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Abstract It is shown that Halin graphs are Δ-edge-choosable and that graphs of
tree-width 3 are (Δ + 1)-edge-choosable and (Δ + 2)-total-colourable.
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1 Introduction

In this note we present some results concerning the list chromatic index ch′(G) and
the total chromatic number χ ′′(G) of graphs G of tree-width 3 (see Sect. 2 for proper
definitions). One of the central open questions in the field of list colouring is known
as the list colouring conjecture:

Conjecture 1 For all graphs G it holds that ch′(G) = χ ′(G).

Conjecture 1 appeared for the first time in print in 1985 [3], but was, according to
Alon [1], Woodall [16] and Jensen and Toft [11], suggested independently by Vizing,
Albertson, Collins, Erds, Tucker and Gupta in the late seventies. If Conjecture 1 is
true we have χ ′′(G) ≤ Δ(G) + 3 for all graphs G1. The total colouring conjecture
asserts a little more:

1 If we colour the vertices of G using the colours C = {1, . . . , Δ(G) + 3}, then for each edge there
are still Δ(G) + 1 colours of C available, which permits a total colouring if Conjecture 1 holds.
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Fig. 1 A graph of tree-width 3
and chromatic index 5

Conjecture 2 For all graphs G it holds that χ ′′(G) ≤ Δ(G) + 2.

Conjecture 2 has been promoted independently by Behzad [2] and Vizing [15]. Our
first result is a list version of Vizing’s theorem for graphs of tree-width 3.

Theorem 1 For a graph G of tree-width 3 it holds that ch′(G) ≤ Δ(G) + 1.

There are graphs for which this is a sharp bound, see Fig. 1. Conjecture 2 has been
proved for graphs ofmaximumdegree atmost 5 byKostochka [12] andRosenfeld [14].
We will use this and a slight variation of the proof of Theorem 1 to show Conjecture 2
for graphs of tree-width 3 in Sect. 3.

Theorem 2 For a graph G of tree-width 3 it holds that χ ′′(G) ≤ Δ(G) + 2.

A Halin graph is constructed by taking a planar embedding of a tree without vertices
of degree 2 and connecting all leaves of the tree with a cycle that passes around the
tree in the natural cyclic order. Halin graphs have tree-width 3 [4]. In Sect. 4 we prove
Conjecture 1 for Halin graphs.

Theorem 3 For a Halin graph G it holds that ch′(G) = Δ(G).

While still open in general, Conjecture 1 has been verified for some particular families
of graphs. Galvin proved that ch′(G) = Δ(G) for all bipartite multigraphs G [9].
Ellingham and Goddyn used a method of Alon and Tarsi to show that every d-regular,
d-edge-colourable, planarmultigraph is d-edge-choosable [8]. Some years later Juvan,
Mohar and Thomas showed that ch′(G) = Δ(G) holds for series parallel graphs
G [10]. This class of graphs can also be characterized in terms of tree-width. Series
parallel graphs have tree-width at most 2. Conversely, a graph has tree-width at most
2 if and only if every biconnected component is series parallel [5]. This is why we are
interested in list edge-colouring graphs of tree-width 3. The methods presented here
are extended in [13] in order to prove Conjecture 1 for graphs of tree-width 3 and a
high maximum degree.

2 Graphs of Tree-Width 3 are (Δ(G) + 1)-Choosable

We will mostly use standard notation as seen in [7]. All graphs are finite and simple.
The size of a graph G is |V (G)| + |E(G)|. H is smaller than G if its size is less than
the size of G. For a graph G a tree decomposition (T,V ) consists of a tree T and a
collection V = {Vt ; t ∈ V (T )} of bags Vt ⊂ V (G) such that

– V (G) = ⋃
t∈V (T ) Vt ,

– for each vw ∈ E(G) there exists a vertex t ∈ V (T ) such that v, w ∈ Vt and
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– if v ∈ Vt1 ∩ Vt2 then v ∈ Vt for all vertices t that lie on the path connecting t1 and
t2 in T .

A tree decomposition (T,V ) of G has width k, if all bags have a size of at most k+1.
The tree-width of G is the smallest number k for which there exists a width k tree
decomposition of G. As our proofs are based on minimality it is important to mention
that the graphs of tree-width at most k form a minor-closed family. We call a width k
tree decomposition (T,V ) smooth if each bag has size k+1, no two bags are identical
and for each t1t2 ∈ E(T ) the bags of t1 and t2 share exactly k vertices. A graph of
tree-width k has a smooth width k tree decomposition [5]. Given a tree decomposition
(T,V ) of G where T is rooted in some vertex r ∈ V (T ) we define the height of any
vertex t ∈ V (T ) to be the distance from r to t .

An instance of list edge-colouring consists of a graph G and an assignment of lists
L : E(G) → P(N) that maps the edges of G to lists of colours L(e). A function
C : E(G) → N is called an L-edge-colouring ofG, ifC (e) ∈ L(e) for each e ∈ E(G)

and no two adjacent edges receive the same colour. G is said to be k-edge-choosable,
if for each assignment of lists L to the edges of G, where all lists have a size of at least
k, there is an L-edge-colouring of G. The list chromatic index, denoted by ch′(G), is
the smallest integer k for which a graph G is k-edge-choosable.

Let G be a graph and L an assignment of lists to the edges of G. For an L-edge-
colouring C of some subgraph H ⊂ G we call a colour c of the list of an uncoloured
edge e available, if no edge adjacent to e has already been coloured with c. The set
of available colours of e is called the list of remaining colours and denoted by LC (e).
We can always try to colour G greedily, by iteratively colouring the edge with the
smallest list of available colours with an arbitrary available colour.

For a subset of vertices W ⊂ V (G), we denote by G〈W 〉 the graph with ver-
tex set W ∪ N (W ) and edge set E(G)\E(G − W ). Let G be a graph with an
assignment of lists L to the edges of G such that each list L(vw) has a size of at
least max(degG(v), degG(w)) + 1. Suppose that for some proper subset of vertices
W ⊂ V (G), we can find an L-edge-colouring C of the graph G − W . In order to
extend C to an L-edge-colouring of G we need to find an LC -colouring of G〈W 〉.
For an edge w1w2 ∈ E(G) with w1, w2 ∈ W we have

|LC (w1w2)| = |L(w1w2)|. (1)

For an edge vw ∈ E(G) with w ∈ W and v ∈ V (G)\W , we have

|LC (vw)| ≥ |L(vw)| − degG−W (v) ≥ degG〈W 〉(v) + 1, (2)

sincemax(degG(v), degG(w)) ≥ degG(v) = degG−W (v)+degG〈W 〉(v). In the proofs
of the following results, we will generally assume that the size of each list is exactly
the size of its given lower bound. The next theorem has already been mentioned in the
introduction.

Theorem 4 (Galvin [9]) Let G be a bipartite graph; then ch′(G) = Δ(G).

Lemma 1 Let G be a cycle e1, . . . , en with an additional edge f that is incident
exactly to the one vertex of C that e1 and en share. For any assignment of lists L,
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where each list has a a size of at least 2 for all edges and the size of the list of e1 is at
least 3, there is an L-edge-colouring.

Proof If there is a colour c ∈ L(en)\L( f ), colour en with c and finish greedily. This
yields L( f ) = L(en) and so there is a colour c ∈ L(e1)\(L( f ) ∪ L(en)). Colour e1
with c and finish greedily. �

The next lemma implies Theorem 1.

Lemma 2 Let G be a graph of tree-width at most 3 with an assignment of lists L
such that each list L(vw) has a size of at leastmax(deg(v), deg(w))+1 for each edge
vw ∈ E(G). Then there is an L-edge-colouring of G.

Proof We will assume that the lemma is wrong and obtain a contradiction. Let G be
a smallest counterexample to the lemma with an assignment of lists L to the edges of
G for which each L(vw) has a size of at least max(deg(v), deg(w))+ 1 for each edge
vw ∈ E(G) such that there is no L-edge-colouring of G.

If there is a vertex v ∈ V (G) of degree at most 2, we can find an L-edge-colouring
of G − v by minimality and extend this to an L-edge-colouring of G by colouring the
edges adjacent to v greedily from the lists of remaining colours. Therefore we might
assume that G has a minimum degree of at least 3. This implies that G has tree-width
3, since the bag of any leaf of a width 2 tree-decomposition contains a vertex of degree
at most 2. Let (T,V ) be a smooth width 3 tree decomposition of G where T is rooted
in some arbitrary vertex. Let t ∈ V (T ) be a vertex of degree at least 2 in T and of
maximum height.

Suppose the neighbourhood of t contains at least two leaves t1, t2 ∈ V (T ). Since
(T,V ) is smooth, there are vertices v1 ∈ Vt1 and v2 ∈ Vt2 which are uniquely
in Vt1 and Vt2 . We have deg(v1) = deg(v2) = 3, v1 and v2 are not adjacent and
|N (v1) ∪ N (v2)| ≤ 4. By minimality we can find an L-edge-colouring of the graph
G − v1 − v2. If v1 and v2 have the same neighbourhood we can extend this to an
L-edge-colouring of G by applying Theorem 4 to the bipartite graph G〈{v1, v2}〉,
as their lists of remaining colours have each a size of at least 3 by (2). If v1 and v2
have distinct neighbourhoods, colour the two edges in G〈{v1, v2}〉 that are adjacent to
vertices outside of N (v1)∩N (v2) greedily.We can extend this to an L-edge-colouring
of G by applying Theorem 4 as the uncoloured edges form a 4-cycle and their lists of
remaining colours have each at least size 2 by (2).

So we can assume that t is adjacent to exactly one leaf t0 ∈ V (T ). As (T,V ) is
smooth and t has maximum height, there are vertices w0 ∈ Vt0 and w1 ∈ Vt ∩ Vt0 that
appear uniquely in Vt0 and Vt ∩ Vt0 . Let Vt = {w1, w2, w3, w4}. Since w0 appears
uniquely in the bag of the leaf t0, it has a degree of at most 3. So deg(w0) = 3 and we
may also assume that w0w4 /∈ E(G). Further, since the neighbours of w1 are either in
Vt0 or Vt , w1 has a degree of at most 4.

Now if deg(w1) = 3, we can choose an L-edge-colouring of G − {w0, w1} by
minimality and extend this to an L-edge-colouring of G as follows. If w1w4 is an
edge, colour it with an arbitrary colour and apply Lemma 1 to G〈{w0, w1}〉 − w0w4.
So N (w1) = {w0, w2, v1} and we can colourw0w1 with an arbitrary colour and apply
Theorem 4 to the 4-cycle G〈{w0, w1}〉 − w0w1. This yields deg(w1) = 4.
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Fig. 2 The integers on the
edges indicate the minimum
sizes of the respective lists
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We pick a final L-edge-colouring of G−w0 −w1 by minimality. In order to extend
this to an L-edge-colouring ofG we need to colour the edges of the graphG〈{w0, w1}〉
from the lists of remaining colours. This instance of list edge-colouring is shown in Fig.
2. The lower bounds on the lists of remaining colours are given by (1) and (2). Colour
w1w2 with some colour c ∈ L(w1w2)\L(w1w4), colour the edge w2w0 greedily and
finish as shown in Lemma 1. A contradiction. �

We are now ready to proof Theorem 1.

Proof (of Theorem 1) Let L be an assignment of lists to the edges of G such that
each list has a size of at least Δ(G) + 1. Since for each edge vw ∈ E(G) we have
max(deg(v), deg(w))+1 ≤ Δ(G)+1, there is an L-edge-colouring ofG byLemma 2.

�

3 Graphs of Tree-Width 3 are (Δ + 2)-Total-Colourable

As mentioned in the introduction Conjecture 2 is true for graphs of maximum degree
at most 5. In this section we handle the case where a graph has tree-width 3, and
maximum degree greater than 5 and use this to proof Theorem 2.

An instance of list total colouring consists of a graph G and an assignment of
lists L : V (G) ∪ E(G) → P(N) to the vertices and edges of G. A function C :
V (G) ∪ E(G) → N is called an L-total-colouring of G, if C (v) ∈ L(v) for each
v ∈ V (G), C (e) ∈ L(e) for each e ∈ E(G), no two adjacent vertices receive the
same colour, no two adjacant edges receive the same colour and no edge has the same
colour as one of its ends. G is said to be k-total-choosable, if for each assignment of
lists L to the vertices and edges of G, where all lists have a size of at least k, there is
an L-total-colouring of G.

Let G be a graph and L an assignment of lists to the edges and vertices of G. For
an L-total-colouring C of some subgraph H ⊂ G we call a colour c of the list of
an uncoloured edge e available, if no edge adjacent to e and no endvertex of e has
already been coloured with c. Similarly we call a colour c of the lists of an uncoloured
vertex v available, if none of the edges and vertices adjacent to v have already been
coloured with c. The set of available colours of an edge or vertex x is called list of
remaining colours and denoted by LC (x). We can always try to colour G greedily, by
iteratively colouring the edge or vertex with the smallest list of available colours with
an arbitrarily available colour.
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For Δ ≥ 1, let G be a graph with an assignment of lists L to the edges and
vertices of G such that the list of each edge vw and each vertex w has a size of at
least Δ + 2. Suppose that for some proper subset of vertices W ⊂ V (G), we can
find an L-total-colouring C of the graph G − W . In order to extend C to an L-total-
colouring of G we need to find an LC -colouring of G〈W 〉. Since Δ ≥ degG(v) =
degG−W (v) + degG〈W 〉(v), we have for an edge vw ∈ E(G) with w ∈ W and
v ∈ V (G)\W

|LC (vw)| ≥ |L(vw)| − degG−W (v) − 1 ≥ degG〈W 〉(v) + 1. (3)

For any vertex w ∈ W we have

|LC (w)| ≥ |L(w)| − |N (w)\W |. (4)

The proof of the following lemma mirrors the proof of Lemma 2.

Lemma 3 Let G be a graph of tree-width at most 3 with an assignment of lists L to
the vertices and edges of G such that each list has a size of at leastmax(5,Δ(G))+2.
Then G has an L-total-colouring.

Proof We will assume the lemma is wrong and obtain a contradiction. Let G be a
smallest counterexample to the lemma with an assignment of lists L to the vertices
and edges of G for which each list has a size of at least Δ := max(5,Δ(G)) + 2 such
that there is no L-total-colouring of G.

If there is a vertex v of degree at most 2, we can find a L-total-colouring of G − v

byminimality. By (3) and (4) the lists of remaining colours ofG〈{v}〉 retain sizes large
enough to extend this colouring greedily. Therefore we might assume that G has a
minimum degree of at least 3. As before it follows that G has tree-width 3. Let (T,V )

be a smooth width 3 tree decomposition of G where T is rooted in some arbitrary
vertex and let t ∈ V (T ) be a vertex of degree at least 2 in T of maximum height.

Suppose the neighbourhood of t contains at least two leaves t1, t2 ∈ V (T ). Since
(T,V ) is smooth and t has maximum height, there are vertices v1 ∈ Vt1 and v2 ∈ Vt2
that are uniquely in Vt1 respectively Vt2 . We have deg(v1) = deg(v2) = 3, v1 and
v2 are not adjacent and |N (v1) ∪ N (v2)| ≤ 4. By minimality we can find an L-total-
colouring of the graph G − v1 − v2. If v1 and v2 have the same neighbourhood we
first apply Theorem 4 to the bipartite graph induced by the edges adjacent to v1 and
v2. This is possible since the lists of remaining colours have sizes of at least 3 by (3).
The lists of the vertices v1 and v2 retain at least one available colour by (4). So we can
finish colouring greedily to extend this to an L-edge-colouring of G. If v1 and v2 have
distinct neighbourhoods, colour the two uncoloured edges adjacent to vertices outside
of N (v1) ∩ N (v2) greedily. We apply Theorem 4 to the bipartite graph induced by the
edges between {v1, v2} and N (v1) ∩ N (v2), which is possible because their lists of
remaining colours have each a size of at least 2 by (3). As before colour the vertices
v1 and v2 greedily to extend this to an L-edge-colouring of G.

Thus we can assume that t is incident to exactly one leaf t0 ∈ V (T ). Since (T,V )

is smooth, there are vertices w0 ∈ Vt0 and w1 ∈ Vt ∩ Vt0 that appear uniquely in Vt0
respectively Vt ∩ Vt0 . By minimality there is an L-total-colouring C of G − w0w1.
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Delete the colour of w0 from C . As deg(w0) = 3 and deg(w1) ≤ 4 we can finish
greedily. Contradiction. �

4 Halin Graphs are Δ-Edge-Choosable

To show the case where Δ(G) = 3 of Theorem 3 we will use a result of Ellingham
and Goddyn [8].

Theorem 5 Let G be a d-regular planar graph. If G is d-edge-colourable, then G is
d-edge-choosable.

The next Lemma is a corollary to the 4 Colour Theorem, which is equivalent to the
statement that every bridgeless cubic planar graph chromatic index 3. We include it
for sake of completeness.

Lemma 4 Let G be a 3-regular Halin graph. Then G is 3-edge-colourable.

Proof Wewill assume that the lemma is wrong and obtain a contradiction. Consider a
smallest counterexample G to the lemma with a tree T and a cycleC that passes along
the leaves of T . The cycle C has at least 4 vertices, since otherwise G is the complete
graph on 4 vertices and we are done. Choose an arbitrary vertex to be the root of T
and let v be a vertex of maximum height among the vertices of degree 3 in T . By
maximality v has exactly two neighbours v1 and v2 that lie on the cycleC . AsC has at
least 4 vertices, there are distinct vertices v0, v3 ∈ V (C) to which v1 respectively v2
are adjacent. Let G1 be the graph obtained from G − v1 by adding the edge v0v2 and
v2w, where w is the third neighbour of v. G1 is a 3-regular Halin graph smaller than
G. So by minimality there is an edge-colouring C1 of G1 using the colours {1, 2, 3}.
We can extract an edge-colouring of G − v1 − v2 − v from the edge-colouring of G1
and extend this greedily to an edge colouring of G using only the colours {1, 2, 3}. A
contradiction. �

For a graph G with an assignment of lists L to the edges of G and e, f ∈ E(G)we
call two colours c1 ∈ L(e) and c2 ∈ L( f ) compatible if c1 = c2 or if for each edge g
that is adjacent to both e and f the list L(g) contains at most one of the two colours
c1 and c2. The following lemma turns out to be quite useful in order solve instance of
list edge-colourings of small graphs. The idea for the proof can be extracted from [6].

Lemma 5 Let G be a graph with an assignment of lists L to the edges of G and v1v2,

w1w2 ∈ E(G) two edges that are not adjacent. If it holds that

|L(v1v2)||L(w1w2)| >
∑

viw j∈E(G)

⌊ |L(viw j )|
2

⌋⌈ |L(viw j )|
2

⌉

then there are two compatible colours c1 ∈ L(v1v2) and c2 ∈ L(w1w2).

Proof If the lists of the edges v1v2 and w1w2 share a colour c we are done. Therefore
assume that L(v1v2) ∩ L(w1w2) = ∅. This yields that there are |L(v1v2)||L(w1w2)|
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pairs of distinct colours (c1, c2) with c1 ∈ L(v1v2) and c2 ∈ L(w1w2). But
an edge viw j ∈ E(G) for 1 ≤ i, j ≤ 2 can contain both colours of at most

� |L(viw j )|
2 �� |L(viw j )|

2 � of those pairs. So if the above inequation holds we can find
the desired two compatible colours c1 ∈ L(v1v2) and c2 ∈ L(w1w2). �
Remark that the inequality holds if all involved lists have a size of exactly k, where
k is an odd number. The next lemma implies that Halin graphs of maximum degree
Δ ≥ 4 are Δ-edge-choosable.

Lemma 6 Let G be a Halin graph with an assignment of lists L to the edges of
G such that for each edge vw ∈ E(G) the list L(vw) has a size of at least
max(deg(v), deg(w), 4). Then there is an L-edge-colouring of G.

Proof We will assume that the lemma is wrong and obtain a contradiction. Consider
a smallest counterexample G to the lemma with a tree T and a cycle C that passes
along the leaves of T . Let L(vw) be an assignment of lists to the edges vw ∈ E(G),
where each list has a size of at least max(deg(v), deg(w), 4) such that there is no L-
edge-colouring of G. We can assume that G is not a complete graph on four vertices
by Theorem 5 and hence C has at least 4 vertices. Choose an arbitrary vertex to be
the root of T and let v be a vertex of maximum height among the vertices of degree
at least 3 in T . By maximality v has deg(v) − 1 neighbours that lie on the cycle C .

If deg(v) ≥ 4 then v has three neighbours w1, w2 and w3 ∈ V (C) with say
N (w2) = {v,w1, w3} and N (w1) = {v,w0, w2}. We denote byG1 the graph obtained
fromG−w1 by adding the edgew0w2. Observe thatG1 is a Halin graph, smaller than
G and the degrees ofw0,w2 and v did not increase. Hence there is an L-edge-colouring
C1 of G1 by minimality (where an arbitrary list of size 4 was assigned to w0w2). We
can extract an L-colouring of the graph G−w1−w2−w3 fromC1. In order to extend
this to an L-edge-colouring of G we need colour the graph G〈{w1, w2, w3}〉 from
the lists of remaining colours. The lower bounds on the sizes of these lists are given
by (1) and (2). This instance of list edge-colouring is shown in Fig. 3. By Lemma 5 we
can find two compatible colours c1 ∈ L(vw1), c2 ∈ L(w2w3). Colour the respective
edges with c1 and c2 and finish greedily.

Thus we might assume that deg(v) = 3 and so v has exactly two neighbours v1 and
v2 ∈ V (C). As C has at least 4 vertices, there are distinct vertices v0, v3 ∈ V (C) to
which v1 respectively v2 are adjacent. Further, v is adjacent to neither v0 nor v2. Let

Fig. 3 The integers on the
edges indicate the minimum
sizes of the respective lists
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3
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Fig. 4 The integers on the
edges indicate the minimum
sizes of the respective lists
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3 3

Fig. 5 This graphs shows that
the lower bound of 4 is necessary

G2 be the graph obtained from G−v1 −v by adding the edge v0v2 and v2w, where w

is the third neighbour of v. As before, G2 is still a Halin graph, smaller than G and the
degree of v0 and v2 did not increase. So byminimality there is an L-edge-colouringC2
ofG2 (where arbitrary lists of size max(4, deg(w))was assigned to v0v2 and v2w).We
can extend C2 to an L-edge-colouring of G by colouring the graph G〈{v1, v2}〉 from
the lists of remaining colours, which lower bounds are given by (1) and (2). Colour
the edge between v and the vertex distinct from v1 and v2 greedily. The remaining
instance of list edge-colouring is shown in Fig. 4. Colour the edge v0v1 greedily and
apply Lemma 1 to the rest. A contradiction. �

Note that the lower bound of 4 on the list size in this result is necessary. For the
graph shown in Fig. 5 the lists L(vw) = {1, . . . ,max(deg(v), deg(w))} for each edge
vw do not permit an L-edge-colouring.

Proof (Proof of Theorem 3) Let L be an assignment of lists to the edges of G such
that each list has a size of at least Δ(G). If Δ(G) ≥ 4, there is an L-colouring of G by
Lemma 6. Otherwise G is planar, 3-regular and can be 3-edge-coloured by Lemma 4.
Hence there is an L-colouring of G by Theorem 5. �
Acknowledgments The author would like to thank Henning Bruhn-Fujimoto for listening and helpful
remarks.
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