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A better characterization of complex rock masses is essential in geotechnical engineering, as the empirical sys-
temswidely used for this purpose have significant limitations and do not provide adequate answers for risk anal-
ysis. Geostatistics offers a set of tools that allow not only predicting the rock mass properties, but also mapping
their heterogeneity at different spatial scales and quantifying the uncertainty in their actual values. In this
paper, two geostatistical approaches are compared for modeling the Rock Mass Rating (RMR), which is used to
geomechanically characterize the rock mass in geotechnical works. The first approach consists of the direct sim-
ulation of the RMR values, based on a Gaussian spatial random fieldmodel. In contrast, the second approach uses
the truncated Gaussian model to separately simulate the individual parameters of the RMR, which subsequently
are summed to obtain the final RMR value. The computation time, practical implementation, level of details and
post-processing outputs that can be obtained from both approaches are analyzed. Besides the RMRmapping and
associated uncertainty, the deformation modulus is subsequently obtained based on these maps together with
empirical expressions.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In the current practice of geotechnical works design, the
geomechanical parameters of the rock formations are set based on cam-
paigns of in situ and laboratory characterization works and tests. Ac-
cording to the results of these campaigns, a geotechnical zoning is
established and a set of geomechanical parameters is assigned to each
zone. This is a highly subjective exercise, but its output is of utmost im-
portance for the next stages of geotechnical design. However, this ap-
proach does not properly account for the intrinsic spatial variability
and high heterogeneities that can be found in many rock masses,
which can have a significant impact on the structure behavior. In this
sense, there is a lack of an approach that allows reducing the subjectivity
of geotechnical zoning and that explicitly considers the spatial variabil-
ity and heterogeneities many times present in rock masses.

The recourse to geostatistical models can be a mean to foster the
development of such an approach. Indeed, in these models, the
geomechanical parameters are viewed as outcomes (realizations) of spa-
tial random fields, the properties of which can be inferred from the avail-
able in situ measurements and laboratory tests. Kriging techniques
(Matheron, 1971) can be used to predict the values of the parameters of
interest at any specific location, based on the information available at
inheiro).
neighboring locations and on the spatial correlation structure of the un-
derlying random fields. These techniques aim to minimize the expected
squared error between predicted and true values, but, in return, they pro-
vide over-smoothed maps that do not reflect the actual variability of the
true parameters. To avoid this drawback, conditional simulation tech-
niques have been developed to construct numerical models that repro-
duce the spatial variability at all scales and allow a better understanding
of the rock mass heterogeneities (Journel, 1974; Chilès and Delfiner,
2012). Unlike kriging that provides a single prediction for each parameter
of interest, simulation yields asmany case scenarios as desired, which are
helpful to assess the uncertainty in the actual (unknown) parameter
values at any specific location or jointly over several locations.

Numerous authors already applied geostatistics to estimate or to simu-
late properties such as lithology faces (Rosenbaum et al., 1997), Rock Qual-
ity Designation (RQD) (Esfahani and Asghari, 2013; Ozturk and Simdi,
2014; Ozturk and Nasuf, 2002), Rock Mass Rating (RMR) (Ryu et al.,
2003; You, 2003; Oh et al., 2004; Stavropoulou et al., 2007; Exadaktylos
and Stavropoulou, 2008; Jeon et al., 2009; Egaña and Ortiz, 2013; Ferrari
et al., 2014), joint frequency (Ellefmo and Eidsvik, 2009) or Geological
Strength Index (GSI) (Ozturk and Simdi, 2014; Deisman et al., 2013).

Hereunder, the system used for simulation is the Rock Mass Rating
(RMR) proposed by Bieniawski (1989). This system allows classifying
the rock mass in five classes (very good, good, fair, poor, very poor)
using a continuous scale that varies from 0 to 100 obtained after
weighting six individual parameters regarding the rock mass and its
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discontinuities. The referred parameters are: a) Uniaxial compressive
strength of rock material (P1); b) RQD (P2); c) Discontinuity spacing
(P3); d) Condition of discontinuities (P4); e) Groundwater conditions
(P5); f) Orientation of discontinuities (P6). In this work, the sixth pa-
rameter (P6) will not be used because it does not depend only on the
characteristics of the rock discontinuities but also on their relation
with the structure and this is unknown. The RMR under consideration
is therefore the so-called basic RMR, which is obtained considering
only the contribution of parameters P1 to P5.

The next section presents two geostatistical approaches to simulate
the RMR, depending on whether one considers that the properties are
measured on a continuous quantitative scale or on a discrete scale. In
thefirst approach, themost straightforward andusual one, RMR is viewed
as a variablemeasured on a continuous scale (from0 to100) and is direct-
ly simulated with a multivariate Gaussian algorithm. In contrast, the sec-
ond approach ismore complete, as each one of the five parameters (P1 to
P5) is simulated and the results are then summed to obtain thefinalmap-
ping of RMR. A novelty of this second approach with respect to previous
works is the fact that the underlying parameters are considered as vari-
ables measured on a discrete scale, which better suits their nature as a
ranking and not as a continuous value, and that a specific geostatistical
model (truncated Gaussian model) is used for the purpose of simulation.
In Section 3, both approaches are applied to a case study and compared in
terms of implementation facility, accuracy and level of detail provided in
simulating the spatial distribution of RMR. Finally the simulated RMR is
converted into deformation modulus (Em) using empirical formulae.

2. Geostatistical simulation of RMR

2.1. First approach: direct simulation of RMR

In this approach, the RMR is viewed as a variable that continuously
varies from 0 to 100 and is simulated directly (Fig. 1a). To this end,
the multi-Gaussian random field model is used, through the following
steps (Chilès and Delfiner, 2012):

1) First, a representative distribution of the RMR values is calculated, by
weighting each data depending on the geometrical configuration of
Fig. 1. Flow charts for simulation under the multi-Gaussian model (Ap
the data locations. This procedure aims at down-weighting the data
that are spatially clustered, which contain redundant information
(Deutsch and Journel, 1998). In case of a regular sampling design,
the data can be assigned the same weights.

2) The RMR data are then transformed into data with a standard
Gaussian distribution, accounting for the previously calculated
declustering weights. These transformed data are associated with a
parent second-order stationary Gaussian random field, which is
fully characterized by its auto-correlation function or, equivalently,
by its variogram (Lantuéjoul, 2002).

3) The experimental variogram of the Gaussian data is computed and
subsequently fitted with a theoretical model. At this stage, the
study can be performed in one or more directions of space, in
order to identify a possible anisotropy and to better understand
the spatial behavior of the data.

4) A Gaussian random field is then simulated at the target locations,
conditionally to the available data (i.e., such that the values simulat-
ed at the data locations match the data values). In the present case
the turning bands algorithm (Emery and Lantuéjoul, 2006) is used
for simulation.

5) The simulated Gaussian values are back-transformed to the original
scale (RMR).

Similar approaches, which differ in the specific simulation
algorithm used at step (4), have been proposed by Ryu et al. (2003);
Jeon et al. (2009); Egaña and Ortiz (2013) and Ferrari et al. (2014),
among others, for the spatial prediction of RMR and for uncertainty
quantification.
2.2. Second approach: simulation of underlying parameters

The second approach is more innovative and consists in simulating
all five parameters assigned with their ratings, viewed as discrete vari-
ables (i.e., they only assume integer values). The sum of the simulated
parameters gives the final value for RMR.

For the parameter simulation, the truncated Gaussian model
(Armstrong et al., 2011) is used, which relies on the truncation of
proach 1) (a) and the truncated Gaussian model (Approach 2) (b).

Image of Fig. 1
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second-order stationary Gaussian random fields. The application of this
model is carried out through the following steps (Fig. 1b):

1) First, the original data are transformed into class-indicator data,
i.e., data that take the value 0 or 1 depending on each parameter
score.

2) For each individual parameter, a set of truncation thresholds is de-
fined, which allows the proportion of each class to be reproduced
by the simulation (Armstrong et al., 2011).

3) Given the experimental variograms of the class-indicator data, a
variogram can be calculated for the underlying Gaussian random
field associated with each parameter, based on the existing relation-
ships between the indicator and Gaussian variograms (Emery and
Cornejo, 2010). The Gaussian variograms so obtained can be fitted
with theoretical models.

4) The class-indicator data are then transformed into simulated Gauss-
ian data, using an iterative algorithm known as the Gibbs sampler
(Armstrong et al., 2011; Lantuéjoul, 2002).

5) The Gaussian random fields are simulated at the target locations,
conditionally to the Gaussian values obtained at the previous step,
and are truncated in order to get back to simulated class-indicator
values. As for the first approach, the turning bands algorithm is
used for the simulation of Gaussian fields.

6) The indicators are converted into the underlying parameters and
finally into RMR values.
3. Case study

The two previous approaches are now applied to a case study in
order to map the RMR in an epithermal gold deposit located in the
“Cordillera de Los Andes”, region of Atacama, northern Chile, and sur-
veyed through a set of exploration boreholes. The regional geology of
the area is characterized by a group of intrusive, volcanic and sedimen-
tary rocks, affected by fault zones that control the mineralization,
allowing the identification of fourmain lithological units of sedimentary
rocks.

The available data comprise 3969 samples obtained from boreholes
with a horizontal spacing of 40 m × 40 m and depths ranging
from 96 m to 390 m. Along these boreholes, the samples are taken
with a spacing of 20 m, yielding a regular sampling design of
40m × 40m × 20m. The uniaxial compressive strength (P1) wasmea-
sured from laboratory tests. Cylindrical rock samples were prepared ac-
cording to the standard ASTM D4543–08, and then tested under
uniaxial compressive conditions using the standards included in ASTM
D7012–04. The average prepared sample has an aspect ratio (H/D) of
2. Table 1 presents the average density and the uniaxial compressive
strength normalized to a diameter of 50 mm (UCS50 mm) for each litho-
logical unit. TheRQD (P2)was estimated directly fromborehole logging.
To estimate the average discontinuity spacing (P3), the average fre-
quency of fractures (FF/m) was estimated. Bias correction was then ap-
plied by considering the average angle of each measured discontinuity.
The condition of discontinuities (P4) was not quantitatively measured
at the field. A regular condition was assumed for all lithological units.
Finally, the water condition (P5) was assigned in agreement to the
level of water determined at different depths at each borehole; two
classes were mainly identified: wet and damp.
Table 1
Information about average UCS and average density by lithological unit.

Lithological unit Description

Silty and clayey limestone Medium to fine calcareous sandstone and limestone
Calcareous sandstone Fine bioclastic calcareous sandstones, limestones and biocla
Sandstone Calcareous sandstone with rounded fragments of quartz
Calcareous sandstone Sandstones with interblended limestones; levels of fine mu
According to the results of rock mechanics laboratory tests and the
interpreted RMR values from the borehole samples, the rock mass is
classified with a quality of fair to good (mostly in the range of 50 to
60). This range of RMR values is used in the mine design process. Plan
views of the data are shown in Fig. 2.

The RMR simulation should result in a better and improved under-
standing of the spatial distribution and an easier identification of het-
erogeneities and uncertainty levels. In addition to RMR, the underlying
geomechanical parameters (P1 to P5) could also be mapped and conse-
quently used in numerical models and mine design process in order to
obtain a more accurate zoning of the rock mass.

3.1. Exploratory analysis

Basic statistics of the data are presented in Table 2. RMR may vary
from 0 to 100, while the values of the parameters P1 to P5 refer to
their rating obtained from the application of the RMR system.

According to the data statistics, with a minimum RMR value of 48
and a maximum value of 78, the geomechanical quality of the rock
mass varies from fair to good. Concerning the individual parameters
(Fig. 3), P1 varies within a short range, meaning that the UCS of the in-
tact rock is almost constant, unlike P2 and P3 that vary in a muchwider
range showing very different levels of rock mass fracturing. In contrast,
for all the samples, the fourth parameter (P4) is constant and equal to
20. This parameter is related to the condition of the discontinuities, so
they are all classified as having slightly rough surfaces with a separation
smaller than 1 mm and a highly weathered wall rock. Accordingly, the
same score (20) will be assumed for all the points of the target simula-
tion grid. Lastly, like P1, parameter P5 varies within a short range, with
only two different scores, representing a groundwater condition that is
mostly wet (7) and punctually damp (10).

Before performing the simulation of parameters P1, P2, P3 and P5, it
is necessary to observe the existing correlations between them, in order
to make sure that they are not (or weakly) cross-correlated. Otherwise,
the separate parameter simulation in the second approach should be re-
placed by co-simulation,whichwouldmake themodel quitemore com-
plex (Emery and Cornejo, 2010). The correlationmatrix, which contains
the Pearson product–moment correlation coefficients between all the
parameters, is presented in Table 3. Analyzing these coefficients, one ob-
serves that the only parameterswith a positive correlation are P3 and P5
comparatively to P2, whereas the others parameters show a slightly
negative correlation between them. However, these correlations are
rather weak from a statistical point of view (less than 0.3 in absolute
value), so that the information on a parameter actually brings little in-
formation on the other parameters. The low correlation between P2
(RQD) and P3 (discontinuity spacing) can be explained by the good
quality of the rockmass, which translates into a wide spacing of the dis-
continuities and high RQD values, making the latter parameter less sen-
sitive to closer discontinuities. As such, in Approach 2 the simulation of
the four RMRparameters can be performed separately as individual var-
iables; co-simulation, which enhances the simulation of a set of vari-
ables in order to reproduce their cross-correlation, is not necessary here.

3.2. Modeling univariate distributions

As previously mentioned, for the first approach, the data should be
transformed into normal scores. Since the sampling design is regular,
Average density (t/m3) Average UCS (MPa)

2.68 ± 0.05 215 ± 56
stic clams 2.68 ± 0.09 154 ± 47

2.64 ± 0.02 143 ± 20
lticolored calcareous sandstones 2.63 ± 0.06 152 ± 40



Fig. 2. 2D maps of spatial distribution at elevation 3560 m, for RMR original values (a), Parameter P2 (b) and Parameter P3 (c).
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there is no need for declustering, i.e., all the data are assigned the same
weighting. The function that relates the original RMR values and the as-
sociated Gaussian values (anamorphosis function) can then be calculat-
ed empiricallywith the available data. This function ismodeled by using
a piecewise linear interpolation between the empirical points, and ex-
ponential functions for tail extrapolation, as explained in Emery and
Lantuéjoul (2006) (Fig. 4). The parameters of these exponential func-
tions are chosen in order tofit amodel as continuous as possible. The ab-
solute minimum and maximum values for RMR are set to 45 and 80,
respectively.

Regarding Approach 2, the data related to Parameter 1 only present
two different scores, 12 and 14, with relative proportions of 0.468 and
0.532, respectively. This distribution can be modeled by truncating a
standard normal distribution, using a single truncation threshold set
to G−1(0.468) = −0.0803, with G the standard normal cumulative
distribution function. In other words, the probability for a standard
Gaussian random variable to be less than −0.0803 is 0.468, and the
probability to be more than −0.0803 is 0.532, coinciding with the pro-
portions of the two scores of Parameter 1. Likewise, the data of Param-
eter 5 only assume two different scores, 7 and 10, with relative
proportions of 0.989 and 0.011, respectively. Again, the model uses a
single truncation threshold, here equal to G−1(0.989) = 2.2904.

In a different way, the data of Parameters 2 and 3 assume almost
every score. As a result, a larger number of truncation thresholds have
to be defined, as shown in Tables 4 and 5, respectively. These truncation
thresholds are such that the proportion of data with a given score coin-
cideswith the probability for a standard Gaussian random variable to be
between the lower and upper thresholds associated with this score.

3.3. Modeling spatial continuity: variogram analysis

For both approaches, following the methodology explained in
Section 2, the variograms of the Gaussian random fields to simulate
Table 2
Basic statistics on RMR ratings and original data (3969 samples).

RMR P1 (UCS) P2 (RQD)

Rating MPa Rating %

Minimum 48.0 12.0 138.0 3.0 0.0
Maximum 78.0 14.0 208.0 20.0 100.0
Mean 66.7 13.1 177.8 16.4 87.3
Standard deviation 3.8 1.0 32.5 2.7 12.3

a 1.0 was the value used to represent the intermediate rating of the joint condition.
b 1.0 and 2.0 represent a groundwater condition of Wet and Damp, respectively.
have to be calculated along the main directions of anisotropy. Because
of the sampling design (vertical boreholes), it is not possible to experi-
mentally calculate variograms in inclined directions, thus calculations
are restricted to the vertical direction and to the horizontal plane. Fur-
thermore, isotropic variograms are calculated on this plane, insofar as
no clear anisotropy is detected in the experimental variograms associat-
ed with different horizontal directions. For calculations, the lag dis-
tances are multiple of 20 m along the vertical, which corresponds to
the data spacing along the boreholes, and of 40 m along the horizontal
(borehole spacing), with a tolerance of 20 m.

The experimental variograms (hereafter denotedwith the Greek let-
ter γ) so calculated are then fitted using combinations of basic nested
structures (exponential, spherical, cubic and Gaussian, see Chilès and
Delfiner, 2012 for details on these basic models), as follows.

• Variogram model for Approach 1 (normal score transform of RMR):

γ ¼ 0:771 Exponential 250 m;250 mð Þ
þ 0:305 Gaussian 450 m;250 mð Þ

• Variogram models for Approach 2:

P1 : γ1 ¼ 1 Cubic 700 m;100 mð Þ

P2 : γ2 ¼ 1 Exponential 350 m;300 mð Þ

P3 : γ3 ¼ 0:639 Exponential 300 m;250 mð Þ
þ 0:361 Gaussian 300 m;350 mð Þ

P5 : γ5 ¼ 0:01 Exponential 30 m;∞ð Þ þ 0:99 Gaussian 700 m;150 mð Þ:
P3 (JS) P4 (JC) P5 (GW)

Rating mm Rating JC Rating GW

5.0 23.0 20.0 1.0a 7.0 1.0b

19.0 1923.0 20.0 1.0a 10.0 2.0b

10.2 220.5 20.0 1.0a 7.0 1.0
2.0 170.2 0.0 0.0 0.3 0.1

Image of Fig. 2


Fig. 3. Data histograms for Parameters P1 (a), P2 (b), P3 (c) and P5 (d).
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In the above equations, the coefficient preceding a basic nested
structure indicates the sill of this structure (contribution to the total
variance), while the distances written between brackets represent the
correlation ranges of the structure along the horizontal plane and the
vertical direction, respectively. The experimental and theoretical
variograms for Approaches 1 and 2 are shown in Figs. 5 and 6, respec-
tively. It should be noticed that none of the variograms exhibit a nugget
effect (discontinuity near the origin), indicating that the RMR and its
underlying parameters are continuous in space. Even more, the
variogrammodels for P1 and P5 have a smooth behavior near the origin
and a large correlation range along the horizontal direction (700 m),
which indicates that the regions where these parameters are constant
have smooth boundaries and a large spatial extent or spatial connectiv-
ity (recall that both P1 and P5 only assume two different scores).

3.4. Conditional simulation results

The model parameters being specified (anamorphosis function in
Approach 1, truncation thresholds in Approach 2, and variograms of
the underlying Gaussian random fields in both approaches), conditional
realizations of the RMR and of the underlying parameters can be con-
structed. In this work, adaptations of previously published computer
Table 3
Correlation matrix between parameters P1, P2, P3 and P5.

P1 P2 P3 P5

P1 1 −0.096 −0.164 −0.113
P2 −0.096 1 0.292 0.045
P3 −0.164 0.292 1 −0.032
P5 −0.113 0.045 −0.032 1
programs are used for simulating Gaussian and truncated Gaussian ran-
dom fields (Emery and Lantuéjoul, 2006; Emery, 2007). The number of
realizations is set to one hundred, so that the post-processing outputs
(average and conditional probabilities) could be calculated with a rea-
sonable approximation. In both cases, the turningbands algorithm is ap-
plied with 1000 turning lines to generate the Gaussian random fields,
and simple kriging is used to condition the realizations to the borehole
data. For Approach 2, the Gibbs sampler is stopped after one hundred
Fig. 4. Anamorphosis function used for Approach 1. The ordinate indicates the RMR value
and the abscissa the associated Gaussian value.

Image of Fig. 3
Image of Fig. 4


Table 4
Calculated proportions for P2 data with the corresponding Gaussian thresholds.

Score for P2 Cumulative proportion Lower threshold Upper threshold

1 0 −∞ −∞
2 0 −∞ −∞
3 0.0033 −∞ −2.7164
4 0.0043 −2.7164 −2.6276
5 0.0073 −2.6276 −2.4422
6 0.0080 −2.4422 −2.4089
7 0.0150 −2.4089 −2.1701
8 0.0200 −2.1701 −2.0537
9 0.0250 −2.0537 −1.9600
10 0.0360 −1.9600 −1.7991
11 0.0510 −1.7991 −1.6352
12 0.0780 −1.6352 −1.4187
13 0.1120 −1.4187 −1.2160
14 0.1710 −1.2160 −0.9502
15 0.2710 −0.9502 −0.6098
16 0.4520 −0.6098 −0.1206
17 0.6200 −0.1206 0.3055
18 0.8180 0.3055 0.9078
19 0.9900 0.9078 2.3263
20 1.0000 2.3263 +∞ Fig. 5. Experimental (crosses) and theoretical (solid lines) variograms for RMR (Approach

1) along the main anisotropy directions: horizontal (black) and vertical (blue).
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iterations and the simulated Gaussian random fields are truncated,
based on the thresholds indicated in Section 3.2 and Tables 4 and 5,
yielding realizations of parameters P1 to P5 that are subsequently
summed to obtain realizations of the RMR values.

For ease of display, the locations targeted for simulation correspond
to a regular two-dimensional grid placed at elevation 3560 m, with a
mesh of 5 m × 5 m and a total of 160 nodes along the east direction
and 240 nodes along the north direction.

The average of the RMR realizations is calculated tomap the expect-
ed RMR over the region of interest resulting from both approaches
(Fig. 7b, e). Furthermore, in order to demonstrate the spatial variability
existing in this rock mass, the first realization is mapped as an example
(Fig. 7a, d). In these figures, the neighboring data values are
superimposed on the maps in order to highlight the effect of condition-
ing the RMR realizations to the borehole data: when a target grid node
coincideswith a data location, the simulated RMRvalue exactlymatches
the conditioning data value.

The visual comparison suggests that the two approaches produce
similar results for RMR. It is worth noticing that the map of the realiza-
tion average tends to smudge the contrasts and that spatial heterogene-
ities appear as much more faded. The analysis of the individual
realizations is therefore important to visualize the real heterogeneity
Table 5
Calculated proportions for P3 with the corresponding Gaussian thresholds.

Score for P3 Cumulative proportion Lower threshold Upper threshold

1 0 −∞ −∞
2 0 −∞ −∞
3 0 −∞ −∞
4 0 −∞ −∞
5 0.0500 −∞ −1.6449
6 0.0501 −1.6449 −1.6439
7 0.0502 −1.6439 −1.6429
8 0.1842 −1.6429 −0.8995
9 0.3432 −0.8995 −0.4037
10 0.5422 −0.4037 0.1060
11 0.8152 0.1060 0.8972
12 0.9182 0.8972 1.3931
13 0.9582 1.3931 1.7302
14 0.9762 1.7302 1.9809
15 0.9872 1.9809 2.2322
16 0.9912 2.2322 2.3739
17 0.9952 2.3739 2.5899
18 0.9998 2.5899 3.5401
19 1.0000 3.5401 +∞
20 1.0000 +∞ +∞
that it is expected to be observed in the field, whereas the average of
the realizations shows an overall trend, which is much smoother.

3.5. Post-processing simulations

More outputs can be represented, like the probability that the RMR
exceeds or falls short of a predefined value, which can be estimated by
the frequency of threshold exceedance or non-exceedance observed
over the realizations. This representation is of great value if one wants
to identify regions where very high or low geomechanical properties
could be present, and with which probability. As an example, for both
approaches, Fig. 8 shows the map of the probability that the actual
RMR is less than a threshold of 65.

Fig. 9 (a, b, d, e) shows themaps of parameters P2 and P3 for the first
realization and for the average of 100 realizations obtained with Ap-
proach 2, which helps to visualize the spatial distribution and variability
of the discontinuity parameters. Comparing realization #1 with the
average of 100 realizations for both parameters, the pattern in lower
or higher rating are similar, however, as already referred, the average
mapping exhibits smoother values. The individual analysis of the dis-
continuity parameters can, by itself, result in a powerful tool in geotech-
nical works to understand the regionswhere the rockmass can bemore
or less fractured. Attentively, comparing the P2 and P3 maps (average
and first realization), it is possible to identify a small region in thewest-
ern part of the grid, with low values of RQD (P2) and intermediate
values of the discontinuity spacing (P3). These incoherent values are ac-
tually present in the borehole data used for conditioning the realiza-
tions, therefore they are not a problem of the proposed simulation
approach, but rather a problem of the input data. This could be ex-
plained by human errors in the measurement of parameter P2.

Maps of other geomechanical parameters can be obtained based on
the realizations of RMR. In this work, considering that the RMR values
are higher than 50, the distribution maps of the deformation modulus
(Em) were developed with the Bieniawski (1978) empirical formula:

Em ¼ 2� RMR−100:

This formula uses the simulated values of RMR to obtain the Em
values at the same locations. Alike the maps computed for the RMR
values, Fig. 10 (a, b) shows the average of Em obtained from the 100 con-
ditional realizations of Approach 1, as well as the first realization, as an

Image of Fig. 5


Fig. 6. Experimental (crosses) and theoretical (solid lines) variograms for Approach 2 along the main anisotropy directions: horizontal (black) and vertical (blue): Parameters P1 (a), P2
(b), P3 (c) and P5 (d).
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example. With this map it is possible to distinguish zones where the
rock mass is significantly stiffer and zones with lower rigidity.

Finally, to visualize the uncertainty in the true values, the standard
deviation (or any other uncertainty measure, such as the coefficient of
variation or the limits for a given level of confidence) can be calculated
at each target node over the 100 realizations and mapped throughout
the grid of interest. As an example, the standard deviations of RMR ob-
tained with both approaches, of parameters P2 and P3 obtained in the
truncated Gaussian model (Approach 2) and of the deformation modu-
lus Em obtained in the multi-Gaussian model (Approach 1) are mapped
in Fig. 7 (c, f), Fig. 9 (c, f) and Fig. 10 (c), respectively. Suchmaps indicate
howmuch the true unknown values are likely to deviate from their ex-
pected values (averages of the realizations) at each target grid node,
therefore quantify the local uncertainty in the true values. The mapped
standard deviations depend on the number and location of the sur-
rounding borehole data (they increase in under-sampled areas and pe-
ripheral areas without data) and, to a lesser extent, on the parameter
values: for P3, whose distribution is positively skewed, the standard
deviation tends to increase in high-valued areas, while the reverse hap-
pens for RMR, P2 and Em whose distributions are negatively skewed, a
phenomenon known as proportional effect (Manchuk et al., 2009) or re-
gressive effect (David, 1988). Furthermore, the maximum standard de-
viation for RMR occurs in the north-western side of the grid of interest
and is about 7 (Fig. 7), which represents a small deviation for a variable
that varies from 0 to 100. This suggests a relatively low uncertainty in
the true RMR values at unsampled locations.

The standard deviations mapped in Figs. 7, 9 and 10 should not be
confused with the ones presented in Table 2: the former measure the
variability across the realizations at a given location, therefore depend
on the location under consideration, whereas the latter measure the
variability of a data set across the region of interest, without
distinguishing any specific location.

3.6. Split-sample cross-validation

To validate the two approaches the original data set is randomly di-
vided into two subsets, each containing one half of the data. Thereby,
thefirst subset (training subset) is used to simulate the RMR at the loca-
tions of the data belonging to the second subset (validation subset).

In order to validate the prediction capability of both approaches, the
expected RMR, calculated as the average of the simulated RMR values, is
compared with the real values at the locations of the validation subset
(Fig. 11a, b). To analyze the results, a linear regression and the coeffi-
cient of determination between expected and true RMR values are cal-
culated. For both approaches, the resulting points of the scatter plot
are distributed close to the diagonal line and the coefficient of determi-
nation is high (0.788 and 0.771, respectively, for Approaches 1 and 2).
This indicates that the simulations allow an accurate prediction of
RMR, with small error fluctuation and no conditional bias (Chilès and
Delfiner, 2012). Accuracy can be confirmed by calculating the Root
Mean Squared Error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
yi−ŷi

� �2
N

s
ð1Þ

where N denotes the number of data in the validation subset, yi the true
value and ŷi the expected value (average of the realizations). The RMSE
values are 1.74 for Approach 1 and 1.81 for Approach 2. Since RMR
varies from 0 to 100, an error less than 2 is almost residual.

Image of Fig. 6


Fig. 7.Maps of RMR at elevation 3560 m, for realization #1 (a, d), average of 100 realizations (b, e), standard deviation of 100 realizations (c, f), obtained with Approach 1 (a, b, c) and
Approach 2 (d, e, f).
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In order to validate the capability of modeling uncertainty, accuracy
plots (Goovaerts, 2001) are constructed. In these plots, one considers a
given probability p and, based on the obtained realizations, one can de-
fine at each target location an intervalwith such a probability (the inter-
val bounds are the quantiles 1-p/2 and 1 + p/2 of the set of simulated
values). Subsequently, the location is assigned a value of 1 if the true
RMR belongs to the interval and 0 otherwise. It is expected that, on av-
erage over all the locations of the validation subset, the proportion of 1
should be close to the probability p under consideration. This procedure
has been applied with p varying from 0 to 1 (Fig. 11c, d). In both
Fig. 8.Maps of probability (between 0 and 1) that the RMR is less than a threshold
approaches, the observed proportion is close to the theoretical probabil-
ity (points close to the diagonal line, with a slightly better coincidence
for Approach 2), indicating that the realizations accurately assess the
uncertainty in the actual RMR values.

3.7. Discussion

Both simulation approaches give an insight into two characteristics
of the geomechanical parameters of interest: (1) their heterogeneity
at all spatial scales, especially at short scale, which can be assessed on
of 65 at elevation 3560 m, obtained with Approach 1 (a) and Approach 2 (b).

Image of Fig. 7
Image of Fig. 8


Fig. 9.Maps of discontinuity parameters at elevation 3560m, for realization#1 of P2 (a), average of 100 realizations of P2 (b), standarddeviation of 100 realizations of P2 (c), realization#1
of P3 (d), average of 100 realizations of P3 (e), and standard deviation of 100 realizations of P3 (f).
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each individual realization; and (2) the uncertainty in the true values at
unsampled locations. The latter can be assessed by comparing a set of
realizations at the same location or jointly over several locations,
e.g., by calculating the standard deviation of the realizations at each
location, which measures howmuch the true unknown values may de-
viate from their expected values (average of the realizations).

There are several differences between these two proposed ap-
proaches, mainly regarding pre and post processing. While Approach
1 allows directly simulating the RMR as a continuous variable, the quan-
tity and detail of the geomechanical information is more limited when
comparedwithApproach 2 that allows the simulation of the parameters
Fig. 10.Maps of deformationmodulus (GPa) at elevation 3560m, for realization #1 (a), average
1.
underlying the definition of RMR. Also, the difference in modeling and
computational efforts for both approaches is substantial, Approach 1
being a faster and simpler alternative than Approach 2. Regarding the
results, the observed differences are generally not significantwhenmap-
ping one realization or the average of a set of realizations, but differences
are perceptible when mapping the standard deviations of the realiza-
tions: Approach 2 yields a lower standard deviation (reflecting less
uncertainty) than Approach 1 in the peripheral zones. All things consid-
ered, the choice of the best approach should be made based on the re-
sources and needs of the practitioner (degree of required geotechnical
detail, understanding of the models, software and time availability).
of 100 realizations (b), standard deviation of 100 realizations (c), obtainedwith Approach

Image of Fig. 9
Image of Fig. 10


Fig. 11. Cross-validation results: scatter plots between true and expected RMR values (a, b), and accuracy plots (c, d) for Approach 1 (a, c) and Approach 2 (b, d).

102 M. Pinheiro et al. / Engineering Geology 205 (2016) 93–103
4. Conclusions

This paper presented two geostatistical approaches for simulating
RMR. The first one considers the direct simulation of RMR, viewed as a
variable measured on a continuous scale, while the second one sepa-
rately simulates the underlying parameters constituting the RMR
system (viewed as variables measured on a discrete scale). Both ap-
proaches lead to similar results in terms of expected RMRand processed
outputs. According to the split-sample validation technique, both have a
good performance in terms of prediction accuracy and measurement of
uncertainty, which makes them viable for RMR modeling.

The first approach presents the advantage of needing a lower com-
putation and pre-processing time, maintaining a good predictive accu-
racy, which is an interesting feature from a practical implementation
point of view. On the other hand, even though with higher computa-
tional costs needed for its implementation, the second approach pre-
sents a slightly higher accuracy and provides information on the RMR
individual parameters, which is useful for geotechnical analyses. For ex-
ample, the simulation of parameters P2 and P3, which are related with
the fracturing of the rock mass, can provide an overview about the re-
gions where a higher permeability is expected. Furthermore, since it
simulates variables measured on discrete scales, this second approach
is consistent with the nature of the geomechanical parameters to be
modeled, which are ratings rather than variables defined on a continu-
ous scale. If these parameters were cross-correlated, they should be
jointly simulated in order to reproduce such cross-correlations.

The two proposed approaches prove that individual realizations are
muchmore accurate in defining the heterogeneities at short scale, while
the average of the realizations tends to smooth these heterogeneities.
Besides de mapping of the expected RMR and underlying parameters,
the realizations allowmapping probabilities that show if the true values
are above or below a defined threshold. In addition, the standard devi-
ation can also bemapped indicating if true parameters fluctuate around
their expected values. Thosemaps are very helpful to quantify risks and
uncertainties at any target location (or group of locations) in space. By
applying empirical formulas, one can also map the deformation modu-
lus (Em) as a function of the RMR. Together with other parameters like
GSI andQ, thesemaps can be used to develop numericalmodels that ex-
plicitly consider the heterogeneities at all spatial scales, providing a
more accurate understanding of the rockmass behavior than traditional
interpolation approaches.
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