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This work presents a novel online early detector of high-volatility clusters based on uGARCH models (a 

variation of the GARCH model), risk-sensitive particle-filtering-based estimators, and hypothesis testing 

procedures. The proposed detector utilizes Risk-Sensitive Particle Filters (RSPF) to generate an estimate 

of the volatility probability density function (PDF) that offers better resolution in the areas of the state- 

space that are associated with the incipient appearance of high-volatility clusters. This is achieved using 

the Generalized Pareto Distribution for the generation of particles. Risk-sensitive estimates are used by a 

detector that evaluates changes between prior and posterior probability densities via asymmetric hypoth- 

esis tests, allowing early detection of sudden volatility increments (typically associated with early stages 

of high-volatility clusters). Performance of the proposed approach is compared to other implementations 

based on the classic Particle Filter, in terms of its capability to track regions of the state-space associated 

to a greater financial risk. The proposed volatility cluster detection scheme is tested and validated using 

both simulated and actual IBM’s daily stock market data. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Volatility of returns is a well-studied variable in Finance, mainly

because its relevance in pricing and risk management. Since the

work of Mandelbrot in the 1960’s, it has been widely accepted

that volatility presents itself in temporal clusters, where large price

variations are followed by large variations ( Cont, 2005; Mandel-

brot, 1963 ). Multiple researchers have tried to model the complex

behavior of volatility, being the GARCH model ( Bollerslev, 1986 )

the first to capture these temporal cluster properties. The wide

recognition for the GARCH models has given rise to a whole fam-

ily of structures, in which stochastic variations have been lately

introduced. 

On the one hand, from an engineering perspective, early online

detection of high-volatility clusters in a stochastic environment

poses an interesting problem, since detection algorithms must be

designed to monitor a latent (non-observable) state; simultane-

ously tracking disturbances introduced by other non-measurable

variables that are always present in complex systems (such as

stock markets). In fact, from the standpoint of state-space mod-

eling for financial time series, volatility is a non-observable state,

while continuously compounded returns can be associated with

daily measurements. Given that inference on financial volatility
∗ Corresponding author. Tel.: +56 229784215; fax: +56 226720162. 
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s necessary to detect high risk events, the challenge is then to

ropose detection frameworks based on accurate and precise es-

imates of this non-observable state. 

On the other hand, in Finance, the words “early online detec-

ion” have reached unsuspected relevance in a world where is now

ossible to use information from high-volatility cluster detectors

which could have been originally focused on very specific and

ritical markets) for the implementation of online predictive strate-

ies at a global-scale. Consider, for example, the implementation of

ntelligent expert systems that could recommend optimal correc-

ive actions for Latin American markets based on online anomaly

etectors analyzing Asian markets during the early morning. In-

eed, the development of tools for online early detection of high-

olatility clusters (such as the one proposed in this article) gener-

tes appropriate conditions for the implementation of novel online

chemes for optimal decision-making in Finance; a task where the

hole community working on expert and intelligent systems may

ontribute in the near future. 

These fundamental questions have motivated in recent years

ubstantial research with focus in the detection of structural breaks

or model parameter changes) in financial variables, with the pur-

ose of understanding market shocks or anomalies ( Chan & Koop,

014; Chen, Gerlach, & Liu, 2011; He & Maheu, 2010; Rapach

 Strauss, 2008; Ross, 2013 ). Given the complexities involved in

odeling volatility, several approaches have been proposed, in-

luding new models such as the structural break GARCH (SB-

ARCH). For these models that include stochastic volatility and

http://dx.doi.org/10.1016/j.eswa.2016.01.052
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1 Independent and identically distributed. 
reaks, the most common approach for the estimation of volatil-

ty has been sequential Monte Carlo methods (a.k.a. Particle Fil-

ers) ( Arulampalam, Maskell, Gordon, & Clapp, 2002; Doucet, God-

ill, & Andrieu, 20 0 0 ), because of its good performance, flexibility,

nd the possibility to estimate model parameters online ( Liu and

est, 2001 , chap. 10). Further efforts have been spent in the study

f jumps (or discontinuities) of returns and volatility ( Andersen,

im, & Diebold, 2007; Eraker, Johannes, & Polson, 2003; Laurent,

ecourt, & Palm, 2014; Lee & Mykland, 2008 ), although these ap-

roaches impose restrictions for the quality of data that may be

ifficult to address. In fact, most of the available tests for detec-

ion of jumps include high-frequency, intra-day information of the

tudied variables or high liquidity of the assets ( Laurent et al.,

014 ), or offline tests. 

In this regard, we propose a novel online early detector of

igh-volatility clusters based on unobserved GARCH models ( Tobar,

010 ) (uGARCH, a variation of the GARCH model), Risk-Sensitive

article-Filters (RSPF) estimators ( Thrun, Langford, & Verma, 2002 ),

nd hypothesis testing procedures. The proposed detector utilizes

isk-sensitive particle filters to generate an estimate of the volatil-

ty probability density function (PDF) that offers better resolution

n the areas of the state-space that are associated with the incip-

ent appearance of high-volatility clusters. Risk-sensitive estimates

re used by a detector that evaluates changes between prior and

osterior probability densities via asymmetric hypothesis tests, al-

owing early detection of sudden volatility increments (typically

ssociated with early stages of high-volatility clusters). This algo-

ithm is tested in simulated data (where volatility is known), as

ell as IBM’s stock market data, where volatility has to be esti-

ated (since ground truth cannot be measured). To the best of

ur knowledge, this is the first attempt in financial econometrics

o perform online detection of events by contrasting the informa-

ion that is present in priors and posterior probability densities es-

imates in Bayesian estimation frameworks. 

The main contributions of this article are: 

• Implementation and assessment of a novel method for the gen-

eration of volatility estimators, based on RSPF, that provides

better resolution in the areas of the state-space associated with

the appearance of high-volatility clusters. 
• Implementation and assessment of early detection schemes for

high-volatility clusters based on the comparison between prior

and posterior particle-filtering-based estimates. 
• A throughout performance comparison between RSPF and clas-

sic sequential Monte Carlo methods in terms of their effective-

ness when used in early detection of high-volatility clusters. 

The structure of this article is as follows. Section 2 presents a

iterature review on the use of Bayesian frameworks for Financial

olatility estimation. Section 3 presents the proposed method for

arly detection of high-volatility clusters. Section 4 presents perfor-

ance measures to be used in the assessment of obtained results,

rovides a sensitivity analysis for the proposed method using sim-

lated data (where the ground truth value of the unmeasured state

s known), and finalizes with a throughout performance analysis

or the proposed method based on actual IBM stock data. Section 5

resents a few interesting general remarks, while Section 6 shows

he main conclusions related to this research. 

. A Bayesian framework for volatility estimation 

Monte Carlo (MC) and Markov Chain Monte Carlo (MCMC) meth-

ds have been widely used to approximate integrals and prob-

bility density functions ( Tobar, 2010 ). Nevertheless, their use in

ayesian inference is not direct, since this problem involves a se-

uence of time-variant probability density functions; while MCMC

ssumes that the objective density is time-invariant. This prompted
he development of a sequential version of Monte Carlo integra-

ion, one that is able to use measurements to improve recursive

stimation. 

The first section of this section introduces the uGARCH model,

 stochastic volatility model based on the well-known GARCH(1,1)

odel ( Bollerslev, 1986 ). Then, the tracking problem is presented

n Section 2.2 , providing insight about the problems encountered

n a Bayesian filtering framework. Also, Monte Carlo integration

nd the importance sampling method are presented. This opens the

ossibility to explore the Particle Filter and the Risk Sensitive Par-

icle Filter, which may be employed in a stochastic volatility esti-

ation framework. Finally, Section 2.3 explains the need for online

arameter estimation. 

.1. The uGARCH model 

The uGARCH model can be seen as a state-space structure that

llows the implementation of a Bayesian framework for the pur-

ose of volatility estimation. 

The uGARCH model ( Tobar, 2010 ) assumes that the dynamics of

olatility are not driven by the observed process u k = r k − μk | k −1 .

nstead, they are driven by a non-observable process u ′ 
k 

which has

he same distribution as u k . The uGARCH model is defined as: 

2 
k = ω + ασ 2 

k −1 η
2 
k + βσ 2 

k −1 , (1) 

 k = μ + σk εk , (2) 

here r k is a process of returns, σ k is the stochastic volatility,

∈ R 

+ , ω ∈ R 

+ , and α, β > 0 are parameters, with α + β < 1 .

urthermore, εk ∼ N (0 , 1) and ηk ∼ N (0 , σ 2 
η ) are i.i.d. 1 processes

or every time step k . 

It is necessary to note from Eqs. (1) and ( 2 ) that the subscripts

re not written conditionally: at time step k , σ 2 
k 

is not known

ithout uncertainty, given �k −1 . 

To completely define the model, it is necessary to present

he state transition distribution p(σ 2 
k 
| σ 2 

k −1 
) and the likelihood

p(r k | σ 2 
k 
) : 

p(σ 2 
k | σ 2 

k −1 ) = 

1 √ 

2 πσ 2 
η ασ 2 

k −1 

(
σ 2 

k 
− ω + βσ 2 

k −1 

)
· exp 

[
σ 2 

k 
− ω + βσ 2 

k −1 

2 σ 2 
η ασ 2 

k 

]
, σ 2 

k ≥ ω + βσ 2 
k −1 . (3) 

p(r k | σ 2 
k ) = 

1 √ 

2 πσ 2 
k 

exp 

(
− (r k − μ) 2 

2 σ 2 
k 

)
. (4) 

For the complete derivation of Eq. (4) , please refer to Mundnich

2013) . The calculation and presentation of Eq. (4) makes the use

f a generic Particle Filtering approach for volatility estimation in

his model possible. 

.2. The Particle Filter 

State-space models consider a transition equation that describes

he prior distribution of a hidden Markov process { x k ; k ∈ N } , called

he state process, and an observation equation describing the like-

ihood of the observation { z k ; k ∈ N } ( Doucet et al., 20 0 0 ): 

 k = f (x k −1 , v k −1 ) , (5) 

 k = h (x k , w k ) , (6) 

here f ( ·, ·) is a state-transition function with corresponding

 v k −1 , k ∈ N } i.i.d. innovation process, and h ( ·, ·) is the observation
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function with { w k , k ∈ N } its corresponding i.i.d. noise process. In

particular, the objective of tracking is to recursively estimate x k 
from all available measurements z 1: k = { z i ; i = 1 , . . . , k } up to time

k . 

Within a Bayesian estimation framework, all relevant informa-

tion about x 0: k given the observations z 0: k can be obtained from

the posterior distribution p ( x 0: k | z 0: k ). In many applications, never-

theless, it is sufficient to calculate the marginal conditional distri-

bution p ( x k | z 0: k ). In particular, the intention of the Bayesian ap-

proach is to recursively construct p ( x k | z 1: k ), using Arulampalam

et al. (2002) : 

p(x k | z 1: k ) = 

p(z k | x k ) p(x k | z 1: k −1 ) 

p(z k | z 1: k −1 ) 
, (7)

= 

p(z k | x k ) ∫ p(x k | x k −1 ) p(x k −1 | z 1: k −1 ) dx k −1 ∫ 
p(z k | x k ) p(x k | z 1: k −1 ) dx k 

. (8)

Eq. (8) forms the basis for the Bayesian optimal solution in the

mean square error sense. In most cases, this expression is only

conceptual, and cannot be determined analytically. In a restricted

set of cases, the optimal solution may be found ( Kalman, 1960 ).

This is possible only if the noises v k and w k are additive and Gaus-

sian and the functions f ( ·, ·) are h ( ·, ·) are linear. 

Particle Filters are a class of algorithms developed to solve

Eq. (8) through sequential Monte Carlo simulations when the in-

tegrals are intractable due to possible nonlinearities in the model

involved or noise processes that do not possess standard distribu-

tions. Solving these integrals is achieved through the Importance

Sampling principle. The key idea is to represent the required pos-

terior density function by a set of random samples which serve as

support points with associated weights and to compute estimates

based on these samples and weights, this is: 

p(x k | z 1: k ) ≈
N s ∑ 

i =1 

w 

(i ) 
k 

δ(x k − x (i ) 
k 

) , (9)

The former approximation may be obtained using an importance

density q ( x 0: k | z 1: k ) to generate random samples x (i ) 
k 

, where the

weights w 

(i ) 
k 

are calculated using: 

w 

(i ) 
k 

∝ 

p(x (i ) 
0: k 

| z 1: k ) 

q (x (i ) 
0: k 

| z 1: k ) 
, (10)

∝ w 

(i ) 
k −1 

p(z k | x (i ) 
k 

) p(x (i ) 
k 

| x (i ) 
k −1 

) 

q (x (i ) 
k 

| x (i ) 
k −1 

, z k ) 
. (11)

This algorithm is generally called Sampling Importance Sampling

(SIS), and denotes the simplest form to solve Eq. (8) . 

The position of the particles and consequent performance of the

filter is greatly determined by the importance density q (x k | x (i ) 
k −1 

, z k )

from which particles are drawn. The structure of the Particle Filter

algorithm and importance densities usually employed do not re-

gard the problem of high risk and low-likelihood event tracking. In

the case where unlikely events may conduce to great loss or high

costs, it is natural extend the Particle Filter algorithm to track these

low probability states. 

The Risk Sensitive Particle Filter is proposed as an extension of

the ‘Classic’ Particle Filter, where the particles are generated from

an importance density that is the product of the combination of

the posterior density function and a risk functional. 

Risk Sensitive Particle Filters generate samples that are dis-

tributed according to Thrun et al. (2002) : 

q (x k | x (i ) 
k −1 

, z k ) = γk r(x k ) p(x k | z 1: k ) , (12)

where 

γk = 

1 ∫ 
r(x k ) p(x k | z 1: k ) 

(13)
s a normalizing constant that ensures that the importance den-

ity is indeed a probability density function. Hence, the position of

amples are generated according to the likelihood of a certain state

vent x (i ) 
k 

and its risk r(x (i ) 
k 

) . 

Considering the former approach, the Classic Particle Filter

eeds a simple modification. First, the initial set of particles x (i ) 
0 

s generated from γ 0 r ( x 0 ) p ( x 0 ), and Eq. (11) is updated to 

 

(i ) 
l 

= 

r(x (i ) 
k 

) p(z k | x (i ) 
k 

) 

r(x (i ) 
k −1 

) 
. (14)

n this work, the authors propose an importance density

 (x k | x (i ) 
k −1 

, z k ) , for which they assume that a risk functional r(x (i ) 
k 

)

xists. 

.3. Online parameter estimation with Particle Filters 

In the context of state estimation, it is sometimes necessary to

andle an online estimation scheme for a model parameter vec-

or. Although parameters α and β have been presented as fixed in

he uGARCH model, this is not necessarily adequate, given possible

tructural breaks in the data. The stock market suffers from vari-

tions and regime shifts, and these variations may be considered

s parameter changes through time. This is true not only for time

eries derived from the stock market, but for a diverse range of

pplications where state tracking is intended. 

To understand the problems of parameter estimation outside a

ayesian context, let θ be a vector parameter. The maximum like-

ihood estimate of the vector parameter θ is obtained by maximiz-

ng the log-likelihood function ( Kitagawa & Sato, 2001 , chap. 9):

(θ ) = log [ L (θ )] = 

κ∑ 

k =1 

log [ p(z k | z 1: k −1 , θ )] , (15)

here 

p(z k | z 1: k −1 , θ ) = 

∫ 
p(z k | x k , θ ) p(x k | z 1: k −1 , θ ) dx k (16)

eeds to be approximated through Monte Carlo. 

The maximization of Eq. (15) for the estimation of θ is not al-

ays direct, and approximations over Eq. (16) make this method

mpractical, due to the high computational costs involved if param-

ter estimation is intended for every time step. Thus, a different

erspective is necessary to approach the online parameter estima-

ion problem. This idea is attacked through the artificial evolution

f parameters. 

The first ideas about introducing random disturbances to par-

icles were proposed by Gordon, Salmond, and Smith (1993) , and

re currently widely used in financial econometrics. In their work,

he authors propose to introduce random disturbances to the po-

itions of particles (called roughening penalties ) in order to combat

egeneracy. This idea has been extended in order to estimate on-

ine a vector of fixed model parameters, which is referred to as

rtificial evolution ( Liu & West, 2001 , chap. 10). Artificial evolution

f parameters is a simple and powerful idea, nevertheless, it re-

uires careful handling because of the inherent model information

oss given by the consideration of time-varying parameters that are

xed. 

Instead of estimating the vector parameter θ through maximum

ikelihood, the Bayesian framework may be introduced to estimate

online. This is achieved by augmenting the state vector x k with

nknown parameters θ as: 

 

′ 
k = 

[
θk 

x k 

]
, (17)

here θk = θ implies the consideration of an extended model

here parameters are time-varying. Then, an independent,
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Data
Prior and

posterior estimates

Volatility Estimation

Hypothesis
Test Detection

Fig. 1. Detection flow chart. Data is served as an input for the PF-based estimation, which produces prior and posterior estimates that are given as the input for the 

hypothesis test, which results in the early detection of high volatility clusters. 

Data

Offline estimation
of α0 and β0

Maximum Likelihood

PF hyper-
parameter selection

Error minimization

Online estimation
of αk and βk

Model extension

Volatility σk

estimation

PF-estimation

Fig. 2. Estimation flow chart. In an initialization step, PF hyper-parameter selection is performed through error minimization. Then, offline parameter estimation is performed 

using maximum likelihood. Finally, the PF estimates in parallel the model parameters αk and βk , as well as the stochastic volatility σ k . 
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Table 1 

GARCH(1,1) model parameters for each data set. The arrow ( → ) in- 

dicates a change in the parameter value at time step 250. Note that 

parameters μ and ω are constant for each set. 

Parameter GARCH1 GARCH3 

μ 9 × 10 −4 9 × 10 −4 

ω 10 × 10 −6 10 × 10 −6 

α 0.20 → 0.10 0.20 → 0.12 

β 0.60 → 0.85 0.60 → 0.80 
ero-mean normal increment is added to the parameter at each

ime step ( Liu & West, 2001 , chap. 10): 

k = θk + ζk , (18) 

k ∼ N (0 , W k ) , (19) 

here W k is a variance matrix and θ k and ζ k are conditionally in-

ependent given �k . The key motivation is that the artificial evo-

ution of parameters gives new values for each iteration, and thus,

eight assignment in Particle Filters considers the likelihood of the

tate and parameter values. 

. Detection of high volatility clusters using PF-based 

stimation methods 

This chapter describes the implementation details followed to

reate an online high volatility cluster detection scheme. In the

ontext of Bayesian estimation in state-space models, volatility

rises as a non-observable state. Therefore, simulated stock market

ata is used to correctly implement, analyze and assess the pro-

osed Bayesian filtering framework. 

Our approach proposes the use of the GARCH(1,1) volatility

odel to create a volatility time series – after defining the value

f some model parameters – and consequently generate a returns

eries for the given volatility at every time step. This is useful to

easure the effectiveness of estimation frameworks and detection

chemes. 

The detection scheme presented in this section is founded upon

 Bayesian estimation framework, which is based in Particle Filter-

ased estimation ( Fig. 1 ). Therefore, it is mandatory to compre-

end the details of the estimation process in order to understand

he construction of the detection scheme. These details include the

nline hyper-parameter estimation and volatility estimation in the

GARCH model, and the construction of prior and posterior es-

imates ( Arulampalam et al., 2002 ). To introduce these concepts,

ection 3.1 first describes the data used in the development of

his work. Then details about offline hyper-parameter estimation

re given. This offline estimation is used as the input for online

yper-parameter estimation, which is performed in parallel to the

olatility estimation ( Fig. 2 ). 
.1. Data 

The assessment of Bayesian estimation frameworks and detec-

ion schemes requires data sets where observations and the state

re known for every instant in a given period. This allows the eval-

ation of filtering schemes and consequent comparison of the im-

lemented techniques. Given that the volatility of a returns series

s not observable, it is mandatory to generate data sets where the

lgorithms can be tested and fine-tuned. This section provides de-

ails about artificially generated data used during this work, and

resents the acquisition and post-processing necessary to apply the

roposed algorithms in stock market data. 

.1.1. Simulated data 

The simulated data has been generated using a GARCH(1,1)

odel, where model parameters α and β are chosen in such a way

hat α + β is a value close to 1. In observed financial time series,

t is not possible to ensure that the values of the model parame-

ers α and β are fixed for a given time window. For this reason,

olatility time series are created using time-dependent parameters

ver the studied time span. In particular, time series of 500 steps

ave been generated, with a parameter change in the step 250 (see

able 1 ). This change resembles a regime shift (or structural break)

n the market ( Tobar, 2010 ). 

The model used for data generation is: 

2 
k | k −1 = ω + αu 

2 
k −1 + βσ 2 

k −1 | k −2 , (20) 

 k = μ + u k , (21) 
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Fig. 3. IBM’s adjusted closing stock prices and corresponding daily returns from September 12th, 2005 to September 1st, 2009. 
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Hence, no saturation condition has been used for the upper 

bound. 
where μk | k −1 = μ and ω are considered constant parameters in the

studied time span, and σ 2 
0 = 0 . 5 × 10 −4 . 

The implemented method for data generation creates data sets

in which there are large volatility variations and small volatility

variations. These are necessary for the correct assessment of the

proposed detection algorithm, as well as providing the necessary

environment to assess the robustness of the method against model

variations. 

3.1.2. Stock market data 

A section of IBM daily stock prices is used to apply the devel-

oped algorithm for early high volatility cluster detection. The data

is extracted from ( Yahoo!, 2013 ), with information between Jan-

uary 1st, 1962 and May 17th, 2013 for a total of 12 , 933 data points.

The data considered for filtering is the adjusted closing price , which

is commonly used for analysis of historical data. Data in which

the proposed algorithm is applied is shown in Fig. 3 , which cor-

responds to 10 0 0 data points between September 12th, 2005 and

September 1st, 2009. This data set includes the dramatic market

fall occurred in October 2008. 

3.2. Implementation issues related to Bayesian filtering 

3.2.1. Estimation of model parameters α and β
Model parameters α and β have a high impact on volatility se-

ries. These parameters have the power to drive the variation speed

of a volatility series and to control the average of the series over

time. Hence, it is of great importance to have good estimates of

both model parameters to adequately estimate volatility. 

In financial time series, it is impossible to know if model pa-

rameters α and β are fixed for a given time window in a data set.

Therefore, it is necessary to estimate these model parameters on-

line. This work includes two stages of model parameter estimation:

estimation through maximum likelihood in a training set and on-

line estimation in test data points. 

Estimation of model parameter initial conditions through maximum

likelihood. Model parameter estimation has been performed in

both simulated data sets and stock market data through maximum

likelihood. This is plausible due to the similar structure in both the

GARCH(1,1) model and the uGARCH model. In particular, this task

has been accomplished using the garchfit function available in

the Financial Toolbox of MATLAB ®. 

In the simulated data sets, model parameter estimation is per-

formed using the first 150 steps for each returns time series. For
BM’s stock prices, model parameter estimation is performed over

he first 200 time steps of the returns time series. These estima-

ions are used as the initial conditions for online model parameter

stimation. 

nline model parameter estimation. Section 2.3 describes the rea-

ons for using online model parameter estimation in a Particle Fil-

ering scheme. In this work, parameters α and β of the uGARCH

odel are allocated into an extended state vector, 

(x k ) 
′ = 

[ 

αk 

βk 

σ 2 
k 

] 

, (22)

here αk and βk are parameters considered to be time-variant,

nd are called pseudo-particles. 

Maximum likelihood estimates α0 and β0 are used to compute

he initial conditions α1 and β1 , which include a random pertur-

ation for every particle ( i ): 

(i ) 
1 

= N (α0 , 0 . 1 · α0 ) , (23)

(i ) 
1 

= N (β0 , 0 . 1 · β0 ) . (24)

he initial conditions are used to drive the noise variance of the

arameters in the extended state vector (see Eq. (17) ): 

(i ) 
k 

∼ N (α(i ) 
k −1 

, α(i ) 
1 

σ 2 
α,β ) (25)

(i ) 
k 

∼ N (β(i ) 
k −1 

, β(i ) 
1 

σ 2 
α,β ) (26)

here are two major drawbacks with this method: 

• P (α(i ) 
k 

< 0) > 0 and P (β(i ) 
k 

< 0) > 0 ∀ i, k, 

• P (α(i ) 
k 

+ β(i ) 
k 

> 1) > 0 ∀ i, k, 

both of which are not permitted in the uGARCH model. In par-

icular, they have been addressed in the following way: 

• For each α(i ) 
k 

< 0 , let α(i ) 
k 

= 10 −5 . Similarly, for each β(i ) 
k 

< 0 ,

let β(i ) 
k 

= 10 −5 . 

• The Particle Filter self-regulates from the cases where α(i ) 
k 

+
β(i ) 

k 
> 1 , provided that these cases have very low likelihood,

which translate into very low values of corresponding weights.
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Fig. 4. Comparison between q PF (σ 2 
k 
| σ 2(i ) 

k −1 
) and q RSPF (σ 2 

k 
| σ 2(i ) 

k −1 
) . In this example, σ 2(i ) 

k −1 
= 5 × 10 −4 , α = 0 . 2 , β = 0 . 6 , ω = 1 . 0468 × 10 −5 , and σ 2 

η = 0 . 7 . The RSPF obtains particles 

from a fat-tailed distribution to ensure a higher resolution in risk-sensitive areas. 
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.2.2. Particle Filters 

Volatility estimation in both simulated data and stock mar-

et data has been performed using two different Particle Filter-

ng schemes, including classic and risk sensitive approaches. The

stimation is performed using 100 particles. Due to the inherent

andomness of the filtering processes, these are repeated 10 times.

lso, both filters are implemented with a resampling stage, where

esidual resampling is used. Next, details about each particular fil-

er are presented. 

lassic Particle Filter. The Classic Particle Filter (PF) for volatility

stimation in the uGARCH model has been implemented using an

mportance density equal to 

 PF (x k | x (i ) 
k −1 

, z k ) = p(σ 2 
k | σ 2(i ) 

k −1 
) . (27)

 closed expression for p(σ 2 
k 
| σ 2(i ) 

k −1 
) has been given in Eq. (4) . Thus,

amples are generated according to: 

(i ) 
k 

∼ p(σ 2 
k | σ 2(i ) 

k −1 
) , (28) 

hich leads to the following weight update equation: 

 

(i ) 
k 

= w 

2(i ) 
k −1 

p(r k | σ 2(i ) 
k 

) . (29)

isk Sensitive Particle Filter. In the search for an importance density

unction that could be used to propose a risk sensitive approach

owards volatility estimation, it was necessary to find a distribu-

ion with very specific characteristics. First, the probability density

unction needs a localization parameter that lets both the Classic

article Filter’s (PF) and Risk Sensitive Particle Filter’s (RSPF) im-

ortance density have the same support. Second, the RSPF’s im-

ortance density should have a fatter tail than the PF’s density. The

roposed RSPF uses the Generalized Pareto Distribution as the im-

ortance density function, which is commonly used to model the

ails of other distributions; since it is able to model exponential,

olynomial and even finite tails. 

The Generalized Pareto Distribution is defined as follows

 Embrechts, Kluppelberg, & Mikosch, 1997; Mathworks, 2013 ): 

f GPD (x | k, σ, θ ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 

σ

[
1 + k 

x −θ

σ

]−1 −
1 

k 
if 

{
k > 0 , for θ < x 
k < 0 , for θ < x < σ/k

1 

σ
exp 

[
−x − θ

σ

]
if k = 0 , for θ < x 

(30) 

This distribution has two special cases, where it is reduced to

ther distributions: 

• If k = 0 and θ = 0 , the generalized Pareto distribution is equiv-

alent to the exponential distribution. 
t
• If k > 0 and θ = σ/k, the generalized Pareto distribution is

equivalent to the Pareto distribution. 

The probability density function of the GPD has three parame-

ers. These can be interpreted as follows: 

• k : Shape parameter, 
• σ : Scale parameter, 
• θ : Threshold (location) parameter. 

These parameters cannot take any value if one wants to en-

ure the convergence of the first and second moments of the GDP,

ince 

E [ X ] = θ + 

σ

1 + k 
, for k < 1 , 

 ar[ X ] = 

σ 2 

(1 − k ) 2 (1 − 2 k ) 
, for k < 1 / 2 , (31) 

onsidering that the variance is defined for k < 1/2, the parame-

ers of the probability density function of the GPD have been used

n the following way to utilize it as the importance density of the

SPF: 

 = 0 . 49 , (32) 

= 0 . 3 σ 2(i ) 
k −1 

, (33) 

= ω + β(i ) 
k −1 

σ 2(i ) 
k −1 

, (34) 

here β(i ) 
k 

is the ( i ) th pseudo-particle for the online estimation

f the uGARCH parameter β . Parameter k has been fixed in the

forementioned value to reproduce the shape of p(σ 2 
k 
| σ 2 

k −1 
) (see

q. (4) ). Parameter σ gives the scale to f GPD ( x | k, σ , θ ). Given that

ax { f GPD (x | k, σ, θ ) } = 1 /σ, using a scaled previous-step particle,

 desired fat tail with similar shape to p(σ 2 
k 
| σ 2 

k −1 
) is obtained. Pa-

ameter θ sets the location of the density of the GPD and is set

o be equivalent to ω + β(i ) 
k −1 

(see Eq. (4 )), this is, the support of

 GPD ( x | k, σ , θ ) is set to be equivalent to the support of p(σ 2 
k 
| σ 2 

k −1 
) .

ence, the importance density function employed is 

 RSPF (x k | x (i ) 
k −1 

, z k ) = f GPD (σ
2 
k | 0 . 49 ; 0 . 3 σ 2(i ) 

k −1 
;ω + β(i ) 

k −1 
σ 2(i ) 

k −1 
) . (35)

articles are drawn from 

2(i ) 
k 

∼ f GPD (σ
2 
k | 0 . 49 ; 0 . 3 σ 2(i ) 

k −1 
;ω + β(i ) 

k −1 
σ 2(i ) 

k −1 
) , (36)

nd the weight update equation is 

 

(i ) 
k 

= w 

(i ) 
k −1 

p(r k | σ 2(i ) 
k 

) p(σ (i ) 
k 

| σ (i ) 
k −1 

) 

f GPD (σ
2(i ) 
k 

| 0 . 49 ; 0 . 3 σ 2(i ) 
k −1 

;ω + β(i ) 
k −1 

σ 2(i ) 
k −1 

) 
. (37) 

 visual comparison of q PF (x k | x (i ) 
k −1 

, z k ) and q RSPF (x k | x (i ) 
k −1 

, z k ) is

hown in Fig. 4 . Notice that both importance densities are defined

ver the same support, and q RSPF (x k | x (i ) 
k −1 

, z k ) has a fatter tail than

 PF (x k | x (i ) 
k −1 

, z k ) . Hence, the design conditions for the RSPF’s impor-

ance density are met. 
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Fig. 5. Examples of prior and posterior densities of the RSPF in a volatility filtering process. 

Fig. 6. Hypothesis test example. The filled area under the smoothed prior density represents the 70% confidence interval for the smoothed prior density. Here, the null 

hypothesis is accepted. 
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parameters. Hence, the best set of parameters is obtained by ob- 

serving the smaller index Ī EX . 
3.3. Detection using a hypothesis test 

The Particle Filter, such as any other Bayesian filtering frame-

work, predicts through model dynamics ( Eq. (5) ), and updates the

estimation with the new measurement. Therefore, for every time

step, the Particle Filter produces a prior estimate and a posterior

estimate: 

Prior: ˆ p (x k | z 1: k −1 ) = 

N s ∑ 

i =1 

w 

(i ) 
k −1 

δ(x k − x (i ) 
k 

) , (38)

Posterior: ˆ p (x k | z 1: k ) = 

N s ∑ 

i =1 

w 

(i ) 
k 

δ(x k − x (i ) 
k 

) , (39)

Differences between prior and posterior densities may be consid-

erable if model dynamics diverge from actual measurements. This

is the case when unlikely events such as unexpected market falls

or machine ruptures occur. Fig. 5 shows the vast differences that

may occur between prior and posterior density estimates. A detec-

tion scheme through hypothesis test exploits these differences to

design rapid change detectors in the estimated state. 

To accept or reject the null hypothesis H 0 , the implemented

test considers the 70% confidence interval of the prior density, and

contrasts it with the mean of the posterior density. The confidence

interval is calculated using Parzen windows and a Normal kernel,

whose bandwidth σ kernel is obtained through Silverman’s thumb

rule ( Principe, 2010 ). If the mean of the posterior density is greater

than the 70% interval bound of the prior density, the null hypothe-

sis is accepted. Fig. 6 shows an example of the designed hypothesis

test, where an unlikely event occurs and the null hypothesis H 0 is

accepted. 

4. Results obtained for the proposed detection strategy 

This section describes the results obtained for volatility esti-

mation using Particle Filters, and detection of high volatility clus-

ters using information derived from the filtering process. During

the training stage, hyper-parameter selection for the setup of the

PF algorithm is achieved through a sensibility analysis and sub-

sequent selection through the smallest associated estimation er-

ror (in percentage). These results are used to select the PF algo-

rithm hyper-parameters to be utilized in the detection scheme,
here estimation through PF is crucial. After the hyper-parameter

election stage, results for three different detection approaches are

resented. 

The performance measure introduced in this chapter may only

e used in simulated data, where the true volatility is known.

ence, quantitative results showing performance measures results

re presented for simulated data, and qualitative results are pre-

ented for returns series derived from IBM stock prices. 

.1. Performance measure: accuracy indicator 

Section 2 describes the non-observability property of the state

ssociated with financial volatility. The performance measure de-

cribed in this section assume knowledge of the ground truth data,

nd as a consequence, results may be analyzed only in simulated

ata. The following sections consider ˆ σ 2 
k 

as the estimated volatility

nd σ 2 
k 

as the true volatility (this is, the ground truth). 

Accuracy of Particle Filters, including the Classic and Risk Sensi-

ive approaches, is compared in terms of error (in percentage). The

ccuracy indicator is defined as follows: 

 

EX (k ) = 

| ̂  σ 2 
k 

− σ 2 
k 
| 

σ 2 
k 

· 100 . (40)

iven that i EX ( k ) is defined for every time step k of the filtering

rocess, one can obtain an average of i EX ( k ) over the filtering time

indow T i , . . . , T f : 

 

EX = 

1 

T f − T i 

T f ∑ 

k = T i 
i EX (k ) = 

1 

T f − T i 

T f ∑ 

k = T i 

| ̂  σ 2 
k 

− σ 2 
k 
| 

σ 2 
k 

· 100 . (41)

urthermore, given that I EX is defined only for one filtering process,

ne can obtain an average of I EX over the amount of realizations of

he filtering process, which include 10 in this work: 

 ̄

EX = 

1 

10 

10 ∑ 

n =1 

I EX (n ) . (42)

n particular, index Ī EX serves as the base to compare the error

in percentage) for each filtering process, for each set of hyper-
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Table 2 

Parameter estimation using MATLAB ®’s garchfit function 

from the Financial Toolbox. 

Parameter GARCH1 GARCH3 

α 0 .1477 0 .2612 

β 0 .2768 0 .6699 

α + β ( < 1) 0 .4245 0 .9311 
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.2. Volatility estimation through Particle Filters for an early high 

olatility cluster detection scheme 

.2.1. Fitting model parameters 

The first step towards a filtering process starts with the esti-

ation of model parameters that are used as the initial conditions

n the extended GARCH model (refer to Section 3.2.1 ). As previ-

usly mentioned, for the uGARCH model this can be achieved by

aximum likelihood, assuming that the model is in fact a GARCH

odel ( Table 1 ). 

Table 2 shows the results of model parameter estimation for

he simulated data sets. The parameters are obtained using the

archfit function of MATLAB 

® over the training window of each

ata set. The true values for this time window are α = 0 . 2 and

= 0 . 6 for every data set. From Table 2 , GARCH1 is the data set

hat obtains the poorest parameter estimates from data contained

ithin the training window. 

This estimation has direct incidence over the filtering process,

ince these values are used as initial conditions for the extended

GARCH model, where the dynamics are non-observable. Initial

onditions in non-observable systems are of great importance in

he outcome of the a Bayesian filtering process. If the system is

on-observable, the state may follow one of an infinite number of

ossible paths that match the current observations. Therefore, ac-

urate initial conditions are necessary to achieve an unbiased esti-

ate of the state. 

.2.2. Particle Filter hyper-parameter selection 

This section presents the results of the sensibility analysis of

yper-parameters of the Classic Particle Filter. These parameters

ave been tested to find the combination that minimizes the

stimation error Ī EX . The tested parameters include R th (resam-

ling threshold), σα, β (pseudo-particle standard deviation), and

η (process noise). 

To find the hyper-parameter values that minimize the estima-

ion error, the following hyper-parameter mesh is used: 

• R th = { 0 . 5 , 0 . 6 , 0 . 7 } , 

• σα,β = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 . 0010 , 0 . 0015 , 0 . 0020 , 0 . 0025 , 0 . 0030 

0 . 0035 , 0 . 0040 , 0 . 0050 , 0 . 0075 , 0 . 0100 

0 . 0125 , 0 . 0150 , 0 . 0175 , 0 . 0200 , 0 . 0225 

0 . 0250 , 0 . 0275 , 0 . 0300 , 0 . 0350 , 0 . 0400 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, 

• ση = { 0 . 5 , 0 . 6 , 0 . 7 } . 
It should be noted that the selected values that are employed to

reate the mesh for σα, β were placed at irregular intervals. Since

here is a tendency to have better estimations with lower values of

α, β , a better resolution has been given to the interval of smaller

alues. 

Every set of hyper-parameters is used to run 10 times each fil-

ering process over the complete time window T = { 1 , . . . , 500 } of

very set of simulated data (GARCH1 and GARCH3). The error is

omputed over the interval T ′ = { 151 , . . . , 500 } , which excludes the

raining interval. 

Table 3 a and b shows the percentage error for the mean of the

0 filtering routines for each set of parameters. Since results are 3-

imensional, the tables show the results for ση = 0 . 7 , which is the

oise process value that minimizes the error for every data set. 
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Table 4 

Summary of the sensibility analysis for the Classic Particle Filter. 

Parameter GARCH1 GARCH3 Mean 

R th 0 .7 0 .7 0 .63 

σα, β 0 .0350 0 .0035 0 .0141 

ση 0 .7 0 .7 0 .7 

Minimum error Ī EX 19 .4162 16 .1627 22 .9247 

α + β ( < 1) 0 .4245 0 .9311 0 .7609 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Volatility estimation in GARCH1 data set. Thin line represents ground truth 

volatility, coarse line represents the PF estimation, and coarse dashed line repre- 

sents the RSPF estimation. 

Fig. 8. Volatility estimation in data set GARCH3. Thin line represents ground truth 

volatility, coarse line represents the PF estimation, and coarse dashed line repre- 

sents the RSPF estimation. 
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The first thing to note in Table 3 a and b is that the mini-

mum percentage error for the filtering process on these data sets

is bounded approximately between 16% and 19%. Second, it is very

important to notice that errors are very similar for each one of the

columns of the tables. This means that the resampling threshold

R th has a limited impact on the estimates when contrasted to the

ground truth from an accuracy perspective. This is very important

since one can simply employ an average of R th over all data sets

without losing estimation accuracy, or simply select the value that

is most often the best value. Also, data shows that minimization

occurs over a convex space which lets one assume that there is

in fact a set of parameters which minimize the estimation error.

These results also demonstrate that higher noises (this is, greater

particle variability) do not translate into better estimates. In fact,

there is a small subset of the parameter space where Bayesian fil-

ters such as the Particle Filter may work properly. 

Table 4 shows the summary of selected hyper-parameters for

each data set and its arithmetic mean, calculated using the infor-

mation for every data set. Error values increase hugely towards the

left side of the columns of Table 3 a. This most probably occurs due

to the poor estimation of initial conditions through maximum like-

lihood. Since the initial conditions are far from the ideal values,

more variability is needed in the artificial evolution equations in-

cluded within the Particle Filter algorithm in order to effectively

learn and find the correct intervals where these parameters lie. On

the other hand, error values increase hugely towards the right side

of Table 3 b. Initial conditions are very close to the ideal values, low

noise variabilities are needed in order to find the correct intervals

where these parameters lie. 

The inherent non-observability issues of volatility imply that

using an average value for σα, β over all the data sets where the

filtering process is applied will result in poor estimations for the

certain data sets. 

To choose specific hyper-parameter values R th , σα, β and ση , it

is necessary to consider that hyper-parameters R th and ση have a

very small incidence in the estimation error given the parameter

mesh. Thus, both of these parameters are set to 0.7. For parameter

σα, β , if one considers the arithmetic mean, results for the GARCH1

data set are far from optimum. Nevertheless, this is the proposed

value used in the detection scheme. As a summary, the values con-

sidered for the proposed detection algorithms are the following: 

R th = 0 . 6 , (43)

σα,β = 0 . 0141 , (44)

ση = 0 . 7 . (45)

4.2.3. PF and RSPF-based volatility estimation results 

Filtering results with optimum hyper-parameters for each data set.

This section presents the results obtained for volatility estimation

using the hyper-optimum parameters for the Classic Particle Filter-

ing processes, described in Section 4.2.2 . These hyper-parameters

have also been applied and used in the RSPF. Results are shown in

Figs. 7 b and 8 b. 
Analysis of the estimation performance in each data set uncov-

rs many interesting findings that need to be addressed. The com-

ents about results are discussed separately for every data set. 

• GARCH1 ( Fig. 7 ): In this data set, there is a large change in the

model parameters α and β for the simulated data at time step

250. Up to time step 250, both the PF and RSPF are only able

to track the trend of the volatility curve, but there is no re-

action to sudden changes. This behavior changes in time step

250, where there is a tendency towards capturing rapid volatil-

ity changes. The filter demonstrates the results of the learn-

ing process at time step 290, where a hefty volatility cluster
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occurs. There is correct tracking of volatility shape with a very

small estimation bias. This occurs between time steps 290 and

500, which corresponds to the end of the time window. 
• GARCH3 ( Fig. 8 ): There is excellent filtering performance

throughout the time window. Accurate estimation, excellent

shape tracking. For this data set, only about 100 time steps are

necessary for the algorithm to learn and adapt. 

The algorithms need at most 300 data points to learn and

orrectly adapt to the observed data. In general, there is good

racking of trends before this turning point, but if the algorithm

s able to adapt properly, both tendency and shape are correctly

racked. 

One important aspect from these results is that estimation per-

ormance depends vastly on the value σα, β . Previous experiments

emonstrate that low values of σα, β (this is, lower than the op-

imum) result in underestimation of financial volatility in both PF

pproaches, while higher values of σα, β are conducive to overesti-

ation of volatility. From the purpose of tracking the shape of the

nvelope that characterizes the evolution of volatility in time, this

s irrelevant, unless the filters lose the ability to track due to lack

f particle variability. Given these results, it could be convenient to

eparate σα, β into σα and σβ (this is, to consider separate sources

f uncertainty on each pseudo-particle that extends the model).

his is important for two reasons: First, is it necessary to under-

tand that α multiplies the process noise ση in Eq. (1) and there-

ore, the process noise in the extended uGARCH model is the result

f the multiplication of two random variables: αk ∼ N (αk −1 , α1 σα)

nd η2 
k 

. Second, variables α and β introduce different behaviors in

he model, since the former is associated to innovations and the

atter is associated to the memory of the model. 

According to Rachev, Hsu, Bahasheva, and Fabozzi (2008) , the

alue of α + β in the GARCH model is the “process persistence pa-

ameter , since it determines the speed of the mean-reversion of

olatility to its long-term average. A higher value for α + β implies

hat the effect of the shocks of volatility, u 2 
k 
, dies out slowly”. In

able 4 , the estimated value of α + β was included for each data

et. Although there is no apparent relation between the filtering

erformance of the Particle Filters and the value of α + β, there

s in fact one relation that needs attention: The data set in which

he estimated value of α was bigger, the filtering performance was

ore accurate and errors were systematically lower ( Table 3 b). 

From a detection perspective, it is necessary to notice that the

SPF is usually more capable of tracking correctly sudden rises of

olatility. In these cases, estimations of the RSPF are better than

he PF estimations, since the latter tends to under estimate. This

eems a natural result considering the construction of both PFs:

he RSPF grants more resolution to high volatility areas, resulting

n a better estimation of sudden volatility rises. 

Continuing with the PF and RSPF comparison, the PF usually

utperforms the RSPF in terms of estimation accuracy. Albeit sud-

en volatility changes from low to high values, the PF is less biased

han the RSPF. 

As a final comment, one should notice that the RSPF outper-

orms the Classic PF in terms of 1-step prediction in cases where

olatility experiences sudden increments. This occurs due to the

onstruction of the uGARCH model, in comparison to the GARCH

odel. Comparing both dynamics equations, 

GARCH: σ 2 
k | k −1 = ω + αu 

2 
k −1 + βσ 2 

k −1 | k −2 , 

GARCH: σ 2 
k = ω + ασ 2 

k −1 η
2 
k + βσ 2 

k −1 , 

here u k = σk | k −1 εk , the innovations process in the GARCH model

epends on the value of the previous step of the returns process,

hile the volatility dynamics of the uGARCH model are time inde-

endent of the returns series. Since the simulated data was gener-

ted according to a GARCH model and cases associated with filter-
ng through PF schemes is based on the uGARCH model, this 1-step

rediction in sudden volatility rises is possible. 

iltering results with averaged hyper-parameters (as used in detection

cheme). This section presents the results obtained for financial

olatility estimation using the averaged hyper-parameters in the

lassic Particle Filtering implementation ( Eqs. (43) –(45) ). The use

f averaged hyper-parameter values is performed as an attempt to

rovide a more realistic solution to the problem of interest. This

lgorithm is intended to be used in stock market data and the

yper-parameters need to be estimated. These hyper-parameters

ave also been applied and used in the RSPF. Results are shown

n Figs. 7 c and 8 c. 

The previous section describes the phenomenon of over and un-

erestimation related to the selected value of σα, β . Given that the

revious experiment showed results for the optimum value of this

arameter, this situation was not apparent. Nonetheless, the new

xperiment makes this behavior palpable. A detailed analysis for

ach filtering process is given below. 

• GARCH1 ( Fig. 7 c): The corresponding figure clearly shows un-

derestimation of the state. Nevertheless, an interesting result is

that shape tracking is extremely accurate, which is essential for

the correct operation of the proposed detection algorithms. 
• GARCH3 ( Fig. 8 c): Results for this data set are extremely inter-

esting because of the ample robustness of the filtering perfor-

mance to variations of the value σα, β . Shape tracking and es-

timation accuracy are almost intact in contrast to the use of

optimum parameters. 

The anomalous behavior occurring in data set GARCH1 ( Fig. 7 c)

ay be explained again by the estimation through maximum like-

ihood of parameter α. 

Comparing the performance of the PF and RSPF, there is again a

lear response from the RSPF towards estimating correctly sudden

hanges in volatility from low to high values. This is correct for

udden changes, since the PF tends to be less biased in average.

his behavior is extremely important for the detection scheme,

ince correct performance from the proposed detection techniques

an be obtained even though the optimal parameters are not used

n simulated or real data. 

.3. Early detection of high volatility clusters using a hypothesis test 

This section presents results obtained from the proposed hy-

othesis test to capture early rises in volatility. Figs. 9 and 10 show

hese results. These figures contain 3 subfigures, which correspond

o (a) returns series, (b) volatility series, RSPF prior and posterior

stimation, and confidence interval, (c) detection points. 

Figs. 9 to 10 show that the detector works correctly, since it is

ble to capture early rises of volatility which transform into high

olatility clusters. The detector can also be interpreted as a local

eak detector in the returns series, which is expected. Since the

ypothesis test contrasts the dynamics of the model (prior) and

he updated dynamics through the observations (posterior), it is

lear that detections will occur mainly when local peaks of returns

ccur. 

A detailed analysis of the results for each of the data sets is

iven ahead. 

• GARCH1 ( Fig. 9 ): All of the high volatility clusters are detected,

except for the high volatility variation due to regime shift at

time step 250. This regime shift introduces a notorious mean

variation in volatility, which the test is not able to capture,

since there are no vast variations in the returns series. High

volatility sub-clusters around time step 350 are also detected. 
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Fig. 9. Hypothesis test-based detection for data set GARCH1. 

Fig. 10. Hypothesis test-based detection for data set GARCH3. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Parameter estimation of the GARCH(1,1) model through 

maximum likelihood for IBM’s returns series between 

September 12th, 2005 and September 1th, 2009. 

GARCH parameter Value 

ω 2.5690 ×10 −6 

α 0.0647 

β 0.9234 

μ 6.9333 ×10 −4 
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• GARCH3 ( Fig. 10 ): All of the major sudden volatility rises are

detected, except for the higher volatility episode starting at ap-

proximately time step 320. Continuing over this line of thought,

the detector works as expected, although the performance mea-

sures do not correctly express the actual detector capacity. 

The detection results obtained through a proposed hypothesis

test show that the detector is very sensitive even to mild high

volatility clusters, when the estimation framework works properly.

This translates into the difficulty of measuring correctly the perfor-

mance of the algorithm, since there is no possible definable hard

limit between low and high volatility clusters. In fact, one can only

use a diffuse definition. 

Other results that need to be addressed correspond to the ro-

bustness of the algorithm and the employed value of σα, β in
he estimation stage. This parameter has tremendous implications

ver the estimation performance, but not over detection perfor-

ance. If shape is tracked correctly, the hypothesis test-based de-

ector performs exceptionally well, even under extreme estimation

iases. 

.4. Case study: early detection of high volatility clusters in IBM’s 

tock data 

IBM stock price series are usually used as examples for the

tudy of returns series and volatility series ( Tsay, 2010 ). There are

arious episodes since the year 1962 which are interesting events

o explore, including the market falls of 1987 and 2008. As men-

ioned in Sction 3.1.2 , the data employed for this case study in-

olves adjusted closing prices between September 12th, 2005 and

eptember 1st, 2009. 

The data observed here does not include the ground truth val-

es for volatility, which means that volatility can only be esti-

ated and therefore, there is no possibility to quantify the detec-

or’s performance. Analysis is solely based upon observation of the

btained results and qualitative interpretation of the data. 

Table 5 displays the estimated parameters for the GARCH(1,1)

odel in the first 200 data points of the series, which serve as

he training period. The parameters ω and μ are left fixed in the

xtended uGARCH model, while estimations of α and β are used

s initial conditions for the online estimation of these parame-

ers. The estimation exhibits a very low value for α, while β has

 large value. Given that α + β = 0 . 9881 and that evidence shows

hat usually α + β is close to 1, one might assume that the esti-

ation is good. Given that the value of α is small, the pseudo-

article standard deviation used is equal to σα,β = 0 . 04 . Moreover,

 th = 0 . 7 and ση = 0 . 7 . 

Fig. 11 exhibits the obtained results from volatility estimation

nd early detection of high volatility clusters. In particular, details

bout the adjusted price series, returns series, volatility estimation,

etections and the training window may be observed. Analysis of

his Fig. 11 c shows that volatility estimation of both the PF and the

SPF are extremely close, and the differences between most esti-

ations occur, although mildly, in sudden volatility rises, where

he RSPF has a faster reaction towards unlikely values. This is more

isible at the beginning of bigger high volatility clusters, from time

tep 500 and onwards. 

Estimations obtained from the RSPF are used as the base of the

ypothesis test-based detector, which showed the best results in

he previous sections. One may observe that most of the small high

olatility clusters between time steps 200 and 500 are detected.

here are some false positives and false negatives, but these are

inor. In the time window that includes time steps 50 0–10 0 0, all

f the major volatility clusters are detected in a very early stage,

ncluding the high volatility cluster starting at time step 750, con-

ucive to the big stock market drop of the year 2008. Moreover, in

his time window, there are only 2 false positives, which occur af-

er the last high volatility cluster. All of the other detections need

o be considered true positives. 
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Fig. 11. Early hypothesis test-based detection of high volatility clusters in IBM’s stock data. 
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. Discussion 

The results obtained from the PF and RSPF are aligned with

he literature: they are suitable frameworks that may offer ex-

ellent estimation performance for stochastic volatility estimation.

evertheless, non-observability issues may produce poor results, a

roblem that needs to be correctly addressed. Analysis of the pa-

ameter estimation of the GARCH model together with the sensi-

ility analysis including noise values demonstrate that estimation

erformance is extremely dependent on four aspects: 

1. Correct initial conditions for particle population. 

2. Adequate characterization of process noise sources. 

3. Correct initial conditions of pseudo-particles if the state-space

model has been extended to include online parameter estima-

tion. 

4. Adequate characterization of process noise sources for pseudo-

particle variability within artificial evolution-based approaches. 

Inadequate values can lead to algorithms with inability to learn,

r extremely biased estimates. Moreover, there is an important

elationship between points 3 and 4: if estimates of the GARCH

odel (which in this case are used as the initial conditions) are too
ow or inaccurate, higher noise values for these pseudo-particles

re needed to improve the learning capabilities of the PF algo-

ithm. As a consequence, the parameter σα, β should be separated

nto σα and σβ , this is, use a separate dispersion value for the

oise process of each pseudo-particle which extends the model. 

A performance comparison between the Classic Particle Filter

nd the proposed Risk Sensitive approach shows that the Risk Sen-

itive algorithm behaves better for purposes of tracking sudden

olatility changes from low to high values. The greater particle

esolution offered by the Risk Sensitive Particle Filter in areas of

igh volatility give this algorithm a very high performance in these

ases. 

This filtering approach, combined with the proposed detection

echnique based on the contrast of prior and posterior estimations

f the Risk Sensitive Particle Filter through a hypothesis test proves

hat early detection of high volatility clusters is possible with a

mall error. Important aspects associated with the performance en-

ure that the detection is extremely robust to biased estimates,

hich are related to sub-optimal dispersion values of noise. In par-

icular, if the Particle Filter does not lose the ability to learn and

rack the shape of volatility, the proposed hypothesis test-based

etector excels in early detection of high volatility clusters. 
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6. Conclusions 

This work presents and explores the use of Particle Filter-

ing frameworks for the online detection of variations in financial

returns that may conduce to high volatility clusters. Our approach

uses a novel volatility estimator based on a Risk Sensitive Particle

Filters (RSPF) that employs the Generalized Pareto Distribution to

generate particles in areas associated to higher risk. 

The methods proposed include the use of a simple stochas-

tic variation of the GARCH model – the uGARCH model– in or-

der to capture volatility variations of financial returns that may

lead to high-volatility clusters. This model has been chosen in

order to diminish the complexity of our method, while simulta-

neously helping to track disturbances introduced by other non-

measurable factors (often found in complex systems such as the

stock markets). This efforts result in a simple, but effective, detec-

tion scheme based on the comparison of prior and posterior PDF

estimates through a hypothesis test. The proposed method proves

(both with simulated and actual financial data) that early detection

of high volatility clusters is possible with a small error using low-

complexity models and risk-sensitive approaches in the detection

framework. 

Future work will focus on exploring connections with the prob-

lem of jumps detection in financial variables. Our approach offers a

framework that is independent from the stochastic volatility model

structure; thus representing a plausible option for online jumps

detection in financial econometrics. 
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