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Resumen

En este trabajo se presenta el problema del transporte de calor y masa para un sistema
compuesto de dos fases fluidas en un medio poroso, el cual puede ser relevante en
el uso de CO2 como fluido de trabajo en reservorios geotermales. El medio poroso
fue modelado usando una celda Hele-Shaw, la cual es ampliamente usada para la
visualización del transporte de escalares. Los objetivos de este trabajo son (a) investigar
teórica y numéricamente las leyes de escalamiento que gobiernan los procesos de mezcla
en un medio poroso, y (b) visualizar los procesos de transporte usando celdas Hele-Shaw
y avanzadas técnicas de segmentación de imágenes. El modelo derivado es una extensión
de la ecuación de Polubarinova-Kochina, la cual es válida para regímenes de flujos altos
en medios porosos. El transporte de calor y masa en un medio poroso es gobernado por
el número de Nusselt Nuϕ y la tasa de disipación media escalar 〈εϕ〉τ = `mix/L , donde
`mix es la longitud de mezcla y L es la longitud horizontal de la celda . La principal
contribución de este trabajo es la demostración de la existencia de los escalamientos
〈Nuϕ〉τ ∼ Ran(ε)

ϕ y 〈εϕ〉τ ∼ Ram(ε)
ϕ , respectivamente, donde Raϕ es el número de Rayleigh

sujeto a la definición del escalar ϕ , el cual puede ser temperatura o concentración, y
ε es el cociente entre el espaciamiento de la celda y su altura. Ambas cantidades se
relacionan a través del modelo 〈Nuϕ〉τ = Φ(ε2Raϕ,∆)Raϕ 〈εϕ〉τ , donde ∆ contiene
información de los efectos de difusión lateral de mezcla. Esta contribución extiende los
resultados más recientes publicados en la literatura.

Dada la importancia del parámetro adimensional ε en la escala de laboratorio,
se realizó un detallado análisis lineal de la convección termal y la inestabilidad de
Rayleigh-Taylor, incorporando efectos de tensión interfacial ya que el CO2 es un fluido
parcialmente miscible con el agua. Los resultados obtenidos usando métodos asintóticos
corrigen los análisis descritos en la literatura, así como también entregan nuevas evidencias
de que el inicio de la inestabilidad de Rayleigh-Taylor depende completamente de los
efectos interfaciales de la mezcla.

Finalmente, para visualizar el transporte escalar, se realizaron experimentos de
convección termal y mezcla por contraste de densidad. Se usaron técnicas de atenuación
de luz y Schlieren sintético, además de métodos de segmentación de imágenes basados en
principios variacionales, los cuales permitieron obtener interesantes resultados visuales
del proceso de transporte. Se demostró que la aplicación del método optical flow permite
reconstruir el mapa de temperaturas en celdas Hele-Shaw con una mejor resolución de
imagen que el algoritmo PIV digital, obteniendo resultados acordes a lo esperando en
sistemas geotermales sedimentarios. Además, se muestra experimentalmente que el
uso de segmentación multifase es ideal para calcular propiedades físicas del proceso
de mezcla, además de cantidades relacionadas con el transporte escalar, sin conocer a
priori los valores de cantidades físicas tales como la densidad y velocidad de flujo.

i



Abstract

We study heat and mass transport for two-phase fluids in a porous medium, which
has applications for the use of supercritical CO2 in geothermal reservoirs. Commonly,
the porous medium is modeled using a Hele-Shaw cell, which has been used for the
visualization of scalar transport. The main objectives of this work are (a) to investigate,
theoretically and numerically, the scaling laws that governs mixing processes in a porous
medium, and (b) visualize the scalar transport processes using Hele-Shaw cells and
advanced techniques for image segmentation. The mathematical model derived is an
extension of the known Polubarinova-Kochina equation, which is valid for high-flux
regimes in porous media. Heat and mass transfer are governed by the Nusselt number
Nuϕ and the mean scalar dissipation rate 〈εϕ〉τ = `mix/L, where `mix is the mixing
length and L is the width of the cell. The main contribution of this work is the
demonstration of the existence of the scaling laws 〈Nuϕ〉τ ∼ Ran(ε)

ϕ and 〈εϕ〉τ ∼ Ram(ε)
ϕ ,

where Raϕ is the Rayleigh number subject to the scalar ϕ which can be temperature
or concentration, and ε measures the ratio between the cell gap and height. The
Nusselt number and the mean scalar dissipation rate are related by the model 〈Nuϕ〉τ =
Φ(ε2Raϕ,∆)Raϕ 〈εϕ〉τ , where ∆ has information about the effects of lateral difussion
due to the mixture and mechanical dispersion. This contribution extends the more
recent results published in the literature.

On the other hand, we study the importance of the parameter ε in the onset of
convection at laboratory scale and the incorporation of effective interfacial tension to
the model, motivated by the partial solubility of CO2 in water. We perform a detailed
linear analysis of thermal convection and Rayleigh-Taylor instability, where the results
obtained using asymptotic methods provide a correction for the analysis reported in the
literature, as well as give new evidences that the onset of Rayleigh-Taylor instability
depends upon interfacial effects.

Finally, we perform experiments in thermal convection and mixing by density contrast
to visualize scalar transport. We used light attenuation and quantitative Schlieren
techniques, as well as image segmentation methods based on variational principles,
which allow us to obtain interesting visual results of transport processes. We demonstrate
that the application of the optical flow method to the synthetic Schlieren images can
reconstruct the temperature map within Hele-Shaw cells with better image resolution
than the known digital PIV. Furthermore, using the definition for the mean scalar
dissipation, 〈εϕ〉τ = `mix/L , we have demonstrated experimentally that the Chan-Tai
L2-based multiphase segmentation with Isodata initialization is ideal for computing
mixing properties, without knowing a priori the values of physical quantities such as
the density and flow velocity.
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Empezaré con Cervantes y su don Quijote, que desde su mente soñadora y por

momentos lúcida decía:

"Como no estás experimentado en las cosas del mundo, todas las cosas que tienen algo

de dificultad te parecen imposibles. Confía en el tiempo, que suele dar dulces salidas a

muchas amargas dificultades"

Miguel de Cervantes en don Quijote de la Mancha

Para Dominique
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Chapter 1
Introduction

... “sigan sabiendo ustedes que, mucho más temprano que tarde,
de nuevo se abrirán las grandes alamedas por donde pase el hombre libre,

para construir una sociedad mejor”

Salvador Allende Gossens, Septiembre de 1973

What is geothermal energy?

Geothermal energy is a type of renewable energy that can be obtained by the exploitation
of the internal heat of the Earth. This energy produces in the earth’s surface hydrothermal
manifestations such as hot springs, steam vents and mud pools, which appear when
there are an important heat flux through the earth crust due to a permeable rock strata
or reservoir and an adequate natural and/or artificial water recharge in zones near to
the hydrothermal manifestation. In fact, water is the working fluid that transport heat
from the geothermal reservoir to surface in a process known as convection. These factors
make a geothermal system, which can be classified in water-dominant, vapour-dominant
(dry steam) or hot-dry rock systems.

In the literature, the geothermal resource is defined as the amount of geothermal
energy that can be used in economic terms. Depending on the temperature of fluids
within the reservoir, the geothermal resource can be classified as low, mid or high
enthalpy. Due to the heat flux in the earth crust, which has been estimated in 82 mW/m2

(Pollack et al, 1993), there is a change of the temperature of soil with deep expressed
in terms of the normal geothermal gradient, whose average value fluctuates between
25 ◦C/km to 30 ◦C/km (Pollack et al, 1993). However, there are regions with high geothermal
gradients, associated with zones of great seismic and volcanic activity. These are the
regions with the best natural conditions for the geothermal development.

Chile is a seismic and volcanic country, whose geologic activity is controlled by the
subduction process of the Nazca oceanic plate with the South American continental
plate (Lahssen, 1986) and where about 15% of the active volcanoes of the world are on
the chilean andean range. These conditions make that the country has a high potential
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for geothermal power generation. Today, estimates of the geothermal potential of
Chile done by the Petroleum National Company (ENAP) and the Andean Geothermal
Center of Excellence (CEGA) give values that range from 3350 MW to 16000 MW ,
respectively. The last estimation represents more than 90% of the current installed
capacity in the country and it is greater than the entire geothermal installed capacity
in the world, which is about 11200 MW . However, geothermal energy is the more
ignored non-conventional renewable energy and the less known in the country.

Geothermal explorations and studies in Chile
(with contributions of Sofía Otero, from CEGA)

Geological studies in northern and southern regions have allowed a preliminary assessment
of the geothermal potential of Chile at about 16000 MW for at least 50 years of
geothermal fluids with temperatures above 150 ◦C , located less than 1000 m underground.
Yet, paradoxically geothermal energy in Chile has operated almost solely for recreational
purposes, for example, the thermal baths (Lahssen, 1986; Lahssen et al, 2010). Only
in recent years some institutional, business and individuals initiatives have appeared to
exploit the dozens of uses geothermal energy provides.

Geothermal development in Chile is an urgent challenge, as the country requires
local, clean, reliable and long term energy sources. Currently, the country has very
limited fossil resources. Its carbon-based energy matrix depends on imported oil and
gas. Also, its energy matrix is based heavily on hydropower, which has proven to be
unstable sometimes. Chile has faced three periods of significant energy stress during
the past decade. The last one was in 2007/2008, when the cessation of natural gas
imports from Argentina was joined by a drought in the central zone, where hydropower
accounts for more than half of our electricity generation. While Chile has enormous
potential for the production of geothermal power, there are still many barriers to its
development. Many of these limitations have been explored by Reed (2013).

The first geothermal exploration in Chile dates from 1921− 1922, promoted by an
Italian colony in the northern city of Antofagasta, where a technical team of Larderello
drilled two wells 70 m − 80 m deep. Then, between 1968 and 1976 there were a series
of geological, geophysical and geochemical surveys in selected areas of the north of the
country supported by a project agreement between CORFO and the United Nations
Program for Development, which culminated in the exploratory drilling in the area of
El Tatio (Lahssen, 1976; Lahssen et al, 2005), where the reservoir temperature was
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estimated in 270◦C (Lahssen and Trujillo, 1975). Currently, El Tatio is considered as
the biggest geothermal field of the Southern Hemisphere (Glennon and Pfaff, 2003).

Northern Chile was selected for the first geothermal studies. From that time onwards,
the University of Chile and the National Service of Geology and Mining (SERNAGEOMIN)
conducted various studies, of which follows much of the current knowledge we have on
the country’s geothermal potential. The areas studied with geothermal activity are in
the Pliocene Holocene volcanic stretch, which is extended along the andean range. So,
the origins of the geothermal activity in the zone is due to magmatism. Unfortunately,
the programs in pursuit of geothermal development in Chile were paralyzed by 1979,
and until 1995 the University of Chile was the main institution dedicated to research
in this area (Lahssen et al, 2010, 2015). Today, CEGA is the only institution entirely
dedicated to study the geothermal systems in the andean zone.

In the following, we will discuss the hydrologic and energetic problems in northern
Chile, which are the main motivations for this thesis.

1.1 Engineering motivation

1.1.1 Hydrologic problems in northern Chile

Northern Chile, a vast and arid place that has an important quaternary volcanism
and intense seismic activity, has been for many years the principal economic zone of
Chile due to the exploitation of mineral resources. Northern Chile has the largest
copper mineralization around the world and also has some of the large-scale mineral
deposits. Due to the desertic characteristic of its territory, big cities of this place are
located in coastal zones. In geothermal terms, about 20% of the chilean hydrothermal
manifestations are in the andean mountain range, which are characterized by very hot
fluids. Some of these manifestations are in the Mamiña thermal baths in the Tarapacá
Region, Puritama baths in the Antofagasta Region, and Juncalito thermal baths in the
Atacama Region, to name a few.

In hydrologic terms, most basins of this zone are endorheic and arheic types. The
only two exorheic basins of this zone are Lluta and Loa rivers, whose source of alimentation
depends on snow availability. The great Tamarugal aquifer is extended practically in
the entire Tarapacá Region, which is a powerful quaternary alluvial fill. Further south,
between Loa and Copiapó rivers, there is the Atacama desert, the driest place on earth.
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The aquifers of this zone are characterized by its water quality and the limited natural
recharge, which are completely unfavourable for exploitation (E. Brown and J. Saldivia,
2000).

The climatic system that allows the existence of the Atacama desert and the rainy
scarcity in northern Chile is the “South Pacific High”, a subtropical anticyclone located
in the southeast Pacific of Chile. Practically, the Tarapacá, Antofagasta and Atacama
Regions are heavily influenced by this semi-permanent high pressure area in the ocean.
However, in the chilean andean plateau, in each summer of the south hemisphere
there is a climatic phenomenon known as the “bolivian winter”. This phenomenon
is characterized by orographic rainy caused by moist air masses provenients from the
Amazonas, where the formation of cumuliform clouds in the andean region can generate
heavy rains with a high spatial variability in endorheic high elevation basins. The
amount of precipitation due to this phenomenon is about 300 mm/year in zones close to
Lauca National Park and about 150 mm/year in San Pedro de Atacama (E. Brown and
J. Saldivia, 2000; MOP-DGA, 2011).

In the endorheic high elevation basins, the aquifers are quaternary formations of
volcanic rocks with a high secondary permeability. In basins at lower height, where can
be observed salt flats, the aquifers are non-consolidated sediments of alluvial-fluvial
origin. In general, these aquifers have a good productivity and the water quality is
acceptable while fluids do not reach the salt flats (IDI-Chile, 2011). Thereby, the
groundwater resources are used for domestic and mining processes, which currently
have overexploitation. Considering the domestic use, in 2009 it has been estimated that
water supply per person in northern Chile was 854 m3/person/year in Tarapacá Region,
52 m3/person/year in Antofagasta Region and 208 m3/person/year in Atacama Region,
which is undoubtedly lower than 2000 m3/person/year requiered for human sustainable
development (MOP-Chile, 2013). On the other hand, water consumption by mining in
Chile represented about 9% of the national water requirements.

To maintain the energetic productivity of a geothermal reservoir for a long time, it is
necessary to reinject water directly to the reservoir. This reinjection allows the control
and andjusment of the pressure lost by the extraction of water within the reservoir. Due
to water scarcity in northern Chile, the lack of information about groundwater amount
in high elevation basins and the current and future demand of water resources, where
mining can grow its demand in 200% in the next 25 years (MOP-Chile, 2013), water
recharge in geothermal reservoirs can be a problem for the geothermal development in
northern Chile, being an interesting topic of research for the engineering sciences.
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1.1.2 CO2 emissions in northern Chile

Due to water scarcity for energy generation in hydroelectric power plants, historically
northern Chile have used the combustion of fossil resources to satisfy its energetic needs.
In this zone, mining and thermoelectric power plants have an important contribution
to the chilean CO2 emissions. For example, in 2008 , mining activity emitted about 17
million ton of CO2 to the atmosphere (Pimentel, 2009), where about 24% was due to
mining operations and 76% was due to the electric energy used, which was generated
from combustion of fossil resources in thermoelectric power plants in coastal zones.
This amount of CO2 emissions was about 30% of the total of greenhouse gases released
by chilean industrial production during 2008 .

Currently, the energy matrix of SING is dominated by fossil combustion. In 2015 ,
it represented about 94% of the electric power generation of northern Chile with an
installed capacity of 4390 MW and energy generation of about 16530 GWh , where about
42% was generated from carbon combustion, 44% by natural gas and 8% by diesel oil
(ME-Chile, 2015). In 2010 , the chilean thermoelectric power plants that used carbon
for its operations emitted between 0.95 kg to 1.40 kg of CO2 per kWh generated, which is
twice the generated emission by combustion of other sources, such as diesel and natural
gas (ING-Chile, 2011). Thereby, attending to the current environmental demands for
the diversification of the energy matrix, which looks to reduce the greenhouse gas
emissions to the atmosphere, an interesting scientific and technological challenge is
proposed, which motivates this thesis. Brown (2000) and Randolph and Saar (2011a)
proposed the novel idea of use CO2 captured from contaminant sources as working fluid
in geothermal power plants, replacing water. This innovating idea can be attractive for
northern Chile, where the scarcity of water and CO2 contaminantion due to thermoelectric
and mining operations threaten not only the geothermal energy development, but also
the local environment.

1.2 Physical motivation

The aim of the enhanced geothermal systems is to exploit economically the geothermal
resources in zones where the factors that allow the ocurrence of a geothermal system
are not optimal. Brown (2000) proposed the use of supercritical CO2 as working fluid
instead of water in geothermal systems due to its physicochemical properties in reservoir
conditions, which can be favourable for the operations of the geothermal power plants.
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Some of these properties detailed by Brown (2000), Pruess (2006) and Magliocco et al
(2011) are

• The expansivity of CO2 can generate big differences between the cold fluid injected
and the hot fluid extracted. This feature would generate strong buoyant forces
which could reduce the energy consumption used in bombs for fluid circulation.

• The smaller viscosity of supercritical CO2 , in comparison to water, would allow
to inject within the reservoir greater amounts of CO2 with less costs.

• Supercritical CO2 would be a solvent less effective for mineralized rocks, which
could eliminate some issues such as silica dissolution and precipitation in water
dominated geothermal systems. The slow kinetics of mineral-fluid reactions of
dry supercritical CO2 (Oelkers et al, 2008) can reduce the failures in equipments.

• In zones with water scarcity, the hot dry rock systems can be used as enhanced
geothermal systems if supercritical CO2 is used as working fluid for hydraulic
fracturing and heat transport.

In spite of these favourable features, CO2 in reservoir conditions has a smaller specific
heat than water. However, the heat transport can be compensated by the viscosity of
CO2 because the high flux amounts that would be injected and extracted from the
injection/production wells could enhance the fluid displacements inside the reservoir.

The supercritical CO2 injection has been used in the last fourty years by oil companies
with the aim to enhance the oil recovery from reservoirs. Currently, the capture of CO2

and its storage in geologic formations onshore and offshore is considered as one of the
most promissing solutions to reduce the release of greenhouse gases to the atmosphere
(Holloway, 1997; Benson et al, 2006; Orr, 2009). CO2 is less dense than water, so the
CO2 stored underground tends to move upward until achieve the surface again and
a possible CO2 leakage would be dangerous for the life in near zones to the leakage.
To prevent these hazards, the upward motion of CO2 can be controlled by injecting
the gas in geological formations that have a caprock in its upper boundary, so the gas
can be confined underground by a long time. These storage mechanism is called the
stratigraphic confinement (Bachu et al, 1994). One of the most recognized projects that
use the capture and storage technology is the Sleipner project in the Northern Sea in
Norway, which since 1996 stores 1 Mton of CO2 per year (Audigane et al, 2007).
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Holloway (1997) identified three types of reservoirs where CO2 can be stored in
subsurface, which are: (a) empty oil and gas reservoirs, (b) unexploitable carbon
reservoirs and (c) saline aquifers. From these reservoirs, the saline aquifers offer more
advantages than the others because they have a greater volumetric capacity and are
more abundant. After the injection, within the reservoir some physicochemical processes
alter the composition of CO2 and the underground fluids. These processes occur
in different geologic time scales and they correspond to other storage mechanisms.
In addition to the stratigraphic confinement, there is the solubility trapping (Teng
et al, 1997; Linderberg and Wessel-Berg, 1997; Ennis-King and Paterson, 2003), where
supercritical CO2 begins to mix with the aquifer fluids, generating a vertical downward
motion that enhances the mass transfer of diluted CO2 within the reservoir. Other
storage mechanisms can be seen in Fig. 1.2.1, where the spatial scale features of the
different confinement options are discussed. In general, multiscale problems are a big
challenge for porous media modeling.

Currently, the study of CO2 dissolution in deep saline aquifers and its vertical
transport are an interesting an active research topic (Riaz et al, 2006; Audigane et al,
2007; Neufeld et al, 2010; Golding et al, 2011; Gasda et al, 2012; Nordbotten and Celia,
2011; Gray et al, 2012; Celia et al, 2015). In relation to the Brown’s proposal, Randolph
and Saar (2011b) mentioned that supercritical CO2 can be used not only as working
fluid for heat transport in geothermal reservoirs, but also for solubility confinement
in the same reservoir. Therefore, they proposed the carbon dioxide geothermal plume
technology. Basically, the proposal indicates that CO2 must be captured from contaminant
sources and then it must be injected directly into a geothermal reservoir with a caprock
in its upper boundary. CO2 is partially miscible with reservoir fluids (Pruess and
Garcia, 2002), so the principal effect is the displacement of these fluids. Finally, within
the reservoir, supercritical CO2 will be the dominant fluid-phase. A big amount of CO2

will be stored, while in the production wells, a small amount of hot CO2 is extracted
for energy generation. This process is similar to the classical operations of geothermal
power plants with water, so the remanent warm CO2, which was used in turbines
for energy extraction, is transported to the cooling towers and then the cold CO2 is
injected again to the reservoir, closing the process. Therefore, to study the factibility
of this technology, it is necessary to understand the physical processes of heat and mass
transport of CO2 underground. Physically, the study of the mass transport of diluted
CO2 for different geothermal conditions, i.e., for different temperatures and heat flux
conditions from boundaries, acquires real importance and it is a line of research that has
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Geology 
Macroscale

Microfluid problem!
Pore scale

Fluid dynamics problem!
Fingering phenomenon 
from Darcy scale to Macroscale 
(Multiscale problem)

Storage Mechanisms

Figure 1.2.1: Storage mechanisms asociated to the injection of supercritical CO2 in geologic formations.
The first mechanism in importance is the stratigraphic confinement, which is a macroscale problem studied
by geologist. The second mechanism is the solubility trapping, where CO2 is mix with reservoir fluids,
enhancing the CO2 transport within the reservoir through multiscale fingering phenomenon. This mechanism
is one of the most studied problems in porous media and fluid dynamics. The third mechanism is the residual
trapping, where CO2 is confined in the porous matrix. This phenomenon occurs at the pore scale. Finally,
the mineral trapping is the last result of the physicochemical processes, where CO2 is mineralized in the
porous matrix. After many thousands of years, the product of the mineral carbonation is the caliza stone.
Retrieved March 30 , 2016 , from http://www.co2captureproject.org/co2_trapping.html

not yet been developed. Because we are interested in study the use of CO2 as working
fluid in geothermal reservoirs instead of water, the purposes of this research are the
development of a mathematical model valid in the laboratory scale, the implementation
of numerical simulations to study the scaling laws of the problem and the realization
of experiments at laboratory scale, with the aim to understand the physical processes
that governs the fluid mixing in homogeneous porous media. This ideal model allow us
to extent our model to a most realistic case in the future. We refer the work of Huppert
and Neufeld (2014) for further information.
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1.3 Open questions and contributions of this work

Although some advances have been achieved in the understanding of the physical
processes inside a geothermal reservoir, many questions related with the mixing of
two-fluid phases in porous media have not yet been solved. One of the most important
questions for the carbon dioxide geothermal technology is to study how can affect the
geothermal conditions in the CO2 mass transport. This question is very complicated
to answer in the mathematical physics context because fluid mixing in porous media
has a multiscale nature, from pore scale to macroscale, so a theoretical understanding
of the processes that governs the scalar transport is insufficient. We also need to
run laboratory scale experiments, with the aim to visualize these processes, as far as
possible, as well as to corroborate theoretical predictions. In particular, in this work
we want to give some answers to the following scientific questions:

1. How can the Darcy model used to model the fluid dynamics be affected by inertial
corrections?

2. Can heat transport be affected by the scalar mechanical dispersion?

3. Which are the physical conditions that support the nonlinear scaling between the
Rayleigh number and the mean scalar dissipation rate?

4. What is the importance of boundary conditions in the onset of convection?

Thereby, the main work objectives of the research presented in this manuscript are:

• To derive from first principles, a new model consistent with the Hele-Shaw geometry,
where inertial corrections and mechanical dispersion can appear naturally.

• To study using advanced mathematical tools and numerical simulations, the
scaling laws from the mathematical model derived before.

• Run laboratory scale experiments using analogue fluids that represent the fluid
dynamics expected in geothermal reservoirs, with the aim to visualize the scalar
transport processes through advanced image analysis methods.

We hope that the reader can find all the mathematical tools, image analysis methods
and experimental techniques needed for its own research interests related with fluid
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mixing in porous media, as well as to enrich its knowledge from this interdisciplinary
work. We have organized this manuscript in three parts, which are related with the
three main work objectives that have been developed during the last three years of
research.

In Part I we review the literature. Furthermore, we give some definitions for the
mathematical notation used in this work. In Part II we review the theory of multiphase
fluid flow and heat transport in porous media to model the fluid dynamics inside a
Hele-Shaw cell. In Chapter 5, we present novel nonlinear equations for homogeneous
porous medium. We derives these equations using regular perturbation theory and the
Navier-Stokes model, which includes some classical nonlinear terms in porous media
modeling and new destabilizing terms. Some specific discussion about the importance
of inertial terms and dimensional analysis of mixing properties is also included. In
this discussion and analysis, we present a new hyphotesis about the scaling laws that
govern the mixing of two-fluid phases. Chapter 6 is devoted to a more mathematical
problem that is the linear analysis of non-autonomous differential equations, which are
very complicated to analyze using standard modal methods. We demonstrate that
this drawback can be fixed using the known dominant mode method. The purpose of
the application of advanced mathematical tools to the linearized equations is finding
analytical solutions that capture the fluid dynamics in the onset of both thermal and
density-driven convection, for the case of constant viscosity. We correct the linear
analysis reported in literature for thermal convection, as well as we give new insight
of the problem when including the effective interfacial tension for the Rayleigh-Taylor
instability driven by density contrast, showing a notable stabilizing effect.

Part III shows the main results of numerical simulations performed for the so-called
Rayleigh-Benard convection in porous media. In Chapter 7, we study the mathematical
model derived in Chapter 5 for a particular case of a single fluid with constant viscosity.
A total of 52 simulations were performed for two different cases of the Hele-Shaw
geometry. From these results, we compute the global heat transport coefficient and
the mean scalar dissipation rate as function of the Rayleigh number, obtaining new
results for the scaling laws. This is the most important contribution of this work.

In Part IV, we present and discuss experimental results. About 70% of the total
research time was used to design, implement and execute laboratory scale experiments
that enable the visualization of transport processes within a porous medium. In
Chapter 8, we present the optical density visualization methods that were used in the
first stages of this research. In Chapter 9, we show the image processing methods used to
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analyze quantitatively the images obtained from the experiments. An interdisciplinary
approach was achieved in this chapter, because we introduce powerful mathematical
techniques in image analysis as an interesting tool for experimental fluid dynamics,
which is novel for both applied mathematics and experimental physics. In Chapter 10,
we apply the TV -L1 optical flow method and the Synthetic Schlieren technique to
analyze thermal convection in an homogeneous porous media with applications to
geothermal sedimentary basins. The main contribution of this interdisciplinary work
is the enhancement of the image resolution obtained by this experimental technique,
as well as the visualization of unsteady rolls which are characteristic in geothermal
convection. Finally, in Chapter 11, we present a summary of the most significant
results, as well a discussion of the future work.

The appendices contain additional information of the models reported in literature,
computations and numerical methods used in this work. Fig. 1.3.1 shows a schematic
picture that summarizes the research done. In this figure, the theoretical framework
corresponds to the work presented in Part II. The governing equations are used to
perform direct numerical simulations of heat transfer in porous media. The linear
analysis for thermal convection confirms the numerical results obtained for the onset
of convection. Nonlinear simulations corresponds to the work presented in Part III,
where we obtain new scalings for the high-Ra regime. Finally, visualization and image
analysis corresponds to the work presented in Part IV, where the Chan-Tai method and
the TV -L1 optical flow are applied to the experimental images. In the case of thermal
convection, the results obtained from Synthetic Schlieren and the numerical simulations
are compared, obtaining a good agreement between them.
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Chapter 2
Dimensional quantities and notation

In this work, we will use the physical quantities presented in Tables 2.1 and 2.2. The
definition of the dimensionless numbers used in the following chapters arise from the
ratio of two or more quantities presented in these tables. With regard to the notation
used in this work, a time-dependent scalar function defined by f : Rn+1 → R will be
denoted as f = f(x, t) . On the other hand, a time-dependent vectorial function defined
by F : Rn+1 → Rn will be denoted as F = F(x, t) .

For time-dependent scalar functions defined by f : [L,H] ⊂ R2 → R and denoted
as f = f(x⊥, t) , with x⊥ = xx̂+ zẑ , the average in the x-direction is computed as

f̄(z, t) = 1
L

∫ L

0
f(x⊥, t) dx . (2.0.1)

For the same scalar function, the domain average is defined as

〈f〉(t) = 1
H

∫ H

0
f̄(z, t) dz . (2.0.2)

These definitions also apply for time-dependent vectorial functions. Eqns. (2.0.1)
and (2.0.2) will be useful in the derivation of global models of mixtures presented in
Chapter 5, Section 5.4 on page 60 and Chapter 7, Section 7.2 on page 96.

For time-dependent scalar functions defined by f : [L, b,H] ⊂ R3 → R and denoted
as f = f(x, t) , with x = xx̂+ yŷ + zẑ , the average in the y-direction is computed as

{f}(x⊥, t) = 1
b

∫ b

0
f(x, t) dy . (2.0.3)

Eqn. (2.0.3) will be useful in the derivation of the two-dimensional Hele-Shaw model
from the Navier-Stokes equation (For further information, see Chapter 5, Section 5.2
on page 50). In this work, the subscript t is related with thermal convection, while
the subscript s is related with mixing convection. For example, along the thesis, we
will work with a dimensionless quantity called the Rayleigh number Raϕ , where the
scalar ϕ can be temperature T or concentration Sw . When ϕ = T , Rat is the thermal
Rayleigh number. On the other hand, if ϕ = Sw , Ras is the solutal Rayleigh number.

A more sophisticated notation is used to compute heat and mass transfer quantiites,
the Nusselt number (defined in Eqn. (4.1.10) on page 32) and the mean scalar dissipation
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CHAPTER 2. DIMENSIONAL QUANTITIES AND NOTATION

Table 2.1. Notation and dimensions of physical quantities used in this work

Physical quantity Notation Dimension

Position x L

Time t T

Velocity u LT−1

Gravitational acceleration g LT−2

Fluid density ρ ML−3

Ambient fluid density ρa ML−3

Density contrast ∆ρ ML−3

Dynamic viscosity µ ML−1T−1

Ambient dynamic viscosity µa ML−1T−1

Kinematic viscosity ν = µ/ρ L2T−1

Ambient kinematic viscosity νa = µa/ρa L2T−1

Pressure p ML−1T−2

Modified pressure p̃ ML−1T−2

Molecular diffusivity κs L2T−1

Thermal diffusivity κt L2T−1

Water mass fraction (concentration) Sw 1
Temperature T τ

Effective interfacial tension φ M−1L7T−2

Macroscale interfacial tension γφ MT−2

Hele-Shaw cell height H L

Hele-Shaw cell width L L

Hele-Shaw cell gap b L

Permeability of Hele-Shaw cells K = b2/12 L2
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CHAPTER 2. DIMENSIONAL QUANTITIES AND NOTATION

Table 2.2. Scalings and dimensionless numbers used in this work

Physical quantity Notation Dimension

Characteristic convective velocity uc = ∆ρ g b2/µa LT−1

Characteristic convective time tc = H/uc T

Characteristic pressure ps = µa ucH/b
2 ML−1T−2

Porous media convective velocity ūc = ∆ρ g K/µa LT−1

Porous media convective time t̄c = H/ūc T

Porous media characteristic pressure p̄s = µa ūcH/K ML−1T−2

Dimensionless numbers
Anisotrophy ratio ε =

√
K/H

Prandtl number Pr = νa/κt

Schmidt number (Prandtl for mass transfer) Sc = νa/κs

Thermal Rayleigh number Rat = ūcH/κt

Solutal Rayleigh number Ras = ūcH/κs

Thermal Peclet number Pet = εRat
Solutal Peclet number Pes = εRas
Reynolds number Re = Rat Pr−1

rate (defined in Eqn. (4.1.13) on page 33). The Nusselt number Nuϕ , where ϕ is either
temperature or concentration, can be computed by two methods:

• The time-average method, which is used in theoretical computations

〈Nuϕ〉τ = 1
τ

∫ τ0+τ

τ0
Nuϕ(t) dt ; τ0 � 1 . (2.0.4)

• The geometrical method, which is used in experimental computations. We denote
this quantity as Nu(g)

ϕ .

Both definitions must satisfy the equivalence relation Nu(g)
ϕ = 〈Nuϕ〉τ , which enables

to compare the experimental and theoretical results. Similarly, the mean scalar dissipation
rate εϕ can also be computed by the same methods:

• The time-average method, which is used in theoretical computations. In this case,

17



CHAPTER 2. DIMENSIONAL QUANTITIES AND NOTATION

εϕ must be previously averaged over the domain

〈εϕ〉τ = 1
τ

∫ τ0+τ

τ0
〈εϕ〉(t) dt ; τ0 � 1 . (2.0.5)

• The geometrical method, which is used in experimental computations. We denote
this quantity as 〈εϕ〉(g) .

As well as for the Nusselt number, both definitions must satisfy the equivalence
relation 〈εϕ〉(g) = 〈εϕ〉τ . All the physical quantities, scalings and mathematical notations
showed in this chapter will be given again in each chapter and section of this work, if
it so required.
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Chapter 3
Physics of fluid mixtures

3.1 Dimensionless concentration quantities

Consider an ideal solution made with N different species. The basic concentration
measurements used in this work are

• Mass concentration or density

ρk = mk

Vtotal
= mass of the kth specie

volume of solution . (3.1.1)

• Molar concentration

ck = nk
Vtotal

= number of moles of the kth specie
volume of solution . (3.1.2)

The dimensionless quantities related with the definitions given in Eqns. (3.1.1)
and (3.1.2) are

• Mass fraction (percentage by weight, wt%)

Sk = mk

mtotal

= ρk
ρtotal

; mtotal =
N∑
k=1

mk ; ρtotal =
N∑
k=1

ρk . (3.1.3)

• Molar fraction (percentage by moles, mol%)

xk = nk
ntotal

= ck
ctotal

; ntotal =
N∑
k=1

nk = ctotal Vtotal ; ctotal =
N∑
k=1

ck . (3.1.4)

• Volume fraction (percentage by volume, vol%)

υk = φ s̄k = Vk
Vtotal

, (3.1.5)

where φ is the porosity and s̄k is the saturation of the kth specie.
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CHAPTER 3. PHYSICS OF FLUID MIXTURES

From these definitions, we obtain the normalization relations ∑k Sk = 1 , ∑k xk = 1
and ∑k υk = 1 . Also, we define the mean molar mass M̄ as

M̄ = ρtotal
ctotal

, (3.1.6)

and the molar mass of the kth specie as

Mk = mk

nk
. (3.1.7)

Using this definition, from Eqn. (3.1.7) we have xkMk = mk/ntotal . Next, from
Eqns. (3.1.4) and (3.1.6) we obtain ntotal = mtotal/M̄ . Therefore, using the expressions
derived before, the relation between the mass fraction Sk and the molar fraction xk of
the kth specie is

Sk = xkMk

M̄
= xkMk∑

k xkMk

. (3.1.8)

Eqn. (3.1.8) will be useful in Section 3.3.

3.2 Two-fluid miscible model

For a mixture made with two miscible fluids in isothermal conditions, the density can
be written as

ρ(x, t) = ρA SA(x, t) + ρB SB(x, t) , (3.2.1)

where SA(x, t) is the mass fraction of the fluid A as function of position x and time t
and SB(x, t) = 1−SA(x, t) is the mass fraction of the fluid B . Moreover, ρA and ρB are
the densities of fluids A and B , respectively, for a fixed temperature. The microscopic
continuity equation is

∂ρ

∂t
+∇ · (ρu) = 0 . (3.2.2)

Therefore, replacing Eqn. (3.2.1) in Eqn. (3.2.2) leads to the equation

∂(ρASA)
∂t

+∇ · (ρASAu) = −
∂(ρBSB)

∂t
+∇ · (ρBSBu)

 . (3.2.3)
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CHAPTER 3. PHYSICS OF FLUID MIXTURES

The introduction of diffusion is essential to relate appropiately the mixing behavior
at the molecular scale between fluid A and fluid B . For fluid A, Eqn. (3.2.3) can be
written as

∂(ρASA)
∂t

+∇ · (ρASAu) = ∇ ·
(
κ ρA∇SA

)
, (3.2.4)

where κ is the molecular diffusion between both fluids. The solution of Eqn. (3.2.4)
determines the mass fraction SB(x, t) . In general, the density can be written as

ρ(x, t) = ρ0 + ρ̄(z) + ρ′(x, t) , (3.2.5)

where ρ0 is a reference density, ρ̄(z) is an initial vertical density distribution and ρ′ is
a perturbation. When ρ′ � ρ0 and ρ̄ � ρ0 , the Oberbeck-Boussinesq approximation
can be used. For this case, Eqn. (3.2.2) is converted to the incompressibility equation

∇ · u = 0 . (3.2.6)

and assuming κ as constant, Eqn. (3.2.4) is converted to the scalar transport equation

∂SA
∂t

+ u · ∇SA = κ∇2SA . (3.2.7)

Hereinafter, the mass fraction SA will be called concentration. To recover the density,
it is important to have a constitutive model ρ = ρ(SA) . In Section 3.3, we present the
model for aqueous solutions of propylene-glycol, which is used to model CO2 dissolution
in geologic reservoirs through analogue experiments in the laboratory scale.

3.3 Model for aqueous solutions of propylene-glycol

Aqueous solutions of propylene-glycol (PPG) have become in a very popular working
fluid for the representation of the solubility trapping of supercritical CO2 in saline
aquifers (Backhaus et al, 2011; Ehyaei, 2014) (For further information, see Chapter 4,
Section 4.2 on page 34). In this section, we present PPG+water mixture as an example
of a two-fluid system where the theory presented in Section 3.1 and 3.2 can be applied.
The relation between the mass fraction (concentration) and molar fraction for aqueous
solutions of PPG is given by Eqn. (3.1.8)

Sw = xwMw

xwMw + (1− xw)Mppg

, (3.3.1)
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CHAPTER 3. PHYSICS OF FLUID MIXTURES

where Sw is the water concentration in the mixture, xw is the molar fraction of water,
Mw = 18.01528 g/mol is the molar mass of water and Mppg = 76.09 g/mol is the molar
mass of PPG. When Sw = 1 we have pure water, while for Sw = 0 we have PPG.
Eqn. (3.3.1) is useful when mixture data is given in terms of the molar fraction.

Sun and Teja (2004) performed measurements of the density, viscosity and thermal
conductivity of PPG+water at temperatures ranging from 290 K to 460 K and molar
fractions ranging from 25 mol% glycol to 100 mol% glycol. The density model obtained
by Sun and Teja is

ρ(Sw) =
3∑
i=1

3∑
j=1

Aij (1− Sw)i−1 T j , (3.3.2)

and the viscosity model is

log µ(xw, T ) = Sppg log µppg(T ) + Sw log µw(T )+ (3.3.3)(
log µppg(T )− log µw(T )

)
Sppg Sw

(
B4 +B5 Sppg +B6 T +B7 S

2
ppg

)
,

log µppg(T ) = B1 +B2 T +B3 T
2 , (3.3.4)

log µw(T ) = B8 + B9

T +B10
, (3.3.5)

where [ρ] = kg/m3 and [µ] = cP if [T ] = ◦C . Also, Sppg +Sw = 1 . The values of Aij and
Bk parameters are given in Table 3.1.

On the other hand, Khattab et al (2012) reported measurements of density, viscosity,
surface tension and molar volume of PPG+water mixtures at temperatures ranging from
293 K to 323 K. The Jouyban-Acree model was used for mathematical correlation of
the density and viscosity, which are given by the equations

log ρ(xw, T ) = xppg log ρppg(T ) + xw log ρw(T )+ (3.3.6)

J0

xppg xw
T

+ J1

xppg xw (xppg − xw)
T

+ J2

xppg xw (xppg − xw)2

T

 ,

log ρppg(T ) = J3 + J4

T
, (3.3.7)
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CHAPTER 3. PHYSICS OF FLUID MIXTURES

log ρw(T ) = J5 + J6

T
+ J7

T 2 , (3.3.8)

log µ(xw, T ) = xppg log µppg(T ) + xw log µw(T ) +K0

xppg xw
T

+K1

xppg xw (xppg − xw)
T

 ,
(3.3.9)

where xppg + xw = 1 , [ρ] = kg/m3 and [T ] = K. The values of Ji and Ki parameters are
given in Table 3.1. Fig. 3.3.1(a) and Fig. 3.3.1(b) show the application of the models
presented in Eqns. (3.3.2) and (3.3.6), which are compared with the experimental data.

a

c

b

d

Figure 3.3.1: Models of density for aqueous solutions of PPG. Fig.(a) shows the application of the model
presented in Eqn. (3.3.2) to the experimental data reported by Sun and Teja (2004), for different molar
concentrations of the mixture. Fig.(b) shows the application of the model presented in Eqns. (3.3.2)
and (3.3.6) to the experimental data reported by Jouyban (Khattab et al, 2012). Figs.(c) and (d) show
the application of Eqn. (3.3.10) to the experimental data reported by Sun and Teja (2004) and Jouyban
(Khattab et al, 2012)
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CHAPTER 3. PHYSICS OF FLUID MIXTURES

The density model of Sun and Teja fits with good agreement the experimental
data presented in Fig. 3.3.1(a). However, its prediction for fixed temperature cases
presented in Fig. 3.3.1(b) shows a notable departure from experimental values obtained
by Khattab et al (2012). The Jouyban-Acree model given in Eqn. (3.3.6) solves this
issue, but this model have a strange behavior for Sw < 0.2 . We cannot consider
the Jouyban-Acree model as a good physical model of the mixture because of this
strange behavior. The physical model of ρ(T, Sw) must be a monotonic curve with a
unique local/global maximum when T is constant, while for Sw it must be a monotonic
decreasing function with temperature.

For this reason, we model the experimental data using the following empirical
expressions

ρ(T, Sw) =
3∑
i=0

4∑
j=0

pij

1− µt T
σt T

i Sw − µs
σs

j , (3.3.10)

log µ(T, xw) =
3∑
i=0

4∑
j=0

rij
xjw
T i

, (3.3.11)

where [ρ] = kg/m3 and [µ] = cP if [T ] = K . Also, µt = 3.183× 10−3 , σt = 2.336× 10−4 ,
µs = 4.756× 10−1 and σs = 3.56× 10−1 . The values of pij and rij parameters are given
in Table 3.1.

b

a

Figure 3.3.2: Model of viscosity for aqueous solutions of PPG. Figs.(a) and (b) show the application of
Eqn. (3.3.11) to the experimental data reported by Sun and Teja (2004) and Jouyban (Khattab et al, 2012)
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CHAPTER 3. PHYSICS OF FLUID MIXTURES

Fig. 3.3.1(c), Fig. 3.3.1(d) and Fig. 3.3.2 show the application of Eqns. (3.3.10)
and (3.3.11) to the experimental data reported by Sun and Teja (2004) and Khattab
et al (2012), where it is clear the good behavior of the fit in comparison with the
models reported in the literature. Some important information can be obtained after the
discussion of the modeling given here. In isothermal conditions (see Fig. 3.3.1(d)), it is
possible to assume that Boussinesq approximation is applicable in the range Sw ≤ S(m)

w ,
where ρ(S(m)

w ) = ρmax . If we write the density as ρ = ρa + ρ′ , with ρa = ρ(Sw = 0) , we
have ρ′/ρa ∼ 0.01 . For this case, we can approximate Eqn. (3.3.10) as

ρ(c) = ρa + ∆ρ c ; ∆ρ = ρmax − ρa ; c = Sw

S
(m)
w

, (3.3.12)

where ρa and ρmax are functions of the temperature. Eqn. (3.3.12) is widely used in
fixed interface systems (Riaz et al, 2006; Pau et al, 2010) (See Chapter 4, Section 4.3
on page 43 for additional information). Anyway, in the interval 0 ≤ Sw ≤ 1 the
total density difference is ∆ρ ∼ 44 kg/m3 and therefore ρ′/ρa ∼ 0.04 , so the Boussinesq
approximation is still valid. For isoconcentration conditions (see Fig. 3.3.1(c)), the
density can be approximated as

ρ(T ) = ρa + ρ′ = ρa + ∆ρ
 T − T0

Tf − T0

 , (3.3.13)

where ρ′/ρa ∼ 0.07 . For this case, the Boussinesq approximation is more discutible.
Eqn. (3.3.13) is widely used in thermal convection in porous media (Otero et al, 2004;
Hewitt et al, 2012).

For dynamic viscosity in isothermal conditions (see Fig. 3.3.2(b)), in the range
0.2 ≤ Sw ≤ 1 we can see that the experimental data and model are practically linear
in the logaritmic scale, so Eqn. (3.3.11) can be approximated as

µ(c) = µa exp(Rc) ; c = Sw − S(0)
w

1− S(0)
w

with S(0)
w = 0.2 , (3.3.14)

where R is the mobility ratio. For viscous fingering phenomena in porous media,
Eqn. (3.3.14) is the main model used as constitutive equation (Jha et al, 2011a,b,
2013; Pramanik and Mishra, 2015)
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Chapter 4
Convective phenomena in porous media

The first experimental studies about steady and unsteady convection in homogeneous
porous media were done by J. Elder (Elder, 1967a,b). In these works, thermal convection
was generated by heating the below part of a Hele-Shaw cell, which represents a good
approximation of an homogeneous porous medium with a permeability coefficient given
by K = b2/12 , where b is the gap of the cell (Hele-Shaw, 1898). The topics of study
addressed in these works were related with the formation of cell patterns, as well as
boundary and mass discharge effects. From this pionnering studies, natural convection
in homogeneous porous media has received much attention by researchers (Hartline and
Lister, 1977; Caltagirone, 1980; Kvernvold and Tyvand, 1981; Simmons and Narayan,
1997; Schoofs et al, 1999; Cherkaoui and Wilcock, 2001; Nagamo et al, 2002; Otero
et al, 2004; Babushkin and Demin, 2006; Nield and Bejan, 2006; Hewitt et al, 2012;
Cooper et al, 2014). However, the study of the same processes in heterogeneous porous
media have received little attention (Schincariol et al, 1997). These studies concluded
that the results obtained in homogeneous porous media cannot be extrapolated to
the heterogeneous cases. Therefore, the stability criteria found by Elder for thermal
convection could not be applicable for convective geothermal systems.

In their work, Prasad and Simmons (2003) studied the Elder’s problem using numerical
simulations in an heterogeneous porous media, concluding that the anisotrophy of the
permeability distribution has important consequences in the onset and decay of unstable
patterns.

A similar problem, in the mathematical sense, is the confinement of supercritical
CO2 in geologic reservoirs which is characterized by a time dependent initial base
state that governs the dynamics of the diffusive boundary layer between the CO2 gas
phase and the reservoir fluids (brine). The solubility of CO2 in water under reservoir
conditions was studied by Enick and Klara (1990), where the Krichevsfcy-llinskaya
equation was used to model the system. When CO2 is injected to deeps of about 1 km,
a small amount is dissolved in brine (Van der Meer, 1992), increasing the density of the
fluid mixture. One of the first studies published in literature regarding the importance
of the increase of the density with applications to the geologic sequestration was done by
Weir et al (1996). In this work, the simulator TOUGH2 was used to model the injection
of 100 kg/s of CO2 for 10 years into an aquifer to 3 km deep, with the aim to evaluate
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the long-term storage prospects. The main conclusions of this work were (a) some
gas may escape to the surface, which depends on the permeability structure above the
injection point, and (b) in the most favourable case, all CO2 is dissolved in brine and the
resulting dense fluid settles in the aquifer over severeal thousand years. In his doctoral
work, J. García (Pruess and Garcia, 2002; Garcia, 2003) showed that the mixing of
CO2 with brine can increase the fluid density about 2% to 3% . He argued that the
CO2 dependency in the fluid density is often ignored, because the salinity can increase
up to 20% the fluid density. However, the fluid density has a linear dependency with
CO2 concentration, which induces an instability that triggers a multiscale convective
phenomenon known as solubility trapping of CO2 in geological formations (Ennis-King
and Paterson, 2003). Later, many studies reported in the literature were focused in
determine the time of the onset of convection and the growth of the dominant convective
modes, once that the diffusive boundary layer has achieved a critical thick (Ben et al,
2002; Ennis-King and Paterson, 2005; Riaz et al, 2006; Rapaka et al, 2008).

Another storage mechanism, the residual trapping, was modeled by Golding et al
(2011), which includes the effect of capillary forces. The authors argued that the
residual trapping is fundamental to sequester CO2 permanently in geological formations
and they conclude that this confinement mechanism is optimized if there are capillary
bands in the formation.

In the literature, the injection of supercritical CO2 in reservoirs at high pressures and
temperatures has received little attention. In their work, Linderberg and Wessel-Berg
(1997) evaluated the conditions of existence of a vertical flux in a porous medium
with thermal stresses and diluted CO2 , which is important for the estimation of the
total storage capacity of CO2 in aquifers. Experimental studies of CO2-rock interaction
in geothermal conditions was reported by Ueda et al (2005), with the aim to study
dissolution and precipitation phenomena, including calcite extraction from rocks that
might occur during CO2 storage into geothermal reservoirs. The study of the enhancement
of CO2 mass transfer into the reservoir brane, at high pressures and temperatures, was
done by Yang and Gu (2006). To interpret their results, they introduced an effective
diffusivity term, which was two times larger than the molecular diffusion coeficient of
CO2 in brine. A similar work done by Farajzadeh et al (2007) uses surfactant solutions
to enhance the CO2 mass transfer. Next, Farajzadeh et al (2009) showed experimentally
that the CO2 mass transfer rate across the interface is much faster than that predicted
by Fickian diffusion. Although these efforts to understand the mass transfer processes,
visualization of the mixing in such thermodynamical conditions is very difficult. In
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the literature, many analogue experiments that employ working fluids that represent
the fluid dynamics expected in geothermal reservoirs have been reported (Cherkaoui
and Wilcock, 2001; Kneafsey and Pruess, 2009; Neufeld et al, 2010; Backhaus et al,
2011; MacMinn et al, 2012; MacMinn and Juanes, 2013; Slim et al, 2013), as well as
high-resolution numerical simulations (Otero et al, 2004; Riaz et al, 2006; Pau et al,
2010; Hidalgo et al, 2012; Hewitt et al, 2012; Szulczewski et al, 2013; Hewitt et al,
2013).

In the following, we show the basic theory used in porous media and some analogue
experiments implemented to visualize the convective processes.

4.1 Mathematical theory

We begin this section with the discussion of the work of Riaz et al (2006) regarding the
onset of convection. They modeled the dissolution of supercritical CO2 in brine using
the Darcy equation coupled with the advection-diffusion equation for scalar transport

∇ · u = 0 , (4.1.1)
µf K

−1 u = −∇p+ ρf gẑ , (4.1.2)

φ
∂ϕ

∂t
+ u · ∇ϕ = φκϕ∇2ϕ , (4.1.3)

where K is the permeability, u = ux̂ + wẑ is the averaged Darcy velocity, p is the
pressure, ϕ is the transported scalar, φ is the porosity, κϕ is the molecular diffusivity, g
is the gravitational acceleration, µf is the dynamic viscosity and ρf = ρa + ∆ρϕ is the
density, with ρa the density reference and ∆ρ the maximum density contrast. In their
work, Riaz et al used the variables ϕ = Sc and µf = µa , where Sc is the concentration
of CO2 in the fluid and µa is a constant viscosity reference.

The initial conditions of the problem are u(x, t = 0) = 0 and Sc(x, t = 0) = 0 ,
while the boundary conditions are w = 0 in z = 0 and z = H , Sc = 1 in z = 0 and
ẑ · ∇Sc = 0 in z = H , where H is the height of the domain shown in Fig. 4.1.1. To
nondimensionalize Eqns. (4.1.1) to (4.1.3), Riaz et al used the transformations x′ =
x/H , u′ = u/uc , p′ = p/pc and t′ = t/tc , where

uc = ∆ρgK
µa

; pc = ∆ρgH ; tc = φH

uc
; td = H2

κs
; Ras = td

tc
= ∆ρgKH

φµaκs
.
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g

Sc = 1

rSc · ẑ = 0

Figure 4.1.1: Schematic picture that shows
the solubility confinement of CO2 in a simple
geometry. The CO2 gas-phase begins to
accumulate along the interface. Next, it is
dissolved slowly in brine and creates a boundary
layer more dense than brine. The unstable
fluid configuration produces a vertical convection
process, which enhance CO2 mass transport
within the domain (Riaz et al, 2006). This figure
is an example of the canonical model presented
in Chapter 5, Section 5.4 on page 61

Here, the important parameter is the Rayleigh number Ras . Finally, the dimensionless
porous media equations given by Eqns. (4.1.1) to (4.1.3) are written as

∇′ · u′ = 0 , (4.1.4)
u′ = −∇p′ + Sc ẑ , (4.1.5)

∂Sc
∂t′

+ u′ · ∇′Sc = 1
Ras
∇′2Sc , (4.1.6)

with boundary conditions w = 0 in z = 0 and z = 1 . As we shown in Chapter 5,
Section 5.4 on page 58, Eqns. (4.1.4) to (4.1.6) are special cases of the Hele-Shaw
model derived in this work.

Next, using perturbative methods and extending the vertical dimension H → ∞ ,
Riaz et al proposed the following expansions for the transverse velocity and concentration

w′(x′, t′) = 0 + ŵ(ξ, t′)eikx′ ; Sc(x′, t′) = s0(ξ) + ŝ(ξ, t′)eikx′ ,

where s0(ξ) = 1− erf(ξ) is the base state, with ξ = z′
√
Ras/4t′ the autosimilar variable

of the problem. The base state is obtained solving the equation ∂s0/∂t
′ = κs∇′2s0 with

boundary conditions s0(z′ = 0) = 1 and s0(z → ∞) = 0 . The linearized Eqns. (4.1.4)
to (4.1.6) are written as
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Ras
4t′

∂2

∂ξ2 − k
2

ŵ = −k2ŝ , (4.1.7)

∂ŝ

∂t′
− 1
t′

1
4
∂2

∂ξ2 + ξ

2
∂

∂ξ
− k2 t′

Ras

ŝ =
√
Ras
πt′

e−ξ
2
ŵ , (4.1.8)

with boundary conditions ŵ = 0 and ŝ = 0 in ξ = 0 and ξ → ∞ . Riaz et al proposed
a modal expansion of the type ŝ(ξ, t′) = ∑∞

n=1An(t′)ψn(ξ) , where the eigenfunctions
ψn(ξ) satisfy the equation Lψn = λnψn = −n e−ξ2Hn(ξ) , being L = 1/4 ∂ξξ + ξ/2 ∂ξ
the differential operator which eigenfunctions are the Hermite polynomials Hn with
weight function e−ξ2 (Robinson, 1976). Considering only the term n = 1 in the modal
expansion, the solution of Eqns. (4.1.4) to (4.1.6) allow us to obtain the growth rate by
solving the non-autonomous equation

dA1

dt′
= σ(t′, k)A1 ; σ = − 1

t′
− k2

Ras
+ k√

π
F (t′, k) , (4.1.9)

where F (t′, k) is a function solved numerically. This methodology is known as the
dominant mode solution. In Chapter 6, Section 6.3 on page 79, we have used this
method to determine the effects of include both inertial and dispersive effects in the
governing equations.

The comparison between the growth rate σ and the growth of the diffusive layer
σdif is also important. Historically, the first approach to this type of problems was
given by the quasi-steady-state approximation (QSSA), which is valid when σ � σdif .
However, Riaz et al showed that QSSA is not valid when the diffusive boundary layer
grows fast, but it gives accurate results for long times, when the base state changes
slowly (Riaz and Meiburg, 2003). Furthermore, in the onset of convection, QSSA is
no longer valid (Gresho and Sani, 1971). Riaz et al defined the critical time τc and
the critical wavenumber kc as the solutions of the system of equations σ = 0 and
∂σ/∂k = 0 . This procedure allows to find the scaling law τc = 146Ra−1

s , which is valid
when

√
4t′/Ras � 1 .

The numerical works done by Otero et al (2004) and Hewitt et al (2012) are
also interesting to discusse. Both works are related with the known Elder’s problem
or Rayleigh-Benard convection in porous media. To model the problem, they used
Eqns. (4.1.1) to (4.1.3) assuming that ϕ = T and the constitutive equation for density
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ρf = ρa − (∆ρ/∆T ) (T − Ta) . The main objective of these works is to compute the
heat transport through the Nusselt number Nu, defined as

Rat

hN
u

t
i ⌧

Figure 4.1.2: Scaling behaviour of
〈Nut〉τ = 〈Nut〉τ(Rat) (Hewitt et al,
2012), which is compared with heat
transport of some stable rolls reported in
literature (Palm et al, 1972; Otero et al,
2004)

Nut = −∂T̄
∂z′

∣∣∣∣
z′=0

; T̄ (z′) = 1
L′

∫ L′

0
T (x′) dx′ ; L′ = L

H
. (4.1.10)

To compute the scaling law for heat transport, they performed a temporal average of
Nut values, which will be denoted as 〈Nut〉τ (See Eqn. (2.0.4) on page 17 for additional
information). In the high-Rayleigh regime Rat > 1350 , where Rat = ucH/κt =
∆ρ g K H/µa κt is the thermal Rayleigh number, Hewitt et al show that the system
exhibits a predominantly vertical exchange flow, where 〈Nut〉τ ∼ Rat asymptotically.
In particular, for the values of Rat considered, they proposed a nonlinear scaling law
of the form 〈Nut〉τ ∼ Ra0.95±0.01

t . Fig. 4.1.2 shows the scaling behaviour of 〈Nut〉τ
obtained by Hewitt et al, which is compared with heat transport of some stable rolls
reported in the literature. In Chapter 7, Section 7.2 on page 96, we show that heat
transport scaling has an important dependency with the Hele-Shaw geometry through
the relation 〈Nut〉τ ∼ Ran(ε)

t , where n ∼ 0.95 when ε� 1 .
The origin of the relation 〈Nut〉τ ∼ Rat can be obtained from the scaling analysis of

the convective cell pattern shown in Fig. 4.1.3. From Eqn. (4.1.2), que can define the
Darcian velocity scale as ūc = ∆ρ g K/µa . From Eqn. (4.1.3), comparing the scales of
the vertical gradient of the enthalpy and the lateral thermal diffusion between the two
branches in the bulk, we can obtain the expression

w
∂T

∂z
∼ κt

∂2T

∂x2 =⇒ ūc∆T
H

= κt∆T
L2
c

. (4.1.11)
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Figure 4.1.3: The origin
of the geometrical relation
Nu(g)

t ∼ Rat from the
scaling analysis of the
convective cell pattern

On the other hand, from Eqn. (4.1.3) the comparison between the vertical enthalpy
flux through the core and the vertical thermal conductive flux through the boundary
layer allow us to compute the scale of the thermal boundary layer δH

∫
Ω
w
∂T

∂z
dV ∼

∫
Ω

∂2T

∂z2 dV =⇒ ūc Lc ∆T ∼ κt Lc
∆T
δH

. (4.1.12)

The geometrical Nusselt number can be defined as Nu(g)
t = H/δH . Using the

scaling relations defined before, we obtain Nu(g)
t = ūcH/κt = Rat . In Chapter 5,

Section 5.4 on page 60, we show that the Hele-Shaw geometry affects this scaling
relation by means of the introduction of the geometrical mean scalar dissipation rate
〈εt〉(g). Using dimensional analysis, we noted that the scaling law can be written as
Nu(g)

t = 〈Nut〉τ ∼ ΦRat 〈εt〉(g) , where Φ is a function to be determined experimentally.
Regarding the problem of density-driven convection by fluid mixtures, in the literature

(Pope, 2011; Jha et al, 2011a; Hidalgo et al, 2012; Pramanik and Mishra, 2015) the mean
scalar dissipation rate is obtained from Eqn. (4.1.6) and it is defined as

〈εs〉 = 1
Ras
〈||∇Sc||2〉 ; 〈f〉 = 1

L′

∫ 1

0

∫ L′

0
f(x′) dx′ dz′ (4.1.13)

However, the works of Hidalgo et al (2012) and Jenny et al (2014) show that the
time-averaged mean scalar dissipation rate 〈εs〉τ is independent of Ras (See Eqn. (2.0.5)
on page 18 for additional information). For thermal convection, this result also applies.
In Section 5.4 on page 60, we show that the mean scalar dissipation has a correction

33



CHAPTER 4. CONVECTIVE PHENOMENA IN POROUS MEDIA

of the type 〈ε(ε)
ϕ 〉 = 〈εϕ〉+ O(ε2) , where ε is a measure of the geometry features of the

Hele-Shaw model and ϕ is either temperature or concentration. Therefore, we obtain
the relation 〈ε(ε)

ϕ 〉τ ∼ Ram(ε)
ϕ , in contrast with the results reported in the literature.

4.2 Laboratory experiments

From the experimental physics, in the literature there are interesting results of the
visualization of fluid mixing using Hele-Shaw cells. In their work, Kneafsey and Pruess
(2009) obtained images of CO2 dissolution process in water under standard conditions
of temperature and pressure. Fig. 4.2.1 shows the results obtained in these experiments.

Figure 4.2.1: Images of the convection
of CO2 dissolved in deionized water under
standard conditions of temperature and
pressure. In t = 12 min, we observe
the onset of convection in the diffusive
boundary layer, while in t = 72 min
the convective process is fully developed.
Figure from Kneafsey and Pruess (2009)

The experimental setup used by Kneafsey and Pruess (2009) consisted in the building
of Hele-Shaw cells using thin glass plates, which were separated by graphite shims of
thickness similar to a paper sheet. The authors noted that pure water has a pH of
about 5.6 , while pure water in equilibrium with CO2 to 1 atm has a pH of about 3.8 .
To visualize the concentration of dissolved CO2 in water, they used the acid-base colour
indicator bromocresol green, which changes with pH from blue (pH > 5.6) to yellow (pH
< 3.8). The bromocresol was diluted with water, in a ratio of 1 : 30 , which later was
introduced in the Hele-Shaw cell through a long and thin stainless pipe. CO2 gas-phase
was introduced using a thin stainless pipe between the glass plates of the cell with a
flux of tens of milliliters per minute, enough to produce small burbles when pipe is
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introduced in water. Kneafsey and Pruess (2009) noted that CO2 gas-phase is more
dense than air, so air is displaced when CO2 is injected in the upper boundary of the
cell1 . Then, CO2 is dissolved in water by molecular diffusion and later it is transported
within the cell by convection.

In their procedure, Kneafsey and Pruess (2009) noted that the cell was illuminated
behind using a light table, obtaining digital 8-bit RGB images. To quantify their
results, the authors computed the mixing area, which was defined as the ratio between
the obscure area of the images (see Fig. 4.2.1) and the total area of the cell, assuming
that the mixing area is saturated with CO2 .

Small scale convection

CO2 inlet tube

Water with indicator

Ce
ll s

ca
le

 c
on

ve
ct

io
n

b = 0.7 mm

L = 25.4 cm

H
=

30
.5

cm

Figure 4.2.2: Experimental setup used by
Kneafsey and Pruess (Kneafsey and Pruess,
2009)

The authors observed that for different setups and experimental runs, density-driven
convection enhance CO2 mass transport in comparison with pure diffusion. They noted
that these results are expected for cases where the solutal Rayleigh number Ras is high
(Ras > 104). Some undesirable effects, which corresponds to systematic failures in
the experimental setup, were discussed. In particular, large-scale cell convection was
observed due to cell heating by illumination (see Fig. 4.2.2).

1 The molar mass of CO2 is 44 g/mol, while the molar mass of air is 29 g/mol
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Figure 4.2.3: Experimental images of CO2/MEG dissolution in a saturated porous medium and numerical
simulations obtained by Neufeld et al. Fig.(a) is a non processed experimental image, which shows the
convection of MEG with 63 wt% of ethylene-glycol (blue color) in a porous medium of 1.4 cm×40 cm×80 cm
with Ras = 5.9×105 . The intensity of the tracer allows to make a concentration map (Fig.(b)). Figs. (b),
(c) and (d) show concentration maps taken at 10 min, 40 min and 70 min . Figs.(f), (g) and (h) shows the
concentration maps obtained from numerical simulations with Ras = 2.0 × 104 . Finally, Figs.(e) and (i)
are the average of concentration maps in the horizontal direction. Figure from Neufeld et al (2010)

On the other hand, Neufeld et al (2010) presented an analogue experiment, which
models the convection of CO2 in a reservoir using methanol and ethylene-glycol (MEG)
solutions with pure water in cells filled with sand of different permeabilities and porosities.
The dimensions of the cell were 1.4 cm× 40 cm× 80 cm . Fig. 4.2.3 shows experimental
images obtained in the experiment and some numerical simulations done for comparison.
Neufeld et al (2010) observed that the interfacial vertical motion can give a direct
measurement of the convective flux Fc = φui∆c , where φ is the porosity, ui is the
vertical interfacial velocity and ∆c is the difference of concentration by weight of MEG
in pure water. The left image of Fig. 4.2.5 shows the constitutive relation between the
density and MEG concentration, where ∆c and ∆ρ are defined graphically. In their
experiments, ui was constant and independent of finger positions. This observation
indicates that Fc is constant and therefore it only depends on Ras = ūcH/φκs , where
H is the deep of the reservoir, κs is the molecular diffusivity and ūc = ∆ρgK/µ is
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the Darcy velocity defined in terms of the permeability K , maximum density contrast
∆ρ , gravitational acceleration g and dynamic viscosity µ . These experiments allowed
to obtain correlations between the geometrical Nusselt number for mass transfer Nu(g)

s

(or Sherwood number) and Ras in the high-Rayleigh regime. For the low-Rayleigh
regime, the authors have used numerical simulations of Eqns. (4.1.4) to (4.1.6), which
supports the experimental observation of vertical motion of the interface, as we can
see in Fig. 4.2.3. The Nusselt number for mass transfer Nu(g)

s = Fc/(φκs ∆c/H) is
the ratio between the convective and diffusive mass fluxes. Therefore, the scaling law
Nu(g)

s ∼ Ra0.84±0.02
s was found by Neufeld et al (2010) (see Fig. 4.2.4).

Figure 4.2.4: Sherwood number Sh (Nusselt
for mass transfer) as function of Ras . The
results from numerical simulations are shown
in black, while experimental results are shown
in white (Neufeld et al, 2010). The model
Nu(g)

s ∼ Ra0.81±0.03
s is obtained correlating

both numerical and experimental data with
Ras
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Figure 4.2.5: Fig.(a) shows the constitutive relation between the density and MEG concentration. Fig.(b)
shows a schematic physical picture of the far field approximation, where long-lived plumes are developed.
Figure from Neufeld et al (2010)
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For high-Rayleigh convection in porous media, Howard (1964) proposed the linear
scaling Nu(g)

s ∼ Ras , which is based on the assumption that the convective flux is
independent of the deep of the reservoir and therefore it is determined only by the
stability of the diffusive boundary layer in the interface. However, Neufeld et al (2010)
noted that for thermal convection in porous media there are also nonlinear scalings.
To explain the physical origins of the scaling Nu(g)

s ∼ Ra0.84±0.02
s , the authors used

the right image of Fig. 4.2.5 and a dimensional analysis similiar to those presented in
Eqns. (4.1.11) and (4.1.12). In Fig. 4.2.5(b) there are five physical quantities of interest,
which are the velocity of upwelling plumes wu ∼ ūc , the velocity of downwelling plumes
wd , the width of fresh upwelling plumes l , the lateral velocity in the diffusive boundary
layer u , the lateral concentration gradient scale ∆cr and the ratio λ = ∆c/∆cr > 1
which scales nonlinearly with Ras . In the far field approximation, where we have
long-lived plumes, the effect of ∆cr in plumes is the decrease of the velocity wd ∼ ūc/λ .
Also, as the upwelling fluid approaches the interface, the relation u ∼ wu is attained.
Therefore, comparing the scales of the upwelling enthalpy gradient and the lateral
thermal diffusion between the two branches, we can obtain the expression

w
∂c

∂z
∼ κs

∂2c

∂x2 =⇒ wu
∆c
H

= κs
∆cr
l2

. (4.2.1)

On the other hand, from Eqn. (4.1.3) the comparison between the vertical enthalpy
flux through the core and the vertical thermal conductive flux through the boundary
layer of height δ allow us to obtain the expression

∫
Ω
w
∂T

∂z
dV ∼

∫
Ω

∂2T

∂z2 dV =⇒ wd l∆c ∼ κs l
∆c
δ
. (4.2.2)

Inside the diffusive boundary layer, the height δ can be estimated using the relation l ∼
u τd , where τd = δ2/κs is the diffusive time scale. Therefore, we obtain the expression

δ2 ∼ κs l/u ∼ κs l/wu . (4.2.3)

Combining Eqns. (4.2.1) to (4.2.3), Neufeld et al (2010) obtained the scaling relation
λ ∼ Ra1/5

s . Finally, the convective flux is estimated as Fc = wd ∆c ∼ uc ∆c/λ and
therefore the Nusselt number is Nu(g)

s = Ras/λ ∼ Ra0.8
s . The lateral diffusion explains

with good agreement the nonlinear scaling observed for the Nusselt number, so an
interesting problem is to show if this relation is an universal law for mass transfer scaling
in the Darcian regime. It is worth noting again that Hidalgo et al (2012) show that the
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nonlinear scaling of mass transfer displayed in Fig. 4.2.4 must be reflected in the mean
scalar dissipation defined in Eqn. (4.1.13) . However, in the Darcian high-Ras regime,
Hidalgo et al (2012) and Jenny et al (2014) show that the mean scalar dissipation rate
does not depend of Ras and therefore the dissolution flux (and subsequent mixing) is
constant and independent of the Rayleigh number, i.e., 〈Nus〉τ ∼ Ras , which is also a
result obtained by earlier works that forcing a fixed flat dissolution interface known as
the canonical model (Pau et al, 2010; Hewitt et al, 2013). Therefore, there is a clear
contradiction between Neufeld’s experiment and theory that motivates the theoretical
framework of this thesis. Hereinafter, this problem of two-fluid mixing will be called
the analogue model.

Figure 4.2.6: Experimental studies of Backhaus et al (2011). Fig.(a) shows the experimental setup.
Figs.(b) to (d) show an image sequence of mixing convection obtained by optical shadowgraphy. Figure
from Backhaus et al (2011)

Backhaus et al (2011) studied experimentally the same mixing problem using deionized
water with propylene-glycol (PPG). They used an experimental setup based on a
Hele-Shaw cell made with two acrylic plates of thickness Lp = 1.2 cm, which were
separated by stainless shims of thickness that varies from b = 0.25 mm to b = 0.48 mm.
The width available for the fluid was L = 7.6 cm and the initial height of the denser
fluid had a variation from H = 1.25 cm to H = 5.0 cm . The cell was divided in an
upper and lower parts through an aluminium shim of thickness 7.6µm which was retired
horizontally to allow the mixing. They noted that the small perturbations that arises
when the aluminium shim is retired do not affect the onset and growth of plumes.
Water (ρw ∼ 1.0 g/cm3) is less dense than PPG (ρppg ∼ 1.035 g/cm3), but the mixing of
both fluids has a density greater than PPG for some values of the water concentration
Sw . For example, for Sw = 0.3 we have ρ = 1.044 g/cm3 and ∆ρ = 0.009 g/cm3 relative to
PPG (For further information, see Chapter 3, Section 3.3 on page 21). This is enough
to trigger a Rayleigh-Taylor instability in the two-fluid system.
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Backhaus et al (2011) visualized the mixing convection using optical shadowgraphy.
Fig. 4.2.6 shows the evolution of plumes in time. The authors explained that the
diffusive boundary layer becomes dense and the vertical convection overcomes the lateral
diffusion, triggering an instability in the interface of both fluids. Also, they justified
the use of the two dimensional Darcy model for their dimensional analysis because the
Reynolds number of experiments was very small. The amount of water mixed was
determined from the measurement of the mixing area A between the initial interface
and the mid part of the subsequent diffusive interface. The results show that after an
initial time, the mixing area increases linearly with time, which indicates a constant
mass transfer. This observation was also obtained by Neufeld et al (2010). The Nusselt
number for mass transfer was defined by Backhaus et al (2011) as

Figure 4.2.7: Experimental results of the work of Backhaus et al (2011). The left image shows the
dimensionless mixture area A/LH as function of the dimensionless time t∗ (triangles for K = 0.77 ×
10−4 cm2 and Ras = 8700 , squares for Ras = 17400 and circles for Ras = 34800). The right image shows
the correlation between the Nusselt and Rayleigh numbers for different values of H (circles for H = 1.27 cm,
triangles for H = 2.54 cm and squares for H = 5.08 cm) (Backhaus et al, 2011)

Nu(g)
s = ṁ

ρ (κs/H) bL = Ras
d

dt∗

(
A

LH

)
; Ras = ∆ρ g K H

µκs
; K = b2

12 , (4.2.4)

where ṁ is the convective mass transfer, L is the width and H is the height. The
molecular diffusion κs , density ρ and dynamic viscosity µ were determined from the
properties of mixture at Sw = 0.3 .

From the right image of Fig. 4.2.7, Backhaus et al (2011) obtained the scaling law
Nu(g)

s ∼ Ra0.76±0.06
s , which is different of the scaling obtained by Neufeld et al (2010) but
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close to the theoretical prediction Nu(g)
s ∼ Ra0.8

s . It is worth noting that the experiments
of Neufeld et al and Backhaus et al were performed in different geometries. Neufeld’s
experiment used a saturated porous matrix of low porosity φ and permeability K, so
dispersion effects can be negligible, but the experiment of Backhaus was performed in a
Hele-Shaw cell, where the porosity φ = 1 , the permeability is very high compared with
a real porous medium and the ratio ε =

√
K/H fluctuates from 1×10−3 to 6×10−3 , so

dispersion could be relevant. In Chapter 5, Section 5.4 on page 57, we show that ε is an
important parameter in Hele-Shaw models. Therefore, Howard’s scaling assumption is
invalid for the analogue model, which is a more realistic representation of the convective
dissolution of CO2 in geologic formations.

R
a
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=
3.

1
R
a
⇤

=
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5

Figure 4.2.8: Experimental setup used by Cherkaoui and Wilcock and experimental images obtained for
different Rayleigh numbers, where Ra∗ = Rat/Racr with Racr = 29.7 . Figure from Cherkaoui and Wilcock
(2001)
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Figure 4.2.9: Nusselt number as function of
the Rayleigh number. Data interpolation from
the onset of convection gives the scaling law
Nu(g)

t ∼ Ra0.81
t . Above Rat ∼ 200 , the

scaling law obtained is Nu(g)
t ∼ Ra0.91

t . For this
case, Racr ∼ 29.7 . Figure from Cherkaoui and
Wilcock (2001)

On the other hand, Cherkaoui and Wilcock (2001) performed thermal convection
experiments in an Hele-Shaw cell, which consisted in two acrylic plates of thickness
Lp = 12.7 mm, height H = 50 mm and width L = 800 mm, separated by an aluminium
shim of thickness b = 1.4 mm . A thin nichrome wire, connected to the electric power,
gave a constant heat flux to the aluminium shim, which was the bottom base of the cell.
The upper part of the cell was open to the atmosphere (see Fig. 4.2.8). A thin layer of
thermocromic crystals of thickness da = 125µm was used to visualize the convection.
These crystals are sensible with temperature changes in the range of 20 ◦C to 25 ◦C ,
so its use was only for visualization purposes. The measurement of temperature was
done using thermistors. Unlike mixing convection, in thermal convection the observed
exponent in the scaling 〈Nut〉τ ∼ Raγt is somewhat lower than the predicted by Howard
(Elder, 1967a; Koster and Muller, 1982; Graham and Steen, 1994; Otero et al, 2004;
Hewitt et al, 2012), where Rat = β∆T gK H/µa κt is the Rayleigh number. In this
definition, β is the thermal expansion coefficient and ∆T is the temperature difference
between the upper and lower parts of the cell. The experimental results obtained by
Cherkaoui and Wilcock show that Nu(g)

t ∼ Ra0.91
t in the range Rat ∼ 200 to Rat ∼ 1500 .

Fig. 4.2.9 shows the experimental data obtained by Cherkaoui and Wilcock.
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4.3 Analogue model and long-term CO2 solubility
trapping

Hewitt et al (2013) studied the problem of mixing convection using a fixed-interface
system (canonical model) and two different free-interface systems, inmiscible and miscible
fluids (analogue model). Fig. 4.3.1 shows a schematic picture of the three physical
systems studied by Hewitt et al in terms of the equations of state. The authors
solved numerically Eqns. (4.1.4) to (4.1.6) using spectrally based methods (Lele, 1992),
flux-conservative techniques and an alternating-direction implicit method, obtaining an
interesting behaviour for the convective flux in density-driven convection, the so-called
shutdown regime, which was not observed by earlier experimental works (Neufeld et al,
2010; Backhaus et al, 2011). This regime is characterized by a decrease in time of the
convective flux due to the return of plumes that have reached the base of the domain
(see Fig. 4.3.2). For the miscible case, this observation was confirmed by long term
experiments using deionized water and PPG (Backhaus et al, 2011).

The physical explanation given by Hewitt et al for the shutdown regime was the
following. Initially, a stable diffusive boundary layer grows below the interface. After
the critical time t0 ∼ 1/Ras , the Rayleigh-Taylor instability appears, leading a downward
convection. Therefore, the convective dynamics is independent of the location of the
bottom boundary and the flux remains constant, so the height of the interface is a
monotonic function that grows linearly with time. At time t ∼ t1 , some of these
plumes reaches the base of the domain, while at time t ∼ t2 the return flow reaches the
interface, marking the onset of the shutdown regime. For t > t2 , the convective flux
decreases nonlinearly with time.

Hewitt et al developed a theoretical model that explains appropiately the problem.
In this model, the convective flux and height of the interface can be predicted for
inmiscible and miscible fluids, showing a very similar behaviour for flux over time
between the inmiscible and miscible systems. However, the evolution of the interfacial
height hint is qualitatively different for long times because for the inmiscible case
the height increases for all time, while for the miscible case it eventually decreases
nonlinearly. Fig. 4.3.2 shows a schematic behaviour observed by the authors.

The constant flux regime and the linear growth of the interfacial height were observed
by Neufeld et al (2010). It is interesting to note that similar results were also observed
by Backhaus et al (2011). Anyway, for long term analogue experiments it is important
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Figure 4.3.1: Schematic picture that shows typical constitutive equations ρ(Sw) , vertical water
concentration Sw(z) and vertical density profiles ρ(z) , for each of physical systems studied by Hewitt
et al, (a) fixed-interface system, (b) inmiscible system, where hint is constant, and (c) miscible system,
where hint is deformable and given by the maximum isopycnal (Hewitt et al, 2013)
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behaviour observed for the convective flux and
interfacial height in the numerical experiments
of Hewitt et al (2013), for the inmiscible and
miscible cases. In both cases, the fluxes are
similar, but the height has a qualitative different
behaviour for long times

to remember that CO2 is partially soluble with water, so the correlation between
laboratory scale results and real CO2 solubility trapping can be different for long times,
as is suggested by Hewitt et al.

The Darcian scaling law for miscible fluids Nu(g)
s ∼ Ra0.8

s is valid in the linear regime
(where the convective flux is constant). The mathematical modeling of mass transfer
in the nonlinear regime observed by Hewitt et al is an open research question which
seems to be more complicated to solve due to the dependency in time of the flux. Some
properties of inmiscible fluids in the miscible system model, such as the incorporation of
interfacial tension in the governing equations, will be interesting to study, overall if these
effects can play an important role in the onset of convection. Finally, the development
of new techniques of computation of the convective flux in miscible systems are crucial
in the appropiate estimation of this quantity, which is very difficult to do in practice.
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Chapter 5
Governing equations for saturated porous
media: The Hele-Shaw cell analogy

Abstract

The dissolution of supercritical CO2 in geologic reservoirs and the geothermal convection
in sedimentary basins are two problems of current interest, where the use of Hele-Shaw
cells has become in a good alternative for the experimental visualization of heat and
mass transfer in porous media. Commonly, the flow within the cell is modeled mathematically
using the two dimensional Darcy equation. However, when the gap of the cell is
increased, some three dimensional effects in the flow can appear and the Darcy equation
needs corrections. In this article, we investigate the inertial contributions to Darcy
equation with the application of regular asympthotic expansions to the fluid equations
in a Hele-Shaw geometry of gap b and height H, where the anisotrophy parameter δ =
b/H � 1 is used as the perturbative variable. The derived momentum equation includes
a viscous dissipation term Ldiss = 6/5 µ̄′∇′ 2ū′ , a quadratic velocity term Lforch =
2/35 (B̄′µ · ū′) ū′ , a new vertical mass advection term Lmass = 2/35 (B̄′ρ · ū′) ẑ and a new
contribution for the Korteweg stress tensor that models interfacial effects of mixing,
where ū′(x, t) is the gap-averaged velocity field and both B̄′µ and B̄′ρ are vector-valued
functions. The scalar transport equation also includes the well-known mechanical
dispersion term for Hele-Shaw cells. For analogue experiments in Hele-Shaw cells
that represents CO2 dissolution in geothermal reservoirs, we show that the mechanical
dispersion term cannot be neglected.

5.1 Introduction

The reduction of anthropogenic emissions to the atmosphere has been a problem of
great interest in the last decade. The combustion of fossil energy sources has increased
substantially the amount of CO2 in the atmosphere, where several studies conclude a
future increase in the global temperatures in the world (Hansen et al, 2010; Kirtman
et al, 2013; Collins et al, 2013). Today, some effects began to be visible in polar regions
and ancient glaciers in the principal mountain ranges (Vaughan et al, 2013). Therefore,
mitigation strategies about greenhouse gas emissions and a future energy conversion
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are actually necessary. In this context, capture and storage of supercritical CO2 in
geological reservoirs and heat extraction from enhanced geothermal systems are two
examples that can contribute to this effort. The first is one of the most promising ideas
to reduce the release of greenhouse gases to the atmosphere, where CO2 is confined
inside a geological formation with an impermeable caprock for a long time (Holloway,
1997; Benson et al, 2006; Orr, 2009; Pau et al, 2010; Szulczewski et al, 2013; Hewitt
et al, 2013; Hidalgo et al, 2013; Huppert and Neufeld, 2014; Emami Meybodi et al,
2015). The second enables to obtain energy from natural geothermal sources, in zones
where the scarcity of water or the low permeability of rock strata can make difficult the
energy extraction.

In geophysics, the carbon dioxide confinement is characterized by an initial base
state that governs the dynamics of the diffusive boundary layer between CO2 gas phase
and brine, where a small fraction of the gas phase is dissolved (Van der Meer, 1992;
Pruess and Garcia, 2002). This process induces an instability in a wide range of scales
known as Rayleigh-Taylor (Sharp, 1984), which has consequences in many natural and
artificial flow systems, such as astrophysical flows (Zingale et al, 2005; Cabot and
Cook, 2006), geophysical turbulence in planetary atmospheres (Huang et al, 1993) and
Non-Aqueous Phase Liquid flow (NAPLs) contamination and dissolution in soils due
to anthropogenic activities such as CO2 storage in subsurface (Caltagirone, 1980; Ben
et al, 2002; Ennis-King and Paterson, 2005; Riaz et al, 2006; Rapaka et al, 2008), to
name a few. Mathematically, this problem is similar to the density-driven convection
induced by thermal forcing in porous media, the well-studied Elder problem (Foster,
1965; Elder, 1967c; Otero et al, 2004; Hewitt et al, 2012, 2014), which has important
applications in geothermal convection in sedimentary basins (Clausnitzer et al, 2001;
Simms and Garven, 2004).

Physical experiments that allow the visualization of the dissolution of CO2 gas
phase into brine in geological reservoirs and geothermal convection are difficult to
perform because of the extreme thermodynamical conditions presented in the deep
subsurface. For this reason, analogous experiments designed for the study of density
and viscous driven convection due to the mixing of two miscible fluids (Kneafsey and
Pruess, 2009; Neufeld et al, 2010; Backhaus et al, 2011; Slim et al, 2013; Szulczewski and
Juanes, 2013; MacMinn and Juanes, 2013; Thomas et al, 2015) and thermal convection
in a single fluid phase (Babushkin and Demin, 2006; Cherkaoui and Wilcock, 2001;
Cooper et al, 2014) are made in Hele-Shaw cells, because these geometries are a
good approximation of an homogeneous porous media (Nield and Bejan, 2006) and
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therefore the experimental results can be compared with the numerical predictions
obtained by using the Darcy-Boussinesq model. However, there are still some open
issues. For example, convective dissolution in geological CO2 reservoirs has been
studied experimentally using solutions of methanol and ethylene glycol (MEG) mixing
with water (Neufeld et al, 2010) and aqueous solutions of propylene glycol (PPG)
(Backhaus et al, 2011), where the upper boundary of the Hele-Shaw has a constant
flux. The Rayleigh number Ra is the only parameter that controls the fluid dynamics.
The response of the system is studied by means of the Nusselt number Nu . When
Re � 1 , the experimental results show that there exists a nonlinear scaling of the
form Nu ∼ Ra0.84±0.02 (Neufeld et al, 2010) and Nu ∼ Ra0.76±0.06 (Backhaus et al,
2011). However, this nonlinear scaling is in contradiction with theoretical predictions
obtained from the study of the mean scalar dissipation rate ε (Hidalgo et al, 2012), where
a nonlinear scaling of the form Nu ∼ Ran , with |n| > 0 , must be reflected in a scaling
of the type ε ∼ Ram , with |m| > 0. Numerical simulations using the Darcy equation
done by Hidalgo et al (2012) show that m = 0 , i.e. the convective flux does not depend
upon Ra , so it is necessary to have a new model that represents this experimental
observation. See Chapter 5, Section 5.4 on page 60 for further information. We refer
the works of Bizon et al (1997a), Gondret and Rabaud (1997), Ruyer-Quil (2001a),
Ress (2002) and Martin et al (2002), where some extensions of the Darcy model are
derived.

On the other hand, the transition zone between the miscible two-fluid phases indicates
the existence of a step scalar gradient in the early stages of convection, which is
relaxing in time due to diffusive processes. Then, an interfacial tension appears and
its effects are similiar to the surface tension forces in inmiscible fluids, inhibiting
the instability and finger growth (Arendt et al, 2004; Pramanik and Mishra, 2015).
These interfacial effects are important not only in density-driven instabilities, but also
in viscosity-driven instabilities such that the Saffman-Taylor problem. The dynamic
viscosity of supercritical CO2 is less than the liquid water in high enthalpy geothermal
conditions at 1 km of depth, where pressure is 800 atm and temperature is 200 ◦C , so the
CO2 gas-phase can displace the water liquid-phase not only by density driven convection
but also by viscous fingering (Jha et al, 2011a,b, 2013). Therefore, the combined
effect can have important consequences in the onset of convection, which has not been
investigated so far. This point can be very important when CO2 dissolution in brine is
affected by thermal instabilities. In this context, a novel approach that simultaneously
generates renewable energy and store carbon dioxide was proposed by Brown (2000) and
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Pruess (2006) and further study by Randolph and Saar (2011a,b), which is currently
known as CO2 plume geothermal system. In comparison with standard brine geothermal
reservoirs, recent studies show that this technology improves the electrical production
by a factor of two (Adams et al, 2015). This proposal combines both energy generation
and reduction of the release of greenhouse gases to the atmosphere, so we are interested
in study mathematically this problem using a reduced physical model.

In this chapter, we present our investigation about the use of supercritical CO2

as working fluid in geothermal reservoirs considering an analogue model based on the
Hele-Shaw geometry. For this case, inertial contributions to the Darcy-Boussinesq
equation were obtained applying regular perturbation theory to a full miscible two-fluid
system which is governed by the Navier-Stokes equation in the Boussineq limit. The
model considers interfacial effects and two scalar variables of interest in geothermal
problems, concentration and temperature. By using this new model, we aim of finding
scaling laws for heat transport and scalar dissipation, to conciliate the existing discrepancies
between numerical and experimental observations.

5.2 Capture and storage of CO2 in geothermal
reservoirs. The Hele-Shaw cell analogy

Fig. 5.2.1 shows the analogy between the storage of CO2 in geothermal reservoirs
and analogous experiments using Hele-Shaw cells. In the left image, the industrial
application considers the capture and compression of cold carbon dioxide from an
emitter, which is injected into a saline aquifer. The CO2 plume is heated and transported
by convection and then it experiment buoyant forces due to density contrast, reaching
the upper caprock. A small portion of hot CO2 is extracted and used to produce
electricity, which is cooled and injected again in the aquifer. The right image shows a
rectangular Hele-Shaw geometry filled with a fluid A of density ρa and dynamic viscosity
µa at temperature Ta. The size of the cell is L×H × b, where b is the gap of the cell in
the ŷ direction, H is the height in the ẑ direction and L is the width in the x̂ direction.
To reproduce geothermal convection, the lower and upper boundaries are heated and
cooled with constant temperatures Th and Tc , respectively. The upper boundary acts
as the caprock. Next, a fluid B of density ρin < ρa , which is fully miscible with fluid
A, is injected inside the cell. The concentration Sw measures the amount of fluid B
dissolved in fluid A.
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Figure 5.2.1: Capture and storage of CO2 in geothermal reservoirs and its analogy with analogous
experiments using Hele-Shaw cells

Therefore, the motion of the miscible fluid is described by the three-dimensional
Navier-Stokes equations under the Boussinesq approximation (NSBE), where we consider
interfacial effects due to the mixing. In cartesian tensorial form, these equations are
written as

∇ · u = 0 (5.2.1)

ρa
Dui
Dt

= ∂j Π(s)
ji + ∂j Π(k)

ji − ρgi (5.2.2)

Dϕ
Dt

= κϕ∇2ϕ (5.2.3)

Π(s)
ji = −p δji + µ

[
∂jui + ∂iuj

]
+ 2

3 λ δji∇ · u (5.2.4)

Π(k)
ji = δji

[
α∇2ρ+ β |∇ρ|2

]
− φ (∂jρ)(∂iρ) + γ ∂j(∂iρ) (5.2.5)

where D/Dt = ∂/∂t + u · ∇ , ϕ : (T, Sw) is a generic scalar-valued function which can
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be either the temperature T of the fluid or the concentration Sw of a secondary fluid in
an ambient fluid. In Eqns. (5.2.1) to (5.2.3), κt is the thermal diffusivity (when ϕ = T ),
κs is the molecular diffusivity (when ϕ = Sw), u = ux̂ + vŷ + wẑ is the velocity field,
g = g ẑ is the gravitational acceleration, and ρ = ρ(Sw, T ) is the density of the two-fluid
mixing. The no-slip and no-flux boundary conditions on ŷ direction are applied. In
Eqn. (5.2.4), Π(s)

ji is the Stokes stress tensor, where p is the pressure, µ = µ(Sw, T ) is
the dynamic viscosity of the two-fluid mixing and λ is the Stokes parameter. On the
other hand, Π(k)

ji in Eqn. (5.2.5) is the full Korteweg tensor (Korteweg, 1901), which
models the interfacial effects of fluid mixing, where α , β and γ are Lagrange multipliers
and φ is the effective interfacial tension parameter. In this chapter, we consider that
α = β = γ = 0 .

To consider the density buoyancy effects relative to the ambient fluid, we define the
modified pressure p̃ as the scalar that satisfies the equation ∂p̃a/∂z = ∂p/∂z + ρag.
Since the length scale in the ŷ direction is much smaller than in the other directions,
we introduce the following vector notation to separate these length scales: x = x⊥+y,
x⊥ = xx̂+ zẑ, y = yŷ, u = u⊥ + v, u⊥ = ux̂+ wẑ, v = vŷ and

∇ = ∇⊥ +∇y , ∇⊥ = x̂
∂

∂x
+ ẑ

∂

∂z
, ∇y = ŷ

∂

∂y
,

∇2 = ∇2
⊥ +∇2

y , ∇2
⊥ = ∂2

∂x2 + ∂2

∂z2 , ∇
2
y = ∂2

∂y2 .

To nondimensionalize the problem, we use the scalings for position x∗⊥ = x⊥/H
and y∗ = y/b , for velocity u∗ = u/uc , for time t∗ = uc t/H , for pressure p∗ = p̃a/ps ,
for density ρ∗ = −(ρ − ρa)/∆ρ , for viscosity µ∗ = µ/µa and for temperature T ∗ =
(T − Ta)/∆T , where ∆ρ = ρa − ρin > 0 is the density contrast between the two fluids
at temperature Ta , and ∆T = Th − Tc > 0 is the constant temperature difference
between the top and bottom plates of the cell. The characteristic convective velocity
scale uc and pressure ps are

uc = ∆ρ g b2

µa
, ps = µaucH

b2 . (5.2.6)

The equations can be written in dimensionless form in terms of five parameters,
the cell Reynolds number Re(c) , the thermal cell Peclet number Pe(c)

t , the solutal cell
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Peclet number Pe(c)
s , the cell capillary number Ca(c) and the Lewis number Le, defined

as

Re(c) = uc b

νa
, Pe(c)

t = uc b

κt
, Pe(c)

s = uc b

κs
, Ca(c) = uc µa

γσ
, Le = κt

κs
,

where νa = µa/ρa is the momentum diffusivity of the ambient fluid and γφ = φ (∆ρ)2 b/H2

is the interfacial tension, which has dimensions [γσ] = MT−2 . In the following sections,
we assume that the cell Reynolds number is of order Re(c) = O(1) .

5.3 Regular perturbation theory

We consider the case of a thin cell, where b � H. Following the usual procedure
in regular asymptotic expansions, we introduce the small parameter δ = b/H, which
measures the ratio of cell spacing to height, and we introduce the following new variables
u∗⊥ = δ u′⊥, v∗ = δ2 v′, p∗ = δ p′, ρ∗ = δ ρ′, x∗⊥ = x′⊥, y∗ = y′, τ = δ t∗ and µ∗ = µ′.
With these scalings, the NSBE are written as

∇′⊥ · u′⊥ = −∇′y · v′ , (5.3.1)

δ2Re(c)

∂u′⊥
∂τ

+ (u′⊥ · ∇′⊥)u′⊥ + (v′ · ∇′y)u′⊥

 = −∇′⊥p′ + ρ′ẑ + µ′
[
∇′2y u′⊥ + δ2∇′2⊥u′⊥

]

− 1
Ca(c)

∇′⊥ρ′(δ2∇′ 2⊥ ρ′ +∇′ 2y ρ′
)

+ 1
2 ∇

′
⊥

(
δ2|∇′⊥ρ′|2 + |∇′yρ′|2

) , (5.3.2)

δ4Re(c)

∂v′
∂τ

+ (u′⊥ · ∇′⊥)v′ + (v′ · ∇′y)v′
 = −∇′yp′ + δ2µ′

[
∇′2y v′ + δ2∇′2⊥v′

]

− 1
Ca(c)

∇′yρ′(δ2∇′ 2⊥ ρ′ +∇′ 2y ρ′
)

+ 1
2 ∇

′
y

(
δ2|∇′⊥ρ′|2 + |∇′yρ′|2

) , (5.3.3)

δ2Pe(c)
ϕ

∂ϕ∗
∂τ

+ u′⊥ · ∇′⊥ϕ∗ + v′ · ∇′yϕ∗
 = ∇′2y ϕ∗ + δ2∇′2⊥ϕ∗ , (5.3.4)

53



CHAPTER 5. GOVERNING EQUATIONS FOR SATURATED POROUS MEDIA

where Pe(c)
ϕ is the thermal or solutal cell Peclet number, depending on the definition

of the generic scalar ϕ. The relevant parameter in Eqns. (5.3.1) to (5.3.4) is δ2 = Da ,
which is also known as the Darcy number (Nield and Bejan, 2006). We proceed to solve
perturbatively the dimensionless form of NSBE by expanding all physical variables
as f = f (0) + δ2f (1) + O(δ4) for f : (u′⊥,v′) and g = g0 + δ2g1 + δ4g2 + O(δ6) for
g : (p′, ρ′, µ′, ϕ∗). At this stage, the only boundary conditions that we consider are
u′ = 0 and ŷ · ∇′yϕ∗ = 0, all of them evaluated at y′ = 0 and y′ = 1.

5.3.1 Leading order terms

At order O(1) , Eqn. (5.3.4) is ∇′2y ϕ∗0 = 0 subject to the boundary condition ŷ ·∇′yϕ∗0 = 0
in y′ = 0 and y′ = 1 . The solution for this equation is ϕ∗0 = ϕ∗0(x′⊥, τ) and, therefore,
the fluid density and viscosity satisfies the variable dependency ρ′0 = ρ′0(x′⊥, τ) and
µ′0 = µ′0(x′⊥, τ) . Then, at the leading order, we must solve the Stokes equation

∇′⊥ · u
′(0)
⊥ = −∇′y · v′(0) ,

−∇′yp′0 = 0 ,

−∇′⊥p′0 + ρ′0ẑ + µ′0∇′2y u
′(0)
⊥ = 0 ,

subject to the boundary condition u′(0) = 0 in y′ = 0 and y′ = 1. The solution for the
pressure is p′0 = p′0(x′⊥, τ) , the velocity u′(0)

⊥ is the Poiseuille flow

µ′0 u
′(0)
⊥ = 1

2

[
∇′⊥p′0 − ρ′0 ẑ

](
y′2 − y′

)
, (5.3.5)

and v′(0) = 0. We define the mean value of a generic variable f in the ŷ (transverse)
direction as {f} =

∫ 1
0 f dy

′ . Finally, we obtain the two-dimensional Darcy equation by
averaging the Eqn. (5.3.5) in the transverse direction

{µ′0}{u
′(0)
⊥ } = − 1

12

[
∇′⊥{p′0} − {ρ′0} ẑ

]
. (5.3.6)
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5.3.2 O(δ2) expansion
At order O(δ2), the equations to be solved are

∇′⊥ · u
′(1)
⊥ = −∇′y · v′(1) ,

Re(c)

∂u′(0)
⊥
∂τ

+ (u′(0)
⊥ · ∇′⊥)u′(0)

⊥

 = −∇′⊥p′1 + ρ′1ẑ + µ′0∇′2y u
′(1)
⊥ + µ′1∇′2y u

′(0)
⊥ + µ′0∇′2⊥u

′(0)
⊥

− 1
Ca(c)

∇′⊥ρ′0 (∇′ 2⊥ ρ′0 +∇′ 2y ρ′1
)

+ 1
2 ∇

′
⊥

(
|∇′⊥ρ′0|2 + |∇′yρ′1|2

) ,

−∇′yp′1 = 1
Ca(c)

1
2 ∇

′
y

(
|∇′yρ′1|2

) ,

Pe(c)
ϕ

∂ϕ∗0
∂τ

+ u′(0)
⊥ · ∇′⊥ϕ∗0

 = ∇′2y ϕ∗1 +∇′2⊥ϕ∗0 , (5.3.7)

subject to the boundary conditions u′(1) = 0 and ŷ·∇′yϕ∗1 = 0 in y′ = 0 and y′ = 1. From
these boundary conditions, we obtain {∇2

yϕ
∗
1} = 0, so by averaging the Eqn. (5.3.7) we

obtain the solubility condition

∂{ϕ∗0}
∂τ

+ {u′(0)
⊥ } · ∇′⊥{ϕ∗0} = 1

Pe(c)
ϕ

∇′2⊥{ϕ∗0} . (5.3.8)

Omiting the details in the mathematical procedure, which is lengthy but straightforward,
we find that the solution for ϕ∗1 in Eqn. (5.3.7) is

ϕ∗1 = {ϕ∗1} − Pe(c)
ϕ {u

′(0)
⊥ } · ∇⊥{ϕ∗0} f(y) , f(y) = y4

2 − y
3 + y2

2 −
1
60 . (5.3.9)

At this order, the density and viscosity satisfy the variable dependency ρ′1 = ρ′1(x′, τ)
and µ′1 = µ′1(x′, τ). Finally, the averaged solutions of O(δ2) equations are {v′(1)} = 0
and the two-dimensional Darcy’s law extension
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6
5 Re(c) D̃⊥{u

′(0)
⊥ }

D̃τ
= −∇′⊥{p′1}+ {ρ′1} ẑ − 12

(
{µ′0}{u

′(1)
⊥ }+ {µ′1}{u

′(0)
⊥ }

)
+ 6

5 {µ
′
0}∇′2⊥{u

′(0)
⊥ }

− 1
210 {u

′(0)
⊥ } ·Bρ ẑ + 2

35

(
{u′(0)
⊥ } ·Bµ

)
{u′(0)
⊥ } (5.3.10)

− 1
Ca(c)

∇′⊥{ρ′0}∇′ 2⊥ {ρ′0}+ 1
2 ∇

′
⊥

|∇′⊥{ρ′0}|2 + 1
210

[
{u′(0)
⊥ } ·Bρ

]2


The modified material derivative D̃⊥/D̃τ and the auxiliar vector functions Bρ and
Bµ are defined as

D̃⊥
D̃τ

= ∂

∂τ
+ 9

7

(
{u′(0)
⊥ } · ∇′⊥

)
, Bh = −

Pe(c)
s

∂h′

∂Sw

∣∣∣∣∣∣
0

∇′⊥{S(0)
w }+ Pe(c)

t

∂h′

∂T ∗

∣∣∣∣∣∣
0

∇′⊥{T ∗0 }

 ,
where h : (ρ, µ) and the derivatives are valued at (S(0)

w , T ∗0 ).

5.3.3 O(δ4) expansion
At order O(δ4), the solubility condition is obtained applying {∇′2y ϕ2} = 0 to the
Eqn. (5.3.4)

Pe(c)
ϕ

∂{ϕ∗1}
∂τ

+ {u′(1)
⊥ } · ∇′⊥{ϕ∗0}+ {u′(0)

⊥ · ∇′⊥ϕ∗1}

 = ∇′2⊥{ϕ∗1} .

(5.3.11)

Using the Eqns. (5.3.5) and (5.3.9), we obtain the scalar transport equation

∂{ϕ∗1}
∂τ

+ {u′(0)
⊥ } · ∇′⊥{ϕ∗1}+ {u′(1)

⊥ } · ∇′⊥{ϕ∗0}

= 1
Pe(c)

ϕ

∇′ 2⊥ {ϕ∗1}+
Pe(c)

ϕ

210 ∇
′
⊥ ·

({u′(0)
⊥ } · ∇′⊥{ϕ∗0}

)
{u′(0)
⊥ }

 (5.3.12)

The perturbative procedure is halted at this stage, where a general equation is
constructed for {u′⊥} = {u′(0)

⊥ } + δ2{u′(1)
⊥ } + O(δ4) and {g} = {g0} + δ2{g1} + O(δ4),

with g : (p′, ρ′, µ′, ϕ∗). The reconstructed momentum equation is
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6
5 δ

2Re(c) D̃⊥{u′⊥}
D̃τ

= −∇′⊥{p′}+ {ρ′} ẑ − 12 {µ′}{u′⊥}+ 6
5 δ

2{µ′}∇′2⊥{u′⊥}

− 1
210 δ

2{u′⊥} ·B{ρ} ẑ + 2
35 δ

2
(
B{µ} · {u′⊥}

)
{u′⊥} (5.3.13)

− δ2

Ca(c)

∇′⊥{ρ′}∇′ 2⊥ {ρ′}+ 1
2 ∇

′
⊥

|∇′⊥{ρ′}|2 + 1
210

[
{u′⊥} ·B{ρ}

]2
+O(δ4)

where the vector-valued functions B{ρ} and B{µ} are aproximated as

B{h} = Pe(c)
s

∂{h′}
∂{Sw}

∇′⊥{Sw}+ Pe(c)
t

∂{h′}
∂{T ∗}

∇′⊥{T ∗} ,

Finally, the scalar transport equation is reconstructed as

∂{ϕ∗}
∂τ

+ {u′⊥} · ∇′⊥{ϕ∗} = 1
Pe(c)

ϕ

∇′ 2⊥ {ϕ∗}+ δ2 Pe
(c)
ϕ

210 ∇
′
⊥ ·

({u′⊥} · ∇′⊥{ϕ∗}) {u′⊥}


= ∂α

(
Dαβ ∂β{ϕ∗}

)
, (5.3.14)

where we can identify the hydrodynamic dispersion Dαβ as the cartesian tensor (Aris,
1956; Ippolito et al, 1994; Oltean et al, 2004, 2008; Mainhagu et al, 2012)

Dαβ = 1
Pe(c)

ϕ

δαβ + δ2 Pe
(c)
ϕ

210 {u
′
⊥}α {u′⊥}β ,

which is according with the Scheidegger’s law (Scheidegger, 1974) Dαβ = δαβ(ψ1 +
|u|ψ2) + (ψ3 − ψ2)uαuβ/|u| , where ψ1 = 1/Pe(c)

ϕ , ψ2 = 0 and ψ3 = (1/210) δ2 Pe(c)
ϕ |u| .

In the following, we present the results of the reconstruction of the solutions obtained
using asymptotic expansions.

5.4 Hele-Shaw model

To derive the dimensionless Hele-Shaw model, we introduce the appropiate new scalings
for velocity ū′ = 12 δ {u′⊥} , pressure p̄′ = δ {p′} , density ρ̄′ = −δ {ρ′} , time τ = 12 δ t′

and anisotrophy ratio ε = δ/
√

12 =
√
K/H , where K = b2/12 is the permeability of
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the cell. Furthermore, the convective velocity uc is scaled as ūc = uc/12 = ∆ ρ g K/µa

and the scale of pressure is now p̄s = µa ūcH/K . The dimensionless dynamic viscosity
is denoted by µ̄′ = {µ′} , the temperature is T ′ = {T ∗} and the solutal concentration is
Sw = {Sw} .

The set of dimensionless parameters that will be used in the following sections
are: the Prandtl number Pr = νa/κt, the Schmidt number Sc = νa/κs, the thermal
Rayleigh number Rat = ūcH/κt, the solutal Rayleigh number Ras = ūcH/κs, the
thermal Peclet number Pet = εRat , the solutal Peclet number Pes = εRas and the
Reynolds number Re = Rat Pr−1 . Therefore, by using these definitions we have that
Re(c) = 12 δ Re , Pe(c)

s = 12 δ Ras , Pe(c)
t = 12 δ Rat and Ca = δ/12Ca(c) = µaūc/γ̄φ ,

where γ̄φ = φ (∆ρ)2/H is the macroscale interfacial tension. Then, the dimensionless
Hele-Shaw model with interfacial effects is

∇′ · ū′ = 0 , (5.4.1)

6
5 ε

2 Re D̃ū
′

D̃t′
= Ldarcy + ε2

(
Ldiss + Lforch + Lmass + Lint

)
, (5.4.2)

Dϕ
Dt′

= Fdiss + ε2 Fmech , (5.4.3)

where

Ldarcy = −∇′p̄′ − ρ̄′ẑ − µ̄′ ū′ ,

Ldiss = 6
5 µ̄
′∇′ 2ū′ , Lforch = 2

35 (B̄′µ · ū′) ū′ , Lmass = 2
35 (B̄′ρ · ū′) ẑ ,

Lint = − 1
Ca

∇′ρ̄′∇′ 2ρ̄′ + 1
2 ∇

′

|∇′ρ̄′|2 + 1
210

[
ū′ · B̄′ρ

]2
 ,

Fdiss = 1
Raϕ
∇′2ϕ , Fmech = 2

35 Raϕ∇′ ·
[
(ū′ · ∇′ϕ) ū′

]
,
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D̃
D̃t′

= ∂

∂t′
+ 9

7 ū
′ · ∇′ , D

Dt′
= ∂

∂t′
+ ū′ · ∇′ ,

B̄h = Ras
∂h̄′

∂Sw
∇′Sw + Rat

∂h̄′

∂T ′
∇′T ′ ,

with ϕ : (T ′, Sw) . In particular, Eqn. (5.4.2) introduces unsteady effects in porous
media and it is a generalization of the Polubarinova-Kochina model (Polubarinova-Kochina,
1952). In the following, we will call Ldiss as the Brinkmann’s viscous dissipative term,
Lforch as the Forchheimer’s term, Lmass as the vertical mass transport term and Lint as
the interfacial term. We suposse that Ca = O(1) . Furthermore, we drop the subscript
⊥ in ∇-operators because of the Hele-Shaw model is quasi two-dimensional. On the
other hand, Raϕ is defined as thermal or solutal Rayleigh number, which depends on the
definition of variable ϕ . When ε→ 0 , we obtain the two dimensional Darcy equation

Ldarcy = 0 =⇒ ū′ = − 1
µ̄′

[
∇′p̄′ + ρ̄′ẑ

]
,

and the classical advection-diffusion equation

Dϕ
Dt′

= Fdiss =⇒ ∂ϕ

∂t′
+ ū′ · ∇′ϕ = 1

Raϕ
∇′2ϕ ,

in the slow difussion approximation ∇′ · ū′ = 0. This model will be refered hereafter as
the Darcy-Boussinesq model.

5.4.1 Importance of mechanical dispersion

The right hand side of Eqn. (5.4.3) is identified as the hydrodynamic dispersion, which
is the sum of both the diffusive term Fdiss and the mechanical dispersion term Fmech .
With these definitions, we notice that the Peclet number Peϕ = εRaϕ can be written
as

Peϕ = advective transport rate given by Fmec
diffusive transport rate given by Fdiss

=
τ dissK,ϕ

τ convK

,

where τ dissK,ϕ = K/κϕ is the cell diffusive time and τ convK =
√
K/ūc is the cell convective

time. Therefore, there are two distinct regimes for the scalar transport in the Hele-Shaw
model, which depend of the characteristic values of both time scales defined before:
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(a) a diffusion-dominated dynamics when Peϕ � 1 and, (b) an advection-dominated
dynamics when Peϕ � 1 . In this context, the study of heat transport in geothermal
reservoirs using supercritical CO2 as working fluid is a good example to discuss the
influence of Peclet number in the scalar transport regime. A laboratory scale experiment
can be performed using analogue fluids in a Hele-Shaw cell, which mimics the expected
behavior in a geothermal reservoir. The cell is filled with propylene-glycol (PPG)
as brine and deionized water as CO2 gas phase (Backhaus et al, 2011; Ehyaei, 2014)
(See Chapter 3, Section 3.3 on page 21 for additional information). Our hypothetical
experimental design considers the following parameters: b = 1 mm , H = 10 cm , ρa =
1.035 g/cm3 , νa = 1 × 10−1 cm2/s , κs = 1 × 10−6 cm2/s , κt = 1 × 10−4 cm2/s , Ta = 30 ◦C ,
Tf = 70 ◦C , a maximum density difference due to the mixing ∆ρ = 0.01 g/cm3 and
viscous difference ∆µ = 10 cP . Then, the dimensionless numbers are the following,
ε = 3 × 10−3 , Pr = 1 × 103, Sc = 1 × 105, Rat = 8 × 103 and Ras = 8 × 105, which
demonstrate that the phenomena is at high Rayleigh numbers. On the other hand,
the hydrodynamic dispersion in thermal convection is weakly dominated by advection
because Pet = 3 × 101 ∼ O(1) . However, in the solutal case, dispersion is strongly
dominated by advection because Pes = 3 × 103 ∼ O(1/ε2) . In other words, both
fluids can mix more efficiently by mass transfer effects rather than thermal effects and,
therefore, mechanical dispersion cannot be neglected in scalar transport equations.

5.4.2 Model for the mean scalar dissipation rate

To derive the mean scalar dissipation rate, we multiply both sides of Eqn. (5.4.3) by
ϕ . Then, using Eqn. (5.4.1) and the identities

ϕ
∂ϕ

∂t′
= 1

2
∂

∂t′
ϕ2 ,

ϕ∇′ · (ϕ ū′) = 1
2 ∇

′ · (ϕ2 ū′) ,

ϕ∇′ 2ϕ = ∇′ · (ϕ∇′ϕ)− ‖∇′ϕ‖2 ,

ϕ∇′ ·
[(
∇′ · (ϕ ū′)

)
ū′
]

= ∇′ ·
[(
∇′ · (ϕ ū′)

)
ϕ ū′

]
−
[
∇′ · (ϕ ū′)

]2
,
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we obtain (Pope, 2011)

1
2
∂

∂t′
ϕ2 +∇′ · Tϕ = −ε(ε)

ϕ , (5.4.4)

where Tϕ is the variance flux and ε(ε)
ϕ is the scalar dissipation rate, both defined as

Tϕ = 1
2 ϕ

2 ū′ − 1
Raϕ

ϕ∇′ϕ− 2
35 ε

2 Raϕ
[(
∇′ · (ϕ ū′)

)
ϕ ū′

]
, (5.4.5)

ε(ε)
ϕ = 1

Raϕ
‖∇′ϕ‖2 + 2

35 ε
2 Raϕ

[
∇′ · (ϕ ū′)

]2
. (5.4.6)

In the following, we will use the average in the horizontal direction and the domain
average of a function f = f(x′) , which are defined as f̄(z′) = 1/L′

∫ L′
0 f(x′)dx′ and

〈f〉 =
∫ 1
0 f̄(z′)dz′ , respectively, where L′ = L/H is the aspect ratio of the cell. To

understand the physical meaning of Eqn. (5.4.4), we will study the following two cases
shown in Fig. 5.4.1

L

H

b

L

H

bu, w = 0

u, w = 0

u, w = 0

u, w = 0

rSw · ẑ = 0

rSw · ẑ = 0

rSw · ẑ = 0

Sw = 1

analogue model canonical model

Fluid B

Fluid B mixed with Fluid A

Fluid B mixed with Fluid A

Fluid A

Fluid A

Figure 5.4.1: Analogue and canonical models of convection inside a Hele-Shaw geometry
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• The canonical Rayleigh-Benard-Darcy model, which considers periodic boundary
conditions in the x-direction, while in the z-direction w′ = 0 in z′ = 0 and z′ = 1 ,
ϕ = 1 in z′ = 1 and ∂ϕ/∂z′ = 0 in z′ = 0 .

• The analogue model, with periodic boundary conditions in the x-direction, while
in the z-direction w′ = 0 and ∂ϕ/∂z′ = 0 in z′ = 0 and z′ = 1 .

In the canonical model, the domain average of Eqn. (5.4.4) is written as

1
2
∂

∂t′
〈ϕ2〉 − F = −〈ε(ε)

ϕ 〉 ; F = 1
Raϕ

∂ϕ̄

∂z′

∣∣∣∣∣∣
z′=1

, (5.4.7)

where F is the flux and 〈ε(ε)
ϕ 〉 is the mean scalar dissipation rate. Then, it is clear

that any power-law dependency of F with Raϕ must be reflected in 〈ε(ε)
ϕ 〉 (Hidalgo

et al, 2012). It is important to recall that the mean scalar dissipation rate has the
contribution of the mechanical dispersion term. On the other hand, considering the
analogue model, we can obtain the mean scalar variance equation

1
2
∂

∂t′
〈ϕ2〉 = −〈ε(ε)

ϕ 〉 , (5.4.8)

where it is clear that 〈ε(ε)
ϕ 〉 measures the rate of destruction of scalar fluctuations (Pope,

2011; Jha et al, 2011a). When ε→ 0 , we obtain the equation

〈ε(0)
ϕ 〉 = 1

Raϕ
〈‖∇′ϕ‖2〉 ,

which has been studied in previous works (Hidalgo et al, 2012; Jha et al, 2011a;
Pramanik and Mishra, 2015). Eqn (5.4.8) does not show any scaling relation between
the flux and the mean scalar dissipation rate. However, we can obtain a power-law
dependence between both quantities using dimensional analysis. To derive that, we can
approximate the interfacial convective flux Fc as

Fc =
∫
∂Ωmix

ϕ− K

κϕ

(
∇· (ϕu)

)u · n̂ dS ∼ f1

(
ϕm,∆ϕ,u, K, κϕ, H

)
uc b `mix , (5.4.9)

where ∂Ωmix is the mixing or interfacial surface, uc is the convective velocity scale
defined in Section 5.2, ϕm is the scalar value where density is maximum, ∆ϕ is the scalar
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gradient scale and `mix is the mixing or interfacial length, which contains information
about the importance of dispersion in the interfacial convective flux. The diffusive flux
Fd is approximated as the classical expression

Fd =
∫

Ω
κϕ∇ϕ · n̂ dS ∼ κϕ

∆ϕ
H

bL . (5.4.10)

Combining these approximations, the Nusselt number Nu(g)
ϕ and the flux Fϕ are

defined as

Nu(g)
ϕ = Fc

Fd
= Φ

ε2Raϕ , ∆ϕ
ϕm

Raϕ 〈εϕ〉(g) ; Fϕ =
Nu(g)

ϕ

Raϕ
= Φ

ε2Raϕ , ∆ϕ
ϕm

 〈εϕ〉(g) ,
(5.4.11)

where we define the mean scalar dissipation rate as the dimensionless interfacial length
〈εϕ〉(g) ∼ `mix/L (Hidalgo et al, 2012; Pramanik and Mishra, 2015). Therefore, if
〈εϕ〉(g) ∼ Ram(ε)

ϕ due to the contribution of the mechanical dispersion term, then we
obtain the scaling law Nu(g)

ϕ ∼ Φ(ε2Raϕ,∆ϕ/ϕm)Ra1+m(ε)
ϕ . To recover the prediction

of Howard for thermal convection in porous media Nu(g)
t ∼ Rat , in the limit ε → 0

the scalings must satisfy m(0) = 0 and Φ(0) = f(∆T/Tm) does not scale with Rat . In
this case, the mean scalar dissipation will be independent of the Rayleigh number, as
suggested by Jenny et al (2014).

Thereby, if we suppose that Φ ∼ f(∆T/Tm)Raε p(ε)t and Nu(g)
t ∼ Rant , then we

obtain a scaling law where the exponents must satisfy the identity

n(ε) = 1 +m(ε) + ε p(ε) . (5.4.12)

In Chapter 7, Section 7.2 on page 94, new results from nonlinear simulations of a
similar problem, which is thermal convection in porous media, show that for ε = 0.001 ,
we have n = 0.90 ± 0.03 and m = −0.09 ± 0.01 . On the other hand, for ε = 0.01 , we
have n = 0.40 ± 0.03 and m = −0.59 ± 0.03 . If p(ε) ∼ 0 , these preliminary results
support our scaling assumptions, which is demostrated in this work.

On the other hand, considering the mixing convection problem in the porous medium
limit ε→ 0 , we have m = 0 and Φ(0) = f(∆Sw/S(m)

w ) ∼ Ra−1/5
s , so that Nu(g)

s ∼ Ra4/5
s

and Fs ∼ Ra−1/5
s (Neufeld et al, 2010). Therefore, a scaling law of the type Φ ∼

f(∆Sw/S(m)
w )Raε p(ε)s ∼ Rar(ε)s Raε p(ε)s is proposed and the test of these assumptions will

be an important challenge for future studies.
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Chapter 6
Linear stability analysis of density-driven
convection in porous media

Abstract

We have studied the linear stability of two interesting problems related with density
driven convection in porous media, thermal convection and Rayleigh-Taylor instability.
For both problems, we have used the Hele-Shaw model, which incorporates new terms
in the momentum equation and the known mechanical dispersion in the scalar transport
equation. For thermal convection, we have extended the results reported in the literature
consistently with our new model, obtaining the correction Ra(c)

t = 4π2 + 8π2√γ ε +
[8π4χϑ̄ + 12π2γ + 4π3γ

√
3 tanh(

√
3π/2)] ε2 + O(ε3) , where γ = 6/5 is a parameter

related with viscous dissipation and χϑ̄ = 8/7 + ϑ̄ contains the contribution of the
effective interfacial tension. On the other hand, for the Rayleigh-Taylor instability,
we have used the dominant-mode solution to analyze the effects of the geometry and
interfacial tension in the onset of convection. In the limit of porous media, we have
recovered the results reported in literature. For other cases, we show that the inertial
terms of momentum equation deviate weakly the Darcian prediction but maintaining
the scaling law of the type τc = aRa−1

s , while interfacial tension tends to stabilize
the diffusive boundary layer in time, retarding considerably the onset of convection for
high-Ras scenarios.

6.1 Introduction

In this chapter, we study the effects of the Brinkmann’s viscous dissipative term
Ldiss , the vertical mass transport term Lmass and the interfacial term Lint in the
onset of convection for two different problems: thermal convection in porous media
and density-driven convection through mass transfer between two miscible fluids. We
will show the linearized model for each case and the strategy to solve these equations
applying the matching asymptotic methodology, with the aim to evaluate the conditions
that trigger the onset of convection in terms of the model parameters and boundary
conditions.
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6.2 Thermal convection in porous media

Thermal convection in homogeneous porous media is a benchmark problem which
has been extensively studied in the last fifty years. Experimental data recopilation
done by Nield and Bejan (2006) suggest that convection occurs when Rat ≥ 40 . The
Darcy-Boussinesq model with free slip boundary conditions predicts that the onset of
thermal convection occurs when the critical Rayleigh number is

Ra(c)
t,darcy = 4π2 . (6.2.1)

However, the Hele-Shaw geometry can affect weakly this prediction. Therefore, we
are interested in computing the perturbative corrections to the critical Rayleigh number
due to the geometry, which is given by the formula

Ra(c)
t = Ra(c)

t,darcy + εR1 + ε2R2 +O(ε3) , (6.2.2)

where R1 and R2 are coefficients that depend on the boundary conditions impossed.
This work has been performed firstly by Ress (2002), who has studied the following
dimensional set of semi-empirical equations used to model convective flows in porous
media

∇ · u = 0 ; ∂T

∂t
+ u · ∇T = κt∇2T ,

ρa
φp

∂u
∂t

+ ρa
φ2
p

(u · ∇)u = −∇p+ µe∇2u− µK−1 u + ρaβT (T − Ta)gẑ − Cf
ρa√
K

u|u| ,

In these equations, φp is the porosity, µe is the Brinkmann’s effective viscosity, βT is
the coefficient of thermal volumetric expansion and Cf is the Ergun coefficient, which is
strongly dependent on the flow regime. Using no slip boundary conditions, Ress (2002)
has obtained the critical Rayleigh number

Ra(c)
t,rees = Ra(c)

t,darcy +
[
8π2

]
Da1/2 +

8π4 + 12π2 + 4π3√3 tanh
(
π
√

3
2

)Da + . . . .

(6.2.3)

65



CHAPTER 6. LINEAR STABILITY ANALYSIS

where Da = (µe/µ)(K/H2) is the Darcy number. The model proposed by Ress (2002)
has some differences with the Hele-Shaw model given in Eqns. (5.4.1) to (5.4.3), which
appear in Chapter 5, Section 5.4 on page 57. For example, the porosity in Hele-Shaw
cells is φp = 1 because the cell volume is filled with fluid. Then, the numerical
coefficients that appear in the convective acceleration term (left side of Eqn. (5.4.2))
cannot be derived in the semi-empirical model from a particular value of the porosity.
These values appear due to averaging in the confined cell direction. On the other hand,
we can define without loss of generality the Brinkmann’s effective viscosity in Hele-Shaw
cells as µe = µ , so the Darcy number is Da = ε2 . Defining the constitutive equation
for density as (ρ− ρa)/∆ρ = −(T − Ta)/∆T , the buoyancy term in both models is the
same, but the Forchheimer drag term is completely different. In the Hele-Shaw model,
the existence of a quadratic velocity term in the right side of Eqn. (5.4.2) is due to the
variations of the viscosity. However, in porous media models, the Cf coefficient is in
general independent of the viscosity. Finally, the mass transport term Lmass , which
appears in Eqn. (5.4.2), is new for porous media models.

To study the linear stability of thermal convection using the Hele-Shaw model,
we consider a single fluid phase with constant dimensionless viscosity µ̄ = 1 . The
dimensionless fluid density, temperature and pressure can be written as

ρ̄′(x′, t′) = ρ̄′s(z′) + ρ̃′(x′, t′) , (6.2.4)
T ′(x′, t′) = T̄ ′s(z′) + θ′(x′, t′) , (6.2.5)
p̄′(x′, t′) = p̄′s(z′) + p̃′(x′, t′) , (6.2.6)

where T̄ ′s(z′) = 1 − z′ is the conductive regime solution (when ū′ = 0) and dp̄′s/dz =
−ρ̄′s(z) . Furthermore, the constitutive equation is defined as ρ̃′ = −θ′ . The boundary
conditions for the perturbed temperature are θ′ = 0 in z′ = 0 and z′ = 1 . Then, with
the aim to compare the effects of boundaries in the onset of convection, we analize the
neutral marginal stability using both free slip and no slip boundary conditions.

6.2.1 Free slip boundary conditions without interfacial effects

From the perturbation of the conductive regime given by Eqns. (6.2.4) to (6.2.6), the
linearized model of Eqns. (5.4.1) and (5.4.3) with Ca → ∞ (no interfacial effects) is
written as
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∇′ · ū′ = 0 , (6.2.7)

ε2 γ Re ∂ū
′

∂t′
= −∇′p̄′ + θ′ẑ − ū′ + ε2 γ∇′ 2ū′ + ε2Rat β w̄′ ẑ (6.2.8)

∂θ′

∂t′
− w̄′ = 1

Rat
∇′2θ′ . (6.2.9)

where γ = 6/5 and β = 2/35 . We are interested in studying both the contribution of
the vertical advection term (represented by parameter β) and the importance of the
boundary conditions in the onset of thermal convection in a single fluid phase. The
linear solutions of Eqns. (6.2.7) to (6.2.9) are f(x′, τ) = f̂(z′) exp(sτ) exp(−ikx′), with
f : (ū′, w̄′, p̃′, θ′) . Therefore, in the marginal stability condition s = 0, we obtain the
equations

ikû− dŵ

dz′
= 0 , (6.2.10)

γε2
d2û

dz′2
− ηεû+ ikp̂ = 0 , (6.2.11)

γε2
d2ŵ

dz′2
− ηεŵ −

dp̂

dz′
+ θ̂ + βε2Ratŵ = 0 , (6.2.12)

d2θ̂

dz′2
− k2θ̂ + Ratŵ = 0 , (6.2.13)

where ηε = 1+γε2k2 . Combining the variables p̂, û and θ̂ from Eqns. (6.2.10) to (6.2.13),
we obtain a unique equation that solves the eigenfunction problem

γ ε2
d6ŵ

dz′6
−
[
ηε + 2γε2k2

]
d4ŵ

dz′4
+
[
2ηεk2 + γε2k4

]
d2ŵ

dz′2
− βε2k2Rat

d2ŵ

dz′2

− k4ηεŵ +
[
1 + βε2k2

]
k2Ratŵ = 0 . (6.2.14)
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Eqn. (6.2.14) represents a singular perturbation problem whose nature resides in
the order of magnitude of Ldiss in comparison with Ldarcy (For further information,
see Chapter 5, Section 5.4 on page 57). Applying free slip boundary conditions, where
ŵ = 0 , dû/dz′ = 0 and θ̂ = 0 in z′ = 0 and z′ = 1, we obtain the following six boundary
conditions for Eqn. (6.2.14), ŵ = 0 , d2ŵ/dz′2 = 0 and d4ŵ/dz′4 = 0 at upper and lower
vertical boundaries. The eigenfunction that solves this problem is ŵ(z′) = sin(πz′) . As
a consequence, the dispersion relation obtained from Eqn. (6.2.14) is

Rat(k, ε) = (k2 + π2)2

k2 + χ ε2
(k2 + π2)3

k2 +O(ε4) ; χ = γ − β = 8
7 . (6.2.15)

This result shows that Ldiss (represented by parameter γ) is linearly stable, while
Lmass (represented by parameter β) is linearly unstable, as we expected. The onset of
convection occurs when dRat/dk = 0 . Hence, we obtain the critical thermal Rayleigh
number and the most unstable wavenumber, which are

Ra(c)
t = 4π2 + 8χ ε2 π4 +O(ε4) , (6.2.16)
kc = π − χπ3 ε2 +O(ε4) . (6.2.17)

When ε→ 0, we recover the known solution Ra(c)
t = Ra(c)

t,darcy = 4π2.

6.2.2 No slip boundary conditions without interfacial effects

On the other hand, using no-slip/Dirichlet boundary conditions ŵ = 0 , û = 0 and θ̂ = 0
in z′ = 0 and z′ = 1, we obtain the following six boundary conditions for Eqn. (6.2.14),
ŵ = 0 , Dŵ = 0 and (D2 − k2) (D2 − k2 − 1/(γε2))ŵ = (β/γ) k2Ratŵ at upper and
lower vertical boundaries, where D = d/dz′. Following the work of Bizon et al (1997a),
the proposed eigenfunction that solves Eqn. (6.2.14) is ŵ ∼ exp(λz′) . Therefore, the
dispersion relation obtained from Eqn. (6.2.14) is

γε2 x3 − x2 − βµ2ε2 x+ µ2 = 0 , (6.2.18)

where x = λ2 − k2 and µ2 = k2Rat . The cubic Eqn. (6.2.18) is singular and one of
the three solutions will be of order O(1/ε2). Using the change of variables x = ε2y

and expanding in power series y = y0 + ε2y1 + ε2y2 + ε6y3 + O(ε8) , the solutions of
Eqn. (6.2.18) obtained by singular perturbation theory are

68



CHAPTER 6. LINEAR STABILITY ANALYSIS

x1 = 1
γε2
− ε2σµ2 +O(ε4) , (6.2.19)

x2 = µ− 1
2 βµ

2ε2 +O(ε4) , (6.2.20)

x3 = −µ− 1
2 βµ

2ε2 +O(ε4) . (6.2.21)

Finally, the six parameters λ that build the solution of the problem are λ1 = ±ϑ1 ,
λ2 = ±ϑ2 and λ3 = ±ϑ3 , where

ϑ1 = 1
ε

1
√
γ

+ 1
2
√
γ k2ε+O(ε3) , (6.2.22)

ϑ2 =
√
k2 + µ− 1

4
βµ2
√
k2 + µ

ε2 +O(ε4) , (6.2.23)

ϑ3 =
√
µ− k2 + 1

4
βµ2
√
µ− k2 ε

2 +O(ε4) . (6.2.24)

Using symmetry arguments, we write the eigenfunction ŵ as

ŵ(z′) = A sinh
[
ϑ1

(
z′ − 1

2

)]
+B cosh

[
ϑ1

(
z′ − 1

2

)]
+ C sinh

[
ϑ2

(
z′ − 1

2

)]
(6.2.25)

+ E cosh
[
ϑ2

(
z′ − 1

2

)]
+ F sin

[
ϑ3

(
z′ − 1

2

)]
+G cos

[
ϑ3

(
z′ − 1

2

)]
.

Applying the no slip boundary conditions to Eqn. (6.2.25) and considering the even
part of the eigenfunction, we obtain the matricial equation Ma = 0, where

M =



1 1 1

ϑ1 tanh(ϑ1/2) ϑ2 tanh(ϑ2/2) −ϑ3 tan(ϑ3/2)

−µ2 +O(ε2) − µ
γε2

+ µ2 − 1
2
β
γ
µ2 +O(ε2) µ

γε2
+ µ2 − 1

2
β
γ
µ2 +O(ε2)


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a =



B cosh(ϑ1/2)

E cosh(ϑ2/2)

G cos(ϑ3/2)


The dispersion relation is obtained solving det(M) = 0 . Since that ϑ1 = O(1/ε)

and ϑ2 = O(1), we can approximate det(M) = 0 as

− 2µ
γε2

ϑ1 tanh(ϑ1/2) +
 µ

γε2
+ 1

2
β

γ
µ2

ϑ3 tan(ϑ3/2) = 0 . (6.2.26)

Finally, in the porous media limit ε → 0, we have tanh(ϑ1/2) → 1. Accordingly,
Eqn. (6.2.26) is written as

− 2
√
γε

+ ϑ3 tan(ϑ3/2) +O(ε2) = 0 , (6.2.27)

where the solution found using perturbation theory is ϑ3 = π(1 +√γε) + O(ε2) . The
dispersion relation is obtained matching Eqns. (6.2.24) and (6.2.27). The final result is

Rat(k, ε) = (k2 + π2)2

k2 +
4π2√γ
k2 (k2 + π2) ε+O(ε2) , (6.2.28)

The onset of convection occurs when dRat/dk = 0 . Hence, we obtain the critical
thermal Rayleigh number and the most unstable wavenumber, which are

Ra(c)
t = 4π2 +

[
8π2√γ

]
ε+O(ε2) , (6.2.29)

kc = π(1 +√γ ε) +O(ε2) . (6.2.30)

For the case γ = 1 , we recover the O(ε) correction obtained by Ress (2002) given by
Eqn. (6.2.3). Therefore, for a sufficiently small ε parameter in laboratory experiments
using Hele-Shaw cells, we will observe the onset of convection at Rat ∼ 4π2 . The
question is how big must the ε parameter be in order to reproduce experimentally this
result. A simple comparison between formulas Eqns. (6.2.16) and (6.2.29) helps to
understand physically the porous media limit, which is shown in Fig. 6.2.1. Using this
figure, we define three regions of importance
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Figure 6.2.1: The porous
media limit in the onset of
thermal convection. For both
free slip and no slip boundary
conditions, we obtain the
same critical Rayleigh number
Rac when ε < 10−4. For
comparise, the result obtained
by Ress (2002) is presented.

• The macroscale or free-fluid regime, where O(ε) ∼ 1 .

• The porous media mesoscale or Hele-Shaw regime, where 10−4 ≤ ε ≤ 10−1 and
the inertial corrections of Darcy equation governs the fluid dynamics.

• the microscale or Darcy regime, where ε < 10−4 and the Darcy equation governs
the problem.

In the free-fluid regime, the inertial corrections of Darcy equation are invalid and
the Navier-Stokes equation must be applied. Mathematically, there is no continuous
connection between the free-fluid and the Hele-Shaw regimes presented in Chapter 5,
Section 5.4 on page 57, because of the dimensionality of the governing equations, but
there is a natural connection between the Hele-Shaw and the Darcy regimes through
the porous media limit, which is defined in this chapter as the maximum ε for which
the onset of convection is independent of the boundary conditions. There are a great
number of experiments of convection using Hele-Shaw cells that have been reported in
literature within the interval 10−3 < ε < 10−2 (see Fig. 6.2.1). Data recopilation done
by Nield and Bejan (2006) for thermal convection experiments suggest that the onset
of convection is at Rac ∼ 40, which coincides with our linear stability analysis using
both free slip and no slip boundary conditions. However, accurate measurements of
the onset of convection in Hele-Shaw cells are difficult to perform and it is not trivial
to demonstrate the effects of no slip boundary conditions in such measurements. For
instance, using a Hele-Shaw cell of gap b = 1 mm and height H = 10 cm, we obtain
ε = 10−2 , so the difference between the critical Rayleigh number obtained using both
free-slip and no-slip boundary conditions is approximately 2% . This small difference
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is due to the existence of a thin viscous boundary layer whose spatial scale is of the
order of the gap of the cell. In laboratory experiments using Hele-Shaw cells, the
model proposed and the experimental results presented in the literature suggest that
the boundary conditions for the velocity do not impact substantially in the onset of
convection. In developed thermal convection scenarios, we refer the work of Bizon et al
(1997a) for a more complete lecture about the convective behavior in the cell and the
influence of boundary conditions in the dynamics.

6.2.3 Perturbative solutions for velocity and temperature.
O(ε2) correction considering weak interfacial effects

We consider the case of weak interfacial effects Ca = O(1) , where for convenience we
write the capillary number as Ca = 1/ϑ̄ with ϑ̄ > 0 . The linearized model from the
perturbation of the conductive regime is

γε2
d4ŵ

dz′4
−
[
ηε + 2γε2k2

]
d2ŵ

dz′2
+ ηε k

2 ŵ − βε2 Rat k2 ŵ

− k2 ε2 ϑ̄
d2θ̂

dz′2
− k2

[
1− k2ε2 ϑ̄

]
θ̂ = 0 , (6.2.31)

d2θ̂

dz′2
− k2 θ̂ + Rat ŵ = 0 , (6.2.32)

with boundary conditions ŵ = dŵ/dz′ = θ̂ = 0 on z′ = 0 and z′ = 1 . Following the
work of Ress (2002), we use matching asymptotic expansions to solve Eqns. (6.2.31)
and (6.2.32). In the outer region, we have

ŵ = f(z′) = f0(z′) + εf1(z′) + ε2f2(z′) +O(ε2) ,
θ̂ = g(z′) = g0(z′) + εg1(z′) + ε2g2(z′) +O(ε2) ,

with boundary conditions f = df/dz′ = g = 0 in z′ = 0 and z′ = 1 . On the other hand,
in the left inner region (z′ → 0) we use the inner variable ζ = z′/ε, so we have

ŵ = Fl(ζ) = F0,l(ζ) + εF1,l(ζ) + ε2F2,l(ζ) +O(ε3) ,
θ̂ = Gl(ζ) = G0,l(ζ) + εG1,l(ζ) + ε2G2,l(ζ) +O(ε3) ,
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with boundary conditions Fl = dFl/dζ = Gl = 0 in ζ = 0 . In the right inner region
(z′ → 1) we use the inner variable ξ = (1− z′)/ε , so we have

ŵ = Fr(ξ) = F0,r(ξ) + εF1,r(ξ) + ε2F2,r(ξ) +O(ε3) ,
θ̂ = Gr(ξ) = G0,r(ξ) + εG1,r(ξ) + ε2G2,r(ξ) +O(ε3) ,

with boundary conditions Fr = dFr/dξ = Gr = 0 in ξ = 0 . The matching conditions
are Fl(ζ → ∞) = f(z′ → 0) , Fr(ξ → ∞) = f(z′ → 1) , Gl(ζ → ∞) = g(z′ → 0) and
Gr(ξ →∞) = g(z′ → 1) . Finally, we expand the Rayleigh number as

Rat = R0 + εR1 + ε2R2 +O(ε3) (6.2.33)

The leading order equations to be solve in the outer region are

d2f0

dz′2
− k2 f0 + k2 g0 = 0 , (6.2.34)

d2g0

dz′2
− k2 g0 +R0 f0 = 0 , (6.2.35)

with boundary conditions f0(0) = 0 , f0(1) = 0 , g0(0) = 0 and g0(1) = 0 . The boundary
conditions for the derivative are absent at this order. Therefore, the solutions obtained
are the same that for the case of free-slip boundary conditions

f0 = sin(π z) , g0 = π2 + k2

k2 sin(π z) , R0 = (π2 + k2)2

k2 . (6.2.36)

In the limit z → 0 , sin(π z) ∼ π z ∼ π ε ζ . For z → 1 , sin(π z) ∼ π (1− z) ∼ π ε ξ .
Then, due to matching asymptotic conditions, we have the solutions F0 = G0 = 0 .
When we reconstruct the velocity ŵ(z′) , the inclusion of the inner solutions of order
O(ε) can correct the Neumann boundary condition dŵ/dz′ in z′ = 0 and z′ = 1 , missing
in the outer solution at the leading order. However, this procedure does not satisfy at
the same time the Dirichlet boundary condition ŵ = 0 in z′ = 0 and z′ = 1 . Therefore,
it is necessary to find the outer solution of order O(ε) to correct the Dirichlet boundary
condition of the velocity, but losing the Neumann boundary condition once again, which
can be corrected by introducing the inner solutions of order O(ε2) and so on. We call
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it relaxation of no-slip boundary conditions to this form of solving the problem using
inner and outer expansions.

Therefore, the O(ε) equations in the left inner region are

γ
d4F1,l

dζ4 −
d2F1,l

dζ2 = 0 , (6.2.37)

d2G1,l

dζ2 = 0 , (6.2.38)

with boundary conditions F1,l = dF1,l/dz
′ = G1,l = 0 on ζ = 0 . The solutions are the

following

F1,l = A1

 1
√
γ
ζ − 1 + exp

− ζ
√
γ

 , G1,l = A2 ζ . (6.2.39)

By using the matching conditions, we have A1 = π
√
γ and A2 = π (π2 + k2)/k2 .

By symmetry arguments, the solutions of the O(ε) equations in the right inner region
are

F1,r = A1

 1
√
γ
ξ − 1 + exp

− ξ
√
γ

 , G1,r = A2 ξ . (6.2.40)

Therefore, the physical solutions can be written using composite expansions as

ŵ(z) = f0(z′) + ε
[
f1(z′) + F1,l(z′/ε) + F1,r(z′/ε)

]
− f (l)

int(z′)− f
(r)
int(z′) +O(ε2) ,

θ̂(z) = g0(z′) + ε
[
g1(z′) +G1,l(z′/ε) +G1,r(z′/ε)

]
− g(l)

int(z′)− g
(r)
int(z′) +O(ε2) ,

where f (l)
int(z′) = π z′−ε π√γ , f (r)

int(z′) = π (1−z′)−ε π√γ , g(l)
int(z′) = (π (π2 +k2)/k2) z′

and g(r)
int(z′) = (π (π2 +k2)/k2) (1− z′) are the common solutions between the outer and

inner regions. Finally, we have ŵ = ŵ0 + εf1 +O(ε2) and θ̂ = g0 + εg1 +O(ε2) , where

ŵ0(z′) = sin(π z′) + π
√
γ ε

 exp
− z′

ε
√
γ

+ exp
(z′ − 1)

ε
√
γ

 . (6.2.41)
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As we can see, the velocity solution Eqn. (6.2.41) satisfies the Neumann boundary
conditions but does not satisfy the Dirichlet conditions. To find the functions f1 and
g1 , we must solve the O(ε) equations in the outer region, which are

−d
2f1

dz′2
+ k2 f1 − k2 g1 = 0 , (6.2.42)

d2g1

dz′2
− k2 g1 +R0 f1 = −R1 f0 , (6.2.43)

with boundary conditions f1(z′ = 0) = f1(z′ = 1) = −π√γ , which are given by
Eqn. (6.2.41) and g1(z′ = 0) = g1(z′ = 1) = 0 . Eqns. (6.2.34), (6.2.35), (6.2.42)
and (6.2.43), can be combined into a unique equation written as

R0

f0
d2f1

dz′2
− f1

d2f0

dz′2

+ k2

g0
d2g1

dz′2
− g1

d2g0

dz′2

 = −k2R1 f0 g0 . (6.2.44)

It is very easy to show that
∫ 1

0 (f0 f
′′
1 − f1 f

′′
0 ) dz′ = f ′0(0) f1(0) − f ′0(1) f1(1) and∫ 1

0 (g0 g
′′
1 − g1 g

′′
0) dz′ = 0 . Therefore, by integrating Eqn. (6.2.44) we obtain

R1 = 4π2√γ (π2 + k2)
k2 . (6.2.45)

The solutions of Eqns. (6.2.42) and (6.2.43) are

f1 =
π
√
γ

2

2
(
z′ − 1

2

)
cos(πz′)− sech

(
λ

2

)
cosh

λ(z′ − 1
2

) , (6.2.46)

g1 =
2π2√γ
k2 sin(πz′) (6.2.47)

+
π
√
γ

2
(π2 + k2)

k2

2
(
z′ − 1

2

)
cos(πz′) + sech

(
λ

2

)
cosh

λ(z′ − 1
2

) ,

where λ =
√
π2 + 2k2 . The reconstructed Rayleigh number Rat = R0 + εR1 +

O(ε2) obtained by the matching asymptotic method coincides with the result given
by Eqn. (6.2.28). To extend this result, we must solve the O(ε2) equations in the left
inner region, which are the following
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γ
d4F2,l

dζ4 −
d2F2,l

dζ2 = 0 , (6.2.48)

d2G2,l

dζ2 = 0 , (6.2.49)

with boundary conditions F2,l = dF2,l/dz
′ = G2,l = 0 on ζ = 0 . By using the

intermediate variable method, the solutions of these equations are

F2,l = π γ

1 + λ

2 tanh
(
λ

2

) 1
√
γ
ζ − 1 + exp

− ζ
√
γ

 ,

G2,l =
2π2√γ

k2 + π
√
γ

(π2 + k2)
k2

1− λ

2 tanh
(
λ

2

) ζ .
On the other hand, by using symmetry arguments, the solutions of theO(ε) equations

in the right inner region are

F2,r = π γ

1 + λ

2 tanh
(
λ

2

) 1
√
γ
ξ − 1 + exp

− ξ
√
γ

 ,

G2,r =
2π2√γ

k2 + π
√
γ

(π2 + k2)
k2

1− λ

2 tanh
(
λ

2

) ξ .
Therefore, by using composite expansions, the physical solutions of the problem are

ŵ = ŵ0 + ε ŵ1 + ε2f2 +O(ε3) and θ̂ = g0 + ε g1 + ε2g2 +O(ε3) , where

ŵ1(z′) = f1(z′) + ε π γ

1 + λ

2 tanh
(
λ

2

) exp
− z′

ε
√
γ

+ exp
(z′ − 1)

ε
√
γ

 .

(6.2.50)

The dependence of ŵ with ε is shown in Fig. 6.2.2. This figure shows that the
influence of the boundary layer in the dynamics is negiglible for ε� 1 . From Eqn. (6.2.50),
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Figure 6.2.2: Vertical velocity profiles for different values of ε . The left image shows ŵ for ε = 0.01 ,
while the right image shows ŵ for ε = 0.001 . Both profiles are compared with the solution obtained using
free-slip boundary conditions ŵ = sin(πz′). The thickness of boundary layer estimated is δν ∼ ε , which is
shown in the inset plots. We can see that the influence of the boundary layer in the dynamics is negiglible
for ε� 1

we obtain the following boundary conditions, f2(z′ = 0) = f2(z′ = 1) = −πγ(1 +
λ/2 tanh(λ/2)) and g2(z′ = 0) = g2(z′ = 1) = 0 . Then, the O(ε2) equations in the
outer region are the following

− d2f2

dz′2
+ k2f2 − k2g2 = −γ

d4f0

dz′4
− 2k2 d

2f0

dz′2
+ k4f0

+ βR0 k
2f0

+ k2 ϑ̄

d2g0

dz′2
− k2 g0

 , (6.2.51)

d2g2

dz′2
+R0 f2 − k2 g2 = −R1 f1 −R2 f0 . (6.2.52)

Eqns. (6.2.34), (6.2.35), (6.2.51) and (6.2.52) can be combined into a unique equation,
obtaining the following
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R0

f0
d2f2

dz′2
− f2

d2f0

dz′2

+ k2

g0
d2g′2

dz2 − g2
d2g0

dz′2

 = −R1 k
2 g0f1 −R2 k

2 f0g0 (6.2.53)

+ γ R0

f0
d4f0

dz′4
− 2k2 f0

d2f0

dz′2
+ k4 f 2

0

− β R2
0 k

2 f 2
0 − k2 ϑ̄ R0

f0
d2g0

dz′2
− k2 f0g0

 .
Using the relations

∫ 1
0 (f0 f

′′
2 − f2 f

′′
0 ) dz′ = f ′0(0) f2(0) − f ′0(1) f2(1) ,

∫ 1
0 (g0 g

′′
2 −

g2 g
′′
0) dz′ = 0 and f2(0) = f2(1) , we can integrate the Eqn. (6.2.53), obtaining

R2 = χ(ϑ̄) (π2 + k2)3

k2 + 4π2γ

k2 (π2 + k2)
1 + λ

2 tanh
(
λ

2

)+ 2π2γ

k2 (3π2 + k2) , (6.2.54)

where χ(ϑ̄) = γ − β + ϑ̄ . The introduction of ϑ̄ > 0 in the equations shows that the
interfacial effects stabilize linearly the system at order O(ε2), as we expected. Therefore,
the reconstructed Rayleigh number is

Rat(k, ε) = (π2 + k2)2

k2 + ε

4π2√γ (π2 + k2)
k2

 (6.2.55)

+ ε2

χ(ϑ̄) (π2 + k2)3

k2 + 4π2γ

k2 (π2 + k2)
1 + λ

2 tanh
(
λ

2

)+ 2π2γ

k2 (3π2 + k2)

+O(ε3) .

Minimizing Rat with respect to k and applying the perturbative expansion k =
k0 + εk1 + ε2k2 + O(ε3) , we obtain the following solutions of the critical wavenumber
by solving the minimization problem order by order

k0 = π ,

k1 = π
√
γ ,

k2 = πγ − π3χ(ϑ̄) + π2γ
√

3
6 tanh

(
π
√

3
2

)
− π3γ

2 sech2
(
π
√

3
2

)
.

Finally, the critical thermal Rayleigh number obtained using matching asymptotic
expansions is
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Ra(c)
t = 4π2 +

[
8π2√γ

]
ε+

8π4χ(ϑ̄) + 12π2γ + 4π3γ
√

3 tanh
(
π
√

3
2

) ε2 +O(ε3) .

(6.2.56)

which is a generalized result of the critical Rayleigh number given by Ress (2002).
Eqn. (6.2.56) shows that the geometry (inertial) effects appear at order O(ε) due to the
viscous dissipation, while the interfacial effects appear at order O(ε2) . Furthermore, in
Eqn. (6.2.56), we can see that Ra(c)

t > Ra(c)
t,darcy , so geometry effects also contributes to

the weak stabilization of the system.

6.3 Long-wave instability dynamics
in Rayleigh-Taylor convection

The solubility trapping of supercritical CO2 in saturated geologic reservoirs is an
interesting problem where the stability of the two-fluid system depends on an unsteady
base-state. The dissolution of CO2 into brine forms a diffusive layer which becomes
unstable due to the increase of the density of the fluid inside of a thin interfacial region
between the gas (CO2) and fluid (brine) phases. This mechanism of instability is called
Rayleigh-Taylor (Sharp, 1984). When the time is greater than the critical time of
the onset of convection, the fingering phenomenon starts to dominate the dynamics,
enhancing the mass transport of the dissolved CO2 into the reservoir. In this chapter,
we study the consequences of inertial terms and weak capillary effects in the stability
of the problem, which have not been addressed until now.

Fig. 6.3.1 shows the analogy between the onset of instability in the mixing of
two-fluid phases in Hele-Shaw cells (the analogue system) and the approximation proposed
when t′ � 1 , using a semi-infinite domain in the self-similarity system reference (the
canonical system). The analogue system represents a physical laboratory picture of
the dissolution of CO2 into brine in geologic reservoirs, while the canonical system is
adequate to determine the critical time of the onset of instability. Following the work
of Riaz et al (2006), from Eqns. (5.4.1) to (5.4.3) and using the constitutive equation
ρ̄′ = Sw , the base scalar solution of the canonical system is given by a pure diffusion
process, where ū′ = 0 and Sw = s0 must satisfy the equation
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∂s0

∂t′
= 1

Ras
∂2s0

dz′2
,

with boundary conditions s0 = 1 at z′ = 0 and ∂s0/∂z
′ = 0 at z′ = ∞ . The base

pressure is the solution of the equation

∇′p̄′s = −s0 g ẑ − ϑ

∇′s0∇′ 2s0 + 1
2 ∇

′
(
|∇′s0|2

) .
By using the self-similar variable ξ = z′

√
Ras/4t′ , the base scalar solution is s0 =

1 − erf(ξ) , which is time independent in the (ξ, t′) reference system. This solution
is valid when the penetration deep δ(t′) =

√
4t′/Ras � 1 . Next, we perturbe the

base-state solution as follows

Sw = s0(ξ) + š(ξ, t′) e−ikx′ , (6.3.1)
ū′ = 0 + ǔ(ξ, t′) e−ikx′ , (6.3.2)
w̄′ = 0 + w̌(ξ, t′) e−ikx′ , (6.3.3)
p̄′ = p̄′s(ξ) + p̌(ξ, t′) e−ikx′ . (6.3.4)

Using the notation ∂f/∂ξ = fξ for spatial derivatives and Ca = 1/ϑ̄ for the capillary
number, the linearized perturbed equations can then be expressed as

ikǔ = 1
2 ηt

′ w̌ξ , (6.3.5)

γ ε2 Re ∂ǔ
∂t′

= 1
2t′ γ ε

2 Re ξ ǔξ + i k p̌− µ̄ ǔ+ γ ε2 µ̄
[
− k2 ǔ+ 1

4 η
2
t′ ǔξξ

]
(6.3.6)

− i k√
π
ε2 ϑ̄ η2

t′ e
−ξ2

[1
2 šξ − ξ š

]
,

γ ε2 Re ∂w̌
∂t′

= 1
2t′ γ ε

2 Re ξ w̌ξ −
1
2 ηt

′ p̌ξ + š− µ̄ w̌ + 1√
π
ηt′ β ε

2 Ras e−ξ
2
w̌ (6.3.7)

+ γ ε2 µ̄
[
− k2 w̌ + 1

4 η
2
t′ w̌ξξ

]
− 1√

π
ε2 ϑ̄ η3

t′ e
−ξ2

[
ξ šξ −

1
2 šξξ + k2 t′

Ras
š
]
,
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∂š

∂t′
− 1
t′

[1
4 šξξ + 1

2 ξ šξ −
k2 t′

Ras
š
]

= 1√
π
ηt′ e

−ξ2
w̌ , (6.3.8)

where ηt′ =
√
Ras/t′ , γ = 6/5 and β = 2/35 . The boundary conditions are š = ǔ =

w̌ = 0 in ξ = 0 , and šξ = ǔ = w̌ = 0 in ξ =∞ . For ε→ 0 , we obtain the same linear
equations studied by Riaz et al (2006). Eqns. (6.3.6) to (6.3.8) represent a linear system
of non-autonomous equations which cannot be solved analytically. Unfortunately, the
non-autonomous nature of equations prohibits the use of classical disturbances of the
type eσt′ in Eqns. (6.3.1) to (6.3.4), where σ is the growth rate (Farrel and Ioannou,
1996).

In their work, Riaz et al (2006) show that the modal expansion of š given by the
expression

š(ξ, t′) =
∞∑
n=1

an(t′)ψn(ξ) , (6.3.9)

and applied to the nonlinear streamwise operator

L = 1
4 šξξ + 1

2 ξ šξ , (6.3.10)

leads to the eigenvalue problem Lψn = λn ψn = −n e−ξ2Hn(ξ) , where Hn(ξ) are the
Hermite polynomials and n = 1, 2, 3, . . . . These polynomials provide an optimal basis
for the canonical system (see Fig. 6.3.1). In general, the modal expansion technique
is not recommended for study non-autonomous systems because it does not address
the interesting problem of the transient growth of small perturbations, which can
be demostrated analyzing the non-orthogonality of the eigenmodes (Schmid, 2007).
However, in the limit ε → 0 , the temporal evolution of the first mode n = 1 , in a
semi-infinite domain, captures the long-wave instability dynamics with a good agreement
with nonlinear simulations. For this case, the scaling law for the critical time is
τc ∼ 146Ra−1

s (Riaz et al, 2006).
For a more detailed description of the onset of convection, new techniques related

with non-modal linear stability analysis have been reported in the literature, which can
capture the transient growth of small perturbations. We refer the recent work of Hota
et al (2015) for further details. We will apply the self-similarity quasi steady-state
approximation technique (SS-QSSA) (Pramanik and Mishra, 2013) to Eqns. (6.3.5)
to (6.3.8), with the aim to study the temporal evolution of the first (dominant) mode
n = 1 in the canonical system presented in Fig. 6.3.1. Only for this case, we can use
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Figure 6.3.1: The analogue and canonical systems in Hele-Shaw cells. The onset of instability in the
mixing of two-fluid phases in Hele-Shaw cells is represented by the analogue system, while the canonical
system is the mathematical approximation when t′ � 1 using a semi-infinite domain in the self-similarity
system reference.

the approximation f̌(ξ, t′) ∼ f̂(ξ) exp(σ(k, τf ) t′) , where σ = σ(k, τf ) is the growth rate
and τf is the frozen time (Riaz et al, 2006).

6.3.1 Dominant-mode solution using the SS-QSSA technique

The main reasons to work with the SS-QSSA using the first (dominant) mode, instead
of non-modal analysis, are the following

• The solutions have a better behavior at short times when we work in the self-similarity
(ξ, t′) space (Riaz et al, 2006; Pramanik and Mishra, 2015).

• The non-autonomous system can be reduced for one which is autonomous and
analytically soluble, by freezing the base-state at a particular time τf .

• When ε � 0 and k = 0 , the first mode decays as σ = −1/τf , which always
stabilizes the flow. Then, a long-wave cutoff exists and the fluid becomes unstable
for t′ > τf .
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• In the limit ε→ 0 , the critical time and the long-wave cutoff are computed exactly
by the dominant-mode solution (Riaz et al, 2006) (See Chapter 4, Section 4.1 on
page 29 for additional information about the long-wave cutoff). We will suppose
that for ε� 1 , we can still obtain reliable results.

Therefore, this method allow us to use classical modal analysis to study the linearized
equations. Then, introducing the frozen time τf in Eqns. (6.3.5) to (6.3.8) and applying
only the first mode of Eqn. (6.3.9), which is ψ1(ξ) = ŝ(ξ) = ξ exp(−ξ2) , we obtain the
following linear system of equations

ikû = 1
2 ητ ŵξ , (6.3.11)

σ(k, τf ) γ ε2 Re û = 1
2τf

γ ε2 Re ξ ûξ + i k p̂− µ̄ û+ γ ε2 µ̄
[
− k2 û+ 1

4 η
2
τ ûξξ

]
(6.3.12)

− i k√
π
ε2 ϑ̄ η2

τ e
−ξ2

[1
2 ŝξ − ξ ŝ

]
,

σ(k, τf ) γ ε2 Re ŵ = 1
2τf

γ ε2 Re ξ ŵξ −
1
2 ητ p̂ξ + ŝ− µ̄ ŵ + 1√

π
ητ β ε

2 Ras e−ξ
2
ŵ (6.3.13)

+ γ ε2 µ̄
[
− k2 ŵ + 1

4 η
2
τ ŵξξ

]
− 1√

π
ε2 ϑ̄ η3

τ e
−ξ2

[
ξ ŝξ −

1
2 ŝξξ + k2 τf

Ras
ŝ
]
,

σ(k, τf ) + 1
τf

+ k2

Ras

 ŝ = 1√
π
ητ e

−ξ2
ŵ . (6.3.14)

After a straightforward algebraic procedure, we obtain the following general boundary
layer equation (Orr-Sommerfeld model)

[
A0 + ε2(A1 + σ A2)

]
ŵ +

[
B0 + ε2B1

]
ŵξ +

[
C0 + ε2(C1 + σ C2)

]
ŵξξ (6.3.15)

+ ε2 P0 ŵξξξ + ε2R0 ŵξξξξ = k2 ξ e−ξ
2 − 1√

π
k2 ε2 ϑ̄ η3

τ

[
1 + k2 τf

Ras

]
ξ e−2ξ2

,

where
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Outer region
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Intermediate region

1

0

Figure 6.3.2: Asymptotic regions in the
canonical model. The inner region is
directly related with the diffusive boundary
layer

A0(ξ) = µ̄ k2 ; A1(ξ) = µ̄ γ k4 − 1√
π
k2 ητ β Ras e−ξ

2 ; A2 = γ Re k2 ,

B0(ξ) = −1
4 η

2
τ µ̄ξ ; B1(ξ) = − 1

2τf
γ Re k2 ξ − 1

4 µ̄ξ k
2 η2

τ γ ,

C0(ξ) = −1
4 η

2
τ µ̄ ; C1(ξ) = 1

8τf
γ Re η2

τ −
1
2 µ̄ k

2 η2
τ γ ; C2 = −1

4 η
2
τ γ Re ,

P0(ξ) = 1
8τf

γ Re η2
τ ξ + 1

16 η
4
τ γ µ̄ξ ; R0(ξ) = 1

16 η
4
τ γ µ̄ .

Eqn. (6.3.15) can be solved analytically by means of matching asymptotic methods
(see Fig. 6.3.2). Since the interfacial tension term ϑ̄ appears at order O(ε2) , we
incorporate it in the solution of Eqn. (6.3.15) by introducing the term δ̄ = ε2 ϑ̄ . In
the following, we assume that µ̄ = 1 and the boundary conditions are ŵ = 0 and
ŵξ = 0 , both evaluated at ξ = 0 and ξ →∞ .

In the outer region, we have the expansion in power series

ŵ = f(ξ) = f0(ξ) + εf1(ξ) + ε2f2(ξ) +O(ε2) ,

with boundary conditions f = fξ = 0 in ξ = 0 and ξ →∞ . On the other hand, in the
upper inner region (ξ → 0), we use the inner variable ζ = ξ/ε, so we have

ŵ = F (ζ) = F0(ζ) + εF1(ζ) + ε2F2(ζ) +O(ε3) ,

with boundary conditions F = Fζ = 0 in ζ = 0 .
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6.3.2 O(1) outer solution
At order O(1) , Eqn. (6.3.15) in the outer region is written as

∂2f0

∂ξ2 − ᾱ
2
1 f0 = −ᾱ2

1

[
ξ e−ξ

2 − ᾱ2 ξ e
−2ξ2

]
, (6.3.16)

ᾱ1 = 2k
ητ

; ᾱ2 = 1√
π
δ̄ η3

τ

[
1 + k2 τf

Ras

]
,

with boundary conditions f0 = 0 in ξ = 0 and ξ → ∞ . The homogeneous solution of
Eqn. (6.3.16) is f (h)

0 = θ1(ξ) exp(ᾱ1ξ) + θ2(ξ) exp(−ᾱ1ξ) , while the particular solution
is obtained by means of the method of variation of parameters

∂θ1

∂ξ
= − ᾱ1

2

[
ξ e−ξ

2 − ᾱ2 ξ e
−2ξ2

]
e−ᾱ1ξ ; ∂θ2

∂ξ
= ᾱ1

2

[
ξ e−ξ

2 − ᾱ2 ξ e
−2ξ2

]
eᾱ1ξ .

Thereby, the general solution of Eqn. (6.3.16) is

f0 = eᾱ1ξ

K1 +K2 e
−ᾱ1ξ−ξ2 +K3 erf

(
ξ + 1

2 ᾱ1

)
−K4 e

−ᾱ1ξ−2ξ2 −K5 erf
(√

2ξ + 1
2
√

2
ᾱ1

)
+ e−ᾱ1ξ

−K1 −K2 e
ᾱ1ξ−ξ2 +K3 erf

(
ξ − 1

2 ᾱ1

)
+K4 e

ᾱ1ξ−2ξ2 −K5 erf
(√

2ξ − 1
2
√

2
ᾱ1

) ,

(6.3.17)

where the Ki parameters are the following

K1 = 1
8 ᾱ

2
1
√
π eᾱ

2
1/4
[ 1
2
√

2
ᾱ2 − 1

]
; K2 = 1

4 ᾱ1 ; K3 = 1
8 ᾱ

2
1
√
π eᾱ

2
1/4 ,

K4 = 1
4
√

2
ᾱ1 ᾱ2 ; K5 = 1

16
√

2
ᾱ2

1 ᾱ2
√
π eᾱ

2
1/4 .
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6.3.3 O(ε) inner solution
From Eqn. (6.3.17), we can see that in the limit ξ → 0 we obtain f0 ∼ 2(K4−K2) ᾱ1 ξ .
Therefore, replacing ξ = ε ζ in the expression given before, we obtain f0 ∼ ε F1 with
F1(ζ) = 2(K4−K2) ᾱ1 ζ , which is the matching condition between the inner and outer
solutions. In other words, in the power series expansion of ŵ given for the inner region,
we obtain the solution F0 = 0 . Thereby, at order O(ε) , Eqn. (6.3.15) in the inner
region is written as

ω̄
∂4F1

∂ζ4 −
∂2F1

∂ζ2 = 0 ; ω̄ = 1
4 η

2
τ γ , (6.3.18)

with boundary conditions F1 = F1,ζ = 0 in ζ = 0 . The solution of Eqn. (6.3.18) is

F1 = 1
2 ᾱ

2
1
√
ω̄

 1√
2
ᾱ2 − 1

 1√
ω̄
ζ − 1 + exp

(
− ζ√

ω̄

) . (6.3.19)

Therefore, using composite expansions, the solution of ŵ can be written as

ŵ = f0 + 1
2 ε ᾱ

2
1
√
ω̄

 1√
2
ᾱ2 − 1

 exp
(
− ξ

ε
√
ω̄

)
+ ε f1 +O(ε2) . (6.3.20)

To find the function f1 , we use the methodology of relaxation of no-slip boundary
conditions presented in Section 6.2 on page 72.

6.3.4 O(ε) outer solution and velocity reconstruction

At order O(ε) , Eqn. (6.3.15) in the outer region is written as

∂2f1

∂ξ2 − ᾱ
2
1 f1 = 0 , (6.3.21)

with boundary conditions f1 = −(1/2) ᾱ2
1
√
ω̄
(
ᾱ2/
√

2 − 1
)
in ξ = 0 and f1 = 0 in

ξ →∞ . The solution of Eqn. 6.3.21 is

f1 = −1
2 ᾱ

2
1
√
ω̄
[ 1√

2
ᾱ2 − 1

]
e−ᾱ1ξ . (6.3.22)
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Finally, the solution of ŵ at order O(ε2) is

ŵ = f0 + 1
2 ε ᾱ

2
1
√
ω̄

 1√
2
ᾱ2 − 1

 exp
(
− ξ

ε
√
ω̄

)
− exp(−ᾱ1 ξ)

+O(ε2) . (6.3.23)

Eqn. (6.3.23) has a dependency with parameters ε and δ̄ = ε2 ϑ̄ and therefore can be
used to find the growth rate σ = σ(k, τf ) .
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long-wave 
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long-wave 
cutoff
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of frozen time

stabilization by increase 
of interfacial effects

Figure 6.3.3: The growth rate σ in function of some values of ε , τf and ϑ̄ . The left image shows artificial
stabilization effects due to the decrease of the values of the frozen time. On the other hand, for fixed values
of Ras , ε and τf , the right image also shows stabilization effects but due to the increase of interfacial
tension. For both cases, the long-wave cutoff is marked appropiately

6.3.5 Critical time and wavenumber scalings

Integrating Eqn. (6.3.14) over the whole ξ-domain, we obtain the equation

σ(k, τf ) = − 1
τf
− k2

Ras
+ 1√

π
ητ
〈e−ξ2

ŵ〉
〈ξ e−ξ2〉

; 〈f〉 =
∫ ∞

0
f(ξ) dξ , (6.3.24)

where the first two terms of the right hand side of Eqn. (6.3.24) are stabilizers. The
last term of the same equation is a nonlinear destabilizer which must be evaluated
numerically using Eqns. (6.3.17) and (6.3.23). Fig. 6.3.3 shows the growth rate in
function of some values of ε , τf and ϑ̄ . The left image shows artificial stabilization
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effects due to the decrease of the values of the frozen time. In particular, for fixed
values of Ras , ε and ϑ̄ , the left image shows that there is a time τc such that σ = 0
and ∂σ/∂k = 0 . On the other hand, for fixed values of Ras , ε and τf , the right image
also shows stabilization effects but due to the increase of interfacial tension, which is
an expected result.

#̄ = 0 #̄ = 0

Porous media prediction Hele-Shaw anomalies

⌧c ⇠ 146

Ras

Scaling laws

#̄ = 0

⌧c ⇠ 146
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⌧c ⇠ 131
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⌧c ⇠ 60

Ras

Scaling comparison

a b

c

Interfacial effects

✏ = 10�3

d

Figure 6.3.4: Critical time τc in function of the Rayleigh number Ras , for different values of ε and ϑ̄ .
Fig.(a) shows the porous media prediction for ε = 1 × 10−6. Fig.(b) shows the effects of inertial terms.
Considering ε = 1 × 10−3 , Fig.(c) shows the different scaling laws, depending on the Ras values. Finally,
Fig.(d) shows the effects of considering interfacial tension.

To find the critical time τc and the most unstable wavenumber kc in the onset of
convection, we must solve numerically the following equations

σ = 0 =⇒ F̌ (k, τf ) = − 1
τf
− k2

Ras
+ 1√

π
ητ
〈e−ξ2

ŵ〉
〈ξ e−ξ2〉

= 0 , (6.3.25)
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Figure 6.3.5: Critical wavenumber kc in
function of the Rayleigh number Ras , for
different values of ε and ϑ̄

∂σ

∂k
= 0 =⇒ Ǧ(k, τf ) = − 2k

Ras
+ 1√

π
ητ
〈e−ξ2 (∂ŵ/∂k)〉
〈ξ e−ξ2〉

= 0 , (6.3.26)

Fig. 6.3.4 shows the critical time τc in function of the Rayleigh number Ras , for different
values of ε and ϑ̄ . In Fig. (a), for ε = 1× 10−6 , we obtain the same scaling prediction
reported by Riaz et al (2006), which is τc ∼ 146Ra−1

s . This result is not surprinsingly
because ε � 1 . However, in Fig.(b), for ϑ̄ = 0 we obtain a weak nonlinear deviation
of the porous media prediction when we increase ε . We will call this deviation the
Hele-Shaw anomaly. Thereby, in comparison with predictions based on the traditional
Darcy model, the geometry (inertial) effects of the cell tends to destabilize weakly the
system in less time. Fig.(c) shows the scalings obtained for ε = 1 × 10−3 and ϑ̄ = 0 ,
which are modeled as the piecewise function τc = aRa−1

s , with a a constant depending
on the interval of Ras considered. Finally, Fig. (d) shows dramatic changes in the
τc − Ras curve due to interfacial effects, which has not been reported in the literature.
Physically, fluid structures with small wavelength λ in the diffusive boundary layer are
more susceptible to stabilization in time than large λ , due to the accion of effective
interfacial tension which retards considerably the onset of convection. When Ras grows,
the critical wavenumber kc so does, as shown in Fig. 6.3.5. Thereby, for Ras < 1× 103 ,
the critical time is not affected by the interfacial tension due to the fluid structures of
large λ can break the action of Korteweg stresses. However, for Ras > 1 × 103 , the
changes observed in the τc − Ras curve can be explained by means of the stabilization
in time of structures with small λ. This observation has been obtained using the
dominant-mode solution. However, with the aim to capture the contribution of the
short-wave cutoff, it would be important to make a non modal analysis.
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Chapter 7
Heat transport at high Rayleigh number
regime in porous media

This chapter has been submitted as research paper called "Heat transport at high
Rayleigh number regime using a solenoidal Hele-Shaw model", authored by
Juvenal A. Letelier, Paulo Herrera, Nicolás Mujica and Jaime H. Ortega, in Physical
Review Letters (May 2016).

Abstract

In this chapter, we investigate the effect of considering inertial terms in a Darcy
model derived from the Navier-Stokes equations assuming slow diffusion and using
regular perturbation theory for Hele-Shaw geometries. This geometry has been used
as an analogue for two-dimensional homogeneous porous media in laboratory-scale
experiments. The proposed model allows computing the nonlinear hydrodynamic dispersion
tensor for Hele-Shaw cells, as well as the Brikmann dissipative term and the nonlinear
Forchheimer drag term. The application of the model to thermal convection in a
Hele-Shaw geometry, when viscosity is constant and applying periodic boundary conditions
in the horizontal direction, gives new nonlinear scalings for both the Nusselt number and
thermal dissipation rate. We demonstrate that the time-averaged Nusselt number 〈Nu〉τ
and mean scalar dissipation rate 〈ε〉τ depend upon the anisotropy ratio ε =

√
K/H,

where K = b2/12 is the cell permeability, b is the cell gap and H is the cell height. For
ε = 0.01 , we obtain 〈Nu〉τ ∼ Ra0.40±0.03 and 〈ε〉τ ∼ Ra−0.59±0.03, whereas for ε = 0.001
the scalings are 〈Nu〉τ ∼ Ra0.90±0.03 and 〈ε〉τ ∼ Ra−0.09±0.01 . The result of 〈Nu〉τ for
ε = 0.001 is in agreement with the scalings found by using the standard Darcy model.
Our numerical results satisfy the expression 〈Nu〉τ = Rat 〈ε〉τ , which is derived from
the proposed model.

7.1 Introduction

Thermal convection appears in a wide range of problems of interest in physics and
geosciences, such as chaotic dynamics and bifurcations (Bizon et al, 1997b; Sheu et al,

91



CHAPTER 7. HEAT TRANSPORT IN POROUS MEDIA

2008), emerging patterns (Schoofs et al, 1999), scaling unifying theories of the thermal
convection (Grassmann and Lohse, 2011), saturated porous media (Foster, 1965; Elder,
1967c; Otero et al, 2004; Hewitt et al, 2012) and geodynamics in the earth’s mantle
(Davies, 1999), as well as in industrial applications such as geothermal reservoir engineering.
In particular, it has important implications for the study of the feasibility and implementation
of novel technologies for the mitigation of anthropogenic gas emissions due to energy
generation such as the use of carbon dioxide as working fluid in geothermal reservoirs
(Brown, 2000; Benson et al, 2006; Randolph and Saar, 2011b; Adams et al, 2014), which
are complex porous media systems whose modeling must be done through numerical
computation (Pruess, 1991; Battistelli et al, 1997; Croucher and O’Sullivan, 2008).

In porous media, traditionally the transport of a passive scalar is modeled by
simultaneously solving Darcy equation with the scalar advection-diffusion equation in
the slow diffusion regime (incompressibility equation) (Joseph et al, 1996)

µK−1u = −∇p+ ρ g ẑ ; ∂T

∂t
+ u · ∇T = κt∇2T ; ∇ · u = 0 ,

where u is the Darcy-scale average velocity field, g is the gravitational acceleration, ρ is
the fluid density, µ is the dynamic viscosity, ϕ is the passive scalar and κϕ is the scalar
diffusivity. This system of partial differential equations will be referred hereafter as the
standard Darcy model. In this model, the Rayleigh number Raϕ = ūcH/κϕ is the only
parameter that controls the fluid-dynamics, where ūc is the characteristic convective
velocity and H is the height of the cell. The response of the system is studied by means
of the Nusselt number Nuϕ (Otero et al, 2004; Neufeld et al, 2010; Backhaus et al, 2011;
Hidalgo et al, 2012) 1 . When the scalar is the mass fraction of a mixture, i.e., ϕ = Sw ,
a nonlinear scaling of the form Nus ∼ Raγs , with 0 ≤ γ ≤ 1 , must be reflected in the
mean scalar dissipation rate 〈εs〉 ∼ Raβs (Hidalgo et al, 2012). If Nus ∼ Ras , i.e., the
dissolution flux is independent of the Rayleigh number 2 , then 〈εs〉 also is independent
of Ras , which has been demostrated using dimensional analysis (Jenny et al, 2014).
However, empirical results of mixtures of two miscible fluids in porous media systems
with no-flux boundaries (Neufeld et al, 2010; Backhaus et al, 2011) report a scaling of
the form Nus ∼ Ra4/5

s , whereas numerical studies show that 〈εs〉 seems to be constant
for a wide range of Ras in the same type of systems. The physical origins of this

1 In mass transport, where ϕ is the mass fraction of a mixture, the Nusselt number Nuϕ is also
known as the Sherwood number

2 Valid for times less than the shutdown time (Hewitt et al, 2013), where the dissolution flux
decreases notably. In thermal convection, the dissolution flux is called the convective flux
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behaviour remains unexplained. The standard Darcy model for mixing convection and
heat transport are mathematically similar, so we are interested in studying theoretical
connections between these results with thermal convection in porous media 3 .

Previous studies on thermal convection, i.e., ϕ = T , based on numerical simulations
of the standard Darcy model with periodic boundary conditions in the horizontal
direction and free-slip in the vertical direction (Otero et al, 2004; Hewitt et al, 2012),
demonstrated that for Rat > 4π2 the system is unstable and large-scale stable convective
rolls appear, enhancing heat transport. The linear stability analysis of density-driven
convection phenomena in porous media is shown in Chapter 6, Section 6.2 on page 65.
However, for 1350 < Rat < 10000 the quasi-steady convective rolls are not supported
by the system and unsteady columnar plumes dominate the dynamics, which marks a
transition to an out-of-equilibrium state known as the high-Rat regime, where nonlinear
scalings between the Nusselt and Rayleigh number given by the expressions Nu ∼ Ra0.90

t

and Nu ∼ Ra0.95
t have been obtained numerically (Otero et al, 2004; Hewitt et al, 2012).

For Rat & 104, the system exhibits a predominantly vertical exchange flow, where the
scaling Nu ∼ Rat was observed asymptotically (Hewitt et al, 2012). Therefore, we
expect that the mean scalar dissipation rate for heat transport 〈ε〉 be independent of
Rat . For this type of systems, it is clear that the standard Darcy model applied to
heat transport gives the same conclusions obtained for mixing convection, so we need
to consider other porous media model to find a nonlinear scaling of the form Nu ∼ Raγt ,
with 0 ≤ γ ≤ 1 .

Some studies that analyzed generalized porous media models have shown that
mechanical dispersion plays a predominant role in certain regimes (Riaz et al, 2004;
Oltean et al, 2004, 2008). Unfortunately, mechanical dispersion is not usually considered
within porous media models that describe thermal convection at high-Rat regime,
therefore its consequences over heat transport under these conditions has received little
attention 4 . The Hele-Shaw cells have been used to visualize heat transport in porous
media (Cherkaoui and Wilcock, 2001; Babushkin and Demin, 2006; Cooper et al, 2014;
Letelier et al, 2016) and their mechanical dispersion tensor is well-known (Oltean et al,
2004, 2008), so it offers a good alternative to generalize the standard Darcy model.
Many efforts to derive inertial corrections of the Darcy equation have been reported

3 In thermal convection, convective flux fluctuates around a mean value when convection reaches a
statistical steady regime. There is no the shutdown behaviour observed in mixing convection (Hewitt
et al, 2013)

4 In generalized porous media models, mechanical dispersion appears as a response of the detours
due to tortuosity and variable routes of the flow in the porous matrix
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in the literature during the last thirty years (Vafai and Tien, 1981; Whitaker, 1986;
Auriault, 1987; Rubinstein and Torquato, 1989; Gondret and Rabaud, 1997; Bizon et al,
1997b; Ruyer-Quil, 2001b; Bratsun and Wit, 2004; Oltean et al, 2004), where different
governing equations are presented in Appendix A.

In this chapter, we study through numerical simulations a new model which is
derived by using regular perturbation theory to Navier-Stokes equations in the slow
diffusion approximation, to model Rayleigh-Benard convection in Hele-Shaw geometries.
The proposed model allows us to recover asymptotically the standard Darcy model. The
main contributions of this article are (a) to derive and present the Hele-Shaw model
which naturally incorporates mechanical dispersion and nonlinearities related with the
Brinkmann and Forchheimer terms, which appear in extended porous media models,
and (b) to show that the incorporation of the mechanical dispersion in Hele-Shaw
geometries has important consequences for heat transport at high-Rat that are not
predicted by the standard Darcy model in the slow diffusion approximation.

7.2 Mathematical model and scalings

We consider a rectangular Hele-Shaw cell filled with an incompresible ambient fluid,
which in absence of forcing has density ρa and viscosity µa at temperature Ta . We
assume that the viscosity is constant. The volume of the cell is L ×H × b, where b is
the gap of the cell in the ŷ direction, H is the height in the ẑ direction and L is the
width in the x̂ direction. The cell is heated from the bottom with constant temperature
Th and cooled from above with constant temperature Tc . When b� H , the motion of
the fluid is described by the two-dimensional gap-averaged equations for the Hele-Shaw
model (For further information, see Chapter 5 on page 47)

∇ · u = 0 , (7.2.1)

6
5 ρa
D̃u
D̃t

= −∇p− ρ g ẑ − µaK−1u + 6
5 µa∇

2u + 2
35
K

κt
(u · ∇ρ) g ẑ ,

(7.2.2)

DT
Dt

= κt∇2T + 2
35
K

κt
∇ ·

[
(u · ∇T )u

]
, (7.2.3)
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where u = ux̂ + wẑ is the velocity vector, g is the gravitational acceleration, T is
the temperature, ρ = ρ(T ) is the density, µa is the dynamic viscosity and κt is the
thermal diffusivity of the fluid. Here, K = b2/12 is the permeability, D̃/D̃t = ∂/∂t +
9/7u · ∇ and D/Dt = ∂/∂t + u · ∇ . The derivation of this model is discussed in
Chapter 5 on page 47. The right hand side of Eqn. (7.2.2) contains the Brinkmann
viscous dissipative term 6/5µ∇2u (Nield and Bejan, 2006; Breugem and Rees, 2006)
and a new scalar buoyant term proportional to (u · ∇ρ) gẑ , which can be important in
zones with high density contrast. On the other hand, the right side of Eqn. (7.2.3) is
the hydrodynamic dispersion which can be separated in two terms, the diffusive term,
κt∇2T , and the mechanical dispersion term, (2/35) (K/κt)∇·

[
(u·∇T )u

]
. The general

tensorial form of the hydrodynamic dispersion, according to the Scheidegger’s law, is
Dsr = δsr(α+ |u|β)+(γ−β)usur/|u| (Taylor, 1953; Aris, 1956; Kvernvold and Tyvand,
1981; Ippolito et al, 1994; Riaz et al, 2004; Meybodi and Hassanzadeh, 2011) , where
α = κt , β = 0 and γ = (2/35) (K/κt) |u| .

From Eqns. (7.2.1) to (7.2.3), we define the following appropiate scales for velocity
ūc = ∆ρ g K/µa, pressure ps = µa ūcH/K and time τ = H/ūc , which are used
commonly in the literature. In addition, we define the following set of dimensionless
parameters: the anisotropy ratio ε =

√
K/H, the Prandtl number Pr = νa/κt, the

Rayleigh number Rat = ūcH/κt and the Peclet number Pet = εRat . In the literature,
ε2 = Da is also known as the Darcy number and it is a relevant parameter in studies of
non-Darcian effects (Nield and Bejan, 2006). When ε→ 0 , the system of Eqns. (7.2.1)
to (7.2.3) is reduced to the standard Darcy model. To make the scalar transport
equations dimensionless, we use the following scalings for position x′ = x/H, velocity
u′ = u/ūc , time t′ = t/τ and temperature T ′ = (T − Ta)/∆T , where ∆T = Th − Tc is
the constant temperature difference between the top and bottom plates.

Since we are interested in analyzing the effects of inertial corrections in the development
of convection, we compare heat transport properties of the proposed Hele-Shaw model
with published results in the literature (Otero et al, 2004; Hewitt et al, 2012). We study
the problem using a numerical code based on spectral methods (flow_solve, Winters
and de la Fuente (2012)), considering a single fluid phase with constant viscosity and
Pr = 7, similar to water 5 . In the simulations, we consider ε and the aspect ratio of
the cell L′ = L/H as constant values. Furthermore, we consider periodic boundary
conditions in the horizontal direction for all variables and we perturbe the initial

5 Evidently, for high-Pr numbers, the left hand side of Eqn. (7.2.2) can be neglected in comparison
to the Darcy drag term proportional to u
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Figure 7.2.1: Numerical simulations of thermal convection using the Hele-Shaw model with cell aspect
ratio L′ = L/H = 2 , for Pr = 7 and Pet =

√
35/2 , in order to show the dynamics when O(κt∇2T ) ∼

O((2/35) (K/κt)∇ ·
[
(u · ∇T ) u

]
) , for different ε and Rat values. (A) unicellular steady convection for

ε = 4.18× 10−2 and Rat = 100 , (B) bicellular steady convection for ε = 1.32× 10−2 and Rat = 316 , (C)
tricellular steady convection for ε = 4.18 × 10−3 and Rat = 1000 . The following panels show unsteady
dynamics, (D) for ε = 1.67× 10−3 and Rat = 2512 , (E) for ε = 8.35× 10−4 and Rat = 5012 and finally
(F) for ε = 5.27× 10−4 and Rat = 7943.

conductive base-state T = Ts(z) + θ(x, t) , where Ts(z) = Ta + ∆T (1 − z/H) is the
conductive regime solution. Moreover, we have w = 0 , ẑ · ∇u = 0 and θ = 0 in z = 0
and z = H . Examples of the results from simulations using our Hele-Shaw model are
presented in Fig. 7.2.1. In this figure, some features of the temperature distribution
are displayed, when diffusion and mechanical dispersion terms are comparables: (A)
unicellular steady convection for ε = 4.18× 10−2 and Rat = 100 , (B) bicellular steady
convection for ε = 1.32 × 10−2 and Rat = 316 , (C) tricellular steady convection for
ε = 4.18 × 10−3 and Rat = 1000 . The following panels show unsteady dynamics, (D)
for ε = 1.67× 10−3 and Rat = 2512 , (E) for ε = 8.35× 10−4 and Rat = 5012 and finally
(F) for ε = 5.27× 10−4 and Rat = 7943 .

7.2.1 Heat transport

To compute the heat transport, we will average the equations over the entire domain.
Hence, we consider that the average in the horizontal direction and the domain average
of a function f = f(x′) are defined as f̄(z′) = 1/L′

∫ L′
0 f(x′)dx′ and 〈f〉 =

∫ 1
0 f̄(z′)dz′

respectively, where L′ = L/H is the aspect ratio of the cell. Then, heat transport can
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be studied by means of the Nusselt number defined as

Nu = −∂T̄
′

∂z′

∣∣∣∣∣∣
z′=0

(7.2.4)

The dimensionless form of Eqn. (7.2.3) is

∂θ′

∂t′
+ u′ · ∇′θ′ − w′ = 1

Rat

∇′ 2θ′ + 2
35 Pe2

t ∇′ ·
(

(u′ · ∇′T ′)u′
) . (7.2.5)

Then, the average in the horizontal direction of Eqn. (7.2.5) is

∂θ′

∂t′
+ ∂

∂z′

(
w′T ′

)
= 1

Rat

∂2θ′

∂z′ 2
+ 2

35 Pe2
t

∂

∂z′

(
(u′ · ∇′T ′)w′

) . (7.2.6)

In the steady state regime, we integrate in the vertical Eqn. (7.2.6), obtaining the
formula

w′T ′ − 〈w′T ′〉 = 1
Rat

∂θ̄′

∂z′
+ 2

35 ε
2 Rat

w′∇′ · (T ′u′)− 〈w′∇′ · (T ′u′)〉
 . (7.2.7)

Evaluating Eqn. (7.2.7) in z′ = 0 and regarding that ∂T ′/∂z′ = −1 + ∂θ′/∂z′ , we
obtain an expression for the Nusselt number given by the formula

Nu = 1 + Rat 〈w′T ′〉 −
2
35 Pe2

t 〈w′∇′ · (u′T ′)〉 , (7.2.8)

which includes the contribution of the mechanical dispersion, relevant for Hele-Shaw
geometries under regimes of high-Pe number. The time average of Eqn. (7.2.8) is defined
using Eqn. (2.0.4) on page 17. Fig. 7.2.2 shows 〈Nu〉τ computed using Eqns. (7.2.4)
and (7.2.8), for ε and Rat fixed. Theoretically, both computations must be equal, which
is corrobored numerically by this figure. The time average of Eqn. (7.2.8) is important
because enables to compute heat transport using averaged global quantities, instead of
derivatives evaluated in a boundary.

Fig. 7.2.3 shows the time-averaged 〈Nu〉τ-Rat scaling obtained from the numerical
simulations which are compared with previously published results, for fixed ε , Pr and
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L′ . In all numerical simulations, we initialize the velocity and temperature fields with
the conductive solutions. We have performed two simulation sets, for ε = 0.01 and
ε = 0.001 . These values were chosen based on that several experimental studies in
Hele-Shaw cells have used ε-values within this interval (Elder, 1967c; Cherkaoui and
Wilcock, 2001; Cooper et al, 2014; Letelier et al, 2016). For the two simulated ε-cases,
we observe that the onset of convection is near to the standard Darcy model prediction
Ra(c)

t = 4π2 (see Eqn. (6.2.56) in Chapter 6, Section 6.2 on page 79). This result is
expected since the very small influence of mechanical dispersion and inertial corrections
in such Rat regime. Furthermore, for 4π2 < Rat < 1350 , our results are in agreement
with some steady convective rolls states reported in the literature (Nield and Bejan,
2006; Otero et al, 2004; Hewitt et al, 2012). Some examples of steady convective rolls are
presented in Fig. 7.2.1. However, beyond the high-Rat limit, there is a clear separation
of the time-averaged Nu-Ra scaling, which now depends on ε . For ε = 0.01 , we have
〈Nu〉τ ∼ Ra0.40±0.03

t , so the influence of Pet number in the convection is much more
appreciable than the case ε = 0.001 , where 〈Nu〉τ ∼ Ra0.90±0.03

t . For this last case,
the time-averaged 〈Nu〉τ-Rat scaling at the high-Rat regime is similar to the standard
Darcy model prediction, i.e., 〈Nu〉τ ∼ Rat (Otero et al, 2004). Evidently, mechanical
dispersion effects reduce heat transport, because it tends to homogenize the temperature
field.

7.2.2 The role of mechanical dispersion

If i = x, z and j = x, z , Eqn. (7.2.3) can be written as

∂T ′

∂t′
+ ∂jΠj = ∂i

[
Dij ∂jT ′

]
; Dij = 1

Rat
δij + 2

35 ε
2Rat ū′i ū′j , (7.2.9)

where Πj = ū′jT
′ is the convective heat flux in j-direction, ∂jΠj is the convective heat

flux density (scalar) and Dij is the hydrodynamic dispersion tensor. Now, consider the
term Φi = ū′i ū

′
j ∂jT

′ . Using the equation ∂i ū
′
i = 0 , we obtain Φi = ū′i ∂j(ū′jT ′) =

ū′i ∂jΠj , so we can see that Φi is also a flux in i-direction. In particular, Φz = w′∇′ ·
(u′T ′) can be interpreted as the “vertical flux of the convective heat density". The
Hele-Shaw cell is a 3D geometry, where heat flux can also be transported in y-direction.
But, since O(y)� O(z) , we can reduce the governing equations to a quasi-2D model,
where the perturbative 3D effects in the scalar transport are captured by the flux density
∂iΦi , i.e., the mechanical dispersion, which causes additional mixing.
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Figure 7.2.2: 〈Nu〉τ computed using Eqns. (7.2.4) and (7.2.8). For each point, Rat has a specific value.
Theoretically, global heat transport computed by these formulas must be equal, which is demonstrated in
this figure. The dashed red straigh line has a slope equal to one. The inset plots show Nu as function of
time for two different points with specific Rat and ε values

Figure 7.2.3: Time-averaged
〈Nu〉τ as function of Ra, for
Pr = 7 and L′ = 2 . For
Rat ≤ 1350, the Hele-Shaw
simulations are consistent with
previously published results.
However, for Ra > 1350, there
is a deviation from the Darcy
high-Rat regime which depends on
ε =
√
K/H . It is clear that when

ε is very small, the simulations
of the Hele-Shaw model give
similar results to the predictions
of the standard Darcy model at
high-Rat regime. The error bars
are amplified by a factor two, for
visualization purposes
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CHAPTER 7. HEAT TRANSPORT IN POROUS MEDIA

In porous media, it is well known that mechanical dispersion appears as a response
of the detours due to tortuosity and variable routes of the flow in the porous matrix,
as example. In our case, mechanical dispersion appears due to the existence of a third
confined spatial dimension. Therefore, the importance of Φz = w′∇′ · (u′T ′) is focused
on the capturing of the effects of the gap of the cell in scalar transport.

Eqn. (7.2.9) can be written as

∂T ′

∂t′
+ ∂i

Πi −
2
35 ε

2Rat Φi

 = 1
Rat
∇′ 2T ′ , (7.2.10)

where we can define a net heat flux Ψi in i-direction as

Ψi = Πi −
2
35 ε

2Rat Φi . (7.2.11)

Eqn. (7.2.9) represents the competition of two process, heat transport and mixing.
In particular, Πz represents the vertical heat flux, which can be interpreted as the
advection of a fluid parcel with constant temperature T ′ , but Φz can be interpreted as
the advection of a fluid parcel that continuosly exchange heat with the surrounding fluid,
so the fluid parcel is mixing with other parcels, reaching intermediate temperatures.
The net effect of that is the decrease of global heat transport, due to the minus sign in
Ψz . It is important to note that the domain average of Ψz is equal to the convective
flux F .

7.2.3 Scalar dissipation rate

Fluid mixing can be studied by observing the temporal evolution of the mean scalar
dissipation rate, denoted as 〈ε〉τ (Jha et al, 2011b; Hidalgo et al, 2012; Jha et al,
2013; Pramanik and Mishra, 2015). In the context of mixing convection, i.e., ϕ =
Sw , dimensional analysis and direct numerical simulations show that the standard
Darcy model lead to mean scalar dissipation rates that are independent of Ras (Hidalgo
et al, 2012; Jenny et al, 2014), which is in agreement with the hypotheses of constant
dissolution flux in porous media at high-Ras regime. However, experimental results of
mixing convection using Hele-Shaw cells report that there exists a nonlinear scaling of
Nus with Ras (Neufeld et al, 2010; Hidalgo et al, 2012). Therefore, to study the same
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CHAPTER 7. HEAT TRANSPORT IN POROUS MEDIA

problem in heat transport, we define the mean thermal (scalar) dissipation rate as (see
Eqn. (5.4.6) in Chapter 5, Section 5.4 on page 61)

〈εt〉 = 1
Rat

〈||∇′θ′||2〉+ 2
35 Pe2

t 〈(∇′ · (u′ θ′))2〉

 , (7.2.12)
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Figure 7.2.4: Time-averaged mean
thermal dissipation rate 〈ε〉τ as function
of Rat in the high-Rat number regime,
for Pr = 7 and L′ = 2 . While
the classical Darcy-Boussinesq model
predicts that 〈ε〉τ is independent of Rat,
our model shows that 〈ε〉τ exhibits a
nonlinear scaling with Rat that depends
on ε values. For ε = 0.01, we have
〈ε〉τ ∼ Ra−0.59±0.03

t , while for ε = 0.001
we have 〈ε〉τ ∼ Ra−0.09±0.01

t . Inset
plots (a), (c) and (e) show ε(x) for
ε = 0.01 and Rat = 3162 , Rat = 5012
and Rat = 7943 , respectively, while
inset plots (b), (d) and (f) show ε(x) for
ε = 0.001 and Rat = 3162 , Rat = 5012
and Rat = 7943 , respectively. In
comparison with the inset plots (a), (c)
and (e), it is clear that in the inset plots
(b), (d) and (f) there are more regions
that are actively mixed, which coincides
with the visualization of more edges. This
behaviour observed in the inset plots (b),
(d) and (f) is due to the influence of the
porous media drag term µaK

−1u when
ε� 1 , which increases shear effects. The
error bars are amplified by a factor two,
for visualization purposes

The physical meaning of Eqn. (7.2.12) is the quantification of the evolution in time
of the mixing lenght of the flow in homogeneous (Hidalgo et al, 2012; Pramanik and
Mishra, 2015) and heterogeneous porous media (Le Borgne et al, 2011). If ε → 0 , we
have Pet → 0 and therefore we obtain 〈ε〉 = (1/Rat) 〈||∇′θ′||2〉 , which has been studied
in previous works (Hidalgo et al, 2012; Pramanik and Mishra, 2015). Because energy is
constantly injected through the boundaries and dissipated by the flow, the analysis of
the time-averaged mean thermal dissipation rate gives more evidence of the importance
of dispersion for convection. Any power-law dependence of 〈Nu〉τ with Rat will be
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CHAPTER 7. HEAT TRANSPORT IN POROUS MEDIA

reflected also in this quantity (Hidalgo et al, 2012). Fig. 7.2.4 shows the time-averaged
〈ε〉τ-Rat scaling at high-Rat number regime. In situations where dispersion is dominant,
thermal dissipation can be unfavoured due to the homogenization of the temperature.
This situation is displayed in the inset plots of Fig. 7.2.4, which show regions that are
actively mixed. These regions are effective shear zones identified as edges of thermal
plumes. The inset plots (a), (c) and (e) show cases where dispersion is dominant,
presenting a low density of edges in contrast with inset plots (b), (d) and (f), where
dispersion is negligible and the Darcy drag term µaK

−1u is dominant. For ε = 0.001
we have 〈ε〉τ ∼ Ra−0.09±0.01

t , which is not surprinsing since this case is similar to
the standard Darcy model prediction for mixing convection. In the asympthotic case
〈Nu〉τ ∼ Rat, the time-averaged 〈ε〉τ is independent of Rat . However, a new result is
obtained for ε = 0.01 , where we have 〈ε〉τ ∼ Ra−0.59±0.03

t . In this case, the dispersive
effects have consequences in the flow, allowing a better thermal homogenization of the
fluid. This result provides more conclusive evidence of the importance of the mechanical
dispersion in thermal convection in porous media.

From Eqn. (7.2.3), in the steady state regime and applying the boundary conditions
used in this letter, it is easy to show that the global heat transport and mean scalar
dissipation rate are related by the expression 〈Nu〉τ = Rat 〈ε〉τ . Fig. 7.2.5 shows that
our numerical results are in good agreement with the theoretical prediction, in contrast
to previous results reported for mixing convection (Hidalgo et al, 2012).

� = 0.995 ± 0.002

Theoretical model
hNui⌧ = Rat h"i⌧
Exponent of the numerical 
model given here

Figure 7.2.5: Relation between
〈Nu〉τ and 〈ε〉τ . Our numerical
results satisfies the theoretical
relation 〈Nu〉τ = Rat 〈ε〉τ . The
error bars are amplified by a factor
two, for visualization purposes

In summary, by using asymptotic regular expansions to the Navier-Stokes equations
to model the dynamics of flow in a Hele-Shaw cell, we present a two-dimensional
Hele-Shaw model and the hydrodynamic dispersion for this type of confined geometry.
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This model considers the Brinkmann term, proportional to µ∇2u , and a new buoyant
term, proportional to (∇ρ · u) gẑ , which has not been incorporated in previous works.
The application of the model for the case studied in this letter shows new scalings
for the time-averaged Nusselt number and mean thermal dissipation rate. In Darcian
regimes, we show based on numerical simulations that 〈ε〉τ is independent of Rat , as we
expected, while for regimes dominated by mechanical dispersion, we obtain a scaling
of the form 〈Nu〉τ ∼ Raγt , with 0 ≤ γ ≤ 1 , which is reflected in the mean thermal
dissipation rate 〈ε〉τ ∼ Raγ−1

t . The exponent γ depend on the values of ε .
An interesting future work, which is in progress, is related with the relation 〈Nu〉τ =

Rat 〈ε〉τ and its application to mixing convection, i.e., ϕ = Sw . If ϕ is a generic
scalar, then we want to demonstrate that the expression 〈Nuϕ〉τ = Φ(ε,Raϕ)Raϕ 〈εϕ〉τ
is valid for scalar transport in homogeneous porous media, where Φ is a function that
contains information about boundary conditions, mixture dynamics and geometry (See
Eqn. (5.4.11) on page 63 for additional information). When ϕ = T , with periodic
boundary conditions in the horizontal direction, then Φ = 1 .

103



Part IV

Visualization and image analysis
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Chapter 8
Optical density visualization methods

As part of this thesis, we conducted two experiments to illustrate the main features of
scalar transport processes in Hele-Shaw cells. We used analogue fluids that reasonably
represent the processes that happen within a geothermal reservoir. These experiments
were

• Thermal convection in porous media (Chapter 10 on page 127)

• Mass transport by fluid mixing (Chapter 11, Section 11.1 on page 145)

Next, we discuss briefly the Hele-Shaw geometry and the optical techniques used in
these experiments.

8.1 The Hele-Shaw geometry

Hele-Shaw cells are a fairly good representation of an homogeneous porous media. As is
discussed in Chapter 5 on page 47, Hele-Shaw cells allow us to visualize scalar transport
phenomena which would be difficult to observe using a real porous matrix. However,
its quasi-2D geometry strongly restricts the applicability to real cases, limiting its use
only for academic purposes related with the physical understanding of diverse porous
media phenomena.

The Hele-Shaw geometry notation used in the experiments is shown in Fig. 8.1.1.
We have defined two important regions, the cell gap or confined z-direction and the
x− y Hele-Shaw plane.

L

H

Hele-Shaw plane

b

x

y

z

cell gap

x � y

Figure 8.1.1: The Hele-Shaw geometry
used in the experiments
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CHAPTER 8. OPTICAL DENSITY VISUALIZATION METHODS

All the illustrations and equations used for data treatment follows the geometry
defined in Fig. 8.1.1. Mass transport and thermal convection are visualized by means of
light attenuation and quantitative Schlieren techniques, respectively, which are discussed
on next.

8.2 Visualization by light attenuation

Light attenuation is a very useful method for the visualization of scalar transport in
Hele-Shaw cells. The method is based in the absorption of light intensity due to a dye
dissolved in the working fluid. The most simple model that explains the absorption
features is the Lambert-Beer law

− log Br

Bi

= ε̄ b c̄ ; c̄(x, t) = 1
b

∫ b

0
c(x, z, t) dz , (8.2.1)

where Br is the total intensity received in the sensor, Bi is the initial total intensity from
the light source, ε̄ is a global property of the absorption, b is the path length along the
cell gap and c̄ is the dimensionless averaged concentration of solution along the path,
with x the position in the Hele-Shaw cell plane and t the time (in many cases, related
with the camera time exposure). However, a more complete model of light attenuation
applied to Hele-Shaw cells must consider light transmission properties of each physical
medium where light can travel, including the CMOS Bayer filter transmission (for
coloured images). Such model is written as (?)

Br =
∫ ∞

0
Ir(λ) dλ =

∫ ∞
0
T 2
g (λ) Tl(λ) Tsf (λ) Ii(λ) e−ε(λ) b c̄(x,t) dλ . (8.2.2)

The total intensity detected by CMOS sensor can be written as Lr = Bα
r , where α

is a parameter that considers the nonlinear response of CMOS sensors and, therefore,
must be determined experimentally. Furthermore, in Eqn. (8.2.2) we have that Tg , Tl
and Tsf are the transmissivity of optical acrilic, camera lens and CMOS Bayer filter,
respectively. Fig. 8.2.1 shows a schematic picture of a light attenuation experiment
using both Hele-Shaw cells and the application of the Lambert-Beer law.

A useful hypothesis for the evaluation of Eqn. (8.2.2) is that the transmissivities of
acrilic and lens are independent of wavelenght. Then, Eqn. (8.2.2) can be written as
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Diffuser

Hele-Shaw cell

camera lens

Bayer filter

Rhodamine B dyeb

I0

Ii

Tg
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Tl

Tsr

Tsg

Tsb
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CMOS sensor

Ii e�" b c̄
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Figure 8.2.1: Hele-Shaw experimental setup
for scalar transport visualization using light
attenuation. An incoming light of intensity I0(λ)
is initially diffused, obtaining light of intensity
Ii(λ) . Light rays travel across the cell gap,
where there is Rhodamine B dissolved in the
fluid ambient with a concentration of the order of
1× 10−5 g/cm3. Due to attenuation, light rays
leave the cell with intensity T 2

g (λ) Ii(λ) f(λ) ,
where f is the attenuation function. Finally,
light comes to CMOS sensor after having
crossed the camera lens and the Bayer filter,
so the final light intensity is Ir(λ) =
T 2
g (λ) Tl(λ) Tsf (λ) Ii(λ) f(λ)

Br

Br,0
=
 ∫ ∞

0
Tsf (λ) Ii(λ) e−ε(λ) b c̄(x,t) dλ

/ ∫ ∞
0
Tsf (λ) Ii(λ) dλ

 , (8.2.3)

where Br,0 is the total intensity received when c̄ = 0 . Therefore, the aplicability of
Eqn. (8.2.3) is restricted to previously known spectral characteristics of Tsf (λ) , Ii(λ)
and the attenuation function f(λ) = exp

[
−ε(λ) b c̄

]
, measured using a spectrophotometer.

Eqn. (8.2.3) is a generalized version of Lambert-Beer law given in Eqn. (8.2.1). To
illustrate that, we will present an academic case following the work done by Oltean
et al (2004). Suposse that the diffused light Ii is red and dye is blue. Then, to obtain a
high image contrast, we select the red channel of the Bayer filter. The spectral features
will be modeled as follows

Ii = exp
−

(
λ− µ(1)

λ

)2

2σ2
1

 ; f = 1−A exp
−

(
λ− µ(2)

λ

)2

2σ2
2

 , (8.2.4)

Tsr = 1
2 exp

−
(
λ− µ(3)

λ

)2

2σ2
3

(1 + tanh(λ3 − λ)
)

+ 1
2

5
2 −

1
400 λ

(1 + tanh(λ− λ3)
)
,

(8.2.5)
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↵ = 1

Figure 8.2.2: Spectral characteristics of Tsf (λ) , Ii(λ) and f(λ) functions, modeled by Eqns. (8.2.4)
and (8.2.5), and the application of Eqn. (8.2.3) for different values of c̄ . The right image is the Lambert-Beer
law for α = 1

where µ(1)
λ = µ

(3)
λ = λ3 = 600 nm, µ(2)

λ = 610 nm, σ1 = 25 nm, σ2 = 10 nm and
A = 0.8 . The left image of Fig. 8.2.2 shows the result of the spectral modeling. Using
these models in Eqn. (8.2.3), for α = 1 we obtain the calibration curve shown in the
right image of Fig. 8.2.2, which is the Lambert-Beer law. This curve allow us to obtain
the physical picture of the scalar transport in terms of the dimensionless concentration
only comparing each colored pixel with the corresponding c̄ value. For visualization
purposes, it is enough to take photographs of solutions and then compute the ratio
Br/Br,0 .

8.3 Synthetic Schlieren

The Synthetic Schlieren (SS) method is a non-intrusive, optical density visualization
technique in fluid mechanics that measures the optical refractive index gradients of a
test fluid by means of the quantification of the deflections of the light rays that come
from a background image (Dalziel et al, 2000).

The SS equation, in the simplified one-dimensional problem, can be obtained minimizing
the optical length functional (Kumar and Muralidhar, 2012)

F [y] =
∫ L

0
n(y)

√
1 +

(
dy

dz

)2
dz , (8.3.1)

where y = y(z) is the vertical deflection of the light ray in function of the horizontal
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Figure 8.3.1: Light ray deflection due
to a variable optical refractive index
n(y). The optical system is a Hele-Shaw
cell made of acrylic. There are three
physical media where light rays can
travel, air, acrylic and the test fluid,
with optical refractive index na, np and
n(y) respectively. The points F and T
are the focal length of the lens and the
intersection of the apparent (incident,
dashed blue line) and refracted (dashed
red line) light rays

variable z, as shown in Fig. 8.3.1, and n = n[y(z)] is the optical refractive index
of the fluid, which depends on space. The Euler-Lagrange equation associated with
Eqn. (8.3.1) is

n(y) d
2y

dz2 =
1 +

(
dy

dz

)2
 dn
dy

, (8.3.2)

which boundary conditions are associated with the physical problem to be solved. We
assume that the optical system satisfies the paraxial approximation dy/dz � 1. If n is
constant, the solution of Eqn. (8.3.2) is a straigh line y(z) = yi− z tanφi, where tanφi
is the angle of the incident light ray. In a more general case, assuming that n[y(z)] =
nf − n′[y(z)], where nf is the reference refractive index of the fluid at temperature T0,
n′ � nf and dn′/dy varies slowly with coordinate y, the solution of Eqn. (8.3.2) is

y(z) = yi − z tanφi −
1

2nf
dn′

dy
z2 . (8.3.3)

The paraxial approximation is satisfied when φi ≤ 10◦. In such case, tanφi ∼ φi is
valid within an accuracy of 1%. From Fig. 8.3.1, reconstructing the light ray trajectory
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from A′ to a′, we have

ya′ = yA′ − Ls α− 2Lp
na
np
α− b na

nf
α− Lc α , (8.3.4)

where na, np and nf are the optical refractive index for air, acrylic and the test fluid
reference, respectively, and α is the incident paraxial angle in the position A′. This
result is satisfied by a light ray that comes from the background image, when the
system is unperturbed. Finally, reconstructing the light ray trajectory from A′ to b′

and defining the apparent displacement on the lens position ∆ya′b′ = ya′−yb′ , we obtain
the well-known SS formula (Dalziel et al, 2000)

∆ya′b′ = b

nf

dn′

dy

1
2 b+ nf

np
Lp + nf

na
Lc

 , (8.3.5)

where the angle of deflection ε, formed by the incident and the refracted light rays (see
Fig. 8.3.2), is defined as

ε = b

na

dn′

dy
. (8.3.6)
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Figure 8.3.2: Synthetic Schlieren experiment setup. The image is a one dimensional representation, where
∆yba = (∆x,∆y). The deflection angle ε is the angle between the refracted and the incident light rays
(Gojani et al, 2013)
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Finally, using geometric operations, we obtain the apparent displacement on the
background image ∆yAB = yB − yA = st ε, where st is the parallel distance to the
optical axis between the background image and the intersection point of the light rays
perturbed and unperturbed, as shown in Fig. 8.3.2, which is defined as

st = na
nf

1
2

2nf
na
− 1

 b+ nf
np

2np
na
− 1

Lp + nf
na

Ls

 .
This distance defines an effective refractive plane where light rays are deflected by

local changes of the optical refractive index.
Let M = si/so be the lens magnification. Using the thin lenses law, we have M =

f/(so − f), where f is the focal length and so is the distance between the background
image and camera, so the apparent displacement measured in the plane of the image
sensor is ∆yab = M∆yAB. Replacing these relations in the definition of ∆yAB, we
obtain

ε = ∆yab
Mst

, (8.3.7)

recovering the definition of the angle of deflection ε proposed by Gojani et al (2013),
in the context of image recording using the Background-Oriented Schlieren (BOS)
technique. In general, the SS and BOS techniques quantify a scalar property of the
fluid, such as the density ρ, which depends of the thermodynamic variables through
a constitutive equation. For example, if the fluid is air, then the Gladstone-Dale
model and the ideal gas equation are applied successfully when BOS is used (Richard
and Raffel, 2001). In our experiments, a Hele-Shaw cell filled with pure PPG is
heated from below and cooled from above with constant temperature difference ∆T =
Tbot − Ttop. Then, a constitutive equation n = n(T ) is necessary to reconstruct the
thermal dynamics, so the equation to solve is

dn′

dy
= na

b
ε(y) , (8.3.8)

which constitutes the mathematical formulation for the simplified one-dimensional
model. If the deflection of the light ray has two-dimensional components, given by
~ε = εx x̂+ εy ŷ, the equations for the angles of deflection are

εx = ∆x (s0 − f)
f st

, εy = ∆y (s0 − f)
f st

, (8.3.9)
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where ∆x and ∆y are the spatial deflections in the plane of the image sensor. Traditionally,
these deflections are estimated from classical PIV algorithms (Tokgoz et al, 2012) or
optical flow estimation, where the Lucas-Kanade (Lucas and Kanade, 1981), Horn-Shunck
(Horn and Schunck, 1981) and Brox (Brox et al, 2004) algorithms have been applied to
experimental images giving satisfactory results (Atchenson et al, 2009). Here, we show
that it is possible to enhace the detection of deflections by using OpFlow. Finally,
Eqn. (8.3.8) is extended to the vector model ∇n′ = na ~ε(x)/b , where taking the
divergence on both sides of equation, we obtain the Poisson equation for SS-BOS
techniques

∇2n′ = na
b
∇ · ~ε(x) , (8.3.10)

with Neumann boundary conditions x̂ · ∇n′ = 0 in x = 0 and x = L , in addition to
the Dirichlet boundary conditions which are n′(y = 0) = n′bot and n′(y = H) = n′top .
Eqn. (8.3.10) will be used to reconstruct the temperature inside a Hele-Shaw cell for
Ra = 680, which is presented in Chapter 10, Section 10.5 on page 138. To solve
Eqn. (8.3.10), we implement the Red-Black SOR-Chebyshev method (Press et al, 2007)
using OpenMP libraries.
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Chapter 9
Image processing methods

The aim of this chapter is to present an image segmentation method that can be
able to compute the perimeter and area of mixing as function of time, as well as a
variational technique that detects small displacements of fluid parcels due to convective
phenomena. The measurement of the area is useful to determine the mass transfer,
while the perimeter quantification is ideal to determine the interfacial dynamics. On
the other hand, the detection of small displacements of fluid parcels is essential to
compute dynamic quantities such as velocity or scalar concentration as functions of
time. Next, we present two image methods used widely in applied mathematics, but
unfortunately have received little attention in physical aplications.

9.1 Multiphase image segmentation

Image segmentation means to split a digital image in many meaningful parts or objects.
Therefore, the detection of edges is the most important problem in segmentation.
Motivated by the quantification of mixing properties of density-driven convection from
our experiments, we are interested in apply active contours to find some geometric
properties of these edges and the regions that are defined by them. Fig. 9.1.1 shows an
illustrative result of a density-driven convection experiment using the light attenuation
technique.

The basic idea of active contours is following the evolution in time of a mathematical
curve until detecting meaningful objects within an image f . To do this, classical models
of active contours use edge detection methods based on the computation of the gradient
of the image, which controls the evolution of the curve. Let Ω be an open bounded
subset in R2 , with boundary ∂Ω . Let f : Ω̄→ R be an image and ψ : [0, 1]→ R2 be
a parametrized curve. Classical models minimize functionals of the type (Kass et al,
1988)

J [ψ] = α
∫ 1

0
|ψ′(s)| ds+ β

∫ 1

0
|ψ′′(s)|2 ds− λ

∫ 1

0
|∇f(ψ(s))| ds , (9.1.1)

where α , β and λ are positive parameters. The first two parameters of Eqn. (9.1.1)
control the smoothness of the contour, while the third term attracs the contour towards
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Figure 9.1.1: Dynamics observed in a density-driven convection experiment, where a fluid A (black) is
mixed with a fluid B (red). The computation of the mixing length gives important information about the
fluid dynamics in a porous medium.

the boundary of objects in the image. The minimization of Eqn. (9.1.1) implies that
the segmentation contour must be in zones where |∇f | is maximum.

9.1.1 Chan-Vese model

Since that active contours are not accurate when the image f is noisy, Chan and Vese
(2001) proposed a model of active contours that is not based on the image gradient
as the methodology to detect edges. They studied a particular case of the known
Mumford-Shah segmentation model (Mumford and Shah, 1989). The Mumford-Shah
functional is given by the expression

JMS[u, ψ] = µL(ψ) + λ
∫

Ω
|f(x)− u(x)|2 dA+

∫
Ω\ψ
|∇u(x)|2 dA , (9.1.2)

where µ, λ > 0 , x = x x̂+ y ŷ and dA = dx dy . The function u(x) is an approximation
of the image f(x) , which is obtained minimizing Eqn. (9.1.2) with ψ(x) a set of
curves where u(x) can be discontinuous. The first term of the right hand side of
Eqn. (9.1.2) ensures the regularity of ψ(x) through the definition of the curve length
L(ψ) using the Haussdorf measure, while the second term represents the accuracy of
the approximation. Finally, the third term ensures that u(x) be differentiable inside
the region Ω\ψ . In general, the algorithms that solve Eqn. (9.1.2) are complicated and
costly in computational resources.

The simplification proposed by Chan y Vese to the Mumford-Shah model consists
in restricting the functional JMS[u, ψ] to a set of functions u(x) that are constant and
continuous by parts. Thereby, we define an open subset ω ⊂ Ω and its boundary
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Figure 9.1.2: Contour ψ = {x ∈ Ω : φ(x) = 0}
propagating in normal direction

ψ = ∂ω , which can evolve iterativelly, and we also define the function u(x) as

u(x) =

c1 , for x ∈ ω
c2 , for x ∈ Ω\ω̄

(9.1.3)

which removes the contribution of the image gradient |∇u| in Eqn. 9.1.2. Thereby,
Chan and Vese introduce the following functional

JCV [u, ψ] = µL(ψ) + νA(ω) +λ1

∫
ω
|f(x)− c1|2 dA+λ2

∫
Ω\ω̄
|f(x)− c2|2 dA , (9.1.4)

as a particular case of Eqn. (9.1.2), extending the regularization of the edge detection
by means of the incorporation of the area A(ω) of the detected object. In Eqn. (9.1.4),
all parameters are constant and positive. To minimize Eqn. (9.1.4), we use the level set
method (Osher and Sethian, 1988; Getreuer, 2012)

9.1.2 Level-set formulation

In the level set formulation, the contour ψ(x) is represented by a Lipschitz function
φ : Ω→ R , such that

ψ = ∂ω = {x ∈ Ω : φ(x) = 0}
inside(ψ) = ω = {x ∈ Ω : φ(x) > 0}

outside(ψ) = Ω\ω̄ = {x ∈ Ω : φ(x) < 0}

115



CHAPTER 9. IMAGE PROCESSING METHODS

Fig. 9.1.2 shows the definition of the level set function. Using the function φ(x) ,
the regularizer terms L(ψ) and A(ψ) are written as (Zhao et al, 1996)

L(ψ) = Length{φ = 0} =
∫

Ω
|∇H(φ(x))| dA =

∫
Ω
δ(φ(x)) |∇φ(x)| dA ,

A(ψ) = Area{φ ≥ 0} =
∫

Ω
H(φ(x)) dA ,

where H(x) is the Heaviside function and δ(x) = dH(x)/dx is the delta distribution.
To numerically regularize the model, Chan and Vese used the following definition for
the Heaviside function

Hε(x) = 1
2

1 + 2
π
arctan

x
ε

 ; δε(x) = d

dx
H(x) = ε2

π(ε2 + x2) . (9.1.5)

Finally, Eqn. (9.1.4) is written in terms of the level set function φ(x) and Eqn. (9.1.5)
as

Jε[c1, c2, φ] = µ
∫

Ω
δε(φ(x)) |∇φ(x)| dA+ ν

∫
Ω
Hε(φ(x)) dA (9.1.6)

+ λ1

∫
Ω
|f(x)− c1|2Hε(φ(x)) dA+ λ2

∫
Ω
|f(x)− c2|2

(
1−Hε(φ(x))

)
dA ,

where the image approximation u(x) defined in Eqn. (9.1.3) can be written in terms of
the level set function as

u(x) = c1Hε(φ(x)) + c2
(
1−Hε(φ(x))

)
; x ∈ Ω̄ . (9.1.7)

9.1.3 Differential equations for Chan-Vese model

Using the Gâteaux derivative defined in Appendix B, we minimize the functional given
in Eqn. (9.1.6) with regard to the constants c1 and c2 , keeping φ fixed. Then, we obtain
the expressions

c1 =
∫
Ω f(x)Hε(φ(x)) dA∫

Ω Hε(φ(x)) dA ; c2 =
∫

Ω f(x)
(
1−Hε(φ(x))

)
dA∫

Ω

(
1−Hε(φ(x))

)
dA

. (9.1.8)
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Now, keeping c1 and c2 fixed, the minimization of Eqn. (9.1.6) with regard to φ ,
using the steepest descent method, gives the equation

∂φ

∂t
= δε(φ)

µ∇ ·
 ∇φ
|∇φ|

− ν − λ1
(
f(x)− c1

)2
+ λ2

(
f(x)− c2

)2
 = 0 ; in Ω ,

φ(x, t = 0) = φ0(x) ; in Ω , (9.1.9)

δε(φ)
|∇φ|

∂φ

∂n
= 0 ; in ∂Ω ,

which is the Euler-Lagrange model that solves the minimization problem, where n̂
is the normal of ∂Ω and ∂φ/∂n is the normal derivative of φ at the boundaries.
Eqn. 9.1.9 is also called Morphological Active Contours without Edges (MorphACWE)
(Marquez-Neila et al, 2014). Fig. 9.1.3 shows an example of the application of Chan-Vese
model in an experimental image. The initial level set φ0(x) was computed using
the Isodata algorithm (Hodneland, 2003) (see Appendix C). Unfortunately, Chan-Vese
model is sensitive to the initial level set because of the non-convexity nature of Eqn. (9.1.4).
The left image shows in red color the active contour detected, while the right image
shows the image reconstruction using Eqn. (9.1.7). The parameters used were λ1 =
λ2 = 1 , µ = 0.3 , ν = 0 and ε = 1 .
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Figure 9.1.3: Example of Chan-Vese segmentation in an experimental image. We have lost much
information about the mixing dynamics, if we only use one level set function. However, the edges are
correctly segmented
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✏ = 0.5✏ = 0.5

✏ = 0.05 ✏ = 0.05

Figure 9.1.4: Spurious oscillations of
δε-distribution. The left column shows
the function f(x) = x and δε(f(x)) for
some ε values, while the right column
shows g(x) = f(x) + rand(x) and
δε(g(x)) . The random nature of g(x) is
absorbed and amplified by δε(g(x)) , so the
δε-distribution seems to be a poor tool to
detect edges.

9.1.4 δε-distribution problems in length computation

In numerical computation, unfortunately the δε-distribution tends to create spurious
oscillations if the parameter ε is too small. Otherwise, the accuracy is lost if ε is too
large. If the level set function φ is not smooth enough, then δε(φ) is not appropiate to
compute the curve length

L =
∫

Ω
δε(φ(x)) |∇φ(x)| dA , (9.1.10)

due to spurious oscillations. To show this issue, Fig. 9.1.4 shows the linear function
f(x) = x and the same function with the addition of noise, g(x) = x + rand(x) . The
application of the δε-distribution to both functions shows important differences, which
depend on noise and ε values. When ε is too small, we can see that δε(g(x)) is even
worse, so the application of δε-distribution in the length curve formula is difficult in
practice.
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9.1.5 TV -L2 multiphase Chan-Tai model

Fig. 9.1.3 shows that the Chan-Vese segmentation is good to obtain a binary separation
between regions with a clear interface between them. However, when we apply Chan-Vese
segmentation, we can lose much information about the mixing dynamics. This motivates
the development of multiphase segmentation techniques to detect more regions of
interest.

An interesting approach to build a multiphase segmentation model is the extension
to two or more level sets. We can extend the functional of Eqn. (9.1.6) to two level
sets, namely ψ1 = {x ∈ Ω : φ1(x) = 0} and ψ2 = {x ∈ Ω : φ2(x) = 0} . Therefore,
we can detect four regions or phases, where each pixel in the domain will belong to one
and only one phase. These phases are the following

ω1 = {x ∈ Ω : φ1(x) ≥ 0 and φ2(x) ≥ 0} ,
ω2 = {x ∈ Ω : φ1(x) ≥ 0 and φ2(x) < 0} ,
ω3 = {x ∈ Ω : φ1(x) < 0 and φ2(x) ≥ 0} ,
ω4 = {x ∈ Ω : φ1(x) < 0 and φ2(x) < 0} .

Finally, the image approximation u(x) can be written in terms of the level set
functions as

u(x) = c11Hε(φ1(x))Hε(φ2(x)) + c12Hε(φ1(x))
(
1−Hε(φ2(x))

)
(9.1.11)

+ c21
(
1−Hε(φ1(x))

)
Hε(φ2(x)) + c22

(
1−Hε(φ1(x))

)(
1−Hε(φ2(x))

)
; x ∈ Ω̄ .

However, the Chan-Vese multiphase segmentation with two level sets is not capable
to detect all phases correctly (Hodneland, 2003). To avoid this problem, we change
Eqn. (9.1.6) to the following functional with two level sets

Fε[cij, φ1, φ2] = µ
∫

Ω

(
|∇φ1(x)|+ |∇φ2(x)|

)
dA+ 1

2

∫
Ω

(
f(x)− u(x)

)2
dA , (9.1.12)

where u(x) is defined in Eqn. (9.1.11). Eqn. (9.1.12) was proposed by Chan and
Tai (2004) within the context of elliptic inverse problems with piecewise constant
coefficients. The first term of the right hand side of Eqn. (9.1.12) is the length term
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with δε = 1 and also corresponds to a total variation L2-regularity term, which has
denoising capabilities (Rudin et al, 1992). On the other hand, the second term of the
right hand side of Eqn. (9.1.12) has cross terms that are not present in the Chan-Vese
model.

The application of the Gâteaux derivative and the steepest descent method to
Eqn. (9.1.12) gives the following nonlinear system of differential equations

∂φ1

∂t
= µ∇ ·

 ∇φ1

|∇φ1|

+ δε(φ1)
(f − u)

(
Hε(φ2) (c11 − c21) +

(
1−Hε(φ2)

)
(c12 − c22)

) = 0 ,

(9.1.13)

∂φ2

∂t
= µ∇ ·

 ∇φ2

|∇φ2|

+ δε(φ2)
(f − u)

(
Hε(φ1) (c11 − c12) +

(
1−Hε(φ1)

)
(c21 − c22)

) = 0 ,

(9.1.14)

where the cij constants are defined as

c11 =
∫

Ω f(x)Hε(φ1)Hε(φ2) dA∫
Ω Hε(φ1)Hε(φ2) dA ; c12 =

∫
Ω f(x)Hε(φ1)(1−Hε(φ2)) dA∫

Ω Hε(φ1)(1−Hε(φ2)) dA , (9.1.15)

c21 =
∫

Ω f(x) (1−Hε(φ1))Hε(φ2) dA∫
Ω(1−Hε(φ1))Hε(φ2) dA ; c22 =

∫
Ω f(x) (1−Hε(φ1))(1−Hε(φ2)) dA∫

Ω(1−Hε(φ1))(1−Hε(φ2)) dA .

Unfortunately, as in Chan-Vese segmentation, the Chan-Tai model is also sensitive
to the initial level set because of the non-convexity nature of Eqn. (9.1.12). Then, to
compute the initial level set φ0(x) for a given image f(x) , we use again the Isodata
algorithm. Fig. 9.1.5 shows an example of the application of multiphase Chan-Tai model
to the same experimental image segmented in Fig. 9.1.3. Next, Fig. 9.1.6 shows the
segmentation of four different fluid phases, which have an interesting physical meaning.
Because the experimental images shown in Fig. 9.1.1 represent the mixing between two
miscible fluids A and B, in Fig. 9.1.6 the fluid A and fluid B are correctly segmented,
while the convective penetration of fluid A into fluid B and the mixing zone are new
visualizations which have not been reported in literature. These images allow us to
study independently the mixing dynamics, the evolution of the length curve and the
grow of the total mixing area, for example.
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Figure 9.1.5: Example of Chan-Tai segmentation in an experimental image. The use of two level set
functions allows us to detect more mixing structures
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Figure 9.1.6: Phase segmentation using the Chan-Tai two level set model. The different fluid phases,
which are produced by the mixing dynamics, are identified by white color
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9.2 Video motion by TV -L1 optical flow

Optical flow is a mathematical method that quantifies the apparent motion of objects
in space caused by the relative motion between a physical observer and the scene or
by physical phenomena, such as particle motion or thermal convection (Baker et al,
2011). This idea was introduced by J.J. Gibson during the Second World War, and
played a key role in the development of the ecological approach to visual perception,
an approach that emphasizes studying human perception in the natural environment.
He defined optical flow as information carried by light resulting from environmental
structure and the animal’s path through the environment (Gibson, 1950, 1966).

All optical flow methods have an issue known as the aperture problem, which arises
when a moving object is viewed through an aperture without the information of some
structural properties such as edges, corners and texture data (Wedel and Cremers,
2011). Fig. 9.2.1 shows an example of the aperture problem in optical flow, where the
image (b) is a rotation of image (a). With this information, we do not know if the
rotation is clockwise or counterclockwise, so optical flow loses physical meaning. If the
rotation is clockwise, then optical flow can be applied, obtaining the image (c).

a b c

Figure 9.2.1: The aperture problem and the optical flow solution when some structural information is
known

9.2.1 L2 Horn-Schunck model

Let I(x, t0) be the intensity of a fluid parcel in the location x at time t0, and I(x +
u(x), t1) be the intensity of the same parcel at time t1, which will have displaced in
space. The quantity u(x) = (u,w) is the two-dimensional displacement field (or optical
flow field) that has to be determined. The most important assumption of optical flow
is that the intensity value of the parcel I(x, t0) does not change while it moves to
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I(x + u, t1), which is known as the brightness constancy assumption (BCA), and it is
represented by the equation

−∂I
∂t

= ∇I · u (9.2.1)

which contains two unknows, u and w, that cannot be solved due to the aperture
problem, thus it is necessary to introduce an additional regularity constrain. To
regularize the problem, Horn and Schunck (1981) introduced a smoothness term by
penalizing the derivative of the optical flow field, yielding a functional which must be
minimized using a variational approach

F [u] =
∫

Ω

(
|∇u|2 + λ|ϑ(u)|2

)
dΩ , (9.2.2)

ϑ(u) = ∂I

∂t
+∇I · u

where ϑ(u) imposes the BCA constrain to Eqn. (9.2.2). The introduction of the
quadratic L2-regularizer εreg = |∇u|2 , called spatial coherence, favoring flow fields
which are spatially smooth, penalizing the high variations. Therefore, this quadratic
regularizer does not allow the detection of discontinuities in the optical flow field
(Wedel and Cremers, 2011). The quadratic L2-regularity present in the Horn-Schunck
functional might not be a regularizer based in physical approaches. A first order div-curl
L2-regularizer of the type εreg = α|∇ · u|2 + β|∇ × u|2 was introduced by Suter (1994)
and a second order div-curl L2-regularizer εreg = α|∇(∇ · u)|2 + β|∇(∇ × u)|2 has
been proposed by Gupta and Prince (1996), where both have a much more physical
meaning, penalizing high divergence-rotational components. However, the first and
second order div-curl method are more difficult to implement computationally (Corpetti
et al, 2005; Stark, 2013). A well-known limitation of the Horn-Schunck method is that
can only estimate small motions. Despite of that, the method has been well evaluated
(Meinhardt-Llopis et al, 2013) and the variational formulation given by Eqn. (9.2.2)
allow us to compute the optical flow field for all pixels within the image, resulting in a
dense flow field (one vector per pixel). This feature is attractive since it does not require
subpixel algorithms to estimate the apparent displacement through the position of the
maximum in the correlation plane, such as for digital PIV. Despite that the accuracy
of the subpixel level in PIV is 0.1 to 0.05 pixels, the image resolution obtained in SS by
using cross-correlation methods is of the order of the size of the interrogation window
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scaled with the overlap used (one vector per window), which is 8× 8 pixels in the most
general case. Moreover, the computational costs of using OpFlow are more expensive
than digital PIV.

9.2.2 TV -L1 optical flow model

In general, in real-world scenes and laboratory scale experiments, there may be many
objects with defined edges moving. Because of that, some authors change the quadratic
L2-regularity to a L1-regularity which better preserve discontinuities (Wedel and Cremers,
2011). In this context, the total variation optical flow method (OpFlow) is a variational
method whose formulation is based in the minimization of the functional given by Zach
et al (2007)

J [u] =
∫

Ω

(
|∇u|+ λ|ψ(u)|

)
dΩ , (9.2.3)

ψ(u) = I(x + u0, t1) +∇I(x + u, t1) · (u− u0)− I(x, t0) ,

which is the L1 version of Horn-Schunck functional Eqn. (9.2.2), where ψ(u) is called
the residual (BCA data term), u0 is an approximation of u and λ is a parameter known
as the attachment parameter (Sanchez et al, 2013). Despite there are many versions
of L1-regularity terms proposed in literature, we have chosen the OpFlow formulation
given by Zach et al (2007) because they have proposed an exact numerical scheme to
solve Eqn. (9.2.3) by using the well-known Rudin-Osher-Fatemi (ROF) model, which
has denoising capabilities without blurring edges (Rudin et al, 1992) . This point is
important, because we want to detect not only discontinuities on the flow, but also
get a smooth flow where noise is controlled. The TV -L1 method, which means total
variation with the L1-norm, is used to compute the integral over the domain of the
absolute values of mathematical quantities of interest. In Eqn. (9.2.3), the objective
quantity to minimize is the L1-norm of the gradient of the flow subject to the L1-norm
of the BCA data term, which is controlled by the parameter λ. An efficient method
given by Zach et al (2007), which uses the duality-based method proposed by Chambolle
(2004), solves Eqn. (9.2.3). The method enables one to find the minimum of the strictly
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convex functional with a quadratic relaxation

Jθ[u] =
∫

Ω

|∇u|+ 1
2θ (u− v)2 + λ|ψ(v)|

 dΩ , (9.2.4)

where v is an auxiliary vector (known as the dual variable) and the parameter θ is
known as the tightness parameter (Sanchez et al, 2013). Setting the parameter θ to a
small value, it forces Jθ to reach its minimum value when u ∼ v, obtaining the TV -L1

functional given by Eqn. (9.2.3). Although the optical flow is rigorous and accessible to
further developments, there is a certain ambiguity in the correct choice of parameters
λ and θ that represent the apparent motion of an experimental image pair and the
computation of dense motion fields. The choice of both parameters is often a practical
problem in the application of OpFlow to analize physical experiments.

If an exact representation of the flow is known (the ground truth image), some
popular performance estimators such as the angular error, the average end-point error,
the interpolation error and the normalized interpolation error (Barron et al, 1994; Baker
et al, 2011) help to set λ and θ. However, in experimental images, this information is not
known a priori and the choice by inspection of the parameters is a common practice.
To solve this problem, we propose to use digital PIV as a preprocessing step. The
idea is to compare the results of both techniques, digital PIV and Opflow, by using
the structural similarity index metric (Wang et al, 2004; Wang and Bovik, 2009). We
associate the highest value of this metric with the optimal values for λ and θ for the
image in study, so that the initial image resolution obtained with digital PIV can be
improved by the dense flow field given by OpFlow. As well as the Horn-Schunck optical
flow, the resolution of OpFlow is equal to one pixel. As a consequence, OpFlow can
detect small structures of few pixels of length with a better definition, while globally
structural properties are similar to those obtained by digital PIV. Fig. 9.2.2 shows an
example of the enhancement of the detection of structures using TV -L1 optical flow, in
a thermal laboratory experiment using quantitative Schlieren. For further information,
we refer the Chapter 10, Section 10.4 on page 134.

The OpFlow method has been extensively evaluated against other optical flow
methods (Barron et al, 1994; Baker et al, 2011) using the average end-point error
over some images of the Middlebury database, obtaining better results in comparison
with Lucas-Kanade, Horn-Schunck and Brox algorithms which have been used in BOS
literature (Atchenson et al, 2009). In particular, an interesting extension given by
Wedel et al (2008) which uses a cartoon-texture image decomposition by the TV -L1
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Figure 9.2.2: Enhancement of the detection of structures using TV -L1 optical flow (right image), in
comparison with the known digital PIV (left image) (see figure 10.4.4)

model improves the BCA constrain and therefore the optical flow estimation. In our
experimental applications, it is not neccesary to use this decomposition.
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Chapter 10
Thermal experiments in porous media

This chapter has been published as research paper called "Enhancement of synthetic
schlieren image resolution using total variation optical flow: Application to
thermal experiments in a Hele-Shaw cell", authored by Juvenal A. Letelier, Paulo
Herrera, Nicolás Mujica and Jaime H. Ortega, in Experiments in Fluids (2015) 57:18 .
doi:10.1007/s00348-015-2109-1.

Abstract

We present an improvement to the standard Synthetic Schlieren technique to obtain
the temperature distribution of a fluid inside of a Hele-Shaw cell. We to use the total
variation L1-norm optical flow method to treat experimental images and to obtain
quantitative results of the development of thermal convection inside a cell, by detecting
the gradients of the optical refractive index. We present a simple algorithm to set the
optical flow parameters, which is based on the comparison between the optical flow
output and the result obtained by digital PIV using the structutal index metric. As an
example of the application of the proposed method, we analyze laboratory experiments
of thermal convection in porous media using a Hele-Shaw cell. We demonstrate that the
application of the proposed method produces important improvements versus digital
PIV, for the quantification of the gradients of the refractive index including the detection
of small scale convective structures. In comparison with correlation-based digital methods,
we demonstrate the advantages of the proposed method, such as denoising and edge
capture. These features allow us to obtain the temperature, for this experimental
setting, with better image resolution than other techniques reported in the literature.

10.1 Introduction

Over the last few decades, many visualization and image processing techniques in
experimental fluid dynamics have been proposed to describe qualitatively and quantitavely
the behavior of certain flow regimes. The Synthetic Schlieren technique (SS) (Dalziel
et al, 1998; Sutherland et al, 1999; Dalziel et al, 2000) has been used to study interesting
fluid dynamics problems such as internal waves and stratification because of its simple
implementation and the quality of the results that can be obtained. This technique is
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based on the detection of the apparent displacements of a synthetic background due to
changes in the optical refractive index of the test fluid. Commonly, the computational
method used to detect the apparent displacements is digital PIV (Raffel et al, 1998), a
correlation-based image method which has subpixel accuracy but an image resolution of
the order of the overlap times the interrogation window size. Moreover, some interesting
mathematical techniques in image processing such as Lucas-Kanade, Horn-Schunck and
Brox optical flow methods (Horn and Schunck, 1981; Lucas and Kanade, 1981; Brox
et al, 2004), have been applied in images obtained with the Background Oriented
Schlieren technique (BOS) (Richard and Raffel, 2001; Gojani and Obayashi, 2012;
Gojani et al, 2013; Raffel, 2015), an optical visualization method similar to SS. The
application of the mentioned optical flow methods improve the image resolution in
comparison with digital PIV (Atchenson et al, 2009). The same conclusion has been
reported when another versions of optical flow method have been applied in particle
tracking and velocimetry experiments (Ruhnau et al, 2005a,b; Ruhnau and Schnorr,
2007).

All optical flow methods have an issue known as the aperture problem, which
arises when a moving object is viewed through an aperture without the information
of some structural properties such as edges, corners and texture data (Wedel and
Cremers, 2011). Therefore, to avoid this problem, all optical flow methods require
a regularization. Depending of the regularization used, optical flow can be formulated
using a featured-based approach or a variational approach. In general, variational
formulations have the best performance in statistical evaluations. One of these formulations,
based on the introduction of a L1-regularity term εreg = |∇u| (Rudin et al, 1992; Zach
et al, 2007) and known as the TV -L1 optical flow estimation (abbreviated as OpFlow),
has shown to have interesting properties such as noise removal and the preservation
of edges and contrast (Chan et al, 2001; Strong and Chan, 2003). Therefore, OpFlow
(Zach et al, 2007; Sanchez et al, 2013) is promising for analysing results of physical
experiments.

The Rayleigh-Benard convection (RBC) in porous media is a benchmark problem
where many visualization techniques has been applied. RBC is of particular interest
in research because it appears in a wide range of geophysical problems, including earth’s
mantle convection, geothermal energy extraction and underground energy storage systems.
In the laboratory scale, some experiments about RBC in porous media using analogue
working fluids in Hele-Shaw cells have been widely reported in literature (Elder, 1967a,b;
Hartline and Lister, 1977; Koster and Muller, 1982; Nield and Bejan, 2006; Cooper et al,
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2014). In this context, the use of passive dyes for the observation of streaklines (Horne
and O’Sullivan, 1974), the pH color indicator method (Hartline and Lister, 1977), the
holographic interferometry technique (Koster, 1983; Lee and Kim, 2004), thermal point
measurements (Nagamo et al, 2002) and thermo-sensitive liquid-crystals (Ozawa et al,
1992; Cooper et al, 2014) have been used to show the onset and the development
of vertical thermal plumes that enhance heat transport inside the cell. However, the
resolution of the images obtained with existing techniques is limited and thermal details
are commonly missing. Then, RBC in porous media using a Hele-Shaw cell is a good
candidate to apply SS and to visualize thermal plumes.

In this chapter we propose the use of OpFlow as an image analysis method for the
SS technique, which gives better image resolution. To illustrate the applicability of
OpFlow in optical density visualization, we implement the SS technique to quantify the
temperature field inside a Hele-Shaw cell, where the working fluid has a temperature
dependent viscosity and the cell is heated from below and cooled from above. The
choice of studying heat transport in such type of fluids is motivated by the growing
interest in understanding the physics of the geothermal energy extraction through
carbon dioxide injection (Randolph and Saar, 2011b) and supercritical CO2 storage
in geological formations (Benson et al, 2006; Emami Meybodi et al, 2015), where the
viscosity is variable with the concentration of dissolved supercritical CO2 into brine and
only slightly variable with temperature.

The mathematical theory of OpFlow is discussed in Chapter 9, Section 9.2 on
page 122. OpFlow depends on some non-physical free parameters which, in general,
are choosen through visual inspection of the results. We determine these parameters
by using a statistical methodology in which digital PIV plays a central role. The main
goals and contributions are

• To use a statistical tool to define adequately the OpFlow parameters to analyze
experimental images, using digital PIV as a preprocessing step.

• To quantify the refractive index gradients in the flow, in a wide range of spatial
scales, using the discontinuity detection capabilities of OpFlow.

• To use OpFlow results to reconstruct the temperature map in stratified fluids in
an out-of-equilibrium regime.

Using these results, we demonstrate that the horizontal average temperature as a
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function of the vertical coordinate gives important information about the heat flux at
the boundaries and the behavior of the convection inside the cell.

10.2 Statistical metrics

In order to compare the similitude between two images, the mean square error (MSE)
has been used in signal processing applications. If f and g are two images represented
as a two-dimensional array of size Nx × Ny, the MSE metric between them is defined
as

MSE = 1
NxNy

Nx∑
i=1

Ny∑
j=1

[
fj,i − gj,i

]2
. (10.2.1)

Therefore, a minimum value of MSE means a good similarity between images. In
addition, the structural similarity index metric (SSIM) is defined as

SSIM = (2µfµg + C1)(2σfg + C2)
(µ2

f + µ2
g + C1)(σ2

f + σ2
g + C2) , (10.2.2)

where, if the image is stored as a one dimensional array of size N = NxNy, the mean
intensity and the standard deviation of the image f are defined as

µf = 1
N

N∑
s=1

fs ; σf =

√√√√ 1
N − 1

N∑
s=1

[
fs − µf

]2
.

In Eqn. (10.2.2), C1 and C2 are constants. The SSIM metric satisfies the conditions of
symmetry, boundedness (SSIM ≤ 1) and unique maximum (SSIM = 1 if and only if
f = g). Wang and Bovik (2009) compare both metrics with a series of images distorted
from an original image, concluding that the MSE values are nearly identical, even
though the same images present important visual differences that are detected using
SSIM. This conclusion is important in the comparison of our experimental images, so
we analyse the data with the SSIM method instead of MSE.
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10.3 Experimental setup

10.3.1 Working fluid properties

Analogue fluids that represent a physical phenomenon in underground systems have
been used in the context of supercritical CO2 dissolution in brine-saturated porous
media (Neufeld et al, 2010). In this context, Backhaus et al (2011) used aqueous
solutions of propylene-glycol (PPG) as working fluid. The PPG shows interesting
thermodynamical properties with important changes in temperature (Sun and Teja,
2004). For the SS technique, the important variable to consider is the change of
the optical refractive index as function of temperature. For the working fluid in
consideration, this dependency is modelled as n(T ) = n0 − β T , where n0 = 1.4391
and β = 0.0003 ◦C−1 (Turan et al, 2002).

Figure 10.3.1: Figure 10.1(a). Dynamic viscosity of PPG as a function of temperature. Figure 10.1(b).
Density of PPG as a function of temperature. Experimental data were extracted from Sun and Teja (2004)

The density and dynamic viscosity of PPG were obtained from Sun and Teja (2004).
Fig. 10.3.1 shows the dependence with temperature for both fluid properties. This
information will be used later to explain the results from visualization of temperature
maps. For the experimental results shown in this chapter, the Prandtl number Pr =
ν/κ , where ν = µ/ρ is the kinematic viscosity, is Pr = 275 . Furthermore, the working
temperatures were Tmin = 30 ◦C and Tmax = 45 ◦C , as shown in Fig. 10.6.1.

10.3.2 Experimental setup and procedures

The experimental setup and methodology used for the adquisition of images are similiar
to those described in Wildeman et al (2012) and suggested by Gojani et al (2013) (see
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Fig. 8.3.2 in Chapter 8, Section 8.3 on page 110). The homogeneous porous media is
represented by a Hele-Shaw cell, which is made with acrylic of height H = 100 mm ,
width L = 150 mm and thickness Lp = 8 mm . To separate the plates, we use two
aluminium shims of width L̃ = 150 mm , height H̃ = 30 mm and thickness b = 1 mm ,
sealing the cell on the top and bottom by pressing the plates and shims with stainless
steel bolts. On the sides, the cell is sealed using O-rings which are pressed by other
acrylic plates using bolts of similar characteristics, creating an experimental device
which is water proof (see Fig. 10.3.2).

Aluminium shim

Aluminium shim

Hele-Shaw cell

inflow point

outflow point

y
x

L , L̃

h

H̃

H

Lp

b

Lp

O-ring

Aluminium shim

Figure 10.3.2: Schematic view of the Hele-Shaw cell. The dimensions of variables presented in this figure
are the following: L = L̃ = 150 mm , H = 100 mm , Lp = 8 mm , H̃ = 30 mm , h = 50 mm and b = 1 mm

The design of the Hele-Shaw cell leaves a free flow channel of dimensions L×h× b ,
with h = 50 mm . The cell is filled with propylene glycol from an inflow point, saturating
the flow channel, where fluid excess goes to a head tank through an outflow point.
To generate the thermal convection, we add two nichrome wires on the free sides of
aluminium shims, applying a constant current. The temperature on the shims are
measured using both, a RTD-PT100 sensor connected to a Keithley nano-voltmeter
and a thermal camera ULIRvision, which confirms that the aluminium shims are heated
uniformly, so we consider that the measured temperature on shims are the boundary
conditions in which thermal convection can develop inside the cell. The convective
behavior is controlled by the Rayleigh number Ra = ∆ρgKH/µκ (Otero et al, 2004),
where ∆ρ is the maximum density difference, g is the gravitational acceleration, K =
b2/12 is the permeability of the cell, b is the gap of the cell, H is the height, µ is
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the dynamic viscosity and κ is the thermal diffusivity. With this information, for the
experimental results shown in Section 10.5 we have Ra = 680 .

10.3.3 Visualization and error analysis

To mount the experiment we use an optical table and a metallic structure where the
cell is inserted vertically. A white light LED panel is placed behind the cell and a
white acrylic light diffusor is placed between the cell and the LED panel. At the
diffusor, we add a background pattern of dots printed on a transparent slide, creating
the background image shown in Fig. 10.3.3.

Figure 10.3.3: Background dots pattern for BOS measures. The size of the image is 10× 5 cm2

Accordingly with Fig. 8.3.2 presented in Chapter 8, Section 8.3 on page 108, the
SS configuration of the experiments is given by the parameters st, so and f . For the
results shown in Section 10.4 we have Ls = 5 cm and so = 100 cm . A Canon Rebel
T3 EOS camera was used to acquire photographs of size 5184 pixel × 3456 pixel. The
images were saved using the 8-bit JPEG format since our main objective is to detect
apparent displacements of synthetic dots of appreciable size. The 14-bit RAW format
is very expensive in terms of data storage for our purposes. As we demonstrate in
Section 10.4, the use of a lossy codec is adequate to accomplish our objectives.

The image focus was achieved by using a telephoto lens Canon EF 75 − 300 mm
f/4− f/5.6 and the focal lenght was set to f = 135 mm with a focal ratio fr = 5.6. It
is important to note that any issue from the CMOS sensor of the camera such as photon
shot noise, pixel vignetting and fill fraction of pixels, can be avoided by the OpFlow
denoising capabilities when images are analyzed. However, non-uniform response due
to the photon shot noise can impact negatively in the CMOS sensor performance and
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therefore in the BCA constrain, limiting the applicability of OpFlow. In such cases,
preprocessing the images using the cartoon-texture decomposition can be useful to fix
this problem (Wedel et al, 2008). In this work, this preprocessing step was not used
because the original images are adequate to be analyzed directly with OpFlow.

Following Gojani et al (2013), an experiment is well-suited for the application of
SS when the fluid flow only deflects the light ray, but does not displace it. From
Fig. 8.3.2 presented in Chapter 8, Section 8.3 on page 108, this condition is satisfied
when b/(so−st) = 1×10−3 � 1, which is fulfilled by our experimental setup. Moreover,
the background image dimensions must satisfy the condition max{L/2, H/2} ≤ so/4
to ensure the paraxial limit asummed in Eqn. (8.3.8). In our experiments, we have
L/2 = 10 cm and H/2 = 5 cm .

The optical refractive index values considered in this work are na = 1.00029, np =
1.49 and nf = 1.4331 at T = 20 ◦C . Considering that the cells lengths were measured
using a vernier of resolution 0.01 mm and the cell gap was measured using a micrometer
of resolution 0.001 mm , we have st = 61.28 ± 0.03 mm . The error in the estimation
of ε can be computed using the formula σε = δ/[2(so − f)], where δ is the diameter
of a single dot in the background image. By construction, δ = 100µm and σε =
6 × 10−5 rad . A single pixel of the CMOS camera sensor is equivalent to 1 pixel =
91.95 ± 0.09µm of the background image, so by using the angular error σε and the
maximum displacement detected by OpFlow, which is ∆y(max)

ab = 5.5 pixel , we have
∆y(max)

AB = 0.506 ± 0.004 mm . The error of this estimation is the spatial resolution
of the optical system in our experiments. Obviously, the spatial resolution can be
enhanced by two ways, reducing the dot diameter or increasing the distance so and
magnification.

10.4 Optical flow results

10.4.1 Displacement sensibility analysis

The OpFlow algorithm and libraries given by Sanchez et al (2013), modified for automation
and data storage purposes using python libraries and HDF5, was applied to the acquire
images. As an example of this application, for a fixed λ = 0.1 and variable θ, we
obtain the image sequence presented in Fig. 10.4.1, where the displacementDOF (θ, λ) =
√
u · u, detected by OpFlow Eqn. (9.2.4) presented in Chapter 9, Section 9.2 on page 122,
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depends on θ. For very small θ, the method does not detect changes in the pair of
images, but for very large θ values, the flow is over smoothed.

Figure 10.4.1: OpFlow results for λ = 0.1 and different values of θ : θ = 1× 10−4 (a), θ = 1× 10−2 (b),
θ = 1× 10−1 (c), θ = 1 (d), θ = 1× 102 (e) and θ = 1× 104 (f). With the objective to compare the size
of the image and the maximum displacement detected by OpFlow, the vertical and horizontal coordinate
values in each image are given in pixels. The conversion is 550 pixel = 50 mm

By visual inspection of the sequence presented above, we conclude that the best
image resolution was achieved for O(θ) ∼ 1. Fig. 10.4.2 shows max[DOF ] as function
of θ, for several values of λ. It is interesting to note that max[DOF ] always has a local
maximum for 10−4 < θ < 102 and λ > 10−2. Moreover, max[DOF ] reaches a constant
value for θ > 102, which is clearly observed in Fig. 10.4.1(e) and Fig. 10.4.1(f), where
the images appear diffused in comparison with others.

Considering these results for max[DOF ], the principal problem that arises when
OpFlow is applied is the correct choice of optimal parameters. When the exact flow
is not known, there is no ground truth image to compare with, so that the choice of
parameters must be done by visual inspection. Physically, the method loses strength
when it is compared with other techniques such as digital PIV, which detects a correct
maximum displacement. Moreover, digital PIV is not adequate when cross-correlation
is poor. In this sense, it is reasonable to think that there is a compromise between a good
correlation of a pair images (digital PIV) and the generation of dense fields (OpFlow),
which can be used to analyse image motion with high accuracy. In the following,
we will explain the application of the statistical metrics defined above, to obtain
an approximation of the adequate values of OpFlow parameters using a digital PIV
preprocessing, where we want to compute an initial result of the apparent displacement,
which is later enhanced by means of the OpFlow estimation.

135



CHAPTER 10. THERMAL EXPERIMENTS IN POROUS MEDIA

Figure 10.4.2: Sensitivity analysis of
OpFlow parameters, using the maximum
displacement detected as the metric. It is
interesting to note that this metric reach
a constant value for θ > 102, which is
independent of λ

10.4.2 Comparison between digital PIV and OpFlow

OpenPIV (Liberzon et al, 2009) is an open-source software that implements the cross
correlation algorithm given in Raffel et al (1998), using Fast Fourier Transform (FFT)
and standard statistical tools for vector validation. Setting the interrogation window
w = 16 pixel , the overlap as 50% and the well-known peak to peak as a signal to noise
method with thresholding of 1.8, the maximum displacement detected by the method
is max[DPIV ] = 5.4 pixel = 0.497 mm . To compare the OpFlow and digital PIV results
using OpenPIV, the statistical metric defined in Eqn. (10.2.2) gives the mathematical
background to establish a methodology to fix the Opflow parameters. This methodology
consists in finding the maximum value of the SSIM metric for several scales of λ and
θ. As an example, we use the same data set used to generate the maps shown in
Fig. 10.4.1 and we compute the SSIM for an array of 13 × 13 values of λ and θ. A
quadratic bivariate spline is applied to the scatter data, generating the smoothed and
continuous map shown in Fig. 10.4.3(b). The maximum value SSIM = 0.684 is achieved
for λc = 0.029 and θc = 1.072, where the position of this point is shown in Fig. 10.4.3(a).

Therefore, the λ and θ values found using SSIM are choosen as the OpFlow parameters,
giving the results shown in Fig. 10.4.4, which is similar to the visual inspection parameter
estimation and where a significant improvement with respect to the digital PIV result
is observed. It is interesting to note that the OpFlow result is denoised, capturing
the small scale displacements that are hidden in the digital PIV result. Moreover, the
result of the application of the SSIM metric to both image methods gives a small θc, so
the proposed method effectively recover an important feature of Chambolle’s method
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Figure 10.4.3: SSIM parameter space. The statistical strategy enables to define adequately the OpFlow
parameters. The maximum value of SSIM was achieved for λc = 0.029 and θc = 1.072 which is indicated by
the square dot in figure (a). As result, the smooth OpFlow output using these parameter values is showed
in the inset plot in figure (a). This plot is discussed in Fig. 10.4.4. Figure (b) shows the characteristic
values of SSIM parameter space for the image pair analyzed. The structure of the SSIM parameter space
is not universal and depends on the images

Figure 10.4.4: OpenPIV (a) compared with OpFlow result (b) for the apparent displacement of background
dots pattern. The OpFlow image was generated using the parameters λ = 0.029 and θ = 1.072. A
significant improvement of the resolution of the displacement was achieved using OpFlow, in comparison
with OpenPIV

(Chambolle, 2004) and λ is converted to the important parameter in OpFlow, because
it controls the accuracy of the method. There is no theoretical method to determine
the optimal values of both parameters from OpFlow equation. However, the empirical
results from this kind of experiments suggest that the statistical methodology allows
the definition of a good set of OpFlow parameters that ensures a good representation of
the observed physical phenomena. For experimental image sequences, the methodology
can be automated and the OpFlow parameters can be computed for each image. As
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Figure 10.4.5: OpenPIV compared with
OpFlow for the apparent displacement of
background dots pattern, for an experiment
where f = 55 mm , fr = 7.1 , b = 1 mm ,
Lp = 8 mm , Ls = 100 mm and so =
403 mm . The OpFlow parameters are λ =
0.02 and θ = 2.48

example, we observe that OpenPIV took about 30 s to analyse an image of 622 pixel×
1341 pixel in a MacBook Pro with an Intel Core i7 2.2 GHz processor, while the methodology
using SSIM is a time-consuming process, taking about 15 min to analyse the same image.
However, computing these parameters for a few images and calculating the mean values,
we obtain a reasonable strategy to optimally set λ and θ. Once that has been done,
the OpFlow parameters are set globally for each image. Using OpenMP libraries, the
time execution of the OpFlow algorithm is aproximatelly 30 s .

To evidencing the capabilities of OpFlow in the edge detection and image denoising,
on the right image of Fig. 10.4.5 it is possible to appreciate an horizontal boundary
structure on the bottom zone of the image, which corresponds to the aluminium shim.
This boundary is not detected by OpenPIV, as shown on the left image of Fig. 10.4.5.
Additionally, the noise result obtained with OpenPIV is typical of cross-correlation
methods applied to SS experiments and it is due to the image resolution of the method,
where we use an interrogation window of w = 16 pixels with an overlap of 50%. On the
other hand, OpFlow removes the noise, preserving the edges detected and improving
the image resolution.

10.5 Thermal reconstruction

To reconstruct the thermal distribution, we use the mathematical theory presented in
Chapter 8, Section 8.3 on page 108, where the temperatures at bottom and top of the
cell are constants. Fig. 10.5.1 shows the result of the reconstruction of temperature
from the apparent displacement on the background image shown in the right image
of Fig. 10.4.5. In this figure, we observe few convective isolated plumes which are
similar to the numerical results shown in Fig. 7.2.1. The conductive heat transfer
is characterized by a stable temperature gradient in the whole domain, where the
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temperatures at z = 0 and z = H are the temperatures measured at the aluminium
shims. The same figure shows the horizontally averaged temperature versus depth,
T̄ (z, t) = (1/L)

∫ L
0 T (x, t) dx. T̄ (z) has a constant value in the middle of the cell

with constant standard deviation, which is a behavior observed in developed thermal
convection in porous media (Otero et al, 2004).

Figure 10.5.1: Thermal reconstruction of the OpFlow result presented in Fig. 10.4.5. The horizontal
averaged temperature is shown with error bars, which is compared with the conductive regime. A deviation
from the conductive regime is evidenced by means of the difference of the areas below the curve

However, it is interesting to note that the values of ∂T̄ /∂z are different at the
vertical boundaries, which can be explained considering the variability of the dynamic
viscosity of the fluid with temperature and the heat lost due to thermal conduction
through the solid walls. In fact, the viscosity of PPG at 30 ◦C is 32 cP , while this
value at 45 ◦C is 15 cP , which is an important difference compared with the viscosity
of water in the same range of temperatures (See Chapter 3, Section 3.3 on page 21
for additional information). Defining the heat available per horizontal unit length as
Q

(av)
L = (1/L)

∫
V ρ̄ cp T dV = ρ̄ cp b

∫H
0 T̄ dz, where ρ̄ is the mean density between the

range of temperatures considered, we see that the area below the curve of the observed
T̄ (z) is less than the theoretical curve for the purely conductive case. Considering
cp = 2.51 J/g K and ρ̄ = 1.023± 0.007 g/cm3 , where the error is related with the deviation
from the mean value for a range of temperatures between 30 ◦C and 45 ◦C , we obtain
∆QL = Q

(conv)
L −Q(cond)

L = −2.63± 0.02 J/cm .
Thus, we have experimental evidence that some heat was conducted through the

acrylic used to built the cell. This finding arises the question of how this heat transfer
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affects the convective behavior of the fluid. This question has also been studied by
Koster (1983), concluding that the acrylic affects the thermal convection, so the new
question is what is the amount of heat lost by conduction and how the heat lost scales
with Ra, for this kind of experiments.

The thermal conductivity of acrylic is similar to that of PPG, which is kppg =
0.195± 0.001 W/m K (Sun and Teja, 2004). The error is related with the deviation from
the mean value for a range of temperatures between 30 ◦C and 60 ◦C . To understand the
energetic balance in thermal convection between the fluid and the acrylic, we analyse
a transient convection regime for Ra = 680. The choice of this value is related with
the observations of the geothermal convection in sedimentary basins (Clausnitzer et al,
2001).

Figure 10.5.2: Thermal reconstruction for an experimental image sequence for Ra = 680. The time
difference between images is ∆t = 5 min , from left to right. Some well-known nonlinear behaviors such as
coalescence and destabilization of protoplumes can be observed

Another example of thermal reconstruction is shown in Fig. 10.5.2. We can see
many thermal plumes, where some nonlinear behaviors such as the coalescence and
destabilization of protoplumes in the bottom boundary layer are evidenced. These
processes are triggered by parcels of denser fluid that reach the lower regions of the
cell and cause the convergence of parcels of less dense fluid. Due to viscosity effects,
the dense fluid parcels move slowly in comparison with lighter fluid, so the observed
nonlinear behavior is not only driven by density, but also by viscosity.

10.6 Transient dynamics

The transient regime is controlled by the temperature rise of the aluminium shims,
which is slow. It takes about one hour to reach a constant temperature, as shown in
Fig. 10.6.1. Because the top and bottom boundaries have temperatures that change
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Figure 10.6.1: Temperatures of the aluminium
shims, on bottom Tbot and top Ttop. These
measurements were used as boundary conditions
for thermal reconstruction in the transient
regime

Figure 10.6.2: Conductive heat flux per unit
length, at bottom and top of the cell, during
the transient regime

with time, the lower zone of the cell shows the appeareance of a boundary layer that
destabilizes in a few thermal fingers, as we show in Fig. 10.6.2. This result is a good
example that shows the transition to a full developed convective dynamics, where the
convection is driven by density and viscosity.

Fig. 10.6.2 shows the conductive flux at vertical boundaries, where the conductive
flux per unit length is computed as Q̇L = kppg b ∂T̄ /∂z, being kppg the thermal conductivity
of PPG. From this figure, we can observe that the heat flux at the bottom has a local
minimum at t = 50 min , which coincides with the beginning of the destabilization of
the thermal boundary layer. We define the mean value of a horizontal-averaged physical
quantity f̄(z, t) as 〈f〉(t) = (1/H)

∫H
0 f̄(z, t) dz. Analysing the mean temperature

evolution presented in Fig. 10.6.3, we can observe that this quantity grows monotonically
in the transient regime, until reach an statistically constant value of 〈T 〉 = 37.9±0.3 ◦C
from time t = 80 min . In other words, the system reaches a steady-state regime from
this time, where the amplitude and shape of thermal plumes seems to be similar.
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Figure 10.6.3: Mean temperature 〈T 〉 as
function of time. We can see that the temporal
evolution of this quantity seems to have a
statistically constant value from the time t =
80 min

Therefore, neglecting viscous dissipation and thermal dispersion, a first conclusion from
the temperature reconstruction is that the difference between the conductive heat flux
at top and bottom, from time t = 80 min (see Fig. 10.6.2), can be explained if we take
into account the energy lost by wall conduction.

The total amount of energy injected to the fluid is used mainly in two processes,
(a) to locally increase the temperature of the fluid, i.e. ∂T/∂t 6= 0 and (b) to exchange
energy with the solid walls by conduction. The estimation of the amount of mechanical
energy converted into heat is important for the correct interpretation of the energy
balance of the system. The results obtained from the temperature maps, for this regime,
are not sufficient to conclude any effect from the dynamic viscosity in the development
of thermal fingers and more information is need to characterize the dynamics of the
flow under these conditions.
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Chapter 11
Conclusions and future work

In this thesis we have studied the problem of heat and mass transport for two-phase
fluids in a porous medium, which has applications in the use of supercritical CO2 in
geothermal reservoirs. This work attempts to conciliate the experimental observations
obtained in analogue fluid systems with a corrected theory of flow within Hele-Shaw
cells, so this work can be seen as a first approach that contributes to the understanding
of the physics of mass transfer in geothermal conditions at the laboratory scale. By
means of theoretical modeling, numerical simulations and visualization, we have investigated
the role of the perturbative corrections to the Darcy equation in heat and mass transport
in an homogeneous porous medium.

Here, we have demonstrated through theory and numerical simulations that the
inertial corrections to the Darcy equation are relevant for the scalings laws that governs
both heat and mass transport. In Chapter 5 we derived a mathematical model for
analogue experiments of CO2 dissolution in geothermal brine using Hele-Shaw cells.
The model is a generalization of the Polubarinova-Kochina equation for porous media,
which contains the hydrodynamic dispersion term in the scalar transport equation, as
well as the Brinkmann and Forchheimer terms. A new vertical buoyant term is obtained
in the momentum equation. Interfacial tension effects is also considered in this model
because CO2 is partially miscible with water and it offers new phenomenology that
can help to explain other storage mechanisms, such as residual trapping. We show that
mechanical dispersion in the scalar transport equation cannot be neglected for analogue
experiments, which is relevant to matching experimental and theoretical results.

We also study the mean scalar dissipation rate and how it scales with the Rayleigh
number. Using dimensional analysis, we show that the scaling of the mean scalar
dissipation rate for thermal convection in porous media can be written as 〈εt〉τ ∼
Ram(ε)

t , which is due to the contribution of the mechanical dispersion Fmech in the
scalar transport equation. This has not been considered in previous works. Here,
ε is the perturbative parameter. This observation offers new insight about mixing
processes in porous media and its quantification. On the other hand, for mixing
convection, we give a new hypothesis about the mass transfer scaling. Here, we show
that 〈Nut〉 ∼ ΦRas 〈εs〉 , where Φ contains information about mechanical dispersion
and lateral diffusion. This scaling proposal is new and offers a simple physical theory
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to the experimental observations reported in literature.
In Chapter 6, we studied the linear stability of two interesting problems in transport

phenomena in porous media, thermal convection and Rayleigh-Taylor instability driven
by density contrast. For both problems, we used the Hele-Shaw model derived in
the previous chapter. We extended the results reported in the literature for thermal
convection. These results have been obtained using different mathematical strategies
considering free slip and no slip boundary conditions. On the other hand, for the
Rayleigh-Taylor instability, we used the dominant-mode solution to analyze the effects
of geometry (inertial terms) and interfacial tension in the onset of convection. In the
limit of porous media, we recovered the results reported in the literature. For other
cases, we show that the inertial terms of the momentum equation deviate the Darcian
prediction but maintaining the scaling law of the type τc = aRa−1

s , while interfacial
tension stabilizes the diffusive boundary layer in time, delaying the onset of convection
at least in one order of magnitude.

In the second part of this work, we implemented the mathematical model derived in
Chapter 5 for the thermal convection case using spectrally-based numerical techniques.
In Chapter 7, the application of the model to heat transport shows new scalings for the
time-averaged Nusselt number and mean thermal dissipation rate, which depends on the
perturbative parameter ε . For ε = 10−3 , we obtain 〈Nu〉t ∼ Ra0.90

t and 〈ε〉 ∼ Ra−0.09
t ,

while for ε = 10−2 , we obtain 〈Nu〉t ∼ Ra0.40
t and 〈ε〉 ∼ Ra−0.59

t . These results
support our scaling hypothesis derived before and it explains some anomalous scalings
observed in experiments using Hele-Shaw cells, by means of the introduction of both
the mechanical dispersion term in the scalar transport equation and inertial corrections
in the momentum equation.

In the third and final part of this work, in Chapter 8 we implemented two optical
visualization techniques to obtain images of the convective processes, light attenuation
and quantitative Schlieren. Althought both techniques are easy to implement in the
laboratory, the image analysis is challenging. In Chapter 9 we introduce two image
processing methods that have not been used in experimental fluid mechanics, the
multiphase image segmentation and TV -L1 optical flow, both based on variational
principles. In particular, in Chapter 9 we show that the Chan-Tai method splits
well four dynamic phases of the mixing process, without the need to have structural
information such as the density and velocity fields. This result is fundamental for
the computation of some physical measures in laboratory experiments, such as the
convective flux, using only geometrical information.
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In Chapter 10, we present a methodology based on the use of the TV -L1 optical
flow method (OpFlow) to analyze experimental images obtained by the SS technique.
Comparing the images analyzed by digital PIV and OpFlow, we can estimate the
optimal OpFlow parameters for a specific set of experimental images, to improve the
image resolution. As a benchmark case study where Synthetic Schlieren can be applied
succesfully in the measurement of a scalar quantity, in this case temperature, we perform
laboratory experiments of thermal convection in porous media, using a Hele-Shaw cell
filled with propylene-glycol as working fluid. The main advantages of the methodology
to capture refractive index gradients using OpFlow are both image denoising and edge
detection, which are crucial for further analysis of reconstructed temperature maps.
We provide results that show the capabilities of OpFlow for the analysis of this type of
experiments. These results are impossible to obtain using digital PIV, despite that the
correlation methods can be enhanced using a smoothing post-processing.

Using the dense flow field given by OpFlow, we reconstruct the temperature map
for an experimental transient regime and we study the conductive heat flux per unit
length and the mean temperature as function of time, observing that the developed
convection reaches a steady-state regime. Qualitatively, our thermal measurements
show that the thermal boundary layer at the bottom destabilizes after a transient time.
Above this boundary layer, heat transport is enhanced by a vertical advective flux that
must be quantified. A work related with this problem is in progress. We will measure
simultaneously both the temperature and velocity fields in order to better characterize
the fluid dynamics of this type of systems.

In order to extend the work presented in this thesis, in the following we present
some works in progress that will be completed in the present year.

11.1 Interfacial detection using image segmentation

The Chapter 9, Section 9.1, is devoted in the introduction of image segmentation
methods based in variational principles as a tool to detect interfacial motion. In that
section, the Chan-Tai segmentation method allow us to separate the mixing dynamics
in four meaningful phases: fluid A, fluid B, convective penetration of fluid A and
the mixing zone (see Fig. 9.1.6 on page 121). From all these phases, the convective
penetration of fluid A has the deeper physical meaning because the boundary of this
phase represents the zone of maximum isopycnal or density, which is fundamental in the
computation of the convective flux (see Eqn. (5.4.9) on page 62). However, although
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these interesting results, Chan-Tai multiphase model is expensive computationally and
requires an initial level-set close to the final image segmentation, which is due to
the non-convexity nature of its variational formulation. Remember that the term
non-convex means that the minimum of a functional depends on the initial functions
selected for its calculation. Therefore, for the segmentation model applied to the
experimental images shown in Fig. 9.1.1 on page 114, it is essential to have a variational
principle that be convex, where we have one and only one minimum in the image
domain.

An interesting variational formulation that can solve the problem is the model of
Cai et al (2013) given by the functional

Jc[u] =
∫

Ω

λ
2 (f − u)2 + µ

2 |∇u|
2 + |∇u|

 dA , (11.1.1)

where the minimization of Eqn. (11.1.1) gives one and only one solution u(x) which can
be solved using popular algorithms such as the split-Bregman (Goldstein and Osher,
2009) (see Appendix D for further information). For µ = 0 , Eqn. (11.1.1) is reduced
to the known ROF model for image restoration (Rudin et al, 1992). Next, the function
u(x) can be easily segmented in different phases by thresholding.

The objective of the proposed work is to separate in different phases the mixture
dynamics observed when deionized water is mixed with propylene-glycol (PPG) in a
Hele-Shaw cell. We performed experiments using both fluids, where the experimental
setup is shown in Fig. 8.2.1, page 107. The light attenuation technique discussed in
Chapter 8, Section 8.2, was used. To visualize the dynamics, the passive dye used was
Rhodamine B which was dissolved in deionized water in a concentration of 1×10−5 g/cm3 .
The light absorption properties of Rhodamine B in water and PPG at 20 ◦C are shown
in Fig. 11.1.1

The transmisivity properties of the Bayer filter in a CMOS APS sensor are displayed
in Fig. 11.1.2. From Figs. 11.1.1 and 11.1.2, it is clear that the green channel of a RGB
image of the experiment is more sensible to detect the light absorption due to the dye
dissolved in water.

After having selected the green channel of RGB images and then applying some
morphological tools, we obtain images of good quality which are shown in Fig. 11.1.3. In
fact, the image resolution is better than the experimental images reported in literature
and discussed in Chapter 4, Section 4.2 (Kneafsey and Pruess, 2009; Neufeld et al, 2010;
Backhaus et al, 2011; Hewitt et al, 2013).
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Figure 11.1.1: Light absorption properties of Rhodamine B in water and PPG. Data were obtained with
the colaboration of prof. J. Brunet and R. Sánchez in the Spectroscopy and Photophysics laboratory of the
Pontifical Catholic University of Valparaíso, campus Curauma.
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Figure 11.1.2: Normalized transmisivity
properties of the Bayer filter in a CMOS APS
sensor. See Fig. 8.2.2, page 108, which shows
an academic example of transmisivity for the red
channel

Therefore, to accomplish the objectives of the proposed work, we will apply Eqn. (11.1.1)
to the images displayed in Fig. 11.1.3. After that, to find the final segmentation, we
will use the known K-means algorithm for four phases. One of these phases will be
the convective penetration of water in PPG, called phase P (ppg)

w , so we will compute
the boundary of P (ppg)

w using the classical Chan-Vese segmentation. We know that the
mean scalar dissipation ratio is defined as 〈ε〉 = `mix/L (see Chapter 5, Section 5.4.2),
so the computation of the mixing length `mix will be counting the number of pixels of
the zero level-set and dividing it by the number of pixels of the horizontal direction of
the image. If 〈ε〉 is constant in time, then we expect that the flux be constant in time.
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t = 0 t = 4 t = 6

t = 8 t = 10 t = 12

t = 14 t = 16 t = 20

t = 25 t = 30 t = 35

Figure 11.1.3: Results of a density-driven convection experiment, for different dimensionless times, where
deionized water (black) is mixing with PPG (red). This sequence is also shown in Fig. 9.1.1, page 114,
where some images were used in the application of Chan-Vese and Chan-Tai segmentation methods. These
images mimic the convective dissolution of CO2 in a geological formation

To demonstrate that, we can compute the quantity Qc as the ratio between the area
of P (ppg)

w and the area of the cell (Backhaus et al, 2011), which is easy to do. If Qc is
linear in time, then the flux Fc = Q̇c will be constant. The originality of the proposed
work is based on the inclusion of variational segmentation techniques in the detection
of the interfacial zone of a mixing system, without using some structural information
such as the density and velocity fields. By means of geometrical information, we want
to demonstrate that segmentation can be an important tool for fluid mixing studies.
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11.2 Numerical simulations

11.2.1 Thermal convection

From the results obtained in Chapter 7 and the scaling assumptions given in Chapter 5,
Section 5.4.2, an interesting future work is the demonstration that the general scaling
law for heat transport in porous media is given by the expression

〈Nu〉t = Φ
(
ε2Rat

)
Rat 〈εt〉 ∼ Ra1+m(ε)+

√
ε g(ε)

t , (11.2.1)

where Φ ∼ Ra
√
ε g(ε)

t and 〈ε〉 ∼ Ram(ε)
t . The methodology will be the execution of

numerical simulations for several values of ε , which allow us to determine the scaling
law for both the Nusselt number and the mean scalar dissipation rate. With this
information, we will be able to compute the function g(ε) .

11.2.2 Mixing convection

We want to study numerically the dissolution of a fluid into another in isothermal
conditions. The viscosity of the fluid mixing is constant. We use the flow_solve software
(Winters and de la Fuente, 2012) to study the effects of hydrodynamic dispersion in
the dimensionless convective flux and mean scalar dissipation rate for this problem.

The study is focused in the analogue-fluid model discussed in Chapter 5, Section 5.4.2,
where the density is a nonlinear function of concentration and no-flux boundary conditions
are imposed in all walls. Therefore, we define the density ρf as

ρf (Sw) = ρa + 2∆w(ρa − ρin)
1− 2∆w

Sw −
(ρa − ρin)
1− 2∆w

S2
w (11.2.2)

where Sw is the concentration of a secondary fluid in the ambient fluid, ρa is the
ambient fluid density, ρin is the secondary fluid density and ∆w is the dimensionless
concentration where fluid density is maximum. Rayleigh-Taylor instability appears
when the fluid mixing is more dense than the fluid ambient, so the maximum density
difference that generates the instability is defined as ∆ρ = ∆2

w(ρa − ρin)/(1 − 2∆w).
For PPG+water solutions, where PPG is the ambient fluid, we have ∆ρ = 9 kg/m3

at ∆w = 0.26 (see Chapter 3, Section 3.3 for further information). For ∆w ≥ 0.5,
Eqn. (11.2.2) is not valid.

The initial conditions are u(x, t) = 0 and Sw(x, t = 0) = So(z) + δs(x), where
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So(z) = 1
4 −

2
π

N∑
n=1

1
n

sin
nπzo
H

 cos
nπz
H

 e−n2π2τ

δs(x) = A rand(x) exp
− (z − zo)2

σ2
z


with rand(x) ∈ [−1, 1] the uniform distribution, N = 1× 106 is the number of modes,
τ = 1 × 10−5 is a diffusion parameter and zo < H is the height of the initial fluid
interfase. Fig. 11.2.1 shows the graph of this initial condition.

Figure 11.2.1: Initial condition for Sw(x, t =
0) = So(z) with zo = 3H/4. The inset graph
shows the same curve using nz = 513 grid
points, in the window where is the interfacial
zone. See Fig. 4.3.1, page 44, which shows
the miscible case discussed by Hewitt et al
(2013)

In the simulations, we use the following fixed parameters, ρa = 1035 kg/m3 , ρin =
1000 kg/m3 and ∆w = 0.3. With this values, ∆ρ = 7.875 kg/m3 . The height H depends
on Rayleigh number . Finally, for initial conditions we have zo = 3H/4 and σz = 3∆z .
As example, Fig. 11.2.2 shows some results of the simulations for Pr = 10 , Ras = 3981
and Pes = 4.1833 , in a box of aspect ratio L′ = L/H = 1/2 .

Some of the objectives of this future work are: (a) To demonstrate that the scaling
law for mass transfer in mixing convection can be written as

〈Nu〉t = Φ
(
ε2Raϕ,∆Sw/S(m)

w

)
Ras 〈εs〉 ; ρ(S(m)

w ) = ρmax , (11.2.3)
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t = 0 t = 20 t = 50

t = 80 t = 120 t = 200

t = 300 t = 500 t = 1200

Figure 11.2.2: Results of the
numerical simulations of the analogue
model presented in this section,
for different dimensionless times.
The dimensionless parameters
are Pr = 10 , Ras = 3981 and
Pes = 4.1833 . It is interesting to note
that the interfacial zone between both
fluids moves upward from hint = 0.75
at t = 0 to hint = 0.8 at t = 500

151



CHAPTER 11. CONCLUSIONS AND FUTURE WORK

and (b) to use Chan-Vese segmentation to compute the normal vector of the maximum
isopycnal curve, with the aim to compute the convective flux given in Eqn. (5.4.9). This
idea is original, because flux is computed using indirect information such as the upward
velocity of the interface.

11.2.3 Mixing convection in geothermal conditions

This future work will be a good contribution of this thesis in the geophysical context,
because it will study the fluid dynamics when a geothermal reservoir is turned off due to
the injection of a cool fluid. Gravity currents, secondary instabilities and enhancement
of heat transport will be the main topics of study. For its analysis, we will use the
equations and tools developed in this thesis. The schematic picture of the simulations
will be similar to the image displayed in Fig. 5.2.1, page 51.
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Appendix A
Hele-Shaw models

In the following, we show some Hele-Shaw models used in the literature

• Equation 1 : Ruyer-Quil model (Ruyer-Quil, 2001b)

6
5 ρa

∂u
∂t

+ 9
7 (u · ∇)u

 = −∇p− ρ g ẑ − µK−1u + 6
5 µ∇

2u

• Equation 2 : Gondret model (Gondret and Rabaud, 1997). Gap averaged equation

ρa

∂u
∂t

+ 6
5 (u · ∇)u

 = −∇p− ρ g ẑ − µK−1u + µ∇2u

• Equation 3 : Bizon model with scalar transport in the Boussinesq limit (Bizon
et al, 1997b). Non-dimensional gap averaged equations, with ωy = (∇ × u)y ,
σ = ν/D , α = 12(L/b)2 and Ra = g∆ρL3/νD . Here the subscript ⊥ refers to a
two dimensional projection.

∂u
∂t

+ 4
5 ωy ŷ × u = −∇p+ σ

[
∇2
⊥ − α

]
u− 3

2 σ RaS ẑ

∂S

∂t
+ 2

3 u · ∇⊥S = ∇2
⊥S

∇⊥ · u = 0

• Equation 4 : Oltean model including Taylor dispersion (Oltean et al, 2004).
Depth-averaged two dimensional equations, governing flow and transport of a
density-variable pollutant into a plane fracture with permeability K = b2/12.
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µK−1u = −∇p− ρ g ẑ

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρS)
∂t

+∇ · (ρSu) = ∂

∂xp

ρDpk
∂S

∂xk



Dpk = Dm δpk + 2
35

K

Dm

1 + S

ρ

∂ρ

∂S

upuk
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Appendix B
Gâteaux functional derivative

Let f : Rn → R be a scalar-valued function. In Rn , the directional derivative along a
vector u at the point x is defined as

Duf = d

dε
f(x + εu)

∣∣∣∣
ε=0

= lim
ε→0

f(x + εu)− f(x)
ε

, (B.0.1)

where the physical interpretation of Eqn. (B.0.1) is the rate of change of f with the
time ε when moving past x at velocity u . Now, we can generalize Eqn. (B.0.1) to
functional derivatives from a Banach space B to R . Banach space is a complete normed
vector space. Two known examples of Banach spaces are Rn and the set of continuous
functions on closed interval of R with the norm ‖ f ‖= sup |f(x)| with x ∈ R .

The Gâteaux derivative of a functional J : B → R is defined as

DψJ = d

dε
J [f + εψ]

∣∣∣∣
ε=0

= lim
ε→0

J [f + εψ]− J [f ]
ε

. (B.0.2)

Then, when B isRn , we recover Eqn. (B.0.1). Like the Fréchet functional derivative
defined on a Banach space, the Gâteaux derivative defined in Eqn. (B.0.1) is often
used to formalize the computation of functional derivatives in calculus of variations
and mathematical physics, so its application is fundamental to derive the differential
equations that solves the segmentation problem that arises in Chan-Vese and Chan-Tai
models.
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Appendix C
Isodata algorithm

The main goal of Isodata algorithm is that allow us to initialize the level set functions
close to the minimum of the functional defined in Eqn. (9.1.12) on page 119.

The Isodata algorithm for two regions is the following

1. Compute the mean value f̄ of the image f .

2. Compute the mean value f̄1 and f̄2 of each region of the image f divided by f̄ .

3. Recompute the new mean value f̄ = (1/2)(f̄1 + f̄2) .

4. Repeat from step 2 iteratively until f̄ converges.

For four regions, the algorithm is the following

1. Compute the mean value f̄ of the image f .

2. Denote the two subimages divided by f̄ , f1 and f2 .

3. Apply the Isodata algorithm for two regions to the subimage f1 , in order to find
f̄1 .

4. Apply the Isodata algorithm for two regions to the subimage f2 , in order to find
f̄2 .

5. Recompute the new mean value f̄ = (1/2)(f̄1 + f̄2) .

6. Repeat from step 2 iteratively until f̄ converges.
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Appendix D
The split-Bregman iteration

Let f and u be two-dimensional arrays, where f is given. The discrete setting of Eqn.
(11.1.1) is

min
u

λ2 ||f − u||22 + µ

2 ||∇u||
2
2 + ||∇u||1

 , (D.0.1)

where ||u||1 = ∑
i,j

√
(uij)2 is the classical discrete TV seminorm and || · ||2 is the L2

norm. In the work of Cai et al, the approximation of the discrete gradient operator for
the ith row is given by the backward finite difference with periodic boundary conditions

(∇xu)ij =

ui,1 − ui,n , j = 1
ui,j − ui,j−1 , j = 2, . . . , n

where n is the number of pixels in the j-direction and ui,j is the jth pixel in the ith
row of u. Similiarly, we can discretize ∇y as

(∇yu)ij =

u1,j − un,j , i = 1
ui,j − ui−1,j , i = 2, . . . , n

These discretizations can be modified using compact finite differences (Lele, 1992)
without add more computational costs. To solve Eqn. (D.0.1), we set dx = ∇xu and
dy = ∇yu , so this yields to the weakly enforced minimization problem

min
u

λ2 ||f−u||22 + µ

2 ||∇u||
2
2 +||(dx, dy)||1 + σ

2 ||dx−∇xu||22 + σ

2 ||dy−∇yu||22

 . (D.0.2)

The application of the split-Bregman iteration to strictly enforce the constrains
yields to the iterative equations
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u(k+1) = arg min
g

λ2 ||f − u(k)||22 + µ

2 ||∇u
(k)||22

+σ2 ||d
(k)
x −∇xu

(k) − b(k)
x ||22 + σ

2 ||d
(k)
y −∇yu

(k) − b(k)
y ||22

 (D.0.3)

(d(k+1)
x , d(k+1)

y ) = arg min
dx,dy

||(d(k)
x , d(k)

y )||1 + σ

2 ||d
(k)
x −∇xu

(k) − b(k)
x ||22

+σ2 ||d
(k)
y −∇yu

(k) − b(k)
y ||22

 (D.0.4)

b(k+1)
x = b(k)

x + (∇xu
(k+1) − d(k+1)

x ) ; b(k+1)
y = b(k)

y + (∇yu
(k+1) − d(k+1)

y ) (D.0.5)
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