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a b s t r a c t

We construct new ancient compact solutions to the Yamabe flow. Our solutions are
rotationally symmetric and converge, as t→ −∞, to two self-similar complete non-
compact solutions to the Yamabe flow moving in opposite directions. They are type
I ancient solutions.
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1. Introduction

Let (M, g0) be a compact manifold without boundary of dimension n ≥ 3. If g = ū
4
n−2 g0 is a metric

conformal to g0, the scalar curvature R of g is given in terms of the scalar curvature R0 of g0 by

R = ū−
n+2
n−2

−c̄n∆g0 ū+R0 ū


where ∆g0 denotes the Laplace Beltrami operator with respect to g0 and c̄n = 4(n− 1)/(n− 2).

In 1989 R. Hamilton introduced the Yamabe flow

∂g

∂t
= −Rg (1.1)

as an approach to solve the Yamabe problem on manifolds of positive conformal Yamabe invariant. It is the
negative L2-gradient flow of the total scalar curvature, restricted to a given conformal class. This was shown
by S. Brendle [1,2] (up to a technical condition in dim n ≥ 6). Significant earlier works in this directions
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include those by R. Hamilton [9], B. Chow [3], R. Ye [17], H. Schwetlick and M. Struwe [14] among many
others. The Yamabe conjecture, was previously shown by R. Shoen via elliptic methods in his seminal
work [13].

In the special case where the background manifold M0 is the sphere Sn and g0 is the standard spherical
metric g

Sn
, the Yamabe flow evolving a metric g = ū

4
n−2 (·, t) g

Sn
takes (after rescaling in time by a constant)

the form of the fast diffusion equation
ū
n+2
n−2


t

= ∆Sn ū− cnū, cn = n(n− 2)
4 . (1.2)

Starting with any smooth metric g0 on Sn, it follows by the results in [3,17,7] that the solution of (1.2)
with initial data g0 will become singular at some finite time t < T and v becomes spherical at time T ,
which means that after a normalization, the normalized flow converges to the spherical metric. In addition,
v becomes extinct at T .

A metric g = ū
4
n−2 g

Sn
may also be expressed as a metric on Rn via stereographic projection. It follows

that if g = û
4
n−2 (·, t) gRn (where gRn denotes the standard metric on Rn) evolves by the Yamabe flow (1.1),

then û satisfies (after a rescaling in time) the fast diffusion equation on Rn

(ûp)t = ∆û, p := n+ 2
n− 2 . (1.3)

Observe that if g = û
4
n−2 (·, t) gRn represents a smooth solution when lifted to Sn, then û(·, t) satisfies the

growth condition

û(y, t) = O(|y|−(n−2)), as |y| → ∞.

Definition 1.1 (Type I and Type II Ancient Solutions). The solution g = u(·, t)
4
n−2 g0 to (1.1) is called ancient

if it exists for all time t ∈ (−∞, T ), where T <∞. We will say that the ancient solution g is of type I, if its
Riemannian curvature satisfies

lim sup
t→−∞

(|t| max
M0
|Rm | (·, t)) <∞.

An ancient solution which is not of type I, will be called of type II.

The simplest example of an ancient solution to the Yamabe flow on Sn is the contracting spheres. They are
special solutions ū of (1.2) which depend only on time t and satisfy the ODE

dū
n+2
n−2

dt
= −cn ū.

They are given by

ū
S
(p, t) =


4
n− 2 cn (T − t)

n−2
4

, p ∈ Sn (1.4)

and represent a sequence of round spheres shrinking to a point at time t = T . They are shrinking solitons
and type I ancient solutions.

King solutions: They were discovered by J.R. King [10]. They can be expressed on Rn in closed form
(after stereographic projection), namely g = û

K
(·, t)

4
n−2 gRn , where û

K
is the radial function

û
K

(y, t) =


a(t)
1 + 2b(t) |y|2 + |y|4

n−2
4

, y ∈ Rn (1.5)
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and the coefficients a(t) and b(t) satisfy a certain system of ODEs. The King solutions are not solitons and
may be visualized, as t→ −∞, as two Barenblatt self-similar solutions “glued” together to form a compact
solution to the Yamabe flow. They are type I ancient solutions.

Let us make the analogy with the Ricci flow on S2. The two explicit compact ancient solutions to the two
dimensional Ricci flow are the contracting spheres and the King–Rosenau solutions [10–12]. The latter ones
are the analogues of the King solution (1.5) to the Yamabe flow. The difference is that the King–Rosenau
solutions are type II ancient solutions to the Ricci flow while the King solution above is of type I.

It has been shown by Daskalopoulos, Hamilton and Sesum [4] that the spheres and the King–Rosenau
solutions are the only compact ancient solutions to the two dimensional Ricci flow. The natural question to
raise is whether the analogous statement holds true for the Yamabe flow, that is, whether the contracting
spheres and the King solution are the only compact ancient solutions to the Yamabe flow. This occurs not
to be the case as the following discussion shows.

Indeed, in [15] the existence of a new class of type II ancient radially symmetric solutions of the Yamabe
flow (1.2) on Sn was shown. These new solutions, as t → −∞, may be visualized as two spheres joined by
a short neck. Their curvature operator changes sign. We will refer to them as towers of moving bubbles.

Since the towers of moving bubbles are shown to be type II ancient solutions, while the contracting
spheres and the King solutions are of type I, one may still ask whether the latter two are the only ancient
compact type I solutions of the Yamabe flow on Sn, Eq. (1.2). In this work we will observe that this is not
the case, as will show the existence of other ancient compact type I solutions on Sn.

It is simpler to construct these new solutions in cylindrical coordinates, so let us first describe the
coordinate change. Let g = û

4
n−2 (·, t) gRn be a radially symmetric solution of (1.3). For any T > 0 the

cylindrical change of variables is given by

u(x, τ) = (T − t)−
1
p−1 r

2
p−1 û(y, t), x = ln |y|, τ = − ln(T − t). (1.6)

In this language Eq. (1.3) becomes

(up)τ = uxx + αup − βu, β = (n− 2)2

4 , α = p

p− 1 = n+ 2
4 . (1.7)

By suitable scaling we can make the two constants α and β in (1.7) equal to 1, so that from now on we will
consider the equation

(up)τ = uxx + up − u. (1.8)

Indeed, one can see that

u(x, τ) =

α

β

 1
p−1

ũ


x√
β
,
τ

α


(1.9)

solves (1.8) iff the ũ solves (1.7).
It is well known (we refer the reader to the book by J.L. Vazquez [16], Section 3.2.2) that for any given

λ ≥ 0 Eq. (1.8) admits an one parameter family of traveling wave solutions of the form uλ(x, t) = vλ(x−λ t)
with the behavior

vλ(x) = O(ex), as x→ −∞. (1.10)

It follows that v := vλ satisfies the equation

vxx + λ (vp)x + vp − v = 0. (1.11)

The solutions vλ define Yamabe shrinking solitons which correspond to smooth self-similar solutions of (1.3)
when expressed as metrics on Rn (the smoothness follows from condition (1.10)). It was shown in [6] that
they are type I ancient solutions.
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Solutions of (1.11) with λ = 0 correspond to the steady states of Eq. (1.7) and are given in closed form
as the one parameter family,

v0(x) =

kn c e

γx

1 + c2 e2γx

n−2
2

, c > 0 (1.12)

with γ = 2
n−2 and kn =


4n
n−2

1/2
. They represent geometrically the standard metric on the sphere.

When λ > 0, solutions to (1.11) with behavior (1.10) define smooth complete and non-compact Yamabe
solitons (shrinkers) which all have cylindrical behavior at infinity, namely

vλ(x) = 1 + o(1), as x→ +∞.

In [5] the asymptotic behavior, up to second order, of these solutions was shown. In particular, it follows
from Theorem 1.1 in [5], that for any λ ≥ 1 there exists a unique solution vλ of (1.8) which satisfies

vλ(0) = 1
2 (1.13)

and has the asymptotic behavior

vλ(x) = O(ex), as x→ −∞ and vλ(x) = 1− Cλ e−γλx + o(e−γλx), as x→ +∞ (1.14)

for some constants γλ > 0 and Cλ > 0 (depending on λ). For values of λ in the range 0 < λ < 1, the behavior
of the solutions vλ was also studied in [5] and differs for dimensions 3 ≤ N ≤ 6 and N ≥ 6.

Remark 1.1. For the convenience of the reader let us point out that the proof of Theorem 1.1 in [5] is given
in Chapter 3 where the solution v in cylindrical coordinates satisfies equation

ᾱ−1vxx + λ(p− 1) vp−1 vx + vp − v = 0 (1.15)

for a parameter λ > 0 and

ᾱ := (n− 2)2

4 = 4
(p− 1)2 .

If

v̄(x) = v(γx), γ = ᾱ−1/2 = p− 1
2

then v̄ satisfies (1.11) with λ = β(p−1)/(pγ) = 2β/p. Hence β = β1 := p/2 in Theorem 1.1 in [5] corresponds
to λ = 1 in our case.

Remark 1.2. Since Eq. (1.11) is translation invariant the solution vλ generates an one parameter family vλ,h
of solutions of Eq. (1.11) given by vλ,h = vλ(x+ h) which satisfy vλ,h(−h) = 1/2.

Linearizing Eq. (1.11) around the constant solution v = 1 (which corresponds to the cylinder in geometric
terms) we obtain the equation

ṽxx + λp ṽx + (p− 1) ṽ = 0. (1.16)

Hence, assuming that v ≈ 1− C e−γλx, as x→ +∞, it follows that γλ satisfies the equation

γ2 − λpγ + (p− 1) = 0 (1.17)

and its roots are non-complex (which corresponds to non-oscillating solutions v̂ of (1.11)) iff

λ ≥ 2
√
p− 1
p
.
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All such solutions were studied in [5], however here we will restrict ourselves to the case

λ ≥ 1.

It has been shown in [5] (Theorem 1.1) that when λ ≥ 1, the solution vλ of (1.11) is monotone increasing
and satisfies (1.14) with

γλ =
λp−


λ2p2 − 4(p− 1)

2 > 0, (1.18)

which corresponds to the smallest of the roots of (1.17). When λ = 1, Eq. (1.11) admits the explicit one
parameter family of Barenblatt solutions

v1,c =


1
1 + c e−(p−1) x

1/(p−1)
, c > 0

where we recall that p− 1 = 4/(n− 2) and one may choose c = cp so that

v1 =


1
1 + c e−(p−1) x

1/(p−1)

satisfies the condition v1(0) = 1/2. It follows, that in this case

v1 = 1− C1 e
−(p−1) x + o(e−(p−1) x), as x→ +∞ (1.19)

for a constant C1 = C1(p) > 0. Notice that when λ = 1 the roots of (1.17) are given by

γ = p∓ |p− 2|
2

and γ1 := (p− 1) in (1.14) (as it follows from (1.19)), hence it satisfies

γ1 =


p− |p− 2|

2 , if p ≤ 2

p+ |p− 2|
2 , if p > 2.

In other words, when p > 2 (corresponding to n < 6) the Barenblatt solution (λ = 1) satisfies (1.14) where
γ1 is now the largest of the roots of (1.17).

Next we introduce an ansatz for the new type I solutions of (1.8), which will be the main focus in this
work. Let us assume that

uλ,h(x, τ) := vλ(x− λτ + h) (1.20)

is a traveling wave solution of (1.8) for given parameters λ ≥ 1 and h ∈ R. Since Eq. (1.8) is invariant under
the reflection x→ −x, it follows that

ûλ,h(x, τ) := uλ,h(−x, t) = vλ(−x− λτ + h) (1.21)

is a solution to (1.8). It corresponds to another traveling wave of (1.11) which travels in the opposite direction
than uλ,h. It follows from (1.14) that uλ,h and ûλ,h satisfy the asymptotics

uλ,h(x, τ) = O(ex), as x→ −∞ and ûλ,h(x, τ) = O(e−x) as x→ +∞. (1.22)

In addition, we have

uλ,h(x, τ) = 1− Cλ e−γλ(x−λτ+h) + o(e−γλ(x−λτ+h)), as x− λτ + h→ +∞ (1.23)

and also

ûλ,h(x, τ) = 1− Cλ e−γλ(−x−λτ+h) + o(e−γλ(−x−λτ+h)), as x+ λτ − h→ −∞ (1.24)

with γλ given by (1.18) and Cλ > 0 depends only on λ.
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In this work, we will show the existence of a four parameter class of ancient solutions uλ,λ′,h,h′ of
Eq. (1.8) with λ, λ′ > 1 and h, h′ ∈ R, which as t→ −∞ may be visualized as two traveling wave solutions,
uλ,h (traveling on the left) and ûλ′,h′ (traveling on the right). In fact, we will show in the next section that
uλ,λ′,h,h′ is given by

uλ,λ′,h,h′ = vλ,λ′,h,h′ − wλ,λ′,h,h′ (1.25)

with

vλ,λ′,h,h′ := min

uλ,h(·, τ), ûλ′,h′(·, τ)


and wλ,λ′,h,h′ > 0 an error term which is small in an appropriate norm.

Let gλ,λ′,h,h′ := u
4
n−2
λ,λ′,h,h′ gcyl denote the metric on the cylinder R × Sn−1 defined by the solution uλ of

(1.8). Here gcyl := dx2 +g
Sn−1 denotes the standard cylindrical metric. We have seen that (1.8) is equivalent

to gλ,λ′,h,h′ satisfying the rescaled Yamabe flow gt = −(R−1)g. In addition we will show that each uλ,λ′,h,h′ ,
when lifted on Sn, defines a smooth ancient type I solution to the Yamabe flow on Sn × (−∞, T ), in the
sense that the norms of its curvature operators are uniformly bounded in time. This exactly means that
the corresponding solution to the unrescaled Yamabe flow (1.1) is a type I ancient solution in the sense of
Definition 1.1. Next we state our main result.

Theorem 1.1. For any (λ, λ′, h, h′) ∈ R4 such that λ, λ′ > 1 there exists an ancient solution uλ,λ′,h,h′
of (1.8) defined on R× (−∞, T ), for some T = Tλ,λ′,h,h′ ∈ (−∞,+∞] and satisfies

0 < uλ,λ′,h,h′ ≤ vλ,λ′,h,h′ , for all (x, τ) ∈ R× (−∞, T ).

In addition, the metric gλ,λ′,h,h′ := u
4
n−2 gcyl when lifted on Sn defines a smooth ancient solution of the

rescaled Yamabe flow gt = −(R− 1) g, on Sn × (−∞, T ). This is a type I ancient solution in the sense that
the norms of its curvature operators are uniformly bounded in time (which exactly means the corresponding
solution to the unrescaled Yamabe flow (1.1) is a type I ancient solution in the sense of Definition 1.1).

The rest of this paper is organized as follows: in Section 2 we prove Theorem 2.1 which is the existence of a
four parameter family of ancient solutions uf . In particular, we show that each of them is exponentially close
in the integral sense to a given approximating solution which depends on the four parameters λ, λ′, h, h′. In
Section 3 we show that all our constructed solutions are Type I ancient solutions, as stated in Theorem 3.1.
Theorem 1.1 is a direct consequence of Theorems 2.1 and 3.1.

Remark 1.3 (KPP Equation and the Work of Hamel–Nadirashvili [8]). Eq. (1.8) resembles the well known
semilinear KPP equation

ut = uxx + f(u) (1.26)

for a nonlinearity f(u) which satisfies appropriate growth conditions (cf. in [8]). It is well known that
Eq. (1.26) possesses a family of traveling wave solutions vλ, λ ≥ λ∗ with similar behavior as those of
Eq. (1.8) described above. F. Hamel and N. Nadirashvili, in [8], constructed ancient solutions uλ,λ′,h,h′ of
Eq. (1.26). The main idea in [8] is to exploit the semilinear character of Eq. (1.26) and estimate the error of
approximation wλ,λ′,h,h′ as in (1.25) by the solution to the linear equation

νt = νxx + f ′(0) ν.

This allows them to estimate the error of the approximation wλ,λ′,h,h′ pointwise in a rather precise manner.
However, the same method cannot be applied to our quasilinear equation (1.8), which actually becomes
singular as x → ±∞ (where the approximating supersolution vλ,λ′,h,h′ vanishes). In this work we need to
depart from the methods in [8] and we have chosen to use integral methods in order to estimate the error
term wλ,λ′,h,h′ .
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2. The construction of merging traveling waves

For fixed λ, λ′ ≥ 1, h, h′ ∈ R, let uλ,h and ûλ′,h′ be the two traveling wave solutions of Eq. (1.8) as
introduced in the previous section. We define the approximate supersolution v := vλ,λ′,h,h′ as

vλ,λ′,h,h′(·, τ) = min

uλ,h(·, τ), ûλ′,h′(·, τ)


, τ ∈ (−∞,+∞). (2.1)

Using the definitions of uλ,h and ûλ′,h′ we have

vλ,λ′,h,h′(·, τ) = min

vλ(x− λτ + h), vλ′(−x− λ′τ + h′)


. (2.2)

We will show in this section that for any (λ, λ′, h, h′) ∈ R4 such that λ, λ′ > 1, there exists a solution
uλ,λ′,h,h′ which is close in certain sense to the approximate supersolution vλ,λ′,h,h′ , as stated next.

Theorem 2.1. For any (λ, λ′, h, h′) ∈ R4 such that λ, λ′ > 1 there exists an ancient solution uλ,λ′,h,h′
of (1.8) defined on R× (−∞, Tλ,λ′,h,h′) for some Tλ,λ′,h,h′ ∈ (−∞,+∞) which satisfies

0 < uλ,λ′,h,h′ ≤ vλ,λ′,h,h′ , for all (x, τ) ∈ R× (−∞, Tλ,λ′,h,h′).

In addition, for τ ≪ 0, the solution uλ,λ′,h,h′ is close to the approximate supersolution vλ,λ′,h,h′ in the sense
that 

R
|vpλ,λ′,h,h′ − u

p
λ,λ′,h,h′ |(·, τ) dx ≤ Dλ,λ′,h,h′ e

dτ

where d = γλγλ′+(p−1)
p and Dλ,λ′,h,h′ is a positive constant depending only on the dimension n and λ, λ′, h, h′.

Moreover, if λ, λ′, h, h′ ̸= λ̄, λ̄′, h̄, h̄′, then uλ,λ′,h,h′ ̸= uλ̄,λ̄′,h̄,h̄′ .

We have seen in the introduction that uλ,h and ûλ′,h′ satisfy conditions (1.22)–(1.24). It follows that for
each τ there is a unique intersection point x(τ) for which uλ,h(x(τ), τ) = ûλ′,h′(x(τ), τ).

Lemma 2.1. The intersection point x(τ) of uλ,h and uλ′,h′ satisfies, as τ → −∞, the asymptotic behavior

x(τ) = γλ − γλ
′

p
τ + 1
γλ + γλ′


ln Cλ
Cλ′

+ h′γλ′ − hγλ


+ o(1). (2.3)

In addition at x = x(τ) we have

uλ,h(x(τ), τ) = ûλ′,h′(x(τ), τ) = 1− Cλ,λ′,h,h′ ed τ + o(edτ ) (2.4)

with

d := γλγλ
′ + (p− 1)
p

(2.5)

and Cλ,λ′,h,h′ depending on λ, λ′, h, h′. Also, it follows that

(uλ,h)x(x(τ), τ) = γλ Cλ,λ′,h,h′ ed τ + o(edτ ), (ûλ′,h′)x(x(τ), τ) = −γλ′ Cλ,λ′,h,h′ ed τ + o(edτ ). (2.6)

Proof. Using the asymptotics behavior (1.23) and (1.24) it follows that at x = x(τ) we have

Cλe
−γλ (x−λτ+h) + o(e−γλ (x+h−λτ)) ≈ Cλ′e−γλ′ (−x−λ′τ−h′) + o(e−γλ′ (−x′−λ′τ−h′)).

Solving for x readily implies that

x(τ) = λγλ − λ
′γλ′

γλ + γλ′
τ + 1
γλ + γλ′


ln Cλ
Cλ′

+ h′γλ′ − hγλ


+ o(1).
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Using Eq. (1.17), we may eliminate the parameters λ, λ′ from the above expression substituting

λγλ = γ
2
λ + (p− 1)
p

, λ′γλ′ = γ
2
λ′ + (p− 1)
p

and obtain (2.3). With this choice of x(τ) we have

γλ

x(τ)− λ τ


= γλ


γλ − γλ′
p

− λ

τ + cλ,λ′,h,h′

for some constant cλ,λ′,h,h′ depending on λ, λ′, h, h′ and eliminating λ as above we obtain

γλ

x(τ)− λ τ


= −γλγλ

′ + (p− 1)
p

τ + cλ,λ′,h,h′ .

Setting d := γλγλ′+(p−1)
p , we conclude using (1.23) that

uλ,h(x(τ), τ) = 1− Cλ,λ′,h,h′ edτ + o(edτ )

for a constant Cλ,λ′,h,h′ > 0 depending on λ, λ′, h, h′. Since uλ,h(x(τ), τ) = uλ′,h′(x(τ), τ), (2.4) follows.

It remains to show (2.6). Recall that uλ,h(x, τ) = vλ(x− λτ + h). First we claim that

lim
x→+∞

(vλ)x = 0. (2.7)

To prove this fact note that by (1.11) we have

((vλ)x + λvpλ)x = vλ − vpλ ≥ 0,

since vλ ≤ 1, implying there exists a finite limit limx→+∞((vλ)x+λvpλ) and hence the limx→+∞(vλ)x = c. We
claim that c = 0. Indeed, if c > 0, there would exist an x0 so that for all x ≥ x0 we would have (vλ)x ≥ c/2.
This would imply that

vλ(x) = vλ(x0) +
 x
x0

(vλ)x dx ≥
c

2(x− x0), x ≥ x0

contradicting that the limx→+∞ vλ(x) = 1. Using that vλ > 0 we argue similarly in the case we assume
c < 0. We will prove next more precise asymptotics on the derivatives of vλ, which will yield (2.6). By (1.11)
we have

((vλ)x + λvpλ)x = vλ − vpλ.

On the other hand, by (1.14) we have

vλ − vpλ = Cλ (p− 1) e−γλx + o(e−γλx), for x≫ 1

and hence,

((vλ)x + λ vpλ)x = Cλ (p− 1) e−γλx + o(e−γλx).

Integrating this relation from x to +∞ and using (2.7) and that the limx→+∞ vλ(x) = 1 yields

(vλ)x = λ− λ vpλ −
Cλ (p− 1)
γλ

e−γλx + o(e−γλx).

Asymptotics (1.14) implies vpλ = 1− pCλe−γλx + o(e−γλx), and therefore,

(vλ)x = Cλ e−γλx

pλ− p− 1

γλ


+ o(e−γλx)

= Cλγλe−γλx + o(e−γλx), as x→ +∞, (2.8)

where we have used that pλγλ = γ2
λ + (p− 1). Finally, since x(τ)− λτ + h≫ 1 for τ ≪ −1, we get (2.6) by

substituting x(τ)− λτ + h in (2.8). �
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Denote briefly by v := vλ,λ′,h,h′ . Then we have the following integral identity.

Lemma 2.2. We have
d

dτ


R
vp dx =


R
vp dx−


R
v dx+ (γλ + γλ′)Cλ,λ′,h,h′ ed τ + o(edτ ). (2.9)

Proof. For simplicity set u1 := uλ,h and u2 := uλ′,h′ . Then u1(·, τ), u2(·, τ) are solutions to (1.8) on
(−∞, x(τ)), (x(τ),+∞) respectively and by definition we have v = u1 on (−∞, x(τ)) and v = u2 on
(x(τ),+∞). In addition, because of (1.22) we have

lim
x→−∞

(u1)x(x, τ) = lim
x→+∞

(u2)x(x, τ) = 0.

Note this can be proved in the same way as we have proved (2.8), just using the asymptotics of our solitons
at x→ −∞ instead of x→ +∞. Hence, integrating Eq. (1.8) for u1 on (−∞, x(τ)) and Eq. (1.8) for u2 on
(x(τ),+∞) we obtain

d

dτ

 x(τ)

−∞
up1 dx =

 x(τ)

−∞
up1 dx−

 x(τ)

−∞
u1 dx+ (u1)x(x(τ), τ) + x′(τ)up1(x(τ), τ)

and
d

dτ

 +∞

x(τ)
up2 dx =

 +∞

x(τ)
up2 dx−

 +∞

x(τ)
u2 dx− (u2)x(x(τ), τ)− x′(τ)up2(x(τ), τ).

Since u1(x(τ), τ) = u2(x(τ), τ), adding the last two equalities yields
d

dτ


R
vp dx =


R
vp dx−


R
v dx+ (u1)x(x(τ), τ)− (u2)x(x(τ), τ).

Combining this with (2.6), we readily get (2.9). �

For any m ∈ N, let um denote the solution of the initial value problem
(up)τ = uxx − u+ up x ∈ R, τ > −m
u(·,−m) = vλ,λ′,h,h′(·,−m) x ∈ R

(2.10)

with exponent p = n+2
n−2 > 1.

Lemma 2.3 (Uniform Barrier from Above). The solution um exists for all time −m ≤ τ < +∞ and satisfies

um ≤ vλ,λ′,h,h′ . (2.11)

Proof. The bound (2.11) simply follows from the comparison principle. Since um(·,−m) ≤ uλ,h(·,−m)
and um(·,−m) ≤ ûλ′,h′(·,−m) we have um ≤ uλ,h and um ≤ ûλ′,h′ for τ ≥ −m, concluding that
um ≤ vλ,λ′,h,h′(·, τ) := min


uλ,h(·, τ), ûλ′,h′(·, τ)


. The bound (2.11) and standard arguments on quasilinear

parabolic PDE imply that the solution um exists for all −m ≤ τ < +∞. �

Remark 2.1. In what follows we show a bound from below for um, which is uniform in m and will guarantee
that the solutions um will stay positive for −m ≤ τ < T , for some uniform in m time T .

Lemma 2.4 (The Profile for um). There exists a number Tm ≤ +∞ such that um > 0 on R× [−m,Tm) and
in the cases where Tm < +∞, um ≡ 0 for τ ≥ Tm. In addition, for all τ ∈ [−m,Tm), um(·, t) satisfies the
asymptotic behavior

um(x, τ) = O(ex), as x→ −∞ and um(x, τ) = O(e−x), as x→ +∞. (2.12)

Moreover, the function um(x, τ) is decreasing in τ , for all τ > −m.
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Proof. The first two claims in this lemma follow immediately from well known results for fast-diffusion
equations and the Yamabe flow on Sn, since g = um(·, τ)

4
n−2 gcyl corresponds to a solution of the Yamabe

flow and the behavior (2.12) is equivalent to saying that g can be lifted to a smooth metric on Sn.

We will next show the monotonicity in τ of the solutions um. It follows from (1.8) that the function
w1(x) = vλ(x+ λm+ h) satisfies

w′′1 + wp1 − w1 = v′′λ(x+ λm+ h) + vpλ(x+ λm+ h)− vλ(x+ λm+ h)
= −λ v′λ(x+ λm+ h) < 0

and similarly the function w2(x) = vλ′(−x− λ′m+ h′) satisfies

w′′2 + wp2 − w2 = v′′λ′(−x− λ′m+ h) + vpλ′(−x− λ
′m+ h)− vλ′(−x− λ′m+ h)

= −λ′ v′λ′(−x− λ′m+ h) < 0

since v′λ > 0 for all λ ≥ 1. It follows that fm := min(w1, w2) is a supersolution, namely it satisfies

f ′′m + fpm − fm < 0

in the distributional sense. This implies the function um(x, τ) is decreasing in τ for any τ > −m, x ∈ R.
Hence, the result follows by a simple approximation argument. �

Remark 2.2. Each solution uλ,h satisfies (uλ,h)τ ≤ 0, since (uλ,h)τ = −λ v′λ(x−λt+h) < 0, because v′λ < 0.

Remark 2.3. The inequality (um)τ ≤ 0 implies that the scalar curvature Rm of the corresponding metric
defined by the solution um is nonnegative. Recall that for a solution u of (1.8), R ≥ 0 corresponds to
(up)τ ≤ up.

We will next show that each um is sufficiently close to vλ,λ′,h,h′ in certain sense and this happens uniformly
inm. This will assure that the limit asm→ +∞ is a non-trivial solution of (1.8). We begin with the following
crucial for our purposes estimate which is a consequence of Lemma 2.2.

Proposition 2.1. We have

Qm(τ) :=


R
(vp − upm) ≤ Dλ,λ′,h,h′ edτ (2.13)

for a constant Dλ,λ′,h,h′ > 0 depending only on λ, λ′, h, h′.

Proof. Since um satisfies (1.8), integrating this equation on R readily yields

d

dτ


R
up dx =


R
up dx−


R
u dx.

Here we used that

lim
x±∞

(um)x(x, τ) = 0

which easily follows from (2.12) and the fact that the metric u
4
n−2
m gcyl when lifted to a sphere defines a

smooth metric. If we combine this with (2.9) we obtain

d

dτ


R
(vp − upm) dx ≤


R
(vp − upm) dx−


R
(v − um) dx+ C̄λ,λ′,h,h′ ed τ (2.14)
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with C̄λ,λ′,h,h′ := (γλ + γλ′)Cλ,λ′,h,h′ + 1. Next set wm := v − um and observe that since um ≤ v we have
wm ≥ 0. Since

(vp − upm) = a (v − um), where a := p
 1

0
(s v + (1− s)um)p−1 ds

we may write (2.14) as
d

dτ


R
awm dx = p− 1

p


R
awm dx+ 1

p


(a− p)wm dx+ C̄λ,λ′,h,h′ ed τ + o(edτ ).

Note that, since both v ≤ 1 and um ≤ 1, we have

a− p = p
 1

0
(s v + (1− s)um)p−1 ds− 1


≤ 0.

Hence, using also that wm ≥ 0, we conclude
d

dτ


R
awm dx ≤

p− 1
p


R
awm dx+ C̄λ,λ′,h,h′ ed τ .

Setting

Qm(τ) :=


R
(vp − upm)(·, τ) dx =


R
a (v − um)(·, τ) dx

we obtain
d

dτ
Qm(τ) ≤ p− 1

p
Qm(τ) + C̄λ,λ′,h,h′ ed τ .

Equivalently, if

Q̂m(τ) := e−
(p−1)τ
p Qm(τ)

and µ := d− p−1
p we have

d

dτ
Q̂m(τ) ≤ C̄λ,λ′,h,h′ eµ τ + o(eµτ ).

Next observe that by (2.5) we have d > p−1
p , hence µ > 0. Also, since wm = 0 at τ = −m, we have

Q̂m(−m) = 0. Hence, the above differential inequality yields the bound

Q̂m(τ) ≤ µ−1C̄λ,λ′,h,h′ e
µ τ , τ > −m

from which the bound (2.13) readily follows. �

Proposition 2.2 (Passing to the Limit). After passing to a subsequence, the sequence {um} converges,
uniformly on compact subsets of R× (−∞,+∞), to an ancient solution u = uλ,λ′,h,h′ of (1.8). It is positive,
u > 0, on R × (−∞, Tλ,λ′,h,h′) for some Tλ,λ′,h,h′ , depending only on λ, λ′, h, h′ and the dimension n. In
addition, u(x, τ) is decreasing in τ for all (x, τ) ∈ R× (−∞,+∞) and satisfies conditions (2.12).

Proof. The uniform bound um ≤ v implies that the sequence of solutions {um} is uniformly bounded on
compact subsets of R × (−∞,+∞), hence by standard estimates it is equicontinuous. Hence, passing to a
subsequence it converges to a limit u = uλ,λ′,h,h′ and u(x, τ) is decreasing in τ for all x ∈ R, since the same
holds for each um be the previous lemma.

We will next show that the limit u is nontrivial. Since um(·, τ) ≤ v(·, τ), vp−1 ≤ a ≤ p vp−1 and
v(·, τ) ≤ C(τ) min(ex, e−x), we can pass to the limitm→ +∞ in (2.13) and using the dominated convergence
theorem we obtain the bound

Q(τ) :=


R
â (v − u)(·, τ) dx ≤ Dλ,λ′,h,h′ edτ , (2.15)
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for

â = p
 1

0
(s v + (1− s)u)p−1 ds = v

p − up

v − u
.

Observe that

Q(τ) :=


R
a (v − u)(·, τ) dx =


R
vp(·, τ) dx−


R
up(·, τ) dx.

In particular, this implies for every fixed τ ≪ −1 there exists a point (x, τ), such that x ∈ [x(τ) − 1, x(τ)]
and

0 ≤ v(x, τ)− u(x, τ) ≤ Dλ,λ′,h,h′ edτ .

Recalling that v(x, τ) ≈ 1− Cλeλγλτe−γλ(x+h), whenever x− λτ ≫ 1 and x ∈ [x(τ)− 1, x(τ)], we conclude
that

u(x, τ) ≥ 1− D̄λ,λ′,h,h′ edτ .

This implies that

m(τ) := max
R
u(·, τ) ≥ 1− D̄λ,λ′,h,h′ edτ . (2.16)

On the other hand, using (2.4) we have

u(x, τ) ≤ v(x, τ) ≤ v(x(τ), τ) = 1− Cλ,λ′,h,h′ edτ + o(edτ ).

Hence,

1− D̄λ,λ′,h,h′ edτ ≤ m(τ) ≤ 1− C̄λ,λ′,h,h′ edτ (2.17)

for C̄λ,λ′,h,h′ := Cλ,λ′,h,h′ + 1. This in particular implies that m(τ) > 0 for all τ ≤ τ0 if τ0 ≪ 0. Hence, there
exists a number T = Tλ,λ′,h,h′ such that m(τ) > 0 for all t ≤ Tλ,λ′,h,h′ and we may assume that Tλ,λ′,h,h′
is the maximal such time (note that Tλ,λ′,h,h′ may be equal to +∞). Standard estimates then imply that
u(x, τ) > 0 for all (x, τ) ∈ R× (−∞, Tλ,λ′,h,h′). We also have that u(·, τ) satisfies conditions (2.12). �

Next we show how to distinguish between solutions that we have constructed using different parameters.
More precisely, we have the following result.

Proposition 2.3 (Distinguishing Between Solutions). Let λ, λ′, λ̄, λ̄′ > 1 and (λ, λ′, h, h′) ̸= (λ̄, λ̄′, h̄, h̄′), then
uλ,λ′,h,h′ ̸= uλ̄,λ̄′,h̄,h̄′ .

Proof. We will prove the proposition in two steps.

Step 1. Fix h, h′, h̄, h̄′. If λ, λ′, λ̄, λ̄′ > 1 and (λ, λ′) ̸= (λ̄, λ̄′), then uλ,λ′,h,h′ ̸= uλ̄,λ̄′,h̄,h̄′ .

To prove the claim we argue by contradiction. Assume that (λ, λ′) ̸= (λ̄, λ̄′) and uλ,λ′,h,h′ ≡ uλ̄,λ̄′,h̄,h̄′ . For
simplicity we call this solution u. Without loss of generality we may assume that λ < λ̄. By (2.5) we have

d = γλγλ
′ + (p− 1)
p

= γλ̄γλ̄′ + (p− 1)
p

= d̄

implying γλγλ′ = γλ̄γλ̄′ . If m(τ) := maxR u(·, τ) then it satisfies (2.17). Let xmax(τ) be a point such
that m(τ) = u(xmax(τ), τ). If v, v̄ are the approximating solutions corresponding to uλ,λ′,h,h′ , uλ̄,λ̄′,h̄,h̄′
respectively, then we have u = uλ,λ′,h,h′ ≤ v and u = uλ̄,λ̄′,h̄,h̄′ ≤ v̄, which combined with (2.17) gives that

v(xmax(τ), τ) ≥ 1− C1 e
dτ and v̄(xmax(τ), τ) ≥ 1− C1 e

dτ . (2.18)
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In addition, if x(τ), x̄(τ) denote the maximum points of v(·, τ), v̄(·, τ) respectively, we have

v(xmax(τ), τ) ≤ v(x(τ), τ) ≤ 1− C2 e
dτ and v̄(xmax(τ), τ) ≤ v̄(x̄(τ), τ) ≤ 1− C2 e

dτ . (2.19)

Using the asymptotics (1.14) and the estimates (2.18), (2.19) we conclude that

e−γλ(xmax(τ)−λτ) ≈ e−γλ̄(−xmax(τ)−λ̄τ),

yielding

xmax(τ) = γλ − γλ
′ + (p− 1)
p

τ +O(1) = γλ̄ − γλ̄′ + (p− 1)
p

τ +O(1). (2.20)

This in particular implies that γλ − γλ′ = γλ̄ − γλ̄′ . In addition, by (2.20) and (2.3) we have

xmax(τ) ≈ x(τ) +O(1) = x̄(τ) +O(1).

On the other hand, by (2.13) we have 
R
(vp − up) dx ≤ C1e

dτ

and 
R
(v̄p − up) dx ≤ C2e

dτ .

Recalling that u ≤ v and u ≤ v̄ we conclude that
R
|vp − v̄p| dx ≤ C edτ .

Since x(τ) and x̄(τ) are comparable for τ ≪ −1, without a loss of any generality we may assume x(τ) ≤ x̄(τ).
Then we have  x(τ)

−∞
|vpλ(x+ h− λτ)− vp

λ̄
(x+ h̄− λ̄τ)| dx ≤ Cedτ

implying  x(τ)+h−λτ

−∞
|vpλ(y)− v

p

λ̄
(y + (λ− λ̄)τ + h̄− h)| dy ≤ C edτ .

Using the asymptotics (1.14) and that (λ− λ̄) τ ≫ 1 (since λ < λ̄), the previous inequality gives 2M

M

|e−γλy − e−γλ̄(y+h̄−h+(λ−λ̄)τ)| dy ≤ Cedτ , (2.21)

for a big constant M ≫ 1. Estimate (2.21) holding for any τ ≪ −1 forces λ = λ̄, which concludes the proof
of Step 1.

Step 2. Fix now λ, λ′ > 1. If h, h′, h̄, h̄′ satisfy (h, h′) ̸= (h̄, h̄′), then uλ,λ′,h,h′ ̸= uλ,λ′,h̄,h̄′ .

To prove Step 2 we argue by contradiction. Assume that (h, h′) ̸= (h̄, h̄′) and u := uλ,λ′,h,h′ = uλ,λ′,h̄,h̄′ .
By translating vλ, vλ′ by h̄, h̄′ respectively, we may assume that h̄ = h̄′ = 0 (our proof is not using the
exact choice of vλ, vλ′ so that vλ(0) = vλ′(0) = 1/2). Let v be the approximation of u := uλ,λ′,h,h′ given by
v := min(vλ(x+ h− λτ), vλ′(−x+ h′ − λ′τ)). We observe that

Q(τ) :=


R
a (v − u)(·, τ) dx =


R
vp(·, τ) dx−


R
up(·, τ) dx.
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Hence, the bounds u ≤ v and (2.15) yield
R
vp(·, τ) dx−


R
up(·, τ) dx

 ≤ Cλ,λ′,h,h′ edτ ,
where d is given by (2.5) and depends only on λ, λ′. Similarly, if v̄ := min


vλ(x−λ τ), vλ′(−x−λ′ τ)


is the

approximation of ū := uλ,λ′,h̄,h̄′ with h̄ = h̄′ = 0, then
R
v̄p(·, τ) dx−


R
up(·, τ) dx

 ≤ Cλ,λ′,h̄,h̄′ ed τ .
We conclude that 

R
v̄p(·, τ) dx−


R
v̄p(·, τ) dx

 ≤ C ed τ . (2.22)

We will now show that if (h, h′) ̸= (0, 0), then (2.22) cannot hold leading to a contradiction. To this end,
denote by x(τ) the intersection point between vλ(x + h − λτ) and vλ′(−x + h − λ′τ) and by x̄(τ) the
intersection point between vλ(x− λτ) and vλ′(−x− λ′τ). We have

R
vp(·, τ) dx =

 x(τ)+h

−∞
vpλ(x− λτ) dx+

 +∞

x(τ)−h′
vpλ′(−x− λ

′τ) dy

and similarly 
R
v̄p(·, τ) dx =

 x̄(τ)

−∞
vpλ(x− λτ) dx+

 +∞

x̄(τ)
vpλ′(−x− λ

′τ) dx.

Hence, 
R
v̄p(·, τ) dx−


R
vp(·, τ) dx =

 x̄(τ)

x(τ)+h
vpλ(x− λτ) dx+

 x(τ)−h′

x̄(τ)
vpλ′(−x− λ

′τ) dx.

By (2.3) we have

x̄(τ)− x(τ) = hγλ − h
′γ′λ

γλ + γ′λ
+ o(1)

which implies

x̄(τ)− x(τ) = h− γλ
′ (h′ + h)
γλ + γ′λ

+ o(1) = −h′ + γλ (h′ + h)
γλ + γ′λ

+ o(1). (2.23)

Setting µ := γλ
γλ+γ′

λ
, µ′ := γλ′

γλ+γ′
λ

and combining the above yields
R
v̄p(·, τ) dx−


R
vp(·, τ) dx =

 x(τ)+h−µ′(h+h′)

x(τ)+h
vpλ(x− λτ) dx

+
 x(τ)−h′

x(τ)−h′+µ(h+h′)
vpλ′(−x− λ

′τ) dx+ o(1). (2.24)

For h, h′ and τ ≪ 0 (depending on h, h′) we have vλ(x−λτ) ≥ 1/2 and vλ′(−x−λ′τ) ≥ 1/2 on the intervals
over which those functions are integrated in (2.24). In addition, both integrals on the right hand side of
(2.24) have the same sign. Hence,

R
v̄p(·, τ) dx−


R
vp(·, τ) dx

 ≥ 1
2 (µ+ µ′) (h+ h′) + o(1) = 1

2 |h+ h′|+ o(1).

If h+h′ ̸= 0 this contradicts (2.22) and concludes the proof of the lemma. If h′ = −h then v(x, τ) = v̄(x+h, τ)
for all τ , which means that the solutions um, ūm of (2.10) with initial data v(·,−m), v̄(·,−m) respectively
satisfy um(x, τ) = ūm(x + h, τ) for all τ > −m, hence the same will hold for the limits u, ū. Since u = ū,
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this means that u(x, τ) = u(x+ h, τ) for any x ∈ R. On the other hand, the fact that the solution u defines
a metric that can be lifted to a smooth metric on Sn implies that u(x, τ) = C(τ) ex(1 + o(1)), as x→ −∞
with C(τ) > 0, hence u(x, τ) = u(x + h, τ) must imply that h = 0 which means that (h, h′) = (0, 0) and
contradicts our assumption. The proof of Step 2 is now complete. �

Proof of Theorem 2.1. The proof of the theorem is a direct consequence of Propositions 2.2 and 2.3. �

3. The geometry of merging traveling waves

In this last section we derive the geometric properties of the ancient solution uλ,λ′,h,h′ of Eq. (1.8) on
R × (−∞, Tλ,λ′,h,h′), as constructed in Theorem 2.1. The one parameter family of metrics gλ,λ′,h,h′(τ) :=
u

4
n−2
λ,λ′,h,h′(·, τ) gcyl can be lifted to a smooth one parameter family of metrics on Sn × (−∞, Tλ,λ′,h,h′) which

defines an ancient rotationally symmetric solution of the rescaled Yamabe flow on Sn, equation

∂

∂τ
g = −(R− 1) g. (3.1)

We next prove the following result concerning the behavior of the Riemannian curvature of the metric
gλ,λ′,h,h′(τ) near τ = −∞.

Theorem 3.1. The solution gλ,λ′,h,h′(τ) := u
4
n−2
λ,λ′,h,h′(·, τ) gcyl defines a type I ancient solution to the Yamabe

flow in the sense that the norm of its curvature operator is uniformly bounded, that is for any τ0 < Tλ,λ′,h,h′ ,
we have ∥Rm (gλ,λ′,h,h′)∥ ≤ C for all τ ∈ (−∞, τ0).

Remark 3.1. The statement of Theorem 3.1 exactly means that the unrescaled flow (1.1), whose scaling by
|t| yields to Eq. (3.1), is a type I ancient solution according to Definition 1.1.

Proof. Since our metric is conformally flat, the norm of its curvature operator ∥ Rm∥ can be expressed in
terms of the powers (positive or negative) of the conformal factor, its first and second order derivatives. On
the other hand, the conformal factor satisfies the equation of type (1.8) in the considered parametrization.
Therefore, we see that if we have uniform upper and lower bounds on the conformal factor, by standard
parabolic estimates we get uniform bounds on all its derivatives and therefore the uniform bound on ∥ Rm∥.

Estimate (2.13) will be crucial in proving this theorem, that is we have
R
(vpλ,λ′,h,h′ − u

p
λ,λ′,h,h′) dx ≤ Ce

dτ .

Denote shortly by v := vλ,λ′,h,h′ and by u := uλ,λ′,h,h′ . Since u ≤ v, the previous estimate and the definition
of v := min(uλ,h, uλ′,h′) imply the bound x(τ)

−∞
(upλ,h − u

p) dx ≤ C edτ

where uλ,h = vλ(x − λτ + h) is a traveling wave coming in from the left and x(τ) given by (2.3) denotes
the point where the two traveling waves uλ,h and uλ′,h′ intersect. Let z = x − λτ + h and denote by
U(z, τ) := u(z + λτ − h). If we perform this change of variables in the previous integral estimate we obtain, x̄(τ)

−∞
(vλ(z)p − U(z, τ)p) dz ≤ C edτ (3.2)

where x̄(τ) := x(τ)− λτ + h and U(z, τ) satisfies the equation

Uτ = Uzz + λ (Up)z − U + Up. (3.3)
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We will obtain derivative estimates which hold for

−∞ < z < x̄(τ) + 1
2 , (3.4)

since similar estimates may be obtained in the region x̄(τ)− 1
2 < z < +∞ from the symmetry of our problem.

We go now from cylindrical to polar coordinates via the following coordinate change,

U(z, τ) = û(y, τ) |y|
2
p−1 , r = |y| = e

p−1
2 z (3.5)

where û(y, τ) satisfies the equation

(ûp)τ = α∆û+ β r ûr + γ û, (3.6)

for some constants α > 0 and β, γ. Furthermore, the ancient solution gλ,λ′,h,h′ = û
4
n−2 gRn has positive

scalar curvature R > 0, which is equivalent to

∆Rn û ≤ 0.

By the mean value theorem we have

û(y0, τ) ≥ Cn

B(y0,1)

û(y, τ) dy (3.7)

for all y0 ∈ Rn. Assume first that |y| ≤ 2M for a fixed number M . Then, u ≤ v implies

û ≤ v̂ = vλ(z) |y|−
2
p−1 ≤ C min{1, ez}

|y|
2
p−1

= C
min


1, |y|
2
p−1


|y|

2
p−1

≤ C. (3.8)

Here we have used the estimate vλ(z) ≤ min(1, ez) which follows from the bounds vλ ≤ 1 and (1.14). Since
p > 1, (3.7) and (3.8) imply

û(y0, τ) ≥ C

B(y0,1)

û(y, τ)p dy. (3.9)

On the other hand, after the coordinate change (3.5), estimate (3.2) becomes
B(0,e

p−1
2 x̄(τ))

(v̂pλ − ûp)
|y|n2−1 dy ≤ Ce

dτ ,

where B


0, e
p−1

2 x̄(τ)


is the euclidean ball in Rn of radius e
p−1

2 x̄(τ). Note that for |y0| ≤ 2M , and τ << −1

sufficiently small so that e
p−1

2 x̄(τ) ≫ 1, the previous estimate yields

c


B(y0,1)

(v̂pλ − û
p) dy ≤


B(0,e

p−1
2 x̄(τ))

(v̂pλ − ûp)
|y|n2−1 dy ≤ C e

dτ ,

where c = c(M) is a constant uniform in time. Hence,
B(y0,1)

û(y, τ)p dy ≥

B(y0,1)

v̂λ(y)p dy − Cedτ , |y0| ≤ 2M (3.10)

where C = C(M). Combining (3.9) and (3.10) yields

û(y0, τ) ≥ C

B(y0,1)

v̂λ(y)p dy − C edτ ≥ c > 0

for τ ≤ τ0 sufficiently small and all |y| ≤ 2M . This together with (3.8) imply

c ≤ û(y, τ) ≤ C, τ ≤ τ0, |y| ≤ 2M. (3.11)
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Having (3.11), Eq. (3.6) is a uniformly parabolic equation for (y, τ) ∈ B(0, 2M) × (−∞, τ0), so standard
parabolic estimates applied to Eq. (3.6) imply we have all uniform bounds on the derivatives of û in the region
B(0, 3M

2 )× (−∞,−2 τ0). Since û
4
n−2 is the conformal factor of our metric gλ,λ′,h,h′ in polar coordinates, by

the discussion at the beginning of the proof we have

∥Rm (y, τ)∥ ≤ C, τ ≤ τ0, |y| ≤M

for a uniform constant C. Equivalently, in z coordinates this means

∥Rm (z, τ)∥ ≤ C, τ ≤ τ0, z ≤
2
p− 1 logM. (3.12)

Observe this estimate implies that we have the curvature uniformly bounded in the tip region of our ancient
solution.

Let us now focus on the inner part of our solution that turns out to have the asymptotics of a cylindrical
metric. More precisely, we will assume now that |y| ≥M/2 which according to (3.5) means

z ≥ 2
p− 1 log M2

and also that z ≤ x̄(τ) + 1, since we are interested in deriving estimates in the region (3.4). Recall that the
estimate (2.13) can be rewritten as 

R
â (v − u) dx ≤ C edτ ,

where â = p
 1

0 (sv + (1− s)u)p−1 ds. This implies x(τ)+1

λτ−h+ 2
p−1 log M2

â (vλ(x− λτ + h)− u(x, τ)) dx ≤ C edτ .

Let z = x− λτ + h be the coordinate change in the previous integral. Then, x̄(τ)+1

2
p−1 log M2

a(z, τ) (vλ(z)− U(z, τ)) dz ≤ C edτ (3.13)

where a(z, τ) := â(z+λτ−h, τ). Note that a(z, τ) ≥ vλ(z)p−1 and we may chooseM ≥ 2 so that logM/2 ≥ 0,
hence

1 ≥ a(z, τ)
1
p−1 ≥ vλ(z) ≥

1
2 , z ∈

 2
p− 1 log M2 , x̄(τ)


(3.14)

since vλ(z) increases in z and vλ(0) = 1
2 by our normalization. Set w(z, τ) := vλ(z) − U(z, τ). Then

w ≤ vλ ≤ 1. Hence, (3.13) and (3.14) imply that for any q > 1, x̄(τ)+1

2
p−1 log M2

w(z, τ) dz ≤ Cedτ . (3.15)

On the other hand, since both U(z, τ) and vλ(z) satisfy Eq. (3.3) we get that w(z, τ) satisfies

(aw)τ = wzz + λwz − w + aw

and by (3.14) the equation is uniformly parabolic. Hence, standard parabolic estimates applied to it and
estimate (3.15) yield the Ck bound

∥w∥Ck(Uτ ) ≤ Ckedτ

holding on Uτ :=
 2
p−1 log 3M

4 , x̄(τ)

× (−∞, 2τ0) and τ0 ≪ −1 is sufficiently small. In particular, we have

U(z, τ) ≥ vλ(z)− C edτ ≥ c > 0, for (z, τ) ∈ Uτ .
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This implies the bound

∥Rm(z, τ)∥ ≤ C, τ ≤ 2τ0,
2
p− 1 logM ≤ z ≤ x̄(τ). (3.16)

Finally, estimates (3.12) and (3.16) yield a desired uniform bound on ∥ Rm ∥ for our ancient solution
gλ,λ′,h,h′ for all τ ≤ 2τ0 and all x ≤ x(τ). Recall that for x ≥ x(τ) we get the uniform curvature bound
using the same analysis as above (the only difference is that this time we need to consider the soliton that
is coming in from the right). This finishes the proof of the theorem. �

Remark 3.2. Let uλ,λ′,h,h′ be the ancient solution to (1.8) as in Theorem 2.1. Then, we will next observe
that the metric gλ,λ′,h,h′ := (uλ,λ′,h,h′)

4
n−2 gcyl has nonnegative Ricci curvature. Indeed, recall that

uλ,λ′,h,h′ = limm→+∞ um, where um is the solution of the initial value problem (2.10). It is sufficient to
see that each um has nonnegative Ricci curvature, since then we can pass to the limit m→ +∞. Indeed, we
have seen that the convergence of {um} to uλ,λ′,h,h′ is uniform on compact subsets of R× (∞,+∞) and that
uλ,λ′,h,h′ > 0 on R × (−∞, Tλ,λ′,h,h′), where Tλ,λ′,h,h′ is uniform in m. Standard regularity arguments on
the quasilinear equation (1.8) imply that the convergence is C∞ on compact subsets of R× (∞, Tλ,λ′,h,h′),
from which our claim readily follows.

We will next observe how one may show that each solution gm(·, τ) := um(·, τ) gcyl of (2.10) has
nonnegative Ricci curvature. The initial data of um at τ = −m is vλ,λ′,h,h′(·,−m). We recall that for
every τ , we have defined vλ,λ′,h,h′ by (2.2), namely vλ,λ′,h,h′(·, τ) = min


vλ(x− λτ + h), vλ′(−x− λ′τ + h′)


where vλ, vλ′ are traveling wave solutions of Eq. (1.11). It has been shown in [5] (Section 4, Proposition 4.5)
that both metrics defined via conformal factors vλ, vλ′ respectively, have nonnegative sectional curvatures.

Moreover, it has been observed in [5] (Section 4) that for a given smooth and rotationally symmetric
metric g := v(x) gcyl where gcyl := dx2 + gSn−1 , nonnegative sectional curvatures are equivalent to having

v2x − v vxx ≥ 0 and 4v2 − v2x ≥ 0. (3.17)

Since each for each τ ∈ R, the functions vλ(·, τ), vλ′(·, τ) satisfy (3.17) (up to the dilation performed in
(1.9)), the minimum vλ,λ′,h,h′(·, τ) also satisfies (3.17) (up to the same dilation) in the distributional sense
and it is smooth on R \ {x(τ)}, where x(τ) denotes the point at which vλ(·, τ) and vλ′(·, τ) intersect. One
can then show that there is an approximation {vδλ,λ′,h,h′(·, τ)}, δ ∈ (0, δ0) of vλ,λ′,h,h′(·, τ) each satisfying
(3.17) and such that vδλ,λ′,h,h′(·, τ) → vλ,λ′,h,h′(·, τ), as δ → 0 uniformly on compact subsets in R and also
in C∞ on compact subsets of R \ {x(τ)}.

Let uδm be the solution to (2.10) with initial data vδλ,λ′,h,h′(·,−m) instead of vλ,λ′,h,h′(·,−m). Since
gδm(·,−m) := (vδλ,λ′,h,h′)

4
n−2 (·,−m) gcyl has nonnegative sectional curvatures, it also has nonnegative Ricci

curvature and this is preserved by the Yamabe flow. It follows that gδm(·, τ) := (uδm)
4
n−2 (·, τ) gcyl has

nonnegative curvature and passing to the limit δ → 0, the same holds for gm(·, τ) := (um)
4
n−2 (·, τ) gcyl .

This sketches the proof of the claim about our solutions having nonnegative Ricci curvature.

Proof of Theorem 1.1. Theorem 1.1 follows as a direct consequence of Theorems 2.1 and 3.1. �
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