frontier of triangle_set then
triangle_set = triangle_set ∪ t;
label t as used;

end
end
if area of triangles in triangle_set ≥ threshold_value then

void_list = void_list ∪ polygon(triangle_set);
end

until there is no triangle left to process ;

The algorithm, as described in Hervías et al.[8], is included as algorithm 1.

The previous steps would often yield adjacent voids, and a natural question about those
is whether those regions are effectively different voids or rather belong to a single void.
The previous question has no correct answer, since there is no strict definition of a void,
particularly in the case of void merging, where the point from which two voids become one
has no generally accepted definition; but our observations on runs of the algorithm over
artificial data inclined us to evaluate some criteria to choose whether to join them or not.
We further discuss this matter in sections 2.2.3 and 3.3.2.

Figure 2.1 represents the sequence of steps followed by the algorithm on a sample (168
points are visible). Figure 2.1a shows the initial set of points. Figure 2.1b shows the Delau-
nay tessellation of the point set. Figure 2.1c shows the detection of a locally longest edge.
Figure 2.1d adds the triangles sharing the locally longest edge to the void. Figures 2.1e–2.1j
show several triangles added to the void as their parent triangle (the one with which it shares
its longest edge) belongs to the void. Figure 2.1k shows the void in its final state, as the
edges constituting its perimeter are not a longest edge for any of the triangles adjacent to
the void. Finally, figure 2.1l shows the rest of the regions detected by the same method, with
each contiguous region of the same color being a void; note that they tessellate the space.
The voids are then discarded if their area is lower than an user defined threshold.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.1: A step-by-step figure of DELFIN void retrieval, showcasing the critical parts of the
algorithm. The longest edge for the most recently added triangle in the void is shown marked with
a thick red line.
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2.2. The Extended Algorithm

The current version follows the same spirit as the original algorithm: begin from the
Delaunay tessellation of the data set and join each of the resulting triangles to the one with
which it shares its longest edge. However, we have enhanced several of its sections, including:

• A different treatment for boundary voids

• A faster approach for void construction

• A new post processing pass

We have continued working with Delaunay tessellations for several reasons. First, the
Delaunay tessellation preserves points from the data set while allowing quick access to prop-
erties such as density (in terms of natural neighbors) and circumcircles; we can access raw
data from the final structures at any time. With the proper data structures, adjacency can
be determined in expected constant time, and operations can be done efficiently. Secondly, as
we mentioned in section 1.1, the Delaunay tessellation reflects empty regions more naturally
than a Voronoi diagram, as each of its triangles is associated with an empty circumcircle;
while for Voronoi regions, each of them associates itself with a point. Lastly, Delaunay tes-
sellations have been left relatively unexploited in the context of void finding algorithms. We
are aware of two groups, Platen et al.[14] and Way et al.[18] which have directly used Delau-
nay Tessellations; the former group makes use of a DTFE but later discards the Delaunay
tessellation structure in favor of a cubic grid; the latter group has worked with Delaunay
tessellations, and our work and theirs indeed share the same building blocks.

A step by step description of the extended algorithm is available as algorithm 2.

To avoid confusion, we redefine the original voids as prevoids and leave the term void for
the final structures obtained by our new algorithm. The following subsections explain our
modifications in detail.

2.2.1. Boundary Voids

As explained earlier in section 2.1, the original algorithm discards triangles outside the α-
shape of the dataset (i.e., whose circumcircle radius is larger than −1/α) to handle boundary
voids (which might be false positive or incomplete). However, this step does not solve the
problem of false positive voids completely and will generally allow incomplete voids in the
boundary (figure 2.2b).

For this reason, we have removed the α-shape filter and instead attempted a different
approach: we discard any void having one or more edges in the surface of the convex hull
of the dataset (figure 2.2c). Alternatively, these voids could be kept for the final user and
tagged as incomplete/potentially false instead of discarding them. This approach still allows
for a certain distribution of points beyond the boundaries to modify the shape of detected
voids and consequently, the possibility of a false positive. However, empirically, situations
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Algorithm 2: Extended DELFIN Algorithm
read the Delaunay triangulation;
read pre_threshold_value;
read threshold_value;
prevoid_list = ∅;
order triangles by longest-edge;
repeat

get the two unused triangles t1, t2 that share the longest-edge;
triangle_set = [t1, t2];
label t1, t2 as used;
foreach t neighbor of triangle_set do

if t shares its longest-edge with a triangle of triangle_set then
triangle_set = triangle_set ∪ t;
label t as used;

end
end
if area of triangles in triangle_set ≥ pre_threshold_value then

prevoid_list = prevoid_list ∪ polygon(triangle_set);
end

until there is no triangle left to process ;
repeat

label prevoid_list as unchanged;
void_list = ∅;
foreach unused prevoid v in prevoid_list do

void = v;
label v as used;
foreach unused prevoid u in prevoid_list do

if void and u meet the joining criterion then
void = void ∪ u;
label u as used;
label prevoid_list as changed;

end
end
void_list = void_list ∪ {void };

end
prevoid_list = void_list;

until prevoid_list is not changed ;
remove voids from void_list whose area is less than threshold_value or have a
boundary edge;

where a boundary void is not identified as such are extremely uncommon over convex-shaped
samples.
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(a) (b) (c)

Figure 2.2: Boundary void handling. 2.2a displays a boundary void, 2.2b displays how the α-shape
handles this void by removing edge triangles, and 2.2c displays the result with our new filter. The
dotted line indicates the boundary of the sample.

2.2.2. Prevoid Construction and Pruning

The prevoids constructed by the original algorithm can be characterized by a tree defined
by the edge-adjacency graph of the prevoid. Since a triangle can only be joined to its parent
or children in this representation, we can get each triangle’s parent by determining its longest
edge, and later ask whether this parent is part of the current prevoid or not. It is worth noting
that this step can be done in any order, so if no pruning is done over the void forest, a union-
find (disjoint-set) data structure may be used to build voids in quasi-linear time (O(nα(n)),
where α is the inverse of the Ackermann function and n is the number of triangles). However,
usage of a tree pruning depending on the order in which triangles are joined (for example,
depending on an accumulated property over the ancestors of a node) will increase the order
of the algorithm back to (i.e., O(n log n)).

We experimented with a different pruning criterion from the original (threshold area):
threshold longest edge. This criterion discards those prevoids whose longest (inner) edge is
shorter than a specified distance emin.

Both criteria allow us to run the algorithm without sorting triangles by their longest edge,
as the final deletion only requires a linear traversal over the representatives of prevoids, and
in some way, resembles significance analysis from other algorithm.

2.2.3. Prevoid Joining Criteria

While results from the algorithm from Foster et al. and our (unmodified) own over SDSS
DR 5[1] overlapped significantly, in many cases our data were represented with noticeable
fragmentation compared to Foster’s voids. This was studied in the work by Hervías et al.[8]
and the conclusion was that the algorithm had issues detecting non-empty voids, usually
affecting the Delaunay tessellation in such a way that a void would be divided into smaller
fragments. To counter this limitation, we designed and developed a set of methods to decide
whether a pair of prevoids should be joined or kept separated. Although their results in 2-d
cannot be extrapolated directly to 3-d, we estimated they would provide us with a better
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insight over the fragmentation present in our results. Our final goal was to obtain a simple,
but adaptive and efficient method to join voids, trying to avoid any preconceived assumptions
about their shape.

The following joined criteria were implemented and tested:

Null criterion Leave each prevoid as-is, i.e. each prevoid is output as a void.

This criterion is used as reference, and corresponds to the unmodified version of DELFIN.

Arc criterion For each prevoid, obtain its equivalent circle, i.e. a circle of the same area
and centroid as the prevoid. Two prevoids are joined into a new prevoid if and only if
the arc angle of the larger equivalent circle inside the smaller circle is greater than a
constant θ = π

3
.

This criterion will only consider the size difference and center distance relative to their
radii. As a result, it will tend to join those void pairs whose centers are close respect
to their size and which have a small relative difference in area; the size difference is an
important factor, as radii ratios over 2 will never be joined. However, it is not effective
to join pieces of arbitrarily elongated voids.

Border criterion Two prevoids are joined together if and only if the ratio between their
shared perimeter and the largest perimeter (between the two prevoids) is larger than a
constant β = 1

16
.

This criterion also ignores the prevoids’ absolute size. As a result, it will favor those
void pairs sharing a large contact area as long as their relative difference in area is
not large. This criterion is more strict regarding prevoid adjacency compared to the
previous method. However, it is still ineffective on joining pieces of elongated voids, as
it relies on features associated with full prevoids instead of its triangles.

Second-longest edge criterion Two prevoids are joined if and only if one of the edges
they share is the second longest edge for two tetrahedra, one on each prevoid.

This simple but fast criterion considers neither the absolute nor relative void size dif-
ference. It also ignores global properties of the voids involved, depending on triangle
properties instead, making it a good algorithm to detect voids of arbitrary elongation.
However, it might join two pieces belonging to different voids, especially where density
variations are less pronounced.

Threshold edge criterion Two prevoids are joined if and only if one of the edges they
share is longer than a parameter r3 defined as

r3 = d3 + λσ3 (2.1)

where d3 is the average distance from each point to its third nearest neighbor, λ is
a parameter usually set equal to 2.0, and σ3 is the standard deviation for the third
nearest neighbor distance[7].

Note that all of these criteria are independent from the scale of prevoids, i.e., given the
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same prevoids, the same void joins will be produced even if prevoids were scaled by a positive
factor.

A second area filter ap (ap ≤ av) was added to allow for more flexibility on the sizes of
prevoids which could be found. This filter ap is used to discard prevoids, while av is used
after the joining process.

2.3. Implementation

By the beginning of this thesis work, a 2d implementation of the original algorithm was
already in existence (which was used in Hervías et al.[8]), as well as a non validated 3d
prototype. The original 2d implementation consists on a Python 2 code, using qdelaunay [3]
externally to obtain the Delaunay triangulation of a set of points, as well as the libraries
numpy and shapely for general numerical operations and point in polygon checks, respectively.

The code was revised extensively. Apart from the updates regarding the algorithm ex-
tensions described previously, the code was refactored and the documentation improved.
Command line parameters can now set different variables which originally had to be either
introduced during runtime or edited directly on the Python source. The joining criterion to
be used is also selectable thanks to the introduction of a parameter. As a result, the writing
of scripts which invoke the implementation is now easier and more concise. Various refactor-
ings increased code legibility and eliminated unnecessary structures, significantly improving
runtime performance (see section 2.4.4).

2.3.1. Structure

Figure 2.3 shows the class diagram for our 2-d implementation.

Facet

Void VoidBuilder

JoinCriterion

ArcCriterion BorderCriterion SecondEdgeCriterion ThresholdEdgeCriterion

0..1

1..*

generates 10..*

joins 1

0..*

invokes

1

0..1

Figure 2.3: Class diagram for the 2-d DELFIN implementation.

A VoidBuilder class singleton loads the vertices and facet information into Facet objects.
Then, it creates several Void objects which, by the end of the execution, contain facet objects
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created earlier according to the definition of DELFIN. Finally, an instance of the selected
joining criterion class is created, and is used by VoidBuilder to join Void objects.

Observe there is no actual need for a JoinCriterion interface as Python is a duck-typed
language: it has been indicated here for convenience only.

2.3.2. Usage

Before execution, the installation of the qhull applications (specifically qdelaunay) is re-
quired. Some other libraries (numpy, matplotlib) are also required to run our code.

To execute the program from the main folder, run:

$ python2 s r c / d e l f i n . py [−h ] [− j JOIN ] [− r ]
[−e EDGEMIN] [−b AREAPRE] [−d AREAMIN]
rootname

where arguments enclosed by brackets are optional, and rootname corresponds to the point
input file.

The point input file follows the format convention set by qhull and others. The first line
must contain d, the number of dimensions (2 for this program). The second line must contain
a single number n, the number of points in the file. Each of the following n lines represents
the pair of coordinates of a point and must be expressed as a pair (x, y) of integers or floating
point numbers separated by whitespace (scientific notation format, e.g. “6.02e23” is allowed).

Optional arguments are described in table 2.1. This same information can be accessed by
running the program with the arguments -h or --help.

Table 2.1: Command line arguments for delfin.py.

Argument Description
-h, --help Shows the help message and ends the program

-j JOIN, --join JOIN Joining method ID. JOIN must be replaced for
one of these IDs:
– 0: none
– 1: Arc criterion
– 2: Border criterion
– 3: Second longest edge criterion
– 4: Edge threshold criterion

-r, --preprocess If set, removes points using d3 criterion
-e EDGEMIN, --edgeMin EDGEMIN Prevoids edge filter emin

-b AREAPRE, --areaPre AREAPRE Prevoids area filter ap
-d AREAMIN, --areaMin AREAMIN Final voids area filter av

The program will run the algorithm over the point input file with the specified parameters,
and will output its results in the ‘results’ folder. This output consists on 4 files, respectively
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describing the Delaunay triangles, their corresponding neighbor data, the resulting voids’
boundary, and their composing triangles. Additionally, a postscript plot is generated, de-
picting the point distribution, the void triangles, and the void centroids. The plot assumes
a sample area between coordinates −1 000 ≤ x, y ≤ 1 000 (in distance units), so the plotting
code must be adapted to correctly display samples with different boundaries.

2.4. Validation

The original DELFIN algorithm has already been validated. However, after several en-
hancements and new joining methods were implemented, a new validation was necessary
to evaluate their contribution in void finding. The different joining methods we evaluated
are explained in section 2.2.3. To compare the effectiveness of joining criteria, we ran our
implementation over multiple artificially generated data sets.

2.4.1. Datasets

We generated two void templates: a circular void template and an irregular void template.
The circular void template contains 30 circles, with randomly generated centers according
to an uniform distribution in an N × N square space (with N = 2 000 Mpc/h), and their
radii randomly generated by an uniform distribution over the range [0.03N, 0.075N). The
irregular void template contains 20 manually-drawn irregular polygons in a N × N square
(N = 2 000 Mpc/h), with their centers and areas also randomly generated in similar ranges.

From each template, a data set was generated by randomly choosing n points with an
uniform distribution over the area comprehended by the template minus the generated voids.
This process was repeated for each template, using the values of n = 5 000, 10 000, 50 000,
respectively generating background densities ρB equal to 1/800, 1/400 and 1/80 particles per
square Mpc/h. As a result, our generated voids are completely devoid of galaxies (δ = −1.0),
and their areas in the range of [10 000, 60 000] (Mpc/h)2. Figure 2.4 is a rendering of both
templates with a void dataset (ρB = 1/400, n = 10 000).

The values used to discard prevoids and voids too small in size (either by prevoid/void
area with ap/av, or by longest edge emin) were handpicked depending on the dataset size
n in use. More precisely, these values were selected considering the average density, which
depends on the area enclosed for analysis (constant in our experiments) and the number of
points.

The specific values used are indicated in table 2.2 for each n.
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Figure 2.4: 2 000 Mpc/h × 2 000 Mpc/h artificial datasets with n = 10 000 points. The void
templates are displayed in blue.

n ap [(Mpc h−1)2] av [(Mpc h−1)2] emin [Mpc h−1]
5 000 6 000 12 000 80
10 000 3 000 8 000 65
50 000 600 4 000 35

Table 2.2: Filters used for each dataset size.

2.4.2. Results

To measure the performance of each algorithm, we used two parameters rv, the retrieval
rate for void v, and ev, the overdetection rate for void v. These quantities are respectively
calculated as the detected fraction of the original void, and the non-void fraction of the
detected void. More precisely, we define the retrieval rate of a void as rv = A∩v

Av
where A∩v

is the intersection between the generated void v and the retrieved void v∗, and Av is the
area of v. Similarly, we define the overdetection or error rate of a void as ev = 1 − A∩v

Av∗

where Av∗ is the area of the retrieved void v∗. Note that since we generate the datasets by
generating points at random, the actual voids will be larger than the ones we generated. This
area increase can be quantified approximately as ∆a = C

√
a0
ρB

, where a0 is the area of the
generated void, ρB is the background density, and C is a positive constant which depends on
the void shape.

For each generated void vi, we assign to it the closest retrieved void from the output of a
joining method, and calculate rv and ev for each generated void. The results are represented
in figures 2.5 and 2.6.

We also retrieve the average number of void fragments associated with each generated void
as an additional metric of the effectivity of each joining criteria. We only consider detected
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Figure 2.5: Retrieval and error rates for circular voids. Subfigures a and b indicate rates for the
area filter, while subfigures c and d indicate results for the longest edge filter.
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Figure 2.6: Retrieval and error rates for irregular voids. Subfigures a and b indicate rates for the
area filter, while subfigures c and d indicate results for the longest edge filter.

27



voids to avoid underestimating the number of fragments. The average for irregular voids
with n = 10 000 and n = 50 000 is displayed in table 2.3.

Joining Criterion
None Arc Border 2nd longest edge Threshold edge

Prevoid
Filter

Area (ap, av) 1.84 1.58 1.55 1.50 1.10
Edge (emin) 2.50 1.90 1.10 1.20 1.15

(a) Fragmentation for n = 10 000.
Joining Criterion

None Arc Border 2nd longest edge Threshold edge
Prevoid
Filter

Area (ap, av) 1.95 1.85 1.15 1.00 1.00
Edge (emin) 3.90 3.00 1.45 1.05 1.00

(b) Fragmentation for n = 50 000.

Table 2.3: Average number of void fragments detected by each criteria combination. A value equal
to 1.0 indicates zero fragmentation.

2.4.3. Analysis

We would like to remark that actual voids are larger than the boundaries we defined
for them. Not suprisingly, smaller values of n increase the error rate because of this effect
and because at low densities, the voids’ widths in some sections become comparable to the
average distance between galaxies. In fact, smaller voids in a random distribution will appear
following a Poisson distribution as a function of area[6] but they will be discarded by the
area/longest-edge filter. However, they would pass unnoticed through it if one of them is
next to the edge of our voids, as the algorithm might join them (even without using a void
joiner criterion). In those cases, it would be very hard to retrieve any shapes as the density
information has been lost as a result of discretization.

Barring the previous situation, circular voids were correctly detected. This is expected
since DELFIN was originally capable of detecting circular voids effectively, and thus our
joining algorithms were not required in this case. The picture, however, is different in the
case of irregular voids. With these datasets, the peculiarities of each void joining criterion
come to light.

The arc criterion, while effective with some cases where a single void is detected as two
fragments (such as the one described in the original publication of the algorithm[8]), still fails
to connect arbitrarily shaped figures, and the order in which fragments are joined heavily
affect the results. The border criterion had the void shapes in consideration, and thus was
more precise at joining void fragments. However, it shares some of the main weaknesses with
the arc algorithm, such as its inability to join together voids with an elongated shape and its
heavy dependence on the order in which fragments are joined. In the case of circular voids,
it tended to join two into one if they were too close, something expected from the criterion’s
definition, but undesirable nonetheless.

Our other two criteria, the second longest edge criterion and the threshold edge criterion
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had a higher retrieval rate, effectively identifying most details of our generated voids. While
we had reservations on whether the second longest edge criterion would run erratically or
not, it correctly joined a significant portion of fragmented voids. However, it is highly
dependent on shape, and was unable to join fragments on curved tube-shaped voids, where
more equilateral triangles are formed (see figure 2.7e), and bifurcations, where one of the
three possible paths would necessarily be left out. Additionally, when discarding prevoids by
area, it generated some fake voids as a result of joining smaller segments of average density
into a structure large enough to pass the selected area threshold.

Finally, the threshold edge criterion did meet our expectations for an effective joining
criterion. Its main weakness would be its dependence on the scale of data. While we did
not have any case to evaluate this condition, if two very large voids intersect, this criterion
might join them, even though their intersection is not significant compared to their size. A
new edge threshold depending on the actual voids being joined might be a workaround to
this issue.

(a) Generated void (b) Null criterion (c) Arc criterion

(d) Border criterion (e) 2nd longest edge criterion (f) Threshold edge criterion

Figure 2.7: C-shaped void #1 (in blue, thick) with detected fragments (filled in several colors) using
each criterion over the n = 10 000 point set.

Regarding the filtering used for prevoids and voids, using a threshold for the longest edge
of each prevoid did reduce false voids, especially in the lower background density data sets.
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Its usage is a suitable replacement for the area threshold, lowering the risk of removing central
prevoids and effectively filtering false voids.

2.4.4. Performance

We ran our DELFIN implementations over random generated sets of n points in an N×N
square (N = 2000 Mpc/h), using the irregular void template. The experiment was repeated
for values of n = 210, 211, . . . , 219 running the original algorithm and the optimized version
without any joining method. Only the actual running time of the algorithm was considered
(file I/O operations, parsing and plot generation times were ignored).

The system used was a dual core Intel Core i3 3110M processor and 4 GB of memory
running an up to date Arch Linux distribution. We stopped running the original implemen-
tation just before a single run would take more than a day, and the new algorithm once our
system started using the swap partition after the system depleted its physical memory. Our
results can be seen in figure 2.8.
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Figure 2.8: DELFIN performance over data sets with n = 210, 211, . . . , 219 points.

Our running time is several orders of magnitude less than the original execution time
while preserving exactly the same results. In fact, the original implementation time seems
to follow a cuadratic curve, while our new implementation seems to adjust to a linearithmic
(O(n lnn)) curve. This difference between linear and cuadratic is reflected by the slopes of
curves in the log-log graph (the original implementation’s slope is approximately twice of
that of our new implementation).
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A further performance increase may be achieved by building voids without sorting them by
the length of their longest edge. However, improvements in this case will not be as drastic and
we would have to sacrifice flexibility as some criteria depending on the facet order or in the
top-down construction process would no longer work. For example, pruning voids depending
on volume percentage, whose code is currently part of the project (although disabled for
users) will have undefined behaviour if voids are not constructed from least dense regions.
For this reason, we have chosen to continue sorting voids in our implementation.
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Chapter 3

The 3-d Extension of DELFIN Algorithm

On the previous chapter, we have analyzed four void joining methods and concluded that
the edge threshold method provided the least shape-dependent results. This last method
has been included in the 3-d version of our DELaunay Edge Void FINder algorithm. In
this chapter we will overview the 3-d version of DELFIN, evaluate its behavior over different
density contrasts and compare it with Foster & Nelson’s implementation of their algorithm[7].

3.1. The Algorithm

The algorithm is similar to the 2-d version, and features the same extensions used for the
2-d version of DELFIN. However, some modifications are due since 3-d edges are no longer
limited to a pair of simplices, but an undetermined number of them.

First, the Delaunay tessellation is obtained for the sample set, and the resulting tetrahedra
are sorted by their longest edge. We considered evaluating tetrahedra according to other
features, such as their volume or largest face area, but elongated, icicle-shaped tetrahedra
would be underrepresented by these parameters.

Then, locally longest edges are chosen as a starting point for a new void, starting from
the longest. A locally longest edge is defined as the longest edge for all tetrahedra containing
it. All tetrahedra sharing this edge are grouped into what is the base of our prevoids.

In an iterative process, the outer (unvisited) edges of new tetrahedra are visited, and
tetrahedra which both do not belong to another prevoid and which have any of these edges
as their longest edge are added to the prevoid (figure 3.1). Note that the new tetrahedron
may share no faces with other tetrahedra from the void being processed. The previous
iteration stops when no tetrahedra satisfying the previous conditions are found. These steps
are repeated for the following locally longest edges.

Note that while the 2-d algorithm allowed to build voids without sorting triangles by
longest edge, that is no longer possible in 3-d with tetrahedra if we want to build a robust
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Figure 3.1: Edge-adjacent tetrahedra ABCD and ABEF . Since AB is the longest edge of ABEF ,
it will be joined to the first void reaching this edge, which could or could not be the void containing
tetrahedron ABCD.

algorithm. In fact, if we try to join each tetrahedron to the tetrahedron with which it shares
its longest edge, we will notice this edge is shared with at least two more tetrahedra. So,
which of these should it be joined to? The answer would be the tetrahedra belonging to the
prevoid spawned from the longest edge; however, knowing this requires sorting at least the
longest local edges, which is needed for our algorithm to work and takes time O(n log n).

From the resulting regions, we considered 3-d extensions for the two methods from the
2-d algorithm to choose which regions would considered a prevoid. Recalling from section
2.1 that if a selecting criterion is not used, the resulting regions will tessellate the convex
hull of the set of points; this property holds for the 3-d implementation as well. The first
method consists on filtering voids whose volume V is below a threshold Vmin, while the second
method discards voids whose longest edge length l is lower than a threshold lmin. Although
both could be used at the same time, we will analyze them separately during validation.

Once prevoids have been filtered by one of the methods described above, the final step
consists in prevoid joining. After evaluating the joining criteria from section 2.2.3, we have
chosen to include the threshold edge criterion to 3-d DELFIN using the same equation 2.1
from the 2-d version.

See algorithm 3 for a summarized version of the algorithm.

3.2. Implementation

By the beginning of this thesis work, a non validated 3-d prototype had already been
developed. However, it had not been validated, and did not consider the modifications
we have made since. We continued from this prototype to obtain a validated and efficient
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Algorithm 3: 3-d DELFIN Algorithm
read the Delaunay tessellation;
read threshold_volume;
void_list = ∅;
order tetrahedra by longest-edge;
repeat

if longest edge of next unvisited tetrahedra is shorter than threshold_length then
break;

end
if longest edge of next unvisited tetrahedra is the longest for all sharing tetrahedra
then

get all tetrahedra t1, . . . , tn sharing the longest-edge;
tetrahedra_set = [t1, . . . , tn];
label t1, . . . , tn as used;
foreach tetrahedron t neighbor of tetrahedra_set do

if t shares its longest-edge with a tetrahedron of tetrahedra_set then
tetrahedra_set = tetrahedra_set ∪ t;
label t as used;

end
end
if volume of tetrahedra in tetrahedra_set ≥ threshold_volume then

void_list = void_list ∪ polygon(tetrahedra_set);
end

end
until there is no tetrahedron left to process ;
foreach edge edge in edge_set do

if length of edge is greater than threshold_length then
join subset of prevoids from void_list sharing edge;

end
end
remove voids from void_list with an edge from the boundary;

implementation of the extended DELFIN algorithm.

The implementation has been written in C++ using qdelaunay [3] externally to obtain
the 3-d Delaunay tessellation of a set of points, as we did for the 2-d implementation. The
features C++ provides also allow for greater control over memory usage and more efficient
code than Python, although somewhat more verbose. Qdelaunay uses the quickhull algorithm
on the dataset projection over a paraboloid, and later discards the extra dimension, keeping
only the resulting neighbor information and edges.

The algorithm runs in time O(t log t) in the number of tetrahedra t: in practice and for
efficiency reasons, we sort edges e by length instead. It is known that in every 3-d Delaunay
tessellation, 3 + 3t ≥ e. Such a claim may not be made for vertices: in the worst case, t is
O(n2). However, Delaunay tessellations in practice have a linear number of tetrahedra. Once
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sorted, each edge is visited once by evaluating them from longest to shortest (e traversals),
and at most once for every tetrahedra containing it (6t traversals, as each tetrahedron may
visit its 6 edges). Each tetrahedron can be visited once for each edge it contains, so it will
be visited at most 6 times (6t traversals). All of the previous neighbor index information is
stored in C++ vectors, but the actual elements are stored in a C++ map, so access time
is O(1) + O(log t). Since elements are accessed a linear number of times, we also achieve
O(t log t) for these operations. Prevoid joining, on the other hand, is done using a Union-
Find disjoint set structure, with an amortized time of O(vα(v)) over the number of prevoids,
where α(n) is the inverse of the function f(n) = A(n, n) and A is the Ackermann function.
Thus, it can be ignored for complexity analysis.

3.2.1. Structure

Figure 3.2 shows the class diagram for our 3-d implementation of DELFIN.

VoidJoiner EdgeJoiner

VoidBuilder DelfinBuilder

Edge

Facet

EdgeDictionary

FacetDictionary

PointDictionary

Dictionary

provides edges
1..1

1..1 provides facets

1..1

1..1

provides edges

1..1

1..1

provides facets

1..1

1..1

Figure 3.2: Class diagram for the 3-d DELFIN implementation.

The main program constructs dictionaries of points, edges and facets (tetrahedra), which
are then given as parameters to a VoidBuilder. We have implemented a single non-abstract
VoidBuilder, class DelfinBuilder. This class builds the prevoids and filters them according
to either volume or longest edge. Then, one or several VoidJoiners may receive a set of
prevoids and join them according to a certain criterion. As of now, our only method to join
voids is the threshold edge, as other methods proved insufficient during the 2-d evaluation
because of characteristics which extend to 3-d. Our implementation of the threshold edge
joiner is contained in the class EdgeJoiner.
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3.3. Validation

We evaluated DELFIN by analyzing its performance over several data sets, namely, several
toy distributions with multiple spherical and cubic voids, and a fraction of the SDSS DR5
survey data.

3.3.1. Artificial data evaluation

To evaluate our algorithm’s behavior over voids regarding their density, we generated
multiple 3-d data sets, this time producing non-empty voids. To characterize them, we will
use a density contrast parameter δ̂ = ρ̄/ρ instead of the more common overdensity parameter
δ = 1/δ̂ − 1.

First, we evaluated DELFIN over spherical underdensities. We generated am×m×m cubic
volume (m = 100h−1 Mpc) filled with q = 20 randomly placed spheres of radius r = 25h−1

Mpc, only restricting them to avoid intersections between spheres and to keep them from
intersecting the cubic boundary. Then, the background volume, that is, the volume inside
the cube excepting that occupied by the q spheres, was filled using a random generator in
such a way that the density on this background would be ρ̄ = 4/1000 particles per cubic
Mpch−1, and then filled the spheres randomly until their average density would be ρ. We
chose different values for ρ with the intent of evaluating the algorithm over different values
of δ̂.

Since voids in practice are not spherical, we also evaluated DELFIN over cubic underdensi-
ties. The setup was similar to that of spherical voids: am×m×m cubic volume (m = 100h−1

Mpc) filled with q = 20 randomly placed and oriented cubes of edge length s = 30h−1 Mpc.
We constrained the positions in such a way that no cube would intersect either the cubic
boundary nor any of the other s-sized cubes. We used the same set of densities ρ and ρ̂ for
the s-sized cubes and for the background, respectively.

For each of these datasets, we computed both the retrieval and overdetection rates, rv
and ev, whose definition is an extension of that used in 2-d but evaluating volumes instead
of areas. In this way, we measure the effect of density contrast over the effectiveness of our
algorithm.

Results

The resulting voids found by our algorithm were non-convex, roundish in shape polyhedra.
As the density contrast δ̂ increased, the same effect seen for planar voids was seen here: the
actual voids were larger than the theoretical voids we used to generate our data sets. The
results obtained over the spherical and cubic voids are shown in figures 3.3 and 3.4.

Our void joining phase effectively joined together the different fragments or prevoids cor-
responding to the same sphere or cube. This is a marked improvement over our original
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Figure 3.3: Retrieval and error rates for spherical underdensities
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Figure 3.4: Retrieval and error rates for cubic underdensities

algorithm. Recall from our original algorithm that whenever an irregular void or a void with
a point in its interior was scanned with the original algorithm (i.e. without the void joining
phase), the void would split into two or more voids. This is no longer the case with high
density contrast rates, where we effectively find voids almost completely.

Naturally, as we dropped the density contrast δ̂, the algorithm had increasing difficulty
identifying voids. More specifically, as δ̂ dropped below 10, our retrieval rates were less than
60%. A careful look into these definitions reveals that such density contrasts produce, on
average, Delaunay edges less than 3

√
10 longer than those on the background, and spurious

voids of comparable size to our fragments might appear in the background. At this point, our
algorithm is quite conservative to avoid detecting spurious voids resulting from the random
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distribution of the points we have generated.

However, we must consider that real voids not only possess a lower density than the
average, but also reach their lowest density at their center, and then this density increases as
one moves towards its limits. As our algorithm builds voids from least dense regions towards
strictly increasing regions, is more suited to work over such a void profile, and thus should
produce better results over such real world voids.

3.3.2. Catalog data evaluation

Although we can prepare artificial voids and compare them with results from DELFIN,
this is not possible with real datasets. Since there is no consensus on a void definition, there is
no canonical void catalog to compare with, and thus no simple way to evaluate performance
with such data. However, since previous works on voids are based on those found by currently
existing algorithms, a reasonable albeit subjective method to review an algorithm is evaluate
its results compared to those from an existing void finder.

Foster and Nelson’s algorithm[7] is the most recent revision of the base ideas published
by El-Ad & Piran[6]. Since their voids are built from maximal spheres with a minimum
radius, which implicitly share many properties with Delaunay tessellations (read the final
paragraph from section 1.2 for more details), it is a natural choice to compare our algorithm
with theirs. They (F&N) have run their algorithm over a subset of SDSS Data Release 5[1],
and the catalog of the voids they found has been made public. Namely, their subset consists
of galaxy redshifts between a right ascension of 140°and 320°, a declination between 30°and
65°, absolute magnitude between -22.3 and -20.8, and redshift up to 0.16.

Since any voids touching the sample boundary are discarded by our algorithm, voids from
F&N’s catalog touching and/or crossing the boundary1, will not have a match in our results.
Thus, it is reasonable to discard F&N’s boundary voids as well for a fair comparison with
our algorithm. Thus, we have discarded all voids from F&N’s catalog crossing either the
right ascension boundaries (140° ≤ α ≤ 320°) or the declension ones (30° ≤ α ≤ 65°). We
have also discarded those voids crossing the z = 0.16 limit, as the background density in
SDSS DR5 drops considerably beyond this point as a result of extinction. This resulted in a
significant reduction of voids: from the 232 original voids, only 123 were left.

We ran our algorithm over the filtered SDSS DR5 subset, i.e, after removing field galaxies,
and obtained a resulting void catalog (figure 3.5). Then, we compared our catalog with F&N’s
before and after discarding boundary voids.

The comparison is not trivial, though. Our voids are non convex polyhedra while F&N’s
voids are unions of spheres of different sizes. While possible, calculation of the exact in-
tersection and union volumes requires solving two difficult problems: union of spheres and
intersection of these unions with general polyhedra. The first problem is analytically simple
in the case of two spheres, but becomes increasingly complex when three or more spheres
have a non-zero intersection. The second problem would require either (a) partitioning space

1Some of these voids are explicitly allowed by them as they extend the boundary by 5-10 Mpc/h.
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Figure 3.5: 3-d visualization of voids found using DELFIN with the volume filter over a SDSS DR5
subset.

according to spheres and tetrahedra faces, and then summing the volumes of those regions
which are part of either void (or both of them in the case of intersection), or (b) obtaining
the surface of both voids, cutting them in their intersection curve, and integrating the vol-
ume under the correct pieces. Both methods require 3-d integration of planar and spherical
surfaces over a complicated 2-d shape, with both elliptical and straight sections.

The previous methods are beyond the scope of this work, and instead, we have used
Montecarlo methods to estimate these intersections. First, for each pair of voids, we obtained
a bounding box for each of them and checked for intersection. Those voids might intersect
only if the boxes intersect. For each box intersection, we made a bounding box for both
voids. and used k = 10 000 randomly placed particles to estimate the intersection. A point
is inside a F&N’s void if it is contained in any if the conforming spheres, and it is inside one
of our voids if it is inside any of its tetrahedra.

Results

Using the volume and longest edge filters, respectively, we found 242 and 255 polyhedral
voids.

Considering F&N’s voids as the real voids, we respectively obtained average retrieval and
overdetection rates equal to rv = 0.55 and ev = 0.32 by using the volume filter, and rv = 0.39
and ev = 0.55 by using the longest edge filter. We evaluated the distribution of rv and ev per
each void. Figures 3.6 and 3.7 respectively correspond to histograms with the distribution of
retrieval and overdetection rates, one for each filter, allowing several of our voids to match a
single F&N.

We evaluated these voids for a second time, now allowing only a one-to-one void matching
between our voids and each F&N void; we show our retrieval rate in figure 3.8, and the
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Figure 3.6: Retrieval rates considering multi-matching.
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Figure 3.7: Overdetection rates considering multi-matching.

overdetection rate in figure 3.9. The retrieval and overdetection rate averages in this situation
are rv = 0.54 and ev = 0.32 for the volume filter, and rv = 0.38 and ev = 0.50 for the longest
edge filter.

If we consider a retrieval rate of 50% or greater as acceptable (using the 1-to-1 matching),
then we have found 84 (68%) acceptable F&N voids using the volume filter, while by using
the longest edge filter, we have found 59 (48%).
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Figure 3.8: Retrieval rates considering 1-to-1 matching method.
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Figure 3.9: Overdetection rates considering 1-to-1 matching method.

A high retrieval rate 1-to-1 match (using the volume filter) is shown in figure 3.10. Our
algorithm adds some tetrahedra whose circumsphere is either smaller than F&N’s minimum
allowed sphere or is simply not added to the void. In the case our tetrahedra’s circumspheres
would correspond exactly with the spheres from F&N’s void, then it would be completely
contained into those spheres (because each tetrahedron would be completely contained in its
own circumcircle), and our void would not be visible.
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Figure 3.10: Close match of a F&N void (purple) and a DELFIN void (brown) using the volume
filter, with rv = 0.865 and ev = 0.133.

The median match, that is, the match for the F&N void whose retrieval rate is the median,
is shown in figure 3.11. It shows a void we have detected which resembles relatively closely
one of Foster’s voids.

Figure 3.11: Median match between F&N voids and DELFIN voids using the volume filter, with
rv = 0.610 and ev = 0.380.

A mismatch is shown in figure 3.12. This kind of result occurs whenever our prevoids
and F&N holes are constructed in different ways, as a result of the different rules we have
chosen to obtain a void. In this case, the circumspheres (holes) for our larger tetrahedra were
discarded either by F&N’s void building criterion or our border criterion (in case the F&N
void expanded beyond the boundaries of the data sample). As mentioned in the introduction
in page 1, there is no consensus in what exactly is a void, so these differences in voids’
expansion (and results) are expected and will occur as long as our results are not exactly the
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same, which is not the goal of our algorithm.

Figure 3.12: Poor match of a F&N void and a DELFIN void (rv = 0.242, ev = 0.909), respectively
in magenta and yellow.

A split match is shown in figure 3.13. Occasionally, our prevoid joining method will reject
a join as their shared edges are too short, whereas F&N would join their spheres because of
the different methods used to expand voids as they are found. In these cases, the density on
the shared border between prevoids is high enough for our algorithm to keep voids apart; it
is an expected result from the threshold edge criterion we have used, and it may be adjusted
to allow a different quantity of void joinings.

Figure 3.13: Split match of a F&N void (white) and two DELFIN voids (maroon and blue). Together,
they achieve a retrieval rate of rv = 0.824 for the white F&N void.
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3.3.3. Analysis and Discussion

We like to see our algorithm as a bridge between maximal sphere algorithms and watershed-
based algorithms. Our algorithm takes as input a Delaunay tessellation, which corresponds
to the dual of the Voronoi diagram, over which most watershed-based algorithms build their
voids. Yet, the Delaunay tessellation, over which our algorithm is based, is directly related
to the maximal spheres since, as we saw in section 1.2.1, such spheres correspond to the
circumspheres of the Delaunay tetrahedra.

Considering we are comparing polyhedral voids with sphere-union shaped voids, our re-
trieval rates are reasonable and even higher than expected. Most of the reference voids are
detected in a significant fraction by our algorithm; this is mostly because the starting point
for our void construction are locally longest edges, which are usually found where the largest
circumspheres are, and consequently having a similar core to F&N’s. The growth process is
also similar; while we do not evaluate neither the tetrahedra volume or their circumspheres,
both methods attempt to grow voids in a direction of increasing density, so some similarity
was expected.

Although the longest edge criterion had better results over artificial datasets both in 2-
d and 3-d, the volume criterion’s results were more similar to F&N. This does not imply
that the longest edge criterion will perform worse than the volume void finder, but further
refinement might be required to its use over real galaxy data.

While the circumpspheres’ volume of our tetrahedra will always be greater than the corre-
sponding tetrahedra’s volumes (and thus, if DELFIN used the same criteria than F&N, our
voids would always be smaller in comparison), in practice our voids were not significantly
smaller. First, our algorithm had no cap on the size of the tetrahedra a void may include,
and thus, the boundaries of our algorithm were different and could extend further than F&N.
Furthermore, several joined tetrahedra may share similar circumcircles, which in our algo-
rithm only adds extra volume to our voids, whereas on F&N’s algorithm, most of this volume
was already present on the other maximal sphere, marginally increasing the void volume and
thus reducing the effect described in heading. Our algorithm is also more flexible in the sense
that we allow joining of prevoids if there is a long enough edge being shared among them (as
[14] does when void patch boundaries were not significant in their void hierarchy), breaking
the paradigm of growing voids strictly towards increasing density regions. These might be
two voids going through a merging process, and in this case, we interpret these voids as a
single one when they share an edge of a length expected to be found between neighboring
void galaxies.

Several other ideas in this direction might improve DELFIN further. For example, a more
radical modification to make our algorithm more flexible in terms of the size of voids it may
find, could be adding a new prevoid filter to discard voids whose longest to shortest edge
ratio is lower than a constant, that is, explicitly accepting or discarding a void depending on
the density contrast between its center and its boundaries, ignoring the average density of
the sample.

We also believe that the boundary void handling could be revised. In fact, assuming that
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the galaxy/particle sample is immovable, the existing tetrahedra in the tessellation may only
change if a new point is added inside its circumcircle. So, those triangles whose circumcircle
lies completely inside the boundary of the sample will not be altered by the presence of new
points outside the sample boundary. Then, a stricter criterion to handle border voids could be
marking those tetrahedra which might change given certain distribution of points beyond the
sample boundary (i.e., those whose circumsphere extends beyond the sample boundary). The
only voids which may not change no matter the distribution of points beyond the boundary
are those which (a) have no marked tetrahedra in their interior and (b) do not share any
edges with a marked tetrahedron. While it will effectively discard any possible spurious
voids, this criterion might still be too strict and will have to be studied further before being
implemented.

3.3.4. Performance evaluation

We ran our 3-d DELFIN implementation over random generated sets of n points in an
N×N square (N = 100 Mpc/h), using spherical void datasets. The experiment was repeated
for values of n = 1000 × 20, 1000 × 21, . . . , 1000 × 210 using a density contrast equal to 10.
Only the running time of our own algorithm was considered, discarding the time required for
qdelaunay to generate the Delaunay tessellations (a very rough estimate of the time required
considering both qdelaunay execution and our code is about 1.2 times the times described
here).

The system used was a dual core Intel Core i3 3110M processor and 4 GB of memory
running an up to date Arch Linux distribution. We stopped testing when we used 1024000
points since the memory required for the next test (with 2048000 points, roughly 5.8 GB
of memory usage for points, edges and tetrahedra) would require more than our available
memory. Our results can be seen in figure 3.14.

Our running time adjusts well to a linearithmic curve (O(n log n)), satisfying the com-
plexity analysis we had done earlier (under the assumption that the number of tetrahedra
is linear in the number of vertices). We consider our algorithm runs in a reasonable time
frame, making its use practical and comfortable (as a reference, F&N’s implementation runs
in quadratic time, taking approximately an hour to process the SDSS dataset we used pre-
viously). Hypothetically, assuming this O(n log n) curve does not change and given enough
memory, our algorithm could process the full sample of 12 million DM particles used in the
Aspen-Amsterdam project in roughly 7-8 hours.

Still, the algorithm can potentially be parallelized at several stages of its runtime. For
example, the prevoid construction might be parallelized if race conditions over edges are
handled correctly; as other operations over geometrical data are expensive, this syncing
would not represent such a high impact to performance. However, a more thorough analysis
must be done before attempting such modification.
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Conclusion

During this work, we have summarized some approaches to the void finding problem. We
have also studied a novel approach to the void finding problem by using Delaunay tessella-
tions, and evaluated several extensions. First, we considered four different post processing
method for the 2-d version. Our results show that the threshold edge method is the most
robust under our mock data sets; the properties of this method extend naturally to 3-d. We
also evaluated an alternative prevoid filter based on the longest edge of a void. This filter
performed better than the area filter in both 2-d and 3-d artificial datasets. However, its
results diverge from those of Foster & Nelson[7]. This was unexpected since longest edges
are indirectly related to sphere radii, whereas total void volumes are not.

We have presented our algorithm as a convergence point between existing watershed
transform-based and maximal sphere-based algorithms. Delaunay tessellations, in the con-
text of void finding, provide most of the benefits of both maximal circumspheres and Voronoi
tessellations while eluding several of their shortcomings. Although we had intended to fix a
void definition, we decided not to do so as such a choice would be arbitrary. However, we
implicitly assume voids to be those found by our definition, in particular when discarding
boundary voids.

Our extensions to the DELFIN algorithm provide an efficient and robust algorithm to
detect voids, applicable over large galaxy surveys. Both 2-d and 3-d implementations have
been validated and benchmarked with satisfying results. Our algorithm is highly efficient,
running in time O(n log n) in practice. It also provides high flexibility, allowing different
strategies or paradigms by making only a few changes.

We have also validated our algorithm by running it over artificial data sets and by com-
paring it against the void catalog obtained by F&N. Over artificial datasets, our algorithm
had a good behavior up from a density contrast equal to 10, degrading rapidly as the density
contrast dropped closer to 1. For SDSS data, our algorithm identified 68% of F&N’s catalog
voids and obtained a median retrieval rate of 61% under 1-to-1 matching. Also, our algorithm
identified some new voids over the SDSS DR5 sample used by F&N.
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Future Work

It would be interesting if other variants of our void finding algorithm could be developed
and tested against current results. We have mentioned some of them, such as developing a
completely scale-agnostic algorithm, based exclusively on density contrasts. Such an algo-
rithm would be able to find voids of any size, given they are well defined. However, further
research and validation would be required before it could be used for void research.

A discussion about the weaknesses of our current boundary void handling was presented
in section 3.3.3. We have given a first approach to discard spurious boundary voids based
on circumsphere coverage, however it might be too strict and reject some voids whose shape
can be proven definitive according to our implicit void definition.

Lastly, we recognize the need for further validation and testing. It would be interesting
to observe how does our algorithm compare to a watershed based algorithm, to prove our
claims about our algorithm being a middle point between maximal sphere and watershed
algorithms.
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Glossary

α-shape In two or more dimensions, given a set of points S and a real number as α, the
α-shape of S is the intersection of all spheres of radius 1/α which contain every point
in S. Note that α may be 0: in this case, the spheres correspond to half-planes, and
the 0-shape is exactly the convex hull of S. Additionally, when α < 0, the alpha shape
becomes the intersection of all of the complements of a sphere of radius 1/α, where the
complement contains every point in S. Also, the α-complex is the set of edges and/or
simplices which are at least partially contained in the α-shape. It can be shown that
for any α < 0, these simplices correspond exactly to those whose circumcircle radius is
less than −1/α.

Convex Hull The convex hull of a set of geometrical elements, such as points, curves and
polytopes, is the smallest convex polytope containing all of the elements in the set.
For example, in 2-d, the convex hull of a set of points is the smallest convex polygon
containing all of these points. The vertices of the convex hull of a set of points are
always a subset of the set of points. In 2-d, ordered vertices are enough to represent
the convex hull, but additional edge or face information is required in a 3-d scenario to
describe it completely.

L∗ A characteristic luminosity, corresponding to a total magnitude of MB = −20.6.

Megaparsec/h (Mpc/h) A unit of distance used to measure distance between astronom-
ical objects at intergalaxy scales. One Megaparsec is equal to 3.09 × 1019 km. The
value h is a constant which depends on the Hubble constant for the expansion rate of
the universe, and is approximately 0.68.

Union-find Data structure used to track disjoint sets among a group of elements. The initial
state of the structure keeps each element in a different set. The structure supports union
operations which, given two elements, unites the sets to which they belong (optionally
indicating if the elements already belong to the same set); and find operations which,
given any element, provides an unique representative for the set containing the element.
Each operation takes amortized time O(nα(n)), where α−1(n) = A(n, n) and A is the
Ackermann’s function.
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