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Abstract
We study the spinwaves of the triangular skyrmion crystal that emerges in a two-dimensional spin
latticemodel as a result of the competition betweenHeisenberg exchange, Dzyalonshinkii–Moriya
interactions, Zeeman coupling and uniaxial anisotropy. The calculated spinwave bands have afinite
Berry curvature that, in some cases, leads to non-zeroChern numbers,making this system
topologically distinct from conventionalmagnonic systems.We compute the edge spin-waves,
expected from the bulk-boundary correspondence principle, and show that they are chiral, which
makes them immune to elastic backscattering. Our results illustrate how topological phases can occur
in self-generated emergent superlattices at themesoscale.

1. Introduction

One of themajor breakthroughs in the last few decades in condensedmatter physics is the notion of topological
order associated to electronic states in crystals, including quantumHall [1], quantum spinHall insulators [2, 3]
and quantumanomalousHall insulators [4] in two-dimensions, and topological insulators in three-dimensions
[5]. A specially important aspect of all these topological phases in crystals is the existence of in-gap edge states
that are immune to backscattering. This turns out in the control of anomalous transport properties, among
which the quantizedHall effect [1] is themost outstanding. In all these cases it is possible to define a topological
invariant, associated to amapping of the reciprocal space inherent to the crystal and Bloch states.

Whereas these topological phases were initially proposed for electrons, it became evident that other waves,
such as photons [6–8], polaritons [9] and spinwaves [10–13] can also be topological, and there have been both
theoretical proposals, as well as experimental demonstration in some instances [8]. Inmost of the previous
works the crystals that host these topological phases belong to two types: naturally occurring solids [14] and
patterned artificial structures ormetamaterials [7, 10].

For instance, topological spinwaves have been predicted to occur inmesoscopic crystals with artificial
patterned ferromagnetic structures [10], and also in atomic scalemagnetic insulators as theKagome lattice [11–
13], for which recent neutron scattering experiments give indirect evidence [14]. Herewe show that topological
spinwaves can also be found at an intermediate scale, in self-generated skyrmion lattices that emerge as a non-
trivial super-structure in the atomic crystal. (see figure 1).

Magnetic skyrmions are non-coplanar spin textures characterized by a non-zerowinding numberN
associated to themapping defined by themagnetizationfield6 ( )

 
M r . In the last few years there has been a revival

in the interest ofmagnetic skyrmions [15–25] fuelled by the observation of skyrmion crystals both in non-
centrosymmetric compounds such asMnSi [16] andCu2OSeO3 [21] andin artificial atomically thinmultilayers
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[20, 23] and the promise of possible applications in spintronics due to the low current necessary tomove them
[22, 24, 26–28].

As in every other broken symmetrymagnetic ground state [29, 30], spinwaves excitations are expected to
play an important role in the small energy spin dynamics of the skyrmion lattice [31, 32].More generically, the
question of how the non-collinearmagnetic ground states influences the dynamics of the spinwaves has been
explored by several authors in the past [33–38]. Thus, Dugaev et al [34], realized that spinwaves travelling in a
background of non-homogeneousmagnetization could acquire a Berry phase that in some instances would
affect theirmotion exactly amagnetic field affects charged particles. This notion has been further explored and
confirmed in the context of spinwaves of skyrmions and other topological defects [35–38]. It connects verywell
with earlier work that found out that electrons surfing non-coplanarmagnetic configurationswould also be
affected by an effective Lorentz force [39] resulting in a contribution to the anomalousHall response [40, 41],
that could even result in quantumanomalousHall phases [42, 43]. Recent work has shown that spinwaves
[44, 45] are known to undergo skew scattering by a single skyrmion, which implies the existence of an effective
Lorenz force. In addition, skyrmion lattices are known to induce the quantum anomalousHall phase in
electrons [46, 47], motivating our exploration of the topological properties of the spinwaves in a skyrmion
lattice.

2.ModelHamiltonian

Weconsider a two-dimensional triangular lattice of spins, inspired by the observation of a skyrmion lattice in a
monolayer of Fe(111) on top of Iridium [20]. TheHamiltonian has a single ion uniaxial anisotropy term that
favors themagnetization along the z axis, afirst neighbor ferromagnetic exchange J, theDzyaloshinskii–Moriya
interaction (DMI)D and the Zeeman term [31, 32, 48, 49]:

· · ( ) · ( ) ( )
      

å å å å= - + ´ - -
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In afirst step, we approximate the spins as classical objects.We define a classical functional ( )


 º WH icl , where
the spin operators


S are replaced by classical vectors


Wi. The classical ground state is defined as the configuration

Wi thatminimizes the functional cl.Wefind it by self-consistent iteration.
The non-coplanar spin alignment between first neighbors is the result of the competition between the

standardHeisenberg interaction ( ·
 

-JS Si j) and the antisymmetric DMI term ·
  

´D S Si j i j, , that requires
breaking of inversion symmetry.Here we take aDMI compatible with interfacial inversion symmetry breaking,

( ˆ )
 
= ´D D z nij0 , where


nij is the unit vector that joins sites i and j, J=1 (meV),D0=1 (meV),

K=0.5 (meV). At zero h, the ground state is an helimagnet. Application of amagnetic fieldh along the ẑ
direction, perpendicular to the system surface and thus to all the


Dij vectors, favors the formation of non-

coplanar Skyrmions lattice, shown infigure 1 for ( )=h D J0.36 0
2 . It is apparent that the classical ground state is

a triangular lattice of skyrmions, i.e., non coplanar structures with a core spin pointing in a direction opposite to
the interstitial spins.

Figure 1.Triangular skyrmion lattice for a classical spin systemdescribed by theHamiltonian (1)with J=1 (meV),D0=1 (meV),
K=0.5 (meV) and ( )=h D J0.36 0

2 . The formof theDzyalonshinskii–moriya interaction that we have chosen favorsNéel-like
skyrmions. As it can be seen in the inset within each unit cell rim spins (yellow) are antiparallel to core spins (black).
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3. Topologicalmagnonic bands

The skyrmion crystal also has spinwaves, like in the case of other symmetry breakingmagnetic states, such as
ferromagnetic and antiferromagnetic states [31, 32]. Herewe describe themusing a conventional quantum
mechanicalHolstein Primakoff (HP) boson theory [29, 30, 32, 38, 49, 50] for spinwaves:

·
( )†


W = -

= - = -+ -

S n

S S n a S a S n

S ,

2 , 2 , 2

i i i

i i i i i i

where

Wi is the spin direction of the classical ground state, obtained above, on the position i,

†ai is a Bosonic
creation operator and †=n a ai i i is the boson number operator. The spin-wave approximation consists on
keeping only quadratic terms in theHPbosons, whenHamiltonian (1) is written in terms ofHP bosonic
operators [29, 30]. In this context we approximate †=-S S a2i i . Thus, the annihilation of aHP boson is
equivalent the addition of one unit of spin angularmomentum from the classical ground state. Sincewe are
dealingwith a crystal, it is convenient towork in the reciprocal space.We label the sites in the crystal by a unit cell
vector


R and, inside each unit cell, by an additional label j.We define

( )·
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After some algebra, the spinwaveHamiltonian for the skyrmion crystal reads:

( ) [ ] ( ) ( )
( ) ( )

( )†
†* *

D
D

=
- --

-

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥H k a a

H k k

k H k

a

a
, 4k k

k

k

where †ak is a vector ofHP bosons of dimensionN, given by the number of spins in the unit cell of the crystal and
H andD arematrices, functional of the classical ground state [32, 49]. As in other cases with non-collinear
ground states, theHPHamiltonian contains terms that do not commutewith the boson number operator. This
Hamiltonian can be diagonalized, using a paraunitary transformation [32, 49, 51], leading to:
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ν=1,N labels the spinwave bands, and

k lives in thefirst Brillouin zone.Our results for the two-dimensional

skyrmion lattice are shown infigure 2 for the lowest energy bands. It is apparent that we obtain a set of non-
overlapping spinwave bands separated by gaps. Similar results have been obtained for a skyrmion square lattice
using the samemethod [32] and using a long-wave length approximation for the triangular skyrmion lattice
[36]. The non-overlapping bands can be related to the various lowest energy spinwavemodes associated to the
spinwave excitations of a single skyrmion [32].We canmap their spatial distribution over the unit cell as the
average of theHPboson occupation, whichmeasures the departure of themagnetization from the classical
ground state :

( )∣ ∣ ( ) ( )†
 

y yá ñ º á ñn nn k a a k , 6j j j

where ∣ ∣† y añ = ñn n
G

k,
are the spinwave functions and ∣ ñG is the ground state of equation (4). Results for the spin

wavemodes are shown infigure 2.
We can assign a Berry curvature to every spin-wave band [10]:
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whereσμ is 0 (1) for positive (negative) energy bands [10]. Infigure 3we display the Berry curvature for the six
lowest bands evaluated at each point of the Brillioun zone.

TheChern number, the integral of the Berry curvature

( ) ( )


 òp
= Wm m kk

i

2
d 8

BZ

2

is non zero for some of the bands. This is the central result of this work.More specifically, for the spin-wave
spectrum infigure 2, the sequence of Chern numbers, in ascending order, is 0, 0,+1, 0,+1,−2, 3, 1,...We have
verified that the sumofChern numbers over the entire spectrum is zero, as expected [13].We have also found
that the sign of theChern number is controlled by the sign of the appliedmagnetic field. Changing the sign ofD
results in a change of the skyrmionwinding numbers, but it does not change the sign of the spin-wave Chern
numbers, in contrast with the case of the electronic Chern number in a skyrmion lattice [47].
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4.Magnonic edge states

The fact that  ¹m 0 automatically entails non-trivial consequences for the edge states of the system that we
explore in the rest of this work. For thatmatter, it is convenient to define the so-called [12]winding number of a
given band-gapμ as the sumof all the Chern numbers of the bands up to bandμ :

Figure 2. Left panel: spinwave dispersion for two-dimensional crystal shown infigure 1. Themomenta are selected along the path
connecting the points of high symmetry (see inset). For each bandwe have calculated a corresponding Chern number, equation (8),
that is shown as an encircled number at each band in the left panel. Right panel: magnonic occupationswithin the unit cell evaluated at
Γ point for the six lowest bands. A clear distinction can bemade between themodes bounded to the skyrmion and the extended
modes. The differentmodes can be related to the ones in the case of an isolated skyrmion.

Figure 3.Berry curvature for the six lowest energy bands on the Brillouin zone. The curvature is calculated as indicated in equation (7).
Level curves have been chosen taking different height intervals δ indicated in each case. For reference the black line denotes zero
curvature.
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According to the bulk-edge correspondence principle [52], the number of in-gap one-way edge states, is
determined by νμ.More specifically, the interface between two insulatorsA andB, withwinding number
numbers νA and νBhosts ∣ ∣n n-A B interface states.

In order to study the properties of these in-gap states we consider a one-dimensional stripwith afinite width
of 11 unit cells (i.e., 11 skyrmions) and up to 97×8 spins. The calculation of the spinwaves follows the same
procedure than in the infinite crystal. Rather than being inferred from the 2D solution, the classical ground state
of the strip is obtained numerically. Away from the edges, the classical solution is identical to the one in 2D, as
expected (see figure 4). The resulting one-dimensional bands are shown in thefigure 4. Comparing the bands in
figures 2 and 4, it is apparent that the two lowest energy 2Dbands, with  = 0, give rise to a group of 11 bands in
the strip.

When thewinding number below a given gap is ν, there are ∣ ∣n in-gap edge states (see for instance bandswith
labels ¢ ¢ ¢ ¢a a b b c c d d, , , , , , , ). Inspection of the average occupation of theHPboson associated to these in-gap
states reveals that they describe spinwaves localized at the edges indeed. Importantly, it is apparent that states a,

b, c, d, all of them chosenwith ¶
¶

E

k
opposite to those of ¢ ¢ ¢ ¢a b c d, , , are localized in opposite edges. In addition,

states with negative (positive) velocity, such as a, b, c′, d (a′, b′, c, d′) are all localized in the bottom (top) edge.
Thus, the edge states can only propagate in one direction, in stark contrast with normal confinedmodes. Since
these edge states occupy spectral regions inwhich the bulk spectrum is gapped, elastic backscattering is
impossible for them in sufficiently wide stripes.

5.Origin of the anomalous spinwave force

Wenowdescribe quantitatively the physical origin of the finite Chern number of the spinwaves in the skyrmion
crystal. In analogywith the case of electronic quantumanomalousHall insulators, there has to be a Lorentz-type
or anomalous force acting on the spinwaves in the skyrmion crystal. Itmust be noted that, although the
Hamiltonian describing the skyrmion crystal is the similar to the one describing theHall effect of spinwaves in
Lu2V2O7 [53], the origin of the anomalous force and the resulting spin-waveHall effect in these systems is
actually quite different. In the case of the Kagome ferromagnets, the classical ground state is collinear so that the
resulting spinwave dynamics, as describedwith theHP theory [11–13], ismathematically identical to the one of
electrons in the lattice. In the case of the spinwaves in theKagome ferromagnets, the role of theDMcoupling is
to provide a phase to the hopping terms [11–13], verymuch likemagnetic fields do on electrons in a lattice,
providing thereby the systemwith afinite flux across each triangular plaquette.

Figure 4. Left: spinwave bands for a one-dimensional strip 11 skyrmionswide, the results are shown as function of the longitudinal
momenta. Each one of the bands of the homogeneous crystal shown infigure 2 is split into 11 sub-bands. Upper right: strip geometry
of 11 skyrmionswide. Bottom:magnon occupation for the edgemodes a, a′, b, b′, c, c′, d, and d′ depicted in left panel. The black dots
correspond to the centers of the underlying skyrmions. It is evident that those chiralmodes correspond to edge excitations.
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In contrast, the physics of the skyrmion-based topologicalmagnonic crystal emerges from the Berry
curvature brought about by the texture in themagnetization degree of freedom [34, 36–38]. This fact is better
appreciated doing two approximations on ourHamiltonian. First, we take the continuum limit, regarding all
variables as smooth functions of the space, slowly varyingwithin the lattice constant scale. Additionally we take a
classical limit, rendering all spin operators as simple vectors lying on the unit sphere. The resultingmodel is
similar to the system studied in [36, 38]. In the continuum limit, Hamiltonian from equation (1) leads to the
followingHamiltonian density:

· ( ( ) ( ))

( · ˆ) ( · ˆ) ( )

å å= ¶ ¶ + ¶ - ¶

- -
m

m m
m

m m m mH a S J aS D m m m m

hS z KS z

m m

m m

3

2
3

, 10

z z
2 2 2

2 2

whereμ=x, y. Following previouswork [34, 36–38], it can be seen that the physics of small disturbances, δm,
about the equilibriummagnetization texture,m0, is dominated by an effectiveHamiltonianwith anO(2)-gauge
symmetry. The vector potential associatedwith this effectiveHamiltonian is [38]:

( )( ) ˆ ( )q f k= -  + ´zA m1 cos , 110

whereκ=2D/aJ. In the latter equation θ andf correspond to the polar angles of the equilibrium
magnetization. The effectivemagnon hamiltonian correspond to an effective electron-likemodel where each
hexagonal plaquette is pierced by amagnetic field equal to:

( ) · ( ) ( ) ( )k=  ´ = ¶ ´ ¶ + ¶ + ¶m mB A m m m . 12z x y x
x

y
y

eff 0 0 0 0 0

Thefirst contribution to this effectivemagnetic field arises from the chirality of the underlyingmagnetic texture
and is nothing but the density of topological charge whose netflux is equal to 4πwithin each unit cell. On the
other hand, the contribution of theDM interaction is proportional to the divergence of themagnetization
texture and its integral vanishes.We have calculated both contributions separately within a unit cell of the
system. The calculation is done for the equilibriummagnetization, figure 1, and doing a barycentric
interpolation of the discrete lattice. The results are shown infigure 5.

6.Domainwall spinwaves

Weconclude ourworkwith a simple application of the previous ideas to create a tunable channel of
unidirectional, topologically protected, spinwaves.With this idea inmindwe consider the interface between
two skyrmion crystals with opposite Chern numbers, in analogywith a similar calculation done byMook et al
for the case of pyrochlore Kagome lattices [13]. In the case of skyrmions, the simplest way this can be achieved is
through a domainwall that changes the sign of themagnetic field. In our simulation, we consider a stripwhere
the appliedmagnetic field is stepwise constant and has opposite sign in the top and bottomhalves. The results
are, nevertheless, robust to the analysis ofmore realistic domainwalls. The resulting classical ground state,
shown infigure 6, has two skyrmion crystals with opposite winding number. The opposite winding number
leads to opposite effectivemagnetic flux. Across the interface region, where themagneticfield changes, there is a
change in the sign of theChern number that leads to topologically protectedmodes that propagate along the
domainwall. Our calculations show that these states connect otherwise separated bands (see figure 6. This

Figure 5.Magnetic flux associatedwith both contributions (chirality, (a) vorticity (b) and total (c)). The total contribution off the
vorticity (b) vanishes, so that the net flux is a consequence of the chirality contribution only.
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unidirectionalmagnonicwaveguides could be swhitched on and off by removing the domainwall, restoring for
instance the homogeneousmagnetic field.

7. Conclusions

In summary, we have calculated the topological properties for spinwaves in a skyrmion crystal.We have found
that these bands have afinite Berry curvature, as expected frompreviouswork [34, 36] andwe have computed
their Chern number, which is non zero in several of them. Thus, a two-dimensional skyrmion latticewould
realize the spin-wave analogue of the anomalous quantumHall effect.We have computed both the edge and
interface states of this system and verified that they complywith the index theorem and, in analogywith Landau-
level edge states, are unidirectional, and thereby inmune to elastic backscattering. To the best of our knowledge
our results are thefirst example of a topological phase that occurs in a self-generated emergentmeso-structure,
such as a skyrmion lattice. The peculiar properties of the topological edge statesmight find use in spintronics
applications.
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