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In this paper we design a new implicit solver for the Junction-Generalized Riemann 
Problem (J-GRP), which is based on a recently proposed implicit method for solving the 
Generalized Riemann Problem (GRP) for systems of hyperbolic balance laws. We use the 
new J-GRP solver to construct an ADER scheme that is globally explicit, locally implicit and 
with no theoretical accuracy barrier, in both space and time. The resulting ADER scheme is 
able to deal with stiff source terms and can be applied to non-linear systems of hyperbolic 
balance laws in domains consisting on networks of one-dimensional sub-domains. In this 
paper we specifically apply the numerical techniques to networks of blood vessels. We 
report on a test problem with exact solution for a simplified network of three vessels 
meeting at a single junction, which is then used to carry out a systematic convergence rate 
study of the proposed high-order numerical methods. Schemes up to fifth order of accuracy 
in space and time are implemented and tested. We then show the ability of the ADER 
scheme to deal with stiff sources through a numerical simulation in a network of vessels. 
An application to a physical test problem consisting of a network of 37 compliant silicon 
tubes (arteries) and 21 junctions, reveals that it is imperative to use high-order methods at 
junctions, in order to preserve the desired high order of accuracy in the full computational 
domain. For example, it is demonstrated that a second-order method throughout, gives 
comparable results to a method that is fourth order in the interior of the domain and first 
order at junctions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, suitable computational methods for non-linear systems of hyperbolic balance laws in domains consisting 
on networks of one-dimensional sub-domains, have been the subject of many publications. Related applications include gas 
flow in pipes [1–3], traffic flow [4–6], water flow [7,8] and blood flow in the human circulation system [9–17]. For a review 
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of the subject see [18]. In all of these, the crucial point is the coupling of the information of the various one-dimensional 
sub-domains converging into a single junction. There exists a class of multi-scale methods that are based on the coupling 
between two or three-dimensional and one-dimensional equations. For the Euler equations, Hong and Kim [19] described 
a strategy to simulate a network of pipes where the junction interfaces are modeled through the three-dimensional equa-
tions and normal averaged fluxes are used as boundary condition for the one-dimensional equations. Formaggia et al. [20]
proposed an approach to couple the three-dimensional and one-dimensional Navier–Stokes equations for flow problems in 
compliant vessels. Miglio et al. [21,22] coupled the two-dimensional and the one-dimensional Saint-Venant equations for 
water flow. With a multi-scale approach, one can maintain the information of the geometry such as angles and secondary 
flows, but as the number of junctions increases and the geometry becomes more complex, the computational cost can be-
come too large, making a real simulation difficult or unfeasible. An example of a simpler model was described by Fullana et 
al. [23] for blood flow that consists of ingoing and outgoing flows in a tank with a time-variable volume V , with a tube law 
analogous to the vessel tube law that relates pressure and volume. In this case, the choice of the tube law and parameters 
causes the numerical simulation to be parameter-dependent.

The coupling of different one-dimensional sub-domains at a junction has been formulated as an extended Riemann prob-
lem, see [24–26]. This formulation has several advantages. Firstly, it allows for a rigorous study of existence and uniqueness 
of solutions. Secondly, it can be used to numerically connect different tubes or channels, and can be combined with a nu-
merical scheme for the interior part without additional computational costs compared to a multi-scale approach. Thirdly, it 
does not depend on additional parameters and the coupling conditions with no energy losses arise naturally from the PDEs 
themselves. The main disadvantage of this approach is the lack of geometrical information such as angles. For a rigorous 
mathematical study of existence and uniqueness of the Riemann problem solution at a junction under the assumption of 
subcritical flows, see Colombo et al. [24–26]. For the solution of the Riemann problem at a junction for arteries see [27], for 
arteries and veins refer to [9] and for gas pipes see [1,28].

A lot of research has been carried out in recent years in high-order ADER methods for both linear and non-linear 
systems in one, two and three space dimensions using either Cartesian or unstructured meshes, see for instance [29–36]. 
The building block of the ADER methodology is the solution of the Generalized Riemann Problem (GRP). Several solvers 
for the GRP have been proposed in the literature. The first one was proposed by Toro and Titarev [37], called here the 
Toro–Titarev (TT) solver. Then, Castro and Toro [38] reinterpreted, in the context of the GRP, the numerical scheme suggested 
by Harten et al. [39] and proposed the HEOC solver. In the same study, the authors also proposed a different way to solve 
the GRP, which is analogous to the TT solver, and called it the Castro–Toro (CT) solver. Since all of these mentioned solvers 
are based on the explicit Taylor expansion combined with the Cauchy–Kowalewskaya procedure, they do not deal with stiff 
source terms. The first GRP solver that has allowed the proper treatment of stiff source terms was put forward by Dumbser, 
Enaux and Toro [40], called here the DET solver. Subsequently, Montecinos and Toro [41] proposed an implicit solver, which 
is based on the implicit Taylor expansion combined with the Cauchy–Kowalewskaya procedure and is able to handle stiff 
source terms. The authors called it the MT-TT solver. More recently, they have formulated in [42] the implicit version of the 
HEOC solver and called it the MT-HEOC solver.

The extension of the Classical Riemann Problem (CRP) for junctions, which we call throughout this paper the Junction-
Classical Riemann Problem (J-CRP), has been studied and used in the context of low and high-order numerical schemes. 
A low order numerical treatment of junctions spoils the accuracy in space and time achieved by a high-order numerical 
scheme used within each sub-domain of the network. Examples of this, in the context of human blood circulation simu-
lated through a mathematical model, can be seen for instance in Müller and Toro [9,10], Liang et al. [13–15] and Mynard 
et al. [16]. First-order errors travel through the network of vessels with a damping effect for the pressure pulse-waves. 
Moreover, Borsche and Kall [43] observed that the combination of schemes and coupling conditions of different orders 
may modify the speed at which shocks pass the junction. To date, few studies have been done on the solution of the 
Junction-Generalized Riemann Problem (J-GRP), namely the extension of the GRP for junctions connecting one-dimensional 
sub-domains. The first high-order solvers of the J-GRP were put forward by Borsche and Kall [43]. They generalized the TT 
and the CT solvers for the J-GRP. Then, Müller and Blanco [44] proposed an extension of the DET solver, which is able to 
deal with stiff source terms. In addition, Borsche and Kall [45] extended the HEOC solver for junctions. No studies have 
been done so far to extend the MT-TT or the MT-HEOC solvers.

The aim of this paper is to extend the MT-HEOC solver for the GRP and construct a new implicit, semi-analytical solution 
of the J-GRP. Using the new MT-HEOC solver for the J-GRP, we design an ADER scheme that is globally explicit, locally 
implicit, free of any theoretical accuracy barrier in space and time, able to deal with stiff source terms and can be applied 
to non-linear systems of hyperbolic balance laws in domains consisting on networks of one-dimensional sub-domains. To 
validate the numerical methodology, we carry out a convergence rate study for a network of three vessels, propose a 
numerical experiment that assesses the ability of the numerical scheme to deal with stiff source terms and junctions, and 
implement the method for the physical model presented by Matthys et al. [46] and further studied by Alastruey et al. [11].

The rest of this paper is structured as follows: in Section 2 we review the one-dimensional blood flow equations and 
explain the ADER finite volume scheme with different solvers for the GRP. We then describe a new methodology for solving 
the J-GRP. In Section 3 we propose two test problems in a network to verify the order of accuracy and the ability of the 
solver to deal with stiff source terms. We then show an application for a more complex network of 37 vessels and 21 
junctions for which experimental results are available in the literature. Section 4 gives a summary and conclusions.
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2. Methods

In this section we review the one-dimensional blood flow equations, briefly describe the ADER scheme with two different 
solvers for the GRP, formulate the J-GRP and propose a new methodology to accurately solve it.

2.1. One-dimensional blood flow equations

The one-dimensional blood flow equations for a compliant vessel are the following{
∂t A + ∂xq = 0 ,

∂tq + ∂x
(
α q2

A

)+ A
ρ ∂x p = − f

ρ ,
(1)

where x is the space variable, t is time, α is the Coriolis coefficient assumed to be α = 1, A(x, t) is the cross-sectional area 
of the vessel, q(x, t) = A(x, t)u(x, t) is the flow, u(x, t) is the velocity, p(x, t) is the pressure, ρ is the blood density (set to 
1050 kg/m3), f (x, t) = γπμ q

A is the friction force per unit length of the tube with parameter γ chosen depending on the 
velocity profile and μ is the kinematic viscosity. There are two governing partial differential equations and three unknowns, 
namely A(x, t), q(x, t) and p(x, t). For this reason, an extra relation is required to close the system, the tube law, which 
relates pressure p(x, t) and cross-sectional area A(x, t). A purely elastic tube law reads

p(x, t) = K (x)ψ(A(x, t); A0(x)) + pe(x, t) , (2)

with

ψ(A(x, t); A0(x)) =
[(

A(x, t)

A0(x)

)m

−
(

A(x, t)

A0(x)

)n]
, (3)

where pe(x, t) is the external pressure, A0(x) is vessel cross-sectional area at equilibrium, K (x) is the bending stiffness of the 
vessel wall, m ≥ 0 and n ≤ 0 are real numbers to be specified. For hyperbolicity m and n must satisfy additional constraints, 
see [47]. For more information about the mathematical structure of the equations, see [48,47]. Relation (2) models a purely 
elastic behavior of the vessel wall. Other tube laws may also account for visco-elasticity, elastin and collagen, see [11,49]. 
Practical choices for the parameters m, n and K are

K (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ka = E

1 − ν2

(
h0

r0

)
, m = 1

2
, n = 0 for arteries,

K v = E

12(1 − ν2)

(
h0

r0

)3

, m ≈ 10 , n = −3/2 for veins,

(4)

where ν , h0, r0 are the Poisson ratio (set to ν = 0.5), the wall-thickness at equilibrium and the cross-sectional radius at 
equilibrium. It is possible to write the blood flow equations in conservative form as follows:

∂tQ + ∂xF(Q, x) = S(Q, x) , (5)

where

Q =
[

A
Au

]
, F(Q, x) =

[
Au

Au2 − K
ρ A0∂A0	

]
, (6)

S(Q, x) =
⎡
⎣ 0

− 1
ρ

(
f + A∂x pe + 	∂x K + K∂x A0∂A0	

) ⎤⎦ , (7)

with

	 = 	(A; A0) =
∫
A

ψ(A; A0)dA = A0

(
1

m + 1

(
A

A0

)m+1

− 1

n + 1

(
A

A0

)n+1
)

, (8)

and

∂A0	 = ∂A0	(A; A0) = ∂A0

∫
A

ψ(A; A0)dA = −
(

m

m + 1

(
A

A0

)m+1

− n

n + 1

(
A

A0

)n+1
)

. (9)

The constants arising from the integrals (8) and (9) are set to zero for consistency with (1) and (2), see [50–52]. For a 
complete view of the mathematical analysis and derivation of the one-dimensional blood flow equations, refer to [47,48,52].
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2.2. ADER finite volume scheme

Consider the system of m hyperbolic balance laws

∂tQ + ∂xF(Q) = S(Q) . (10)

By integrating (10) over the control volume V = [xi− 1
2
, xi+ 1

2
] × [tn, tn+1] we obtain the exact formula

Qn+1
i = Qn

i − 
t


x

(
Fi+ 1

2
− Fi− 1

2

)+ 
tSi , (11)

with definitions

Qn
i = 1


x

x
i+ 1

2∫
x

i− 1
2

Q(x, tn)dx , (12)

Fi+ 1
2

= 1


t

tn+1∫
tn

F(Q(xi+ 1
2
, τ ))dτ , Si = 1


t
x

tn+1∫
tn

x
i+ 1

2∫
x

i− 1
2

S(Q(x, τ ))dxdτ . (13)

Eq. (12) gives the spatial-integral average at time t = tn of the conserved variable Q, (13) the time-integral average at 
interface x = xi+ 1

2
of the physical flux F and the volume-integral average in V of the source term S respectively. Spatial 

mesh size and time step are 
x = xi+ 1
2

− xi− 1
2

and 
t = tn+1 − tn respectively. Finite volume methods depart from (10)

to (13), where integrals are approximated, and then formula (11) becomes a finite volume method, where the approximated 
integrals (13) are called numerical flux and numerical source, respectively. The ADER finite volume schemes are one-step, fully 
discrete schemes, based on (11) with three main ingredients: a high-order spatial reconstruction (once per time step), the 
solution of the GRP at the cell interface to find the numerical flux and computation of the numerical source. The numerical 
flux is evaluated as time-integral average of the physical flux evaluated at the solution of the local GRP at the cell interface 
xi+ 1

2
and the numerical source is computed as a high-order space–time integral of the source term within control volume V . 

See Toro et al. [29], Chapters 19 and 20 of [53] and references therein.

2.2.1. Generalized Riemann problem (GRP)
The Generalized Riemann Problem (GRP) is the following initial value problem

PDEs: ∂tQ + ∂xF(Q) = S(Q) , x ∈ (−∞,+∞) , t > 0,

ICs: Q(x,0) =
{

QL(x) x < 0 ,

QR(x) x > 0 ,

⎫⎪⎬
⎪⎭ (14)

where QL(x) and QR(x) are smooth vector-valued functions (e.g. polynomials of degree M) given by a reconstruction pro-
cedure. The particular case in which QL(x) and QR(x) are constant and S(Q) = 0 is called the Classical Riemann Problem 
(CRP).

We are interested in finding the solution in time of problem (14) at the interface x = 0, which we denote with QLR(τ ), 
to evaluate the numerical flux Fi+ 1

2
, namely

Fi+ 1
2

= 1


t

tn+1∫
tn

F(QLR(τ ))dτ . (15)

Several approaches have been proposed in the literature. There are two categories of GRP solvers: explicit and implicit. 
The first explicit solver for the GRP is the TT solver, proposed by Toro and Titarev [37]. Then, Castro and Toro proposed both 
the CT and the HEOC solvers [38]. The first implicit solver is the DET solver, proposed by Dumbser et al. [40]. Then, implicit 
versions of TT and HEOC resulted in the MT-TT and the MT-HEOC solvers, both proposed by Montecinos and Toro [41,42]. 
For a comparison between different GRP solvers see [54]. For a study of analytical properties of the TT solver see Goetz and 
Iske [55]. Here we briefly present the HEOC approach in the explicit and implicit forms.
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2.2.2. The Harten–Engquist–Osher–Chakravarthy (HEOC) solver
Castro and Toro [38] reinterpreted the methodology proposed by Harten et al. [39] in terms of a local GRP. The idea is to 

first evolve in time, independently, the left and right extrapolated values at the interface of the left and right reconstructed 
polynomials, up to a time τ and then solve a CRP with the resulting piece-wise constant data. Then the sought GRP solution 
at time τ is the Godunov state of the CRP solution, that is, the solution along the t-axis of the CRP. In what follows we 
describe the full procedure.

The GRP solution along the t-axis QLR(τ ) of (14) is found by solving the following CRP

PDEs: ∂tQ + ∂xF(Q) = 0 , x ∈ (−∞,+∞) , t > 0 ,

ICs: Q(x,0) =
{

Q̂L(τ ) x < 0 ,

Q̂R(τ ) x > 0 ,

⎫⎪⎬
⎪⎭ (16)

where the evolved vectors Q̂L(τ ) and Q̂R(τ ) are constant and given by applying a Taylor expansion around the initial points 
QL(0−) = limx→0− QL(x) and QR(0+) = limx→0+ QR(x), respectively, evaluated at τ , that is

Q̂L(τ ) = QL(0−) +
M∑

j=1

τ j

j! ∂
( j)
t QL(0−) ,

Q̂R(τ ) = QR(0+) +
M∑

j=1

τ j

j! ∂
( j)
t QR(0+) .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(17)

The Cauchy–Kowalewskaya procedure allows us to use the PDEs in (14) to express all time derivatives in (17) as functionals 
of space derivatives and of the source term S(Q), namely

∂
( j)
t Q(x, t) = G( j)

(
Q(x, t), . . . , ∂( j)

x Q(x, t)
)

. (18)

The polynomials QL(x) and QR(x) are defined on the left and right sides of the interface and are smooth away from 0 
(locally the interface). This allows us to define limiting values from the left and right, at t = 0, of the spatial derivatives of 
the initial conditions, namely

∂
( j)
x QL(0−) := lim

x→0−
∂

( j)
x QL(x) , j = 1, . . . , M ,

∂
( j)
x QR(0+) := lim

x→0+
∂

( j)
x QR(x) , j = 1, . . . , M .

⎫⎪⎬
⎪⎭ (19)

Thus, time derivatives can be replaced by their respective Cauchy–Kowalewskaya functional G( j) , leading to

Q̂L(τ ) = QL(0−) +
M∑

j=1

τ j

j! G( j)
(

QL(0−), . . . , ∂
( j)
x QL(0−)

)
,

Q̂R(τ ) = QR(0+) +
M∑

j=1

τ j

j! G( j)
(

QR(0+), . . . , ∂
( j)
x QR(0+)

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(20)

Eqs. (20) are final product of the evolution stage. The sought GRP solution along the t-axis at time t = τ is the Godunov 
state of the CRP with initial data given by (20) and self-similar solution D(x/t), that is

QLR(τ ) = D(0) . (21)

Note that when solving the CRP (16) at time t = τ , we change to local coordinates x̂ = x and t̂ = t − τ , and then for con-
venience we omit the “hats”. This numerical solver for the GRP is called the Harten–Engquist–Osher–Chakravarthy (HEOC). 
To evaluate the numerical flux Fi+ 1

2
, one has to calculate the solution of the GRP at the interface xi+ 1

2
at different time-

integration points, within the time step 0 ≤ τ ≤ 
t . In the HEOC solver, for each time-integration point, one has to apply 
two Taylor expansions and solve a CRP. Moreover, the HEOC solver requires a robust and generally non-linear Riemann 
solver, which can be time-consuming; whereas the TT solver needs a single expansion right at the interface and uses a 
non-linear Riemann solver only once to compute the leading term. To solve the CRP we recommend the use of a non-linear 
complete approximate Riemann solver. Here for the two equation model, we use the Harten–Lax–van Leer (HLL) [56]. For 
background on classical Riemann solvers, see [53].

We now describe the implicit version of the HEOC solver, which uses the implicit Taylor series expansion instead of the 
explicit version.
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2.2.3. The MT implicit Taylor series expansion
Toro and Montecinos proposed in [42,41] two methodologies for solving the GRP: the MT-TT and the MT-HEOC solvers. 

These solvers are the implicit versions of the TT and the HEOC solvers respectively, and are able to deal with stiff source 
terms. They are based on an implicit Taylor expansion in the evolution stage, which generates non-linear algebraic problems 
to be solved. For the MT-HEOC approach there are two possible schemes, namely Reduced Implicit Taylor expansion Approach 
(RITA) and Complete Implicit Taylor expansion Approach (CITA). See [42] for details. Here we describe the RITA approach, insofar 
as it is simpler and there are less operations to be performed, when compared to CITA.

First of all, we apply an implicit Taylor expansion at position x = 0 and time t = τ ,

Q(0, τ ) = Q(0,0+) −
M∑

j=1

(−τ ) j

j! ∂
( j)
t Q(0, τ ) , (22)

where the evolved vectors Q(0, τ ), . . . , ∂(M)
t Q(0, τ ) are unknown. Then we use the Cauchy–Kowalewskaya procedure to 

convert time derivatives into functionals of space derivatives

Q(0, τ ) = Q(0,0+) −
M∑

j=1

(−τ ) j

j! G( j)
(

Q(0, τ ), . . . , ∂
( j)
x Q(0, τ )

)
. (23)

Note that the Cauchy–Kowalewskaya functionals G( j) are evaluated at the unknown evolved vectors Q(0, τ ), . . . , ∂( j)
x Q(0, τ ). 

In Eqs. (23) there are M + 1 vector unknowns and each one has m entries, thus the total number of unknowns is m(M + 1). 
Since we only have m equations in (23), we still need mM equations, which can be obtained by applying a time implicit 
Taylor expansion for the spatial derivatives ∂(h)

x Q(0, τ ), with h = 1, . . . , M , leading to

∂
(h)
x Q(0, τ ) = ∂

(h)
x Q(0,0+) −

M−h∑
j=1

(−τ ) j

j! ∂
( j)
t ∂

(h)
x Q(0, τ ) , h = 1, . . . , M . (24)

Exchanging temporal and spatial derivatives and using the Cauchy–Kowalewskaya procedure, we obtain

∂
(h)
x Q(0, τ ) = ∂

(h)
x Q(0,0+) −

M−h∑
j=1

(−τ ) j

j! ∂
(h)
x G( j)

(
Q(0, τ ), . . . , ∂

( j)
x Q(0, τ )

)
, h = 1, . . . , M . (25)

The Mm and m equations obtained respectively by Eqs. (25) and (23) allow us to have the required number of equations, 
that is, m(M + 1). We introduce the notation

U = [U0, . . . ,UM ] , U j = ∂
( j)
x Q(0, τ ) , j = 0, . . . , M ,

U0 = [U0
0, . . . ,UM

0 ] , U j
0 = ∂

( j)
x Q(0,0+) , j = 0, . . . , M ,

}
(26)

where U is the vector of unknown and U0 is a known vector of the leading terms. Hence, rewriting Eqs. (23) and (25), we 
end up with the following problem: given U0, find Û such that

L(Û;U0, τ ) = Û − H(Û;U0, τ ) = 0 , (27)

where

H(U;U0, τ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0
0 −

M∑
j=1

(−τ ) j

j! G( j)(U0, . . . ,U j)

...

Uh
0 −

M−h∑
j=1

(−τ ) j

j! ∂
(h)
x G( j)(U0, . . . ,U j)

...

UM
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

Once problem (27) is solved, evolved values Q(0, τ ), . . . , ∂(M)
x Q(0, τ ) are known. Functionals G( j) and their spatial derivatives 

can be found using symbolic manipulators in a preprocessing step. To find the root of L, one can apply, for instance, 
a Newton or a Newton reduced-step method, see [42]. A possible guess value for a numerical method to find the solution 
of (27) is the vector of the leading terms, namely U0. The operator L(Û; U0, τ ) depends on the time τ and on the choice 
of U0, which will be different depending on the solver being used.
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2.2.4. The implicit Montecinos–Toro HEOC (MT-HEOC) solver
The GRP solution along the t-axis QLR(τ ) of (14) is found by solving the following CRP

PDEs: ∂tQ + ∂xF(Q) = 0 , x ∈ (−∞,+∞) , t > 0 ,

ICs: Q(x,0) =
{

Q̂L(τ ) x < 0 ,

Q̂R(τ ) x > 0 ,

⎫⎪⎬
⎪⎭ (29)

where the evolved vectors Q̂L(τ ) and Q̂R(τ ) are constant and found by solving the following non-linear problems: find ÛL

and ÛR such that

L(ÛL;UL, τ ) = 0 , L(ÛR;UR , τ ) = 0 , (30)

where the leading terms UL and UR are respectively

UL = [U0
L, . . . ,UM

L ] , U j
L = ∂

( j)
x QL(0−) = lim

x→0−
∂

( j)
x QL(x) , j = 0, . . . , M ,

UR = [U0
R , . . . ,UM

R ] , U j
R = ∂

( j)
x QR(0+) = lim

x→0+
∂

( j)
x QR(x) , j = 0, . . . , M .

⎫⎪⎬
⎪⎭ (31)

The solution procedure of the non-linear problems (30) is termed here the evolution stage. Possible guess values for a 
numerical method to find the solutions of non-linear problems (30) are the reconstructed polynomials and their derivatives, 
namely UL and UR . Once problems (30) are solved, then the evolved values Q̂L(τ ) and Q̂R(τ ) will be the first entries of ÛL

and ÛR respectively, namely Û0
L and Û0

R . The sought GRP solution along the t-axis at time t = τ is the Godunov state of the 
CRP (29) with initial data Q̂L(τ ) and Q̂R(τ ) and self-similar solution D(x/t), namely

QLR(τ ) = D(0) . (32)

The MT-HEOC solver uses the implicit Taylor series expansion (30) in the evolution stage, instead of an explicit one (20). 
The use of the implicit approach in the evolution stage requires the solution of non-linear algebraic problem with m(M + 1)

unknowns for each side of the interface and then the solution of a non-linear CRP. As for the HEOC solver, we can also use 
an approximate Riemann solver to find the solution of the CRP (29), such as the two-rarefaction [53] or the HLL Riemann 
solvers [56].

The PDEs of the CRP in (29) do not contain the source term S(Q). However, the influence of the source term is accounted 
for via the Cauchy–Kowalewskaya procedure through the functional H(U; U0, τ ). The non-linear problems, which have to be 
solved in order to find the initial condition for the CRP, allow us to deal with stiff source terms, see [41,42] and [57].

2.3. The Junction-Generalized Riemann Problem (J-GRP)

We are concerned with the design of high-order numerical methods for solving hyperbolic balance laws in simplified 
domains consisting of networks of one-dimensional sub-domains that can be, for example, blood vessels, water channels 
or gas tubes. In our application we formulate the J-GRP in the context of one-dimensional blood flow equations. For this 
reason, we formulate the mathematical problem in terms of vessels. First, we define the J-GRP, then we explain how to 
solve the J-CRP for one-dimensional blood flow equations and propose a new solver for the J-GRP.

Consider a set of N vessels with the common vertex V . For the k-th vessel, variable xk is the local coordinate and the 
vertex V is located in 0 without loss of generality. In each k-th vessel, consider the following initial value problem

PDEs: ∂tQk + ∂xF(Qk) = S(Qk) , xk ∈ Ik = (ak,bk) , t > 0 ,

ICs: Qk(xk,0) = Qk
(0)(xk) ,

}
(33)

where either ak or bk is the local coordinate of vertex V , spatial domain Ik has length Lk = |bk −ak| and the initial condition 
Qk

(0)(xk) is a smooth vector-valued function of the local coordinate xk (e.g. polynomials of order M). Note that the material 
and geometrical properties can be different for each k-th vessel. The set of solutions Qk(xk, t), with k = 1, . . . , N , has to 
satisfy the following coupling conditions at the common vertex V

�(Q1(0, t), . . . ,QN(0, t)) = 0 , t > 0 , (34)

where the vector � defines coupling conditions. We define as Junction-Generalized Riemann Problem (J-GRP) at the vertex 
V with N vessels, the set initial value problems (33), with k = 1 . . . , N , with constraints (34). Fig. 1 illustrates a simple 
representation of a J-GRP. For the particular case in which N = 2, b1 = 0 and a2 = 0, we end up with a GRP with the 
jump discontinuity at the initial time located in x = 0. Therefore, the J-GRP is an extension of the GRP. In order to easy the 
notation in the following, we shall consider the local coordinate xk without index.
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Fig. 1. Illustration of initial condition for a J-GRP with N = 3 vessels and vertex V for a single component q(0)(x, t) of the vector of unknowns Q(0)(x, t). 
The data q1

(0)
, q2

(0)
and q3

(0)
are smooth away from vertex V and have one-sided spatial derivatives at V .

We are interested in finding the solutions in time of problem (33) at the vertex V , which we denote with Qk
V (τ ), for 

k = 1, . . . , N , to evaluate the numerical flux Fk
V of the k-th vessel at the vertex V , namely

Fk
V = 1


t

tn+1∫
tn

F(Qk
V (τ ))dτ . (35)

In the following we shall refer to these numerical fluxes at the vertex V as the junction-numerical fluxes. The main ingredient 
we require to solve the J-GRP is the related classical version with piece-wise constant data and no source terms.

2.3.1. The Junction-Classical Riemann Problem (J-CRP)
Consider the following set of initial value problems

PDEs: ∂tQk + ∂xF(Qk) = 0 , x ∈ Ik = (ak,bk) , t > 0 ,

ICs: Qk(x,0) = Qk
(0) ,

}
k = 1, . . . , N , (36)

with coupling conditions �

�(Q1(0, t), . . . ,QN(0, t)) = 0 , t > 0 , (37)

where Qk
(0) , with k = 1, . . . , N , are constant vectors. We define as Junction-Classical Riemann Problem (J-CRP) at the vertex V

with N vessels, the set initial value problems (36), with k = 1 . . . , N , with constraints (37).
The solution of a J-CRP is a set of self-similar functions Dk(x/t) defined for each k-th vessel. For a 2 × 2 hyperbolic 

balance law system in subcritical regime, we have a total number of 2N states. These 2N states arise from the N initial 
conditions Qk

(0) , with k = 1, . . . , N , and N states Qk∗ , with k = 1, . . . , N , which are connected to the initial conditions through 
non-linear waves and among themselves by the coupling conditions �. To completely solve the J-CRP, one has to find values 
Qk∗ , with k = 1, . . . , N , using both the structure of the waves (i.e. rarefactions or shocks) and the coupling conditions �. The 
solutions along the t-axis Dk(0), with k = 1, . . . , N , of the J-CRP, are termed here the Godunov states.

Here we present the solution of the J-CRP for the one-dimensional blood flow equations assuming subcritical flow. To the 
authors’ knowledge, the complete solution of the J-CRP considering all possible wave-patterns is not available. This implies 
that we cannot handle supercritical and transcritical flows at junctions, which might be present in physiological situations 
due to vein collapse with discontinuous parameters in the human body, see [58]. For the solution of the CRP for subcritical 
flows with discontinuous material properties for blood flow with n = 0 and m > 0 refer to [59], and to [47] with n < 0 and 
m > 0. For arteries, [60,61] solved in complete detail the CRP with discontinuous material properties. For the solution of the 
J-CRP in blood flow for subcritical flows with n < 0 and m > 0, see also [44]. See [24–26,43] for the solution of the J-CRP 
using a more geometrical approach and for general conservation laws.
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Fig. 2. Representation of a J-CRP for a typical 2 × 2 non-linear system with N = 3 vessels, where b1 = 0, a2 = 0 and a3 = 0 are the local coordinates of 
vertex V for the first, second and third vessel respectively. The non-linear function fk connects the initial condition Qk

(0) and unknown Qk∗ for k = 1 . . . , 3, 
f4 connects all the unknowns Q1∗, Q2∗, Q3∗ , while f5 and f6 connect the unknown Q1∗ to Q2∗ and Q3∗ , respectively.

The coupling conditions that connect states Qk∗ , with k = 1, . . . , N , among themselves are

�(Q1∗, . . . ,QN∗ ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

N∑
k=1

gk Ak∗uk∗

pt(A1∗, u1∗; K 1, A1
0) − pt(A2∗, u2∗; K 2, A2

0)
...

pt(A1∗, u1∗; K 1, A1
0) − pt(AN∗ , uN∗ ; K N , AN

0 )

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0 , (38)

where the vector of conserved variables Q is defined in (6), while K k and Ak
0 are the material properties of the k-th vessel. 

The auxiliary function gk indicates whether the k-th vessel has vertex V at ak or bk , and reads

gk =
{

−1 ak = 0 ,

1 bk = 0 ,
(39)

pt denotes total pressure

pt(A, u; K , A0) = 1

2
ρu2 + p(A; K , A0) , (40)

and p is the pressure given in (2). The first component of � assures conservation of mass, whereas all the remaining 
components, from the second to the N-th, guarantee equality of total pressure in all the vessels meeting at vertex V . Since 
the number of vectors Qk∗ is N and each vector has two components Ak∗ and qk∗ = Ak∗uk∗ , the total number of unknowns 
is 2N . This means that we need a total number of 2N equations to close the system. The coupling conditions � contain 
N equations, while the other N equations are obtained by connecting each state Qk∗ to the initial condition Qk

(0) through 
non-linear waves for k = 1, . . . , N . The total number of equations are 2N and therefore the system is closed. (See Fig. 2.)

The non-linear relationship between Qk∗ and Qk
(0) , with k = 1, . . . , N , reads

uk∗ − uk
(0) + gkβ(Ak∗; Ak

(0), K k, Ak
0) = 0 , k = 1, . . . , N , (41)

where the non-linear function β is

β(A∗; A, K , A0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A∗∫
A

c(τ ; K , A0)

τ
dτ if A∗ ≤ A , rarefaction wave,

√
B(A∗; A, K , A0)

A∗ − A

A A
if A∗ > A , shock wave.

(42)
∗
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Fig. 3. Example of a J-CRP. Piece-wise constant data are given for each vessel. Frames (a) and (b) depict the solution at initial and output time for a simple 
J-CRP respectively. A rarefaction wave propagates backward in the left sub-domain, whereas two shocks move forward in the others.

The wave speed is

c(A; K , A0) =
√√√√ K

ρ

(
m

(
A

A0

)m

− n

(
A

A0

)n
)

, (43)

and the function B is

B(A∗; A, K , A0) = K

ρ

(
m

m + 1

Am+1∗ − Am+1

Am
0

− n

n + 1

An+1∗ − An+1

An
0

)
. (44)

Gathering the information coming from Eqs. (38) and (41) we end up with the following

Proposition 2.1. The solution of the J-CRP with N vessels for subcritical flow is found by solving the following non-linear system

f1(x1, y1; A1
(0), u1

(0)) = y1 − u1
(0) + g1β(x1; A1

(0), K 1, A1
0) = 0 ,

...

f N(xN , yN ; AN
(0), uN

(0)) = yN − uN
(0) + gNβ(xN ; AN

(0), K N , AN
0 ) = 0 ,

f N+1(x1, . . . , xN , y1, . . . , yN) = g1x1 y1 + g2x2 y2 + · · · + gN xN yN = 0 ,

f N+2(x1, y1, x2, y2) = pt(x1, y1; K 1, A1
0) − pt(x2, y2; K 2, A2

0) = 0 ,
...

f2N(x1, y1, xN , yN) = pt(x1, y1; K 1, A1
0) − pt(xN , yN ; K N , AN

0 ) = 0 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(45)

where the unknowns of the problem are

X = [x1, . . . , xN ] = [A1∗, . . . , AN∗ ] , Y = [y1, . . . , yN ] = [u1∗, . . . , uN∗ ] , (46)

with β and pt defined in (42) and (40), respectively.
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The k-th non-linear function fk connects the initial condition Qk
(0) to the unknown Qk∗ for k = 1, . . . , N , f N+1 connects 

all the unknowns Q1∗ . . . , QN∗ , and fk+N connects the unknown Q1∗ to the unknown Qk∗ for k = 2, . . . , N . We note that 
Proposition 2.1 is a generalization of Proposition 4.6 of [59]. A J-CRP solver for 2 vessels with different parameters K , A0
corresponds to the CRP solver with piece-wise constant parameters K , A0 for a single vessel. As we have assumed subcritical 
flow, then the Godunov states of problem of the J-CRP will be Dk(0) = Qk∗ for k = 1, . . . , N . See Fig. 3 for an example of a 
J-CRP.

Sherwin et al. [62] solved the above system for blood flow assuming a two-rarefaction wave-pattern for the function β
defined in (42), namely they assumed A∗ ≤ A. This hypothesis can be seen as an approximate J-CRP solver, through which 
numerical simulations show acceptable numerical results, see [62]. See also [44] for the first complete description of the 
solution of the J-CRP for blood flow, where both shocks and rarefaction waves are admitted for the genuinely non-linear 
characteristic fields.

2.4. A new implicit J-GRP solver

Here we propose a new implicit solver for the J-GRP. Following the idea of the explicit HEOC solver for the J-GRP 
proposed in [45] and the implicit MT-HEOC solver for the GRP in [42], we propose to combine them and construct the 
MT-HEOC solver for the J-GRP.

The J-GRP solutions along the t-axis Qk
V (τ ), with k = 1, . . . , N , of (33) with coupling conditions � are found by solving 

the following J-CRP at the vertex V with N vessels and coupling conditions �

PDEs: ∂tQk + ∂xF(Qk) = 0 , x ∈ Ik = (ak,bk) , t > 0 ,

ICs: Qk(x,0) = Q̂k
(0)(τ ) ,

}
k = 1, . . . , N , (47)

where Q̂k
(0)(τ ), with k = 1, . . . , N , are constant vectors. The evolved values Q̂k

(0)(τ ) are found by applying for each k-th vessel 
the implicit Taylor expansion at the vertex V up to time τ , that is, by solving the following non-linear problem: find Ûk

(0)

such that

L(Ûk
(0);Uk

(0), τ ) = 0 , (48)

where the leading term Uk
(0)

is

Uk
(0) = [Uk,0

(0) , . . . ,Uk,M
(0) ] , Uk, j

(0) =
{

∂
( j)
x Qk

(0)(0+) = limx→0+ ∂
( j)
x Qk

(0)(x) , if ak = 0 ,

∂
( j)
x Qk

(0)(0−) = limx→0− ∂
( j)
x Qk

(0)(x) , if bk = 0 ,
j = 0, . . . , M . (49)

The solution procedure of the non-linear problems (48) is termed here the evolution stage. As in the MT-HEOC solver for the 
GRP, a possible initial guess for a numerical method to find solution of the non-linear problem (48) is Uk

(0) . Once we solve 
problem (48), then the evolved vector Q̂k

(0)(τ ) will be the first entry of Ûk
(0) , namely Ûk,0

(0) . The sought J-GRP solutions along 
the t-axis at time t = τ are the Godunov states of the J-CRP (47) with initial data Q̂k

(0)(τ ), with k = 1, . . . , N , and self-similar 
solutions Dk(x/t), namely

Qk
V (τ ) = Dk(0) , k = 1, . . . , N . (50)

Assuming subcritical flow, the values Qk
V (τ ) are the N states Qk∗ described in Section 2.3.1, namely

Qk
V (τ ) = Qk∗ , k = 1, . . . , N . (51)

We call the present method the MT-HEOC solver for the J-GRP, which extends the MT-HEOC solver for the GRP to the 
J-GRP. In the evolution stage of the MT-HEOC solver for the GRP, one applies an implicit Taylor series expansion to the left 
and right boundary extrapolated values, up to time t = τ ; this part gives left and right evolved values that are the initial 
conditions for a CRP. The solution along the t-axis of the GRP at time t = τ is then the Godunov state of the CRP. The natural 
generalization of the evolution stage of the MT-HEOC solver for the J-GRP is to apply an implicit Taylor series expansion on 
each vessel at the vertex V up to time t = τ ; this part gives evolved values that are the initial conditions for a J-CRP. The 
solutions along the t-axis of the J-GRP at time t = τ are then the Godunov states of a J-CRP.

See Fig. 4 for an illustration of the MT-HEOC solver for the J-GRP where we have N = 3 vessels. We use the implicit 
Taylor expansion to evolve the extrapolated values and find the evolved values Q̂1

(0)(τ ), Q̂2
(0)(τ ) and Q̂3

(0)(τ ). We then solve 
a J-CRP and find the solutions along the t-axis Q1

V (τ ), Q2
V (τ ) and Q3

V (τ ).
We point out that our new method requires the solution of a non-linear problem for each k-th vessel with a total 

number of N non-linear problems of m(M + 1) unknowns, where N , m and M are respectively the total number of vessels, 
the number of components of the conserved variable Q and the order of the polynomials obtained by a reconstruction 
procedure. We remark that implicit solvers for the GRP and J-GRP are more costly than explicit ones and should only be 
used for problems that are known or suspected to be stiff.
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Fig. 4. Illustration of the MT-HEOC solver for the J-GRP with N = 3 vessels. The limiting values at vertex V are evolved separately up to time t = τ . The 
sought solutions along the t-axis are the Godunov states of the J-CRP with these evolved states as initial data.

2.4.1. Spatial reconstruction
The spatial reconstruction is a crucial ingredient of the ADER finite volume methods. In the presence of boundaries, one 

has to take into account the lack of information given by the limited space. For instance, for a junction of three vessels, we 
do not have enough data to apply a classical three stencils WENO reconstruction [34] near the boundaries.

Borsche and Kall in [43] described a method that permits to fill the corresponding ghost cells using the information 
gained from the time derivatives of the Godunov states using either the Castro–Toro or the Toro–Titarev solver for the 
J-GRP. The same authors in [45] pointed out that in the explicit HEOC solver it is not possible to apply the same procedure 
as for the CT or the TT since we do not calculate the time derivatives of the Godunov states but rather directly evaluate the 
solutions of the J-GRP at time t = τ . In the DET solver for the J-GRP, Müller and Blanco [44] proposed to fill the ghost cells 
using the spatial derivatives obtained from the implicit Discontinuous Galerkin prediction for solving the GRP. In this way, 
the inverse Cauchy–Kowalewskaya functionals used by Borsche and Kall [43] are avoided, and therefore the methodology 
can be applied to hyperbolic systems with non-invertible Jacobian matrices.

The MT-HEOC solver for the J-GRP gives more spatial information than its explicit version. In fact, by applying an implicit 
Taylor expansion, we evolve up to a certain time t = τ the extrapolated value of the reconstructed polynomial and its 
derivatives. Therefore, we should be able to apply the methodology proposed by Müller and Blanco [44]. As a matter of 
fact, the MT-HEOC solver replaces the numerical prediction of the DET solver with an implicit Taylor series expansion [42]. 
However, here we use a one-sided WENO reconstruction approach [63], following the HEOC solver in [45]. The drawback 
of using a one-sided WENO reconstruction, compared to the use of filled ghost cells, is the requirement of a minimum 
number of cells for each sub-domain. Indeed, to apply a k-th order scheme, we require at least k computational cells for 
each sub-domain.

2.4.2. Algorithm for evolving the solution in the complete network
Here we provide an algorithm to evolve the solution in the complete network, from time tn to tn+1, using a high-order 

ADER scheme with the MT-HEOC solver for both the J-GRP and the GRP. To approximate the time integrals of the junction-
numerical fluxes in (35), we use the classical Gaussian quadrature rule with NGauss time quadrature points.

1. For each vertex V with N connected vessels, compute the junction-numerical fluxes located at the vertex V

Fk
V = 1


t

tn+1∫
tn

F(Qk
V (τ ))dτ ≈

NGauss∑
h=1

ωhF(Qk
V (τh)) , k = 1, . . . , N , (52)

applying the following procedure:
(a) for k = 1, . . . , N use a WENO one sided reconstruction procedure to obtain polynomials Qk

(0)(x) at the junction 
interface;

(b) for h = 1, . . . , NGauss

i. for k = 1, . . . , N , apply an implicit Taylor expansion for each extrapolated value at the junction and find the 
evolved values Q̂k

(0)(τh), as explained in Section 2.2.3;

ii. solve J-CRP (36) with initial data given by Q̂k
(0)(τh) with k = 1, . . . , N , as explained in Section 2.3.1 and find 

Qk
V (τh);

iii. for k = 1, . . . , N evaluate the quantity F(Qk (τh));
V



C. Contarino et al. / Journal of Computational Physics 315 (2016) 409–433 421
Fig. 5. Three-vessel J-GRP using the MT-HEOC solver. In this illustration we use NGauss = 2 Gaussian quadrature points. We evolve the limiting value at 
vertex V up to time τ1 for each vessel, and then solve a J-CRP. The solutions along the t-axis are used to approximate the junction-numerical flux in (52)
for each vessel. We repeat the procedure for time τ2.

(c) For k = 1, . . . , N evaluate junction-numerical flux Fk
V in (52).

2. Apply a high-order ADER scheme to compute the numerical fluxes across interior cell interfaces and the numerical 
sources within the cells for each k-th vessel.

3. Update the solution from time tn to tn+1 according with finite volume formula (11) for each k-th vessel.

See Fig. 5 for an illustration of step 1(b) of the proposed algorithm, which has advantages and disadvantages. As pointed 
out in Section 2.4.1, the main disadvantage is the lack of information needed to assign to the ghost cells outside the com-
putational domain of each vessel. This can be overcome using a one-sided WENO reconstruction [63]. The main advantage 
in a HEOC-type scheme is having to solve just two types of non-linear problems: one for the evolution stage and another 
for the interaction of the evolved states through the J-CRP. As noted by Borsche and Kall [45], a HEOC-type solver is easier 
to implement, as compared to one proposed earlier [43]. It is worth noting that the ability of the present J-GRP solver to 
handle supercritical flows depends on that of its underlying J-CRP solver. Therefore, as long as we use a J-CRP that assumes 
subcritical flows, we will be unable to deal with trans and supercritical flows in networks.

3. Results

In this section we thoroughly assess the performance of the proposed methods. First, we perform an empirical conver-
gence rate study of the proposed methods for a network of vessels with a single junction. Then, we assess the performance 
for a problem with stiff a source term. As a final test, we apply our mathematical model and described numerical method 
to the physical model of [46] that consists of a network of 37 compliant silicon tubes (arteries) and 21 junctions. In the 
following, we shall refer to the solver of the J-GRP proposed by Borsche and Kall [43] as the Borsche–Kall (BK) solver. 
Throughout this section, we shall also consider fully or partially high-order ADER methods. By fully high order we mean 
applying a high-order ADER method within the domain coupled to a high-order numerical approximation at junctions. By 
partially high order we mean applying a high-order ADER method within the domain coupled to a first-order numerical 
approximation at junctions.

3.1. Empirical convergence rate studies

To assess the order of convergence of the ADER scheme with the MT-HEOC solver for both the J-GRP and the GRP 
when solving balance laws in networks of vessels, we designed a test which is highly sensitive to the numerical treatment 
of the J-GRP. From this test, we expect the order of the method to depend on the order of the approximation of the 
junction-numerical fluxes. For instance, using a fifth-order solver within the domain, that is, a fifth-order solver for the 
numerical fluxes across interior cell interfaces and for the numerical sources within each cell, and a first-order solver for 
the junction-numerical fluxes, we expect the global error of the method to be of order one.

Here we manufactured a problem with exact solution by prescribing the following smooth vector-valued function

Q̃(x, t) =
[

A(x, t)
A(x, t)u(x, t)

]
=
[

Ã + ã sin( 2π
L x + φ) cos( 2π

T0
t)

0

]
. (53)

Then, inserting it in (5), we obtained a modified non-linear system

∂tQ̃ + ∂xF(Q̃, x) − S(Q̃, x) = S̃(Q̃, x, t) , (54)

for which Q̃(x, t) is the exact smooth solution, and the explicit formula for S̃(Q, x, t) can be calculated by using a symbolic 
manipulator. The prescribed function A(x, t) in (53) is product of trigonometric functions, periodic in time and space with 
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Table 1
Convergence rates study. The left column shows the various combinations of schemes used, the second column shows the meshes defined by the number of 
cells, the third to fifth columns show different GRP and J-GRP. For column TT-BK we show the L∞ errors, the L∞ order and the correspondent computational 
times in seconds; likewise for HEOC and the MT-HEOC. All numerical simulations were performed in an Intel Core i7-2600 with 4 cores (3.40 GHz clock 
speed). The code was not parallelized for these simulations. The order is spoiled when we use a first-order method at the junction.

Scheme Cells TT-BK HEOC MT-HEOC

E∞ O ∞ tCPU [s] E∞ O ∞ tCPU [s] E∞ O ∞ tCPU [s]

ADER1-J1 10 5.1069e−06 0.004 5.1069e−06 0.004 5.1069e−06 0.006
20 3.2013e−06 0.6738 0.007 3.2013e−06 0.6738 0.009 3.2013e−06 0.6738 0.012
40 1.7717e−06 0.8535 0.021 1.7717e−06 0.8535 0.020 1.7717e−06 0.8535 0.020
80 9.2545e−07 0.9369 0.071 9.2545e−07 0.9369 0.072 9.2545e−07 0.9369 0.074

ADER2-J2 10 5.4495e−07 0.011 5.0373e−07 0.010 5.1298e−07 0.019
20 1.6146e−07 1.7549 0.015 1.6387e−07 1.6201 0.016 1.6506e−07 1.6359 0.038
40 4.3208e−08 1.9018 0.039 4.3361e−08 1.9181 0.047 4.3429e−08 1.9263 0.134
80 1.1546e−08 1.9039 0.143 1.1558e−08 1.9075 0.172 1.1544e−08 1.9116 0.521

ADER3-J3 10 1.5862e−07 0.017 1.5711e−07 0.017 1.5346e−07 0.103
20 1.5786e−08 3.3289 0.029 1.5482e−08 3.3431 0.034 1.4565e−08 3.3973 0.285
40 1.7507e−09 3.1727 0.095 1.7299e−09 3.1618 0.122 1.6508e−09 3.1413 0.926
80 2.2162e−10 2.9817 0.362 2.2288e−10 2.9564 0.464 2.1449e−10 2.9442 3.117

ADER4-J4 10 5.8856e−08 0.017 5.5043e−08 0.017 6.7511e−08 0.416
20 5.8862e−09 3.3218 0.044 5.8208e−09 3.2413 0.051 5.9532e−09 3.5034 1.343
40 3.1375e−10 4.2296 0.154 3.1273e−10 4.2182 0.187 3.1478e−10 4.2413 4.209
80 2.6169e−11 3.5837 0.585 2.6156e−11 3.5797 0.725 2.6347e−11 3.5786 14.342

ADER5-J5 10 5.4857e−08 0.085 5.0963e−08 0.105 3.5734e−08 5.872
20 1.2590e−09 5.4453 0.281 1.2550e−09 5.3437 0.349 1.2410e−09 4.8477 19.642
40 2.0719e−11 5.9252 1.083 2.0704e−11 5.9217 1.340 2.0814e−11 5.8978 65.940
80 5.7770e−13 5.1645 4.242 5.7776e−13 5.1633 5.261 5.0423e−13 5.3673 243.375

ADER2-J1 10 3.5206e−06 0.009 3.4324e−06 0.011 3.4821e−06 0.021
20 1.6697e−06 1.0762 0.014 1.6639e−06 1.0447 0.020 1.6657e−06 1.0638 0.035
40 8.0363e−07 1.0550 0.037 8.0313e−07 1.0509 0.045 8.0332e−07 1.0521 0.132
80 3.9097e−07 1.0395 0.142 3.9092e−07 1.0388 0.166 3.9081e−07 1.0395 0.519

ADER3-J1 10 2.7055e−06 0.014 2.6961e−06 0.018 2.9330e−06 0.104
20 1.5264e−06 0.8257 0.025 1.5261e−06 0.8210 0.032 1.5561e−06 0.9145 0.287
40 7.7481e−07 0.9782 0.093 7.7475e−07 0.9781 0.120 7.7862e−07 0.9989 0.947
80 3.8670e−07 1.0026 0.360 3.8668e−07 1.0026 0.467 3.8719e−07 1.0079 3.140

ADER4-J1 10 2.5458e−06 0.020 2.5457e−06 0.018 2.5619e−06 0.400
20 1.5196e−06 0.7444 0.041 1.5195e−06 0.7444 0.050 1.5187e−06 0.7544 1.365
40 7.8148e−07 0.9595 0.146 7.8144e−07 0.9594 0.186 7.8118e−07 0.9591 4.385
80 3.9079e−07 0.9998 0.575 3.9079e−07 0.9998 0.727 3.9072e−07 0.9995 15.030

ADER5-J1 10 2.5562e−06 0.085 2.5544e−06 0.102 2.5320e−06 6.151
20 1.5317e−06 0.7389 0.278 1.5315e−06 0.7381 0.359 1.5322e−06 0.7247 20.685
40 7.8625e−07 0.9620 1.076 7.8618e−07 0.9620 1.341 7.8642e−07 0.9622 72.496
80 3.9326e−07 0.9995 4.214 3.9324e−07 0.9995 5.249 3.9330e−07 0.9996 259.115

period T0 and L respectively, and smooth at the junction, namely it satisfies ∂( j)
x A(0, t) = ∂

( j)
x A(L, t) with j = 0, . . . , M for 

any time. Moreover, as A(0, t) = A(L, t) = Ã and u(0, t) = u(L, t) = 0, the prescribed functions A(x, t) and u(x, t) satisfy the 
coupling conditions � for blood flow (38) for t ≥ 0.

The empirical convergence rate test was performed on a network of N = 3 vessels with one junction. We considered the 
three vessels with local coordinate [a1, b1] = [−1, 0], and [a2, b2] = [a3, b3] = [0, 1], and vertex V located in 0. The initial 
condition for the numerical test was given by the described function Q̃(x, t) at time t = 0. We considered constant param-
eters K , A0, external pressure pe = 0 and friction resistance f = 0, so that the source term S(Q, x) was set to zero. Since 
the prescribed function A(x, t) in (53) is periodic in space, we used periodic boundary conditions away from the junction. 
Vessel parameters are: m = 1/2, n = 0, cross-sectional radius at equilibrium r0 = 10 mm, cross-sectional area at equilibrium 
A0 = πr2

0 , Young modulus E = 0.4 MPa, wall-thickness at equilibrium h0 = 1.1 mm, length L = 1 m. Computation parame-
ters are: T0 = 1 s, Ã = A0, ã = 0.1A0, φ = π

2 , output time tend = 0.5 s, Courant number coefficient CFL = 0.9. Since the three 
vessels have the same material properties and computation parameters, the smoothness at the junction of the prescribed 
function A(x, t) is assured. We compared results given by the TT and the BK solver for the GRP and the J-GRP respectively, 
the HEOC and the MT-HEOC solver for both the GRP and the J-GRP. We used the HLL [56] method to compute the numerical 
fluxes within each vessels, instead of solving exactly the CRP.

Table 1 shows empirical convergence rates for schemes of first to fifth accuracy in space and time. The first column of 
Table 1 shows the various combinations of schemes used, the second column shows the meshes defined by the number of 
cells, the third to fifth columns show different GRP and J-GRP. For column TT-BK, we show the L∞ errors, the L∞ order and 
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Fig. 6. Efficiency plot: L∞ errors against computational times. Comparison between first, third and fifth-order ADER schemes with TT-BK, HEOC and MT-
HEOC solvers for GRP and J-GRP is shown. Results for the fifth-order ADER scheme in the interior of the domain with a first-order scheme at the junction 
are also shown. Numerical results were obtained with meshes of 10, 20, 40, 80 cells. The intersections between the horizontal line E = 2 × 10−12 (pre-
scribed error) and the fifth-order ADER schemes give the computational times and number of cells required to attain the prescribed error E . For a color 
version of this figure, the reader is referred to the web version of this article.

Fig. 7. Illustration of the empirical convergence rate study. The normalized cross-sectional area A
A0

is depicted in the z variable. The dotted and the shaded 
plot depict the numerical and the exact solution respectively. We used 10 cells for each vessel and we stopped the simulation after 100.5 s. The ADER 
scheme with the MT-HEOC solver was used. Frame (a): numerical solution obtained by the fully third-order scheme. Frame (b): numerical solution obtained 
by the partially third-order scheme.

the computational times in seconds; likewise for HEOC and the MT-HEOC. Orders from one to five are attained as desired. 
It is worth noting two points. First, the order of accuracy in space and time is spoiled whenever we use a first-order ap-
proximation of the junction-numerical fluxes. For instance, when we use the combination ADER5-J1 with any of the solvers 
presented in Table 1, the accuracy decreases from five to one; likewise with other combinations. Therefore, even though 
we use a high-order scheme within each sub-domain but a first-order approximation of the junction-numerical fluxes, the 
overall accuracy in space–time is ruined. This means that low-order errors travel through the network when low-order 
schemes are used at junctions. Second, the implicit Taylor series expansion plays an important role in the computational 
cost. Indeed, there is a difference in the computational times between the numerical results obtained by using the explicit 
solvers TT-BK and HEOC, and the implicit solver MT-HEOC.
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Fig. 8. A stiff problem connecting three vessels at a single junction. The fourth-order ADER scheme with the MT-HEOC solver for both the GRP and J-GRP 
was used. Frame (a): the normalized cross-sectional area A

A0
at the fixed time tend = 2 s as a function of axial distance is depicted for each vessel. Note 

that the vertical line at x = 0 represents the junction position. The normalized cross-sectional area of one vessel is depicted in [−1, 0], while the remaining 
two are coincident and are depicted in [0, 1]. The numerical solution with 100 cells for each vessel is shown by , while a reference solution computed 
with a first-order method using 2000 cells for each vessel is shown by . Frame (b): illustration of the initial condition and computed results. The 
initial condition is depicted by the shaded graph, while the solution at the output time is shown by the single lines.

Fig. 6 depicts L∞ errors against computational times. Comparison between first, third and fifth-order ADER schemes with 
TT-BK, HEOC and MT-HEOC solvers for GRP and J-GRP are shown. Also shown are results for the fifth-order ADER scheme in 
the interior of the domain with a first-order scheme at the junction. For the computation we used meshes of 10, 20, 40, 80
cells. The point of this figure is to assess the performance of the schemes by relating the error to the computational cost. 
For example, prescribing the error E = 2 × 10−12, the computational times needed for the ADER scheme to attain that 
specific error are 2.6419 s, 3.2735 s and 150.0495 s using respectively the TT-BK, HEOC and the MT-HEOC solvers. Note that 
a first-order method would have attained that error at the computational time of ∼130 years; such figure is obtained by 
extrapolation, which is probably an underestimate. These observations support the use of high-order methods for hyperbolic 
balance laws, when small errors are aimed for. The results also show that the combination ADER5-J1 completely ruins the 
accuracy while maintaining the computational cost given by a fifth-order method. This suggests that the time to attain the 
above-mentioned error with a partially high-order method is even larger than that of a first-order method throughout. For 
instance, ADER5-J1 with the implicit MT-HEOC solver would have attained that error at the computational time of ∼98 
centuries.

Fig. 7 depicts the normalized cross-sectional area A
A0

for the exact solutions (shaded plot) and the numerical solutions 
(dotted line) for the three vessels at the output time. Frames (a) and (b) depict the numerical solutions from the fully and 
partially third-order ADER scheme with the MT-HEOC solver, respectively. The results show that a first order at the junction 
spoils the accuracy throughout the space–time domain.

From the empirical convergence rate studies, we conclude that it is imperative to use high-order numerical schemes at 
junctions, in order to preserve the desired high-order of accuracy in the full computational domain.

3.2. A stiff problem for a junction

Following the work of Müller et al. [64], we say that a source term is stiff when


x
maxi

(|βi|
)

max
(|λ |) > 1 , (55)
i i
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Fig. 9. Computed flow q(x, t) at midpoint of left renal artery. The ADER scheme with the MT-HEOC solver for both the GRP and J-GRP was used. Frame (a): 
comparison between fully and partially second-order methods with different mesh sizes. Frame (b): comparison between fully and partially fourth-order 
methods with different mesh sizes. For a color version of this figure, the reader is referred to the web version of this article.

where 
x, βi and λi are the spatial mesh size, the i-th eigenvalue of the Jacobian of the source term ∂S(Q)
∂Q and of the 

physical flux ∂F(Q)
∂Q respectively, see also [40]. In the one-dimensional blood flow equations, assuming constant parameters 

and zero external pressure, source term (7) reads

S(Q) =
[

0
−R q

A

]
, (56)

where R = γπ μ
ρ . The eigenvalues of (56) are β1 = 0 and β2 = − R

A . Condition (55) can be written as


x
R

A maxi(|λi|) > 1 . (57)

As pointed out by Müller et al. [64], source term (56) may become stiff under physiological conditions. If the cross-sectional 
area A approaches zero, then ratio (57) increases arbitrarily leading to a stiff problem. This happens routinely in veins: they 
are highly compliant and collapse easily under physiological situations.

To test the capability of the ADER scheme with the MT-HEOC solver for both the GRP and the J-GRP to deal with 
stiff source terms, we considered a network of N = 3 arteries with one junction. Although arteries do not collapse under 
physiological conditions because they are stiffer and designed to endure high pressure from the pumping action of the heart, 
we could still simulate a problem in the stiff regime assuming condition (57) and appropriately adjusting the cross-sectional 
area of the initial condition.

We considered three vessels with local coordinate [a1, b1] = [−1, 0], and [a2, b2] = [a3, b3] = [0, 1], and vertex V located 
in 0. The initial condition for the cross-sectional area A for the first vessel was

A(x,0) = 0.1A0 + A0e−100
(
x−0.5

)2
, (58)
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Fig. 10. Computed flow q(x, t) at midpoint of left renal artery. Frame (a): the ADER scheme with the MT-HEOC solver for both the GRP and J-GRP was used. 
Comparison between fully and partially third-order methods with different mesh sizes. Frame (b): comparison between fully second-order schemes with 
different solvers, with a fixed mesh size. A reference solution is also shown (ADER5-J5 TT-BK: 0.25 cm). For a color version of this figure, the reader is 
referred to the web version of this article.

while for the other vessels was A(x, 0) = 0.1A0. Frame 8(b) shows A(x, 0) in the three vessels at the initial time. For each 
vessel we set u(x, 0) = 0. Vessels parameters are: m = 1/2, n = 0, length L = 1 m, cross-sectional radius at equilibrium 
r0 = 0.1 mm, cross-sectional area at equilibrium A0 = πr2

0 , Young modulus E = 0.4 MPa, wall-thickness at equilibrium 
h0 = 1.1 mm, resistance defined in (56) R = 8π μ

ρ and dynamic viscosity μ = 2.5 mPa s. Computation parameters are: output 
time tend = 2 s, 100 cells, Courant number coefficient CFL = 0.9. Transmissive boundary conditions were used away from the 
junction. With the given parameters, ratio (57) at the junction varies in time from 3 to 7 and results in a stiff problem.

Frame 8(a) shows computed results for a fourth-order ADER scheme with the MT-HEOC solver for both the GRP and 
J-GRP. Satisfactory agreement is seen between the computed solution and a reference solution obtained with a first-order 
method with a fine grid of 2000 cells . See legend of 8(a) for further information. It is worth remarking that for this test 
problem, if one uses an explicit solver for the J-GRP, the simulation fails after few time steps. This observation emphasizes 
that in the stiff regime the use of a locally implicit solver is mandatory. See Frame 8(b) for an illustration of the initial 
condition and the computed results.

3.3. Application to a network of arteries

In this section, we consider the model network of major arteries presented by Matthys et al. [46], composed of 37 tubes 
that represent arteries, a pump that resembles the outflow of blood from the heart and terminal resistances. Mechanical 
properties of each vessel, terminal resistances, network geometry, and inflow measured at the root of ascending aorta are 
given in [46,11].

In the physical model of Matthys et al. [46], the cross-sectional area at equilibrium A0 varies along the vessel length and 
this requires the use of well-balanced schemes. Non-well-balanced schemes may give wrong numerical results as pointed 
out in [65]. The current version of our scheme is not strictly well-balanced. Therefore, we have slightly modified the physical 
model of Matthys et al. [46] by neglecting the taper of tubes and taking mean values for parameters, for each vessel.
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Fig. 11. Computed pressure along the aorta and part of the right iliac femoral (vessel nos. 1, 8, 10, 15, 17, 23, 25, 27, 28 of model in [46]). The fully 
and partially second-order ADER schemes with the MT-HEOC solver were used. Mesh size runs from 0.25 cm to 4 cm. A reference solution from a fully 
fifth-order ADER scheme with a mesh size of 0.125 cm is depicted. Frame (a): numerical results with a fully second-order method are shown. Frame (b): 
numerical results with a partially second-order method are shown.

Computations were performed using CFL = 0.9, the inflow boundary condition and terminal resistances were treated as 
in [11], and the tube law was purely elastic. The number of cells Mcells for each vessel was chosen according to

Mcells = max(floor(L/
xmax),ord) , (59)

where L is the length of the vessel, 
xmax is the maximal space size (e.g. 0.02 m) and ord is the order of the numerical 
method. Throughout the results we only refer, for instance, to 2 cm to indicate 
xmax = 0.02 m. Numerical results obtained 
with fully and partially high-order methods with the same order of accuracy, have the same spatial mesh size. Accordingly 
to the above-mentioned criterion, the mesh is different for each order of accuracy. Therefore, caution is required in assessing 
the numerical results obtained with different orders.

Another way to proceed with the assessment of results from high-order methods, in our case from one to five, is to 
impose a minimum number of cells which is common for all orders; in the present case the minimum is five. To do so we 
utilize the following procedure

Mcells = max(floor(L/
xmax),5) . (60)

However there is a drawback with this approach. As the mesh is already fine enough, the differences between fully and 
partially high-order approximations are not clearly manifested in the results. In other words, the fine mesh has masked the 
high-order effect of the methods. Such phenomenon is more evident for the schemes in the high-order range. Throughout 
this paper, the default criterion is given by (59), unless specified.

Figs. 9 and 10 show the computed flow q(x, t) of the left renal artery after 20 cardiac cycles and the maximum flow 
peak at cardiac reference time 0.4 s. For Fig. 9 and Frame 10(a), we used ADER methods of different orders, with the 
MT-HEOC solver. Frame 9(a) compares fully and partially second-order methods. A first-order method at junctions spoils 
the accuracy in space and time with a damping effect for extrema. The fully second-order method with 2 cm is 



428 C. Contarino et al. / Journal of Computational Physics 315 (2016) 409–433
Fig. 12. Computed pressure along the aorta and part of the right iliac femoral (vessel nos. 1, 8, 10, 15, 17, 23, 25, 27, 28 of model in [46]). The fully and 
partially third-order ADER schemes with the MT-HEOC solver were used. Mesh size runs from 0.25 cm to 4 cm. A reference solution from a fully fifth-order 
ADER scheme with a mesh size of 0.125 cm is also depicted. Frame (a): numerical results with a fully third-order method are shown. Frame (b): numerical 
results with a partially third-order method are shown.

comparable with the partially second-order method with 0.5 cm . Similar results can be found for fully and partially 
fourth-order ADER methods in Frame 9(b). Fully and partially third-order methods with different mesh sizes can be found 
in 10(a). The partially third-order method requires a mesh size of 0.5 cm to match the solution obtained with the fully 
third-order method with a mesh size of 2 cm , and the computational times per cardiac cycle are respectively 29.859 s
and 9.556 s, see Table 2. The computational time of the partially third-order method is three times larger than the one of 
the fully third-order method. This observation emphasizes the better efficiency of high-order methods used at junctions. 
Frame 10(b) shows a comparison between different solvers. We compare the numerical results given by the TT-BK, the 
HEOC and the MT-HEOC solvers for the GRP and the J-GRP for a fixed mesh size of 2 cm. A reference solution given by the 
fifth-order ADER scheme with the TT-BK solver for the GRP and the J-GRP using a fine mesh size of 0.25 cm is also shown. 
All solvers give similar numerical results.

Figs. 11 to 14 depict computed pressure in the aorta and part of the right iliac femoral, at the output time. Numerical 
results were obtained using ADER schemes of different orders, with the MT-HEOC solver. In Fig. 14 the minimum number of 
cells was chosen accordingly to (60). A reference solution obtained using a fully fifth-order method with a fine mesh size of 
0.125 cm is also shown. A first-order method at junctions spoils the accuracy of the numerical schemes insofar as first-order 
errors travel throughout the network of vessels with a damping effect for the pressure pulse-wave. Frames 11(a) and 11(b) 
show numerical results using fully and partially second-order methods, respectively. The second-order method at junctions 
improves the accuracy for pressure. A similar pattern is also seen with fully and partially third and fourth-order schemes; 
the numerical results are shown in Figs. 12 and 13, respectively. The fully second and the partially fourth-order solvers 
using a mesh size of 2 cm are comparable. Computational times per cardiac cycle are respectively 1.621 s and 33.373 s, see 
Table 2. The computational time of the partially fourth-order method is 20 times larger than that for the fully second-order 
method. This suggests that accurate numerical results with less computational effort can be achieved by using high-order 
numerical methods at junctions. Frames 14(a) and 14(b) show numerical results using fully and partially second-order 
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 fourth columns show results different combinations of GRP 
valuated considering the flows q = Au in the whole arterial 
 an Intel Core i7-2600 with 4 cores (3.40 GHz clock speed). 

EOC

tCPU [s] L1 tCPU [s]

2-J2 ADER2-J1

5e−06 22.47 2.7011e−06 17.24
6e−07 32.42 2.0115e−06 26.47
5e−07 49.84 1.2023e−06 44.85
1e−08 91.83 2.6526e−07 86.72
7e−08 415.60 9.7928e−08 400.10

3-J3 ADER3-J1

7e−07 121.02 2.4775e−06 102.87
9e−07 191.12 1.8020e−06 174.09
4e−07 333.59 8.7336e−07 313.27
7e−08 624.63 2.4394e−07 597.18
5e−08 1953.85 6.1819e−08 1942.40

4-J4 ADER4-J1

e−06 442.74 2.1885e−06 433.08
6e−07 687.75 1.4788e−06 667.46
7e−08 1194.90 7.0306e−07 1194.90
2e−08 2315.43 2.3123e−07 2348.78
7e−08 5399.23 5.4276e−08 5431.68

5-J5 ADER5-J1

3e−07 3834.08 1.8770e−06 3693.50
0e−07 5064.60 1.3384e−06 5161.99
5e−08 8564.96 6.6950e−07 9097.09
7e−08 15949.96 2.2882e−07 16603.64
0e−08 29192.95 5.3383e−08 29246.10
Table 2
Errors and computational times for a network of arteries. Left column shows the meshes defined by the maximum spatial mesh size 
xmax . Second to
and J-GRP solvers. Within every column we show L1 errors and corresponding computational times for two combination of schemes. L1 errors were e
system; for a reference solution we used the fully fifth-order ADER scheme with a mesh size of 0.125 cm. All numerical simulations were performed in
The code was parallelized by means of openMP. Simulations were stopped after twenty cardiac cycles.

cm TT-BK TT HEOC MT-H

L1 tCPU [s] L1 tCPU [s] L1 tCPU [s] L1 tCPU [s] L1

ADER2-J2 ADER2-J1 ADER2-J2 ADER2-J1 ADER

4.00 1.9259e−06 13.62 2.7016e−06 8.13 2.3375e−06 13.28 2.7015e−06 8.94 2.338
2.00 8.4894e−07 18.18 2.0112e−06 11.21 9.3598e−07 15.48 2.0112e−06 12.26 9.338
1.00 2.5310e−07 21.33 1.2044e−06 15.89 2.6439e−07 22.52 1.2044e−06 18.49 2.612
0.50 6.4895e−08 33.37 2.6798e−07 27.30 6.6194e−08 37.56 2.6797e−07 33.73 6.944
0.25 1.6004e−08 145.51 8.3692e−08 125.89 1.6343e−08 156.73 8.3690e−08 149.62 4.806

ADER3-J3 ADER3-J1 ADER3-J3 ADER3-J1 ADER

4.00 1.1156e−06 29.80 2.4775e−06 20.35 9.0297e−07 35.73 2.4775e−06 22.22 9.029
2.00 3.8831e−07 41.32 1.8020e−06 30.23 3.2900e−07 45.01 1.8020e−06 34.55 3.289
1.00 1.7415e−07 58.48 8.7341e−07 48.69 1.8747e−07 70.16 8.7339e−07 58.08 1.874
0.50 4.3286e−08 99.71 2.4397e−07 90.38 4.3579e−08 119.12 2.4396e−07 107.56 4.356
0.25 1.4918e−08 305.94 6.1851e−08 291.07 1.5206e−08 348.90 6.1850e−08 335.37 1.519

ADER4-J4 ADER4-J1 ADER4-J4 ADER4-J1 ADER

4.00 8.4933e−07 50.16 2.1885e−06 33.67 1.1062e−06 56.95 2.1885e−06 39.30 1.1062
2.00 2.8120e−07 69.17 1.4788e−06 54.67 2.1396e−07 73.79 1.4788e−06 57.55 2.139
1.00 1.0004e−07 99.75 7.0308e−07 83.25 6.5577e−08 113.54 7.0306e−07 97.97 6.557
0.50 3.3719e−08 170.22 2.3124e−07 154.05 2.5942e−08 203.87 2.3123e−07 189.50 2.594
0.25 1.4633e−08 398.09 5.4277e−08 389.10 1.4077e−08 459.91 5.4276e−08 439.69 1.407

ADER5-J5 ADER5-J1 ADER5-J5 ADER5-J1 ADER

4.00 4.1746e−07 119.61 1.8771e−06 88.18 7.6933e−07 143.58 1.8770e−06 106.82 7.693
2.00 2.7524e−07 162.53 1.3384e−06 121.84 2.3790e−07 179.39 1.3384e−06 153.56 2.379
1.00 9.4003e−08 241.21 6.6951e−07 211.75 9.5565e−08 283.49 6.6950e−07 255.51 9.556
0.50 3.1106e−08 439.28 2.2883e−07 412.24 2.9227e−08 520.58 2.2882e−07 492.50 2.922
0.25 1.4652e−08 862.57 5.3384e−08 778.46 1.4200e−08 953.31 5.3383e−08 927.03 1.420
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Fig. 13. Computed pressure along the aorta and part of the right iliac femoral (vessel nos. 1, 8, 10, 15, 17, 23, 25, 27, 28 of model in [46]). The fully 
and partially fourth-order ADER schemes with the MT-HEOC solver were used. Mesh size runs from 4 cm to 0.25 cm. A reference solution from a fully 
fifth-order ADER scheme with a mesh size of 0.125 cm is also depicted. Frame (a): numerical results with a fully fourth-order method are shown. Frame (b): 
numerical results with a partially fourth-order method are shown.

methods, respectively, where the minimum number of cells was 5. The numerical results are improved throughout. A second 
order method at junctions improves the accuracy for pressure, even though the differences are less significant than that 
depicted in Frames 11(a) and 11(b).

Table 2 shows L1 errors and computational times for schemes of order up to five in space and time using different 
combination of solvers. First-order methods at junctions coupled with high-order methods in the interior of the domain 
have larger errors compared to fully high-order methods. Computational times for the implicit solver MT-HEOC are larger 
compared to the explicit ones.

Fig. 15 depicts L1 errors against computational times. We compare ADER schemes of different orders, in all cases using 
the MT-HEOC solver. Errors of fully high-order methods (red-shaded colors) are always below to partially high-order meth-
ods (blue-shaded colors). It is worth noting that we formally do not preserve fully high-order accuracy in the whole arterial 
network due to our simple, low order, treatment of inflow boundary condition and terminal resistances. Consequently, the 
decreased rate of the fully fifth-order method is nearly equivalent to the fully second-order scheme. Nevertheless, the ben-
efit of using high-order methods at junctions remains visible, but quite clearly, for a real application one must incorporate 
appropriate treatment of the inflow boundary and terminal resistances.

4. Summary and conclusions

Here we have proposed a new implicit solver for the Junction-Generalized Riemann Problem (J-GRP). This solver is an 
extension of the recently proposed Montecinos–Toro implicit solver for the GRP. We have then put together the two building 
blocks in the ADER framework to construct schemes of arbitrary accuracy in space and time for system of hyperbolic balance 
laws in networks. Specifically, we have applied the resulting methods to networks of blood vessels. To systematically assess 
convergence rates we have proposed a test problem with exact solution, consisting of three vessels connected at a single 
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Fig. 14. Computed pressure along the aorta and part of the right iliac femoral (vessel nos. 1, 8, 10, 15, 17, 23, 25, 27, 28 of model in [46]). The fully and 
partially second-order ADER schemes with the MT-HEOC solver were used. Mesh size runs from 0.25 cm to 4 cm. The minimum number of cells was 5. 
A reference solution from a fully fifth-order ADER scheme with a mesh size of 0.125 cm is depicted. Frame (a): numerical results with a fully second-order 
method are shown. Frame (b): numerical results with a partially second-order method are shown.

Fig. 15. Efficiency plot for a network of arteries: L1 errors against computational times. Comparison is shown between ADER schemes of different orders, 
used in conjunction with the MT-HEOC solver. L1 errors were evaluated considering the flows q = Au in the whole arterial system; for a reference solution 
we used the fully fifth-order ADER scheme with a mesh size of 0.125 cm. Blue-shaded and red-shaded colors refer to partial and fully high orders, 
respectively. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.
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junction. Schemes of up to fifth order in space and time have been tested. The numerical experiments have shown that it 
is imperative to match the accuracy of the schemes at junctions to that in the interior of the domain. Otherwise the overall 
accuracy is lost. In addition, we have proposed a test problem for blood vessel networks in which there is a stiff source 
term. Our implicit method performed as expected, it endures the proposed test problem, while an explicit solver fails after 
few time steps. We have also deployed the present numerical techniques to simulate the physical model of 37 compliant 
silicon tubes (arteries) and 21 junctions proposed by Matthys et al. [46]. Again, in this application it is clearly seen that the 
accuracy of the scheme at junctions is crucial to maintain the overall accuracy. Otherwise, low-order errors travel through 
the network of vessels with a damping effect, for example, for the pressure pulse-waves. The proposed methodology can be 
applied to more general network problems if high order of accuracy is desired.
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