Contents

\mathbf{G}	General Introduction					
N	Notations					
I The data completion problem and the inverse obstacle problem with partial boundary data						
1	The	eoretic	al analysis of the data completion problem for Laplace			
	ope	rator		33		
	1.1	The p	roblem setting	34		
	1.2	Theor	etical results concerning the data completion problem	37		
		1.2.1	Properties of \mathcal{K}	38		
		1.2.2	The Regularized Functional $\mathcal{K}_{arepsilon}$ and its properties	44		
	1.3	Theor	etical results concerning the data completion problem with noise	51		
		1.3.1	A convergence result	52		
		1.3.2	Strategy for choosing ε	53		
2	Nu	Numerical resolution of the data completion problem 5				
	2.1	Comp	utation of the derivatives of $\mathcal{K}_{\varepsilon}$	57		
	2.2	Frame	work of the numerical simulations	59		
	2.3	Simula	ations	60		
		2.3.1	Simulations without noise	60		
		2.3.2	Simulations with noise	62		
		2.3.3	Comments on the simulations	63		
3	Obs	stacle o	letection with incomplete data via geometrical shape op-			
	tim	ization		65		
	3.1	The ir	verse obstacle problem with partial Cauchy data	66		
	3.2	Shape	derivative of the Kohn-Vogelius functional	69		
	3.3	Frame	work for the numerical simulations	71		
		3.3.1	Algorithm	72		
	3.4	Simula	ations	73		
		3.4.1	Comments on the simulations	75		

II The inverse obstacle problem using topological shape optimization in a bidimensional Stokes flow 79

4	Small object detection using topological optimization for bidimen- sional Stokes equations					
	4 1	4.1 Framowork				
	4.2	The main result				
	4.2	4.2.1 Introduction of the needed functional tools	85			
		4.2.1 The result $4.2.1$ The result	86			
	13	Asymptotic expansion of the solution of the Stokes problem	86			
	4.0	Asymptotic expansion of the solution of the stokes problem \ldots	87			
		4.5.1 Defining the approximation $\dots \dots \dots$	01			
	4.4	4.5.2 All explicit bound of r_D and r_M with respect to ε	09			
	4.4	Proof of Theorem 4.1	99			
		4.4.1 A preliminary lemma \ldots \ldots \ldots \ldots \ldots	99			
		4.4.2 Splitting the variations of the objective	100			
		4.4.3 Asymptotic expansion of A_M	101			
		4.4.4 Asymptotic expansion of A_D	102			
		4.4.5 Conclusion of the proof: asymptotic expansion of \mathcal{J}_{KN}	103			
5	Nu	merical detection of obstacles: Topological and mixed optimiza-				
	tion	n method	104			
	5.1	A Topological Gradient Algorithm	106			
		5.1.1 Framework of the numerical simulations	106			
		5.1.2 First simulations	108			
		5.1.3 Influence of the distance to the location of measurements	111			
		5.1.4 Influence of the size of the objects	112			
	5.2	5.1.5 Simulations with noisy data	115			
		shape optimization algorithms	116			
		5.2.1 Shape derivative of the Kohn-Vogelius functional	117			
		5.2.2 Numerical simulations	118			
\mathbf{C}	onclu	isions and Perspectives	121			
Bi	ibliog	graphy	127			
\mathbf{A}	ppen	dices	135			
\mathbf{A}	Use	eful results for the Data Completion Problem	137			
	A.1	Some results about the space $\mathrm{H}^{1}(\Omega, \Delta)$	137			
в	Use	eful results for Stokes equations	139			
	B.1	Some results on the Stokes problem with mixed boundary conditions	139			
	B.2	A result concerning the space of traces	142			
	B.3	Some results on the exterior Stokes problem	142			
		B.3.1 Definition of the weighted Sobolev spaces	142			
		B.3.2 The exterior Stokes problem in two dimensions	143			

List of Tables

2.1	Touching boundaries, non noisy case
2.2	Non touching boundaries, non noisy case
2.3	Touching boundaries, noisy case
2.4	Non touching boundaries, noisy case
3.1	Data completion for the object detection problem, non noisy case 73
3.2	Data completion for the object detection problem, noisy case 73
3.3	Data completion for the object detection problem, non-noisy case 74
3.4	Data completion for the object detection problem, noisy case 75
5.1	Detection of ω_1^* , ω_2^* and ω_3^*
5.2	Detection of ω_4^* , ω_5^* and ω_6^*
5.3	Detection of ω_4^* , ω_5^* and ω_{6bis}^*
5.4	Detection when we move away from boundary
5.5	Detection when we increase the size of the object, with center rel.
	error = $ c_{real} - c_{app} /\text{diam}(\Omega)$ and radio rel. error = $ r_{real} - r_{app} /r_{real}$ 114
5.6	Detection when we introduce noisy data: results
5.7	Detection when we introduce noisy data: relative errors

List of Figures

1	Example when $\overline{\Gamma_{obs}} \cap \overline{\Gamma_i} \neq \emptyset$, real solution (left) and obtained solution	
	(right)	13
2	Illustration of the problem.	14
3	Detection of a square with incomplete boundary data: Positive results.	17
4	The initial domain and the same domain after inclusion of an object .	20
5	Detection of small circle and 'donut': Positive results	23
6	Bad Detection for a 'very big sized' object	24
7	Detection with the combined approach (the initial shape is the one	
	obtained after the "topological step") and zoom on the improvement	
	with the geometrical step for the obstacle in the right	25
1.1	An example domain	35
2.1	Case $\overline{\Gamma_{obs}} \cap \overline{\Gamma_i} \neq \emptyset$	61
2.2	Case $\overline{\Gamma_{obs}} \cap \overline{\Gamma_{i}} = \emptyset$	62
2.3	Case $\overline{\Gamma_{obs}} \cap \overline{\Gamma_i} \neq \emptyset$	63
2.4	Case $\overline{\Gamma_{obs}} \cap \overline{\Gamma_i} = \emptyset$	63
3.1	An example domain for the obstacle problem.	66
3.2	Object detection without noise: Real solution and initial guess (up)	
	and obtained solutions u_D, u_N respectively (down)	74
3.3	Object detection with noise: Real solution and initial guess (up) and	
	obtained solutions u_D, u_N respectively (down)	75
3.4	Object detection without noise: Real solution and initial guess (up)	
	and obtained solutions u_D, u_N respectively (down)	76
3.5	Object detection with noise: Real solution and initial guess (up) and	
	obtained solutions u_D, u_N respectively (down)	77
4.1	The initial domain and the same domain after inclusion of an object .	85
5.1	Detection of ω_1^* , ω_2^* and ω_3^*	108
5.2	Evolution of the functional \mathcal{J}_{KV} during the detection of ω_1^* , ω_2^* and ω_3^* .	109
5.3	Detection of ω_4^* , ω_5^* and ω_6^*	110
5.4	Detection of ω_4^* , ω_5^* and ω_{6bis}^*	111
5.5	Detection of ω_7^* , ω_8^* and ω_9^*	112
5.6	Detection of ω_{10}^* and ω_{11}^*	113
5.7	Bad Detection for a 'very big sized' object	114

5.8	Detection of several 'big sized' objects	115
5.9	Detection of ω_{12}^* and ω_{13}^* with the combined approach (the initial	
	shape is the one obtained after the "topological step") and zoom on the improvement with the geometrical step for ω_{13}^*	120
B.1	The truncated domain	145