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Solitonlike magnetization textures in noncollinear antiferromagnets
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(Received 4 February 2016; revised manuscript received 18 April 2016; published 29 April 2016)

We show that proper control of magnetization textures can be achieved in noncollinear antiferromagnets.
This opens the versatile toolbox of domain-wall manipulation in the context of a different family of materials.
In this way, we show that noncollinear antiferromagnets are a good prospect for applications in the context of
antiferromagnetic spintronics. As in many noncollinear antiferromagnets, the order parameter field takes values in
SO(3). By performing a gradient expansion in the energy functional we derive an effective theory that accounts for
the physics of the magnetization of long-wavelength excitations. We apply our formalism to static and dynamic
textures such as domain walls and localized oscillations, and identify topologically protected textures that are
spatially localized. Our results are applicable to the exchange-bias materials Mn3X, with X = Ir, Rh, Pt.
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I. INTRODUCTION

In antiferromagnetic materials the exchange coupling
among neighboring spins favors antiparallel arrangements.
Because of this interaction the system is led to an ordered
magnetic state where the magnetization of different sublattices
is oriented in a way that the overall magnetization is canceled.
This order drives the system into a robust collective behavior
with soft modes that can be controlled with the aid of external
magnetic fields. Recently, the notion that spintronic effects
analogous to the ones in ferromagnets can be exhibited
by antiferromagnetic systems has received attention from
the theoretical [1–5] and experimental [6] viewpoints. The
advantages of antiferromagnetic systems come due to a variety
of reasons. For example they do not display stray fields, they
display high-frequency response (in the terahertz range), and
finally the fact that antiferromagnetism is observed more often
and at much softer conditions than ferromagnetism.

A promising development in the context of antiferro-
magnetic spintronics is the fact that it is possible to en-
gineer magnetic textures, such as domain walls (DWs), in
antiferromagnetic systems [7]. The problem of domain-wall
manipulation in antiferromagnetic systems has been studied in
some recent papers [8] where, using the collective coordinates
approach, it was shown that the domain-wall center obeys
Newton’s law of motion. This opens the possibility of
implementing domain-wall control over antiferromagnets in
the same fashion as it is done in ferromagnets. In ferromagnetic
systems magnetization textures, smooth modulations in the
magnetization field, can be controlled in a diversity of manners,
for example through the action of external fields or currents.
Research in the field of magnetic domain-wall manipulation
has been growing steadily [9]. The driving force behind
this research is the potential applications in the context of
information technologies. An example of these applications
is the racetrack [10] configuration where domain walls are
driven across a ferromagnetic wire by a current. Domain-
wall manipulation has also been shown as an alternative to
electronic logic circuits [11].

*camilo.ulloa.o@gmail.com
†alnunez@dfi.uchile.cl

In this paper we propose that magnetic textures can also be
found and controlled in noncollinear antiferromagnets—that
is, antiferromagnets whose underlying magnetic sublattices
are not oriented along the same magnetic axis. Our main
result is the theoretical characterization of the dynamics of
domain walls in a noncollinear antiferromagnet. While our
qualitative results apply to a wide family of noncollinear
antiferromagnets, we will focus our attention on the magnetic
degrees of freedom Mn3Ir. This material has been studied
extensively due to its importance as the pinning agent in
exchange bias controlled spin-valve devices. Mn3Ir is regarded
as a crystal with fcc structure with Mn atoms lying on the
centers of the faces of each cube. The Mn sublattices are two-
dimensional kagome lattices lying in the planes perpendicular
to the (111) direction. Due to the frustration within each
triangular plaquette, isolated isotropic kagome lattices are
known examples of disordered spin systems [12]. On the
contrary the Mn spins in Mn3Ir display a quite strong three-
sublattice triangular (T 1) magnetic order up to a transition
temperature of ∼950 K [13]. The stability of magnetic order is
due primarily to the exchange interaction among the kagome
planes and to anisotropy [14–16]. Following [17], as a minimal
model for the physics of the magnetization in Mn3Ir we start
with a single nearest-neighbor antiferromagnetically coupled
kagome lattice of classical spins with appropriately tuned
anisotropy terms.

II. BASIC MODEL

The minimal model for magnetization dynamics of the Mn
atoms in a (111) plane of Mn3Ir starts from a system of classical
spins located at the vertices of a kagome lattice. These spins
correspond to the magnetic degrees of freedom of the planes
perpendicular to the (111) direction. The Hamiltonian of the
spin system contains two main contributions. On one side we
have the exchange interaction, characterized by an exchange
constant J , between nearest neighbors that favor antiparallel
arrangements. On the other we have a strong anisotropy
energy that favors orientation in the axis towards the center
of the triangles; this energy is characterized by an anisotropy
constant K , and an anisotropy that penalizes the out-of-plane
orientations characterized by Kz. The resulting Hamiltonian
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FIG. 1. (a) Different configurations of a given triangle achieved
through different rotations around the out-of-plane axes. An arbitrary
configuration is encoded by a smooth distribution of such rotations.
(b) Kagome lattice in the (111) plane in Mn3Ir where Mn atoms
are at each corner of a basis triangle. The basis vectors n1 = (0,1,0),
n2 = (

√
3/2, − 1/2,0), and n3 = (−√

3/2, − 1/2,0) defined at every
point in the lattice are shown. The vectors ei point towards the
nearest neighbors of each site. These vectors are used in the
gradient expansion in the continuum approximation and are defined
as e1 = (cos π/3, sin π/3,0), e2 = (cos π/3, − sin π/3,0), and e3 =
(−1,0,0).

becomes

H= J
∑
〈r,r′〉

Sr · Sr′ −K
∑

r

(nr · Sr)2 + Kz

∑
r

(ẑ · Sr)2, (1)

where the anisotropy axis, nr, is defined on each triangular
element of the kagome lattice as illustrated in Fig. 1, and ẑ is
the perpendicular axis to the plane. As the antiferromagnetic
coupling favors configurations where all the moments in each
triangle cancel one another, then if we consider any solid
rotation of the moments in one triangle this condition still.
Following this idea we start from a given minimum (say, all
spins pointing outward) and parametrize the configuration
on any point in the lattice by a rotation matrix [18,19]:
Sr = R(r){nr + a[L − (L · nr)nr]}, where L is the canting
field assumed to be small. Restricting the description to the
low-energy structures we can assume the behavior of the
rotation matrix R to be smooth, varying only across long
length scales. Following [18] we write the Lagrangian of the
system in terms of the variables L and R and express it within
the smooth gradient approximation. We then proceed to solve
the Euler-Lagrange equations for the field L finding

T L = R−1∂tR,

where Tαβ = δαβ − 1
3

∑
i niαniβ . Replacing this solution into

the action we are led to an effective Lagrangian density
involving only the R field:

L = − �
2

2
√

3Ja2
Tr[(R−1∂tR)2] − Eex(R) − Eani(R).

The anisotropy coupling favors two configurations: either all
spins point toward the center of each triangle or away from
it. This state of affairs leaves us with two ground states that
are degenerate and the main discussion that follows concerns
mainly magnetic textures that connect those states smoothly.

In particular we focus on states that can be obtained from
the uniform ground state by a smoothly varying rotation.
It is a straightforward calculation to show that a gradient
approximation of the exchange energy functional gives us

Eex[R] = Ja2

2
tr(gijLi Lj ),

where Li = R−1∂iR and g
ij

αβ = ei
1e

j

1n
3
αn2

β + ei
2e

j

2n
1
αn3

β +
ei

3e
j

3n
2
αn1

β . In the last expression the vectors ei correspond to
the ones defined in Fig. 1(b). The anisotropy contribution to
the energy is

Eani[R] = −K
∑

i

(ni · Rni)2 + Kz

∑
i

(ẑ · Rni)2.

III. SPIN-WAVE SPECTRA

Now we proceed to analyze the spin wave spectra of
the system around the ordered phase [Fig. 2(a)]. Here we
call this phase just the homogeneous phase. To achieve this
goal we describe the state of the system assuming that R
is a rotation matrix made of Euler angles, R(φ,θ,ψ) =
RZ′(ψ)RX(θ )RZ(φ). Calculating perturbations around the
homogeneous phase we derive the effective action for the spin
waves. As the perturbations are around the identity matrix,
we found that the variables φ and ψ correspond to the same
rotation. Defining χ = φ + ψ the equations of motion are

∂2
t χ − 3a2J 2

�2
∇2χ + 12KJ

�2
χ = 0, (2)

∂2
t θ + 6J (K + Kz)

�2
θ = 0. (3)

The spin-wave spectra is split in a dispersionless flat band with
frequency

ω2 = 6J (K + Kz)

�2
,

independent of the wave vector, and a Klein-Gordon-like
branch with frequency

ω2 = 3a2J 2

�2
k2 + 12KJ

�2
,

as shown in Fig. 2(b). In the absence of anisotropy the spin-
wave branches become ω = 0 and ω = vk with v = √

3aJ/�

in agreement with the results of [14,20]. The presence of the
flat band is a direct consequence of the absence of interlayer
couplings within our model. If we consider interlayer exchange
interaction including the terms outside the plane (111) in
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FIG. 2. (a) Homogenous state with all the spins pointing toward
the center of the triangles. This state is degenerated with the state
with all the spins pointing away from the center of each triangle.
(b) Dispersion relations for the spin-wave spectrum of the homo-
geneous state. Solid lines correspond to the case with anisotropy
and describe two branches one being a flat band with zero group
velocity and another with a Klein-Gordon-like dispersion. Dashed
line represents the dispersion relations of the isotropic case.

the gradient expansion, the flat band is modified as shown
in [14,21].

IV. SOLITONLIKE STRUCTURES

We continue our discussion on magnetic textures looking at
possible DWs in the order-parameter field. We parametrize the
rotation at each point by an angle φ and a rotation axis parallel
to the z axis (out of the plane). The Lagrangian density can be
expressed in terms of φ:

L = �
2

√
3Ja2

(∂tφ)2 −
√

3J (∇φ)2 + 4
√

3K

a2
cos2 φ.

This corresponds to the well-known sine-Gordon model whose
equation of motion is

∂2
t φ − c2∇2φ + m2c4

�2
sin(2φ) = 0,

where we have defined the spin-wave velocity c2 = 3J 2a2/�
2

and the mass parameter m2c4/�
2 = 6KJ/�

2. The solutions of
this equation have been extensively studied [22]. Among its
most celebrated solutions we can highlight stationary domain
walls (where the angle travels all the way from zero to π ) that
are characterized by a domain-wall width W = a

√
J/K/2.

For Mn3Ir rough estimates of the parameters lead us to W ∼
1–10a [15]. The profile of the domain wall has a solitonlike
form: φ = 2 tan−1[exp(x/W )] [Fig. 3(b)]. To characterize the

FIG. 3. (a) Typical shape of a domain wall in kagome lattice.
(b) Numerical fit of the soliton solution, black dots are the result
of numerical simulation, red line corresponds to fitted solution φ =
2 tan−1[exp(x/W )]. (c) Width dependence on anisotropy. Black dots
are numerical results while red dashed line is the fitted curve which
has a slope equal to 1/2.

domain walls we have solved numerically the Landau-Lifshitz-
Gilbert equation with an effective field derived from Eq. (1).
By setting periodic boundary conditions in the exchange field
we have enforced a domain wall within our system and let
the system relax. The domain-wall profile is then optimized
and its width determined by fitting to a solitonlike shape with
adjustable width. The results are displayed in Fig. 3 and are in
remarkable agreement with the long-wavelength description
of the continuum model.

Along with the stationary domain walls just described the
sine-Gordon model allows for mobile textures. As is well
known, the profile of a domain wall moving with velocity
v is contracted by the Lorentz factor leading to a solution φ =
2 tan−1{exp[(x − vt)/W0

√
1 − (v/c)2]}. We have verified this

behavior using our simulations based on the Landau-Lifshitz
equation. The results are shown in Fig. 4(a).

Among the other localized excitations that are
associated with the sine-Gordon equation, we have
focused on the stationary breather solution [23], φ =
2 tan−1 [

√
1 − ω2 cos(ωt/τ )/ω cosh(x

√
1 − ω2/λ)], where

τ = �/mc2
√

2, and λ = �/mc
√

2. This solution represents a
localized oscillation of the orientation of the local moments
around the anisotropy axes. The numerical solution of the
Landau-Lifshitz equation that is consistent with this state is
shown in Figs. 4(b) and 4(c).

V. TOPOLOGICAL DEFECTS

The topology of the order parameter space [SO(3)] opens a
variety of possible topologically protected defects [24]. For
example, the first homotopy group being π1[SO(3)] = Z2,
we have two kinds of configurations. While textures which
belong to class 0 can be continuously deformed to the uniform
state, textures which belong to class 1 cannot. The latter are
known as disgyrations in the context of 3He. The coalescence
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FIG. 4. (a) Contraction of the width W of a moving DW as
function of speed v. The simulations were performed setting the
easy axis anisotropy by K = 0.025J , and the hard axis anisotropy
by Kz = 0.1J . The results of the Landau-Lifshitz equation shows
perfect agreement with the Lorentz contraction factor

√
1 − (v/c)2,

full line, that can be inferred from the sine-Gordon equation.
(b) Time evolution of the orientation φ in the case of a breather state
with frequency ω = 0.25. The results correspond to the solution of
the Landau-Lifshitz equation with the same parameters as in Fig. 4(a).
The color code is the same as the one used for the DW. (c) Snapshot
at time (1) and (2) showing the orientation of the local moments in
the texture.

of two disgyrations generates a vortexlike trivial texture (as
a consequence of 1 + 1 = 0). However, disgyrations have an
energy that grows with system size then are not localized.

The second homotopy group of π2[SO(3)] is trivial and
skyrmions are not topologically protected. Nevertheless there
are trivial stable solutions such as the lump solution [23]. In
Fig. 5 we show examples of textures related with the previous
topological properties.

Finally, the third homotopy group of the order-parameter
space is given by π3[SO(3)] = Z which opens up the pos-
sibility of topologically stable pointlike defects. Physical
realizations of this kind of topological defects have been
studied in the context of superfluid 3 He-A [25] and topological
insulators [26]. Our description of a single kagome lattice
needs to be extended to include interplane interactions in
the gradient expansion. In this case the topological defect is
a three-dimensional structure characterized by covering all
possible rotations as we move away from its center. The
winding number associated with the third homotopy group

FIG. 5. (a) Cartoon of a lump texture, given by the parametriza-
tion R(η,ẑ)nr, where η(r) = 2 arctan[exp (r − R)/W ]. This is an
example of a trivial two-dimensional texture. While this solution is
stable, it has no topological protection at all so it can be continuously
deformed to the homogeneous state. (b) Cartoon of a class 1
disgyration. This solution is topologically protected because of the
nontrivial homotopy π1[SO(3)], then it is not possible to reach the
homogeneous state adiabatically. As this state is not localized, its
energy grows with the size of the system.

is given by [27–29]

Q = 1

24π2

∫
dr εμνλtr(LμLνLλ),

where ε stands for the fully antisymmetric tensor. One possible
realization of this kind of defect is the Shankar monopole [30].
The idea is to associate to each point of space �r = rn̂ an
operator that rotates around the n̂ axis an angle χ (r). If χ

is chosen to go all the way from zero at the origin to 2π

away from the monopole we can see that the whole parameter
space is covered twice. The texture so generated is stable
under perturbations and becomes a finite-energy topologically
protected defect.

VI. CONCLUSIONS

In this paper we have addressed the behavior of textures
in the order-parameter field of noncollinear antiferromagnets.
By pursuing a continuum description of the textures we
have studied the spin-wave spectra around the homogeneous
configuration and the behavior of domain walls. The spin-wave
spectra consist of two branches. One corresponds to the
usual Klein-Gordon-like dispersion relation while the other
corresponds to a flat band whose frequency is independent of
the wave number. Domain-wall structure behaves in a similar
fashion to Bloch-type domain walls in common ferromagnets
with a characteristic with scaling with the square root of J/K

(exchange interaction compared with anisotropy). They are
described by an effective sine-Gordon equation that allows us
to predict the existence, along with stationary domain walls, of
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moving domain walls that travel undistorted across the system.
We have compared the predictions of our continuum theory
with the results of exact simulations of the Landau-Lifshitz-
Gilbert equation and obtained a complete agreement.

Finally we have discussed the topological defects that are
allowed by the topology of the order parameter space.
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