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Companies in diverse industries must decide the pricing policy of their inventories over time. This decision becomes
particularly complex when customers are forward looking and may defer a purchase in the hope of future discounts and
promotions. With such uncertainty, many customers may end up not buying or buying at a significantly lower price, reducing
the firm’s profitability. Recent studies show that a way to mitigate this negative effect caused by strategic consumers is to use
a posted or preannounced pricing policy. With that policy, firms commit to a price path that consumers use to evaluate
their purchase timing decision. In this paper, we propose a class of preannounced pricing policies in which the price path
corresponds to a price menu contingent on the available inventory. We present a two-period model, with a monopolist selling
a fixed inventory of a good. Given a menu of prices specified by the firm and beliefs regarding the number of units to be sold,
customers decide whether to buy upon arrival, buy at the clearance price, or not to buy. The firm determines the set of prices
that maximizes revenues. The solution to this problem requires the concept of equilibrium between the seller and the buyers
that we analyze using a novel approach based on ordinary differential equations. We show existence of equilibrium and
uniqueness when only one unit is on sale. However, if multiple units are offered, we show that multiple equilibria may arise.
We develop a gradient-based method to solve the firm’s optimization problem and conduct a computational study of different
pricing schemes. The results show that under certain conditions the proposed contingent preannounced policy outperforms
previously proposed pricing schemes. The source of the improvement comes from the use of the proposed pricing policy as a
barrier to discourage strategic waiting and as a discrimination tool for those customers waiting.
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1. Introduction
Companies in diverse industries such as retailing, transporta-
tion, and the performing arts face the problem of pricing
perishable goods in the presence of strategic consumers.
In the high-fashion industry, for instance, a correct pricing
policy may be the determinant of the company’s success. This
decision is complex and needs an adequate understanding
of consumer preferences, particularly when consumers are
forward-looking and incorporate expected future discounts
into their purchasing behavior. These consumers may turn an
otherwise successful pricing strategy into an ineffective or
unprofitable one. Indeed, if consumers postpone purchasing
decisions, firms may act accordingly and readily reduce
their prices because of high observed inventories (reducing
as a consequence their profitability). Interestingly, some
consumers end up not buying either because they are hoping
that prices decrease even further or because of the shortage
due to the substantial number of customers waiting. In the
first case, firms may end up with unsold items, whereas
in the second, firms could have obtained higher revenues
by keeping higher prices. For instance, to explain the low

capacity utilization in the performing arts, Tereyagoglu et al.
(2012, p. 11) state that "if the seats remain unsold until
the last few weeks, then management decides to deeply
discount tickets, which establishes in a vicious cycle because
customers then postpone their purchases to receive the deep
discounts in these weeks.”

As a consequence of this growing problem, the topic of
pricing with strategic consumers has recently been the focus
of academic research in areas as diverse as economics, mar-
keting, and operations management. There have been several
studies analyzing conditions under which different pricing
policies optimize the firm’s profitability (Aviv and Pazgal
2008; Bansal and Maglaras 2009; Cachon and Feldman
2010; Elmaghraby et al. 2008, 2009; Jerath et al. 2010;
Osadchiy and Vulcano 2010). In particular, two general
pricing policies have been analyzed: dynamic and fixed
preannounced pricing. In the first, the price depends on the
number of remaining items at the end of each period. That
is, the price path is unknown at the beginning of the horizon.
In the second policy, the seller commits to a specific price
path. This commitment implies that consumers know at
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each point exactly what the price will be in the future if
inventory is still available. In this paper, we present a general
preannounced policy that nests these two pricing policies
as special cases. In the proposed contingent preannounced
pricing policy, the seller announces, at the beginning of the
season, a full menu of prices for each possible inventory
level at the end of the selling period. This policy extends
the fixed preannounced pricing policy, where the price
is the same for all remaining units. The proposed policy
has two appealing characteristics. First, and following the
line of preannounced prices, one source of uncertainty is
removed because customers know the price path for the
entire selling season. This creates a barrier against strategic
waiting, in particular against speculation about future prices.
And second, customers have additional information about
the price contingent on the number of available units. This
information supports an effective discrimination tool to
deal with those customers waiting in the second period. As
we show later, the flexibility of the proposed contingent
policy over the fixed policy provides an important tool
to further discriminate customers and discourage strategic
behavior. Interestingly, we show that in many cases, the
optimal pricing policy will produce increasing unit prices
for the discounted period. That is, the unit price could be
higher when there are more remaining units to sell. Although
this may seem counterintuitive, it serves as an effective
mechanism to discourage strategic behavior (§§4.6 and 6.2).

Most of the studies mentioned above have demonstrated
that if consumers are myopic (not forward looking), a
dynamic pricing policy in which the seller does not commit
and sets the price optimally given the leftover inventory
is expected to produce better results. In contrast, when
customers strategically adjust their purchase decision, this
lack of commitment negatively affects the seller, making
preannounced pricing policies more competitive. In this
paper we concentrate on preannounced pricing policies,
analyze their characteristics, and investigate the implications
of adopting them. Examples of companies that have used
such policies include Filene’s Basement (Bell and Starr
1993), Lands’ End overstocks,1 and Dress for Less.

To investigate the properties of preannounced pricing
policies, we set up a game-theoretic model and show that for
a given set of contingent preannounced prices, an equilibrium
for the buyers always exists. This equilibrium takes the
form of a threshold function so that customers buy upon
arrival if and only if their valuation is above their threshold.
Next, we show that uniqueness of equilibrium is guaranteed
when there is a single item to sell, independently of the
other parameters of the problem, and we provide sufficient
conditions for uniqueness in the multi-item case. Finally,
we look at the seller’s optimization problem. Despite its
difficulty, we are able to explicitly compute the gradient
of the objective function and therefore design an effective
gradient method. We run extensive computational studies
showing that the performance of the contingent preannounced
pricing policy is only slightly higher than that of the fixed

preannounced pricing for the basic situations studied in most
of the literature. This difference, however, may become
significant, for instance when the inventory is relatively
small and the seller is uncertain about the product’s success.

As mentioned by Aviv and Pazgal (2008, page 347) the
complexity of these models makes it difficult to demonstrate
the very existence of an equilibrium. Consequently, most of
the analyses rely on numerical experiments. In this paper,
we take a step forward and use a methodology based on
ordinary differential equations to prove existence of equilibria.
Our first methodological contribution is thus to model the
problem of finding an equilibrium as that of finding a
suitable threshold function and then via a transformation
deduce that such an equilibrium can be seen as a solution
of an appropriate differential equation, whose solution is
guaranteed to exist using a fixed point argument. We note
that the use of ordinary differential equations in dynamic
pricing settings was pioneered by Kincaid and Darling
(1963) (see also Talluri and van Ryzin 2005). However, here
we use ordinary differential equations (ODEs) to model
strategic behavior rather than for the pricing problem itself.
Our second methodological contribution is our explicit
computation of the gradient of the seller’s optimization
problem, which is critical for the proposed contingent policy.
This computation leads to a method that extends previous
research in preannounced pricing that relied on derivative
free (and thus slower) methods.

In sum, the main contribution of this paper is threefold:
It (i) presents a new pricing policy that generalizes two
existing methods, (ii) provides formal proofs of existence of
equilibrium and shows when uniqueness can be guaranteed
by using a new modeling framework based on ordinary
differential equations, and (iii) uses a gradient-based algo-
rithm to solve the optimization problem and analyzes the
performance of the proposed policy and its implied results.

The paper is organized as follows. We review the related
literature in §2 and present the mathematical model in §3.
In §4 we study the equilibrium of the contingent pricing
policy. In §5 we design an optimization method for the
seller’s problem and present numerical simulations in §6.
Concluding remarks are presented in §7.

2. Related Literature
Intertemporal price discrimination has been studied since
the seminal work of Coase (1972), who postulates that
a monopolist selling a durable good would have to sell
the product at its marginal cost unless it commits to a
pricing policy. The idea behind what is known as the
Coase conjecture is that rational consumers know that the
monopolist will reduce the price and therefore would wait
until the price reaches the marginal cost. However, when the
supply is finite or the good is perishable, this result does not
hold because consumers may not have the incentive to wait
for the lower price.

Revenue management is a more recent research area of
intertemporal price discrimination with perishable goods (see,
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e.g., Talluri and van Ryzin 2005 for an in-depth treatment).
In this context it is usually assumed that companies sell a
finite number of units of a good during a finite time horizon,
after which the unsold units have no value. The goal is to
determine the markdown policy that maximizes profitability
for the selling period. Hotels, airlines, high-fashion retailers,
and movie theaters are just a few examples of the kind of
companies applying this selling strategy. One of the initial
assumptions of revenue management is that customers are
not able (or willing) to anticipate price changes and cannot
negotiate with the company because they have no effect
on the pricing policy. This assumption is violated when
customers have knowledge of (or form beliefs about) the
pricing policy and incorporate it in their purchase decision,
influencing as a consequence the firm’s pricing decision.
The evidence that consumers may act strategically (Sun et al.
2003, Li et al. 2014) has opened a new line of research
in recent years, probably starting with the work of Lazear
(1986). In what follows we discuss some of the operations
management literature relevant to our work. It is worth
mentioning that in other fields, particularly in economics,
there have been recent efforts to understand these revenue
management issues when the seller has full flexibility and can
design any type of mechanism rather than just posted prices
mechanisms more common in the pricing literature. Most
notably, the work of Board and Skrzypacz (2015) applies
a Myersonian approach to design the optimal mechanism
to sell multiple identical items to customers arriving over
discrete time periods, whereas that of Gershkov et al. (2014)
extends the results to a continuos time setting.

There are two works closely related to our paper. First,
Aviv and Pazgal (2008) investigate the problem of a monopo-
list selling a finite inventory of a product during two periods
to a population of rational consumers. These customers
arrive sequentially and have a decreasing valuation toward
the good. Each consumer may decide to buy at the arrival
time or wait for the clearance price. The authors compare
the dynamic-without-commitment and fixed-preannounced
pricing strategies. They conclude that the preannounced
pricing scheme yields higher profits when the initial inven-
tory and valuation heterogeneity are high, the discounts are
offered at the end of the season, and there is a moderate
decline in valuations. Second, Osadchiy and Vulcano (2010)
investigate the case of selling with binding reservation. In
this case, upon arrival strategic consumers decide whether
to buy the product at the full price or place a reservation
to have a chance of receiving the product in the clearance
period if there are still units of the product available. They
focus on the fixed preannounced pricing strategy and analyze
the random and first-in-first-out (FIFO) allocation strategies
for the clearance period. They conclude that, in general, the
FIFO allocation policy yields better results for the seller
than the random allocation policy.

Other papers relax some assumptions of the basic model
presented in these two papers. For instance, Elmaghraby et al.
(2009) investigate the problem of rational customers buying

multiple units, in the context of finitely many customer
classes. Similar to the Osadchiy and Vulcano (2010) paper,
customers may place a bid with the number of units to
purchase in a fixed preannounced pricing scheme. They
investigate the effect of information about the clearance
price on consumers’ biding strategies. Additionally, they
study the effect of information about consumer valuations
(complete versus incomplete) on the optimal markdown
strategy. They show that under different conditions, it is
optimal for the buyer to submit all-or-nothing bids. They also
show that the incomplete and complete information cases
induce similar markdown strategies. Yin et al. (2009) analyze
the effect of inventory display formats when facing strategic
waiting. In particular, they analyze the display all (DA) and
display one (DO) unit formats. They conclude that DO can
increase consumer uncertainty about the inventory levels and
therefore by creating a sense of shortage risk can reduce (but
not eliminate) the detrimental impact of customers’ strategic
behavior. The implications of this research are fundamental
to our proposed contingent preannounced pricing policy. In
this paper, the display of the inventory at the end of the
regular selling season is the condition that allows the firm to
preannounce the full menu of prices.

The relationship between supply and demand is key when
facing strategic consumers. If supply is scarce, then the
cost of waiting is high because the likelihood of getting
the product in the clearance period is low. Dasu and Tong
(2010) show that there is no dominant strategy when the
ratio supply-demand is lower than one, whereas when this
ratio is higher than one, the preannounced pricing policy is
better. Levin et al. (2010) show that it is more profitable
for the seller to have a lower supply level when facing
strategic consumers. To prevent strategic consumers from
exerting their power, some studies suggest that the firm can
strategically adjust its offering in such a way that consumers
face higher uncertainty in the clearance period. Liu and van
Ryzin (2008) investigate whether it is optimal for the firm to
strategically understock some products. They show that the
firm can successfully induce early purchases of risk-averse
customers; however, this optimal rationing can be supported
only in a market with few firms. Cachon and Swinney (2009)
find that contingent pricing is generally better when the firm
can dynamically adjust its capacity. Additionally, they show
that there is a substantial benefit of a quick capacity response
when facing strategic consumers, which can partially explain
the success of fast-fashion retailers such as the Spanish
retailer Zara. Cachon and Feldman (2010) limit consumers to
have only one opportunity to buy (by incorporating visiting
costs) and find that contingent pricing works better when the
cost of visiting the store or the demand uncertainty is high.

We note that most of the studies assume that customers
have rational expectations in that they can perfectly anticipate
capacity (see Liu and van Ryzin 2011 for an exception)
and rely on the notion of an equilibrium between buyers
and the seller to find the optimal selling and purchasing
decisions. Many of these papers assume the existence and
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uniqueness of the equilibrium without a formal demonstration
of the implied consumer valuation thresholds. There are,
however, some exceptions. For instance, Osadchiy and
Vulcano (2010) prove existence and give conditions for the
uniqueness of equilibrium. Interestingly, as we also show in
our context, uniqueness of equilibrium is found only under
some specific conditions.2 Indeed, Cachon and Swinney
(2009) find conditions under which uniqueness of equilibrium
cannot be guaranteed. This finding, therefore, warns us of the
limitations for the seller to find and implement an optimal
pricing strategy.

The methodology proposed in the current paper allows
us to first analytically study equilibria and then, by con-
ducting a series of numerical studies, show the extent of
the implied results across different instances. To derive the
corresponding equilibrium we rely on the use of ordinary
differential equations. Applications of ODEs can be seen in
areas as diverse as biology, engineering, physics, economics,
marketing, and operations research. In the latter fields, much
of this work is dedicated to characterizing differential games.
However, unlike applications in other fields, where numerical
methods have been already introduced, the applications in
management science and economics rely mostly on analytic
approaches (Jorgensen and Zaccour 2007). In management
science, most of this work is devoted to diffusion models
starting from the work of Bass (1969) (see, e.g., Bass
2004). Other applications include the modeling of advertis-
ing dynamics (Naik et al. 2005) and marketing channels
(Chintagunta and Jain 1992). Recently Crapis et al. (2015)
analyze the problem of social learning about the quality
of a new product and approximate the learning dynamics
by using a system of ODEs. They present a fluid model
asymptotic approximation (similar to Maglaras and Meissner
2006 and Osadchiy and Vulcano 2010). Rahmandad and
Sterman (2008) compare the use of differential equations to
agent-based models to analyze diffusion patterns in networks.

3. The Model
Consider a monopolistic seller that needs to determine the
optimal pricing policy for a perishable good with finite
inventory Q serving strategic consumers. The initial inventory
Q is known to both the seller and the consumers. Also
assume that the seller and the buyers know the distribution
of consumer’s valuations and the distribution of the arrival
times. The selling season consists of two periods, the first
(regular) period 601 T 7 and the second (clearance) period that
happens right after T . The seller commits to prices p1 and
p2 for each period; customers take these prices as given
and make purchasing decisions accordingly. In the fixed
preannounced policy, p2 is a scalar, whereas in our proposed
contingent preannounced policy p2 is a vector. Specifically,

FPP (Fixed preannounced pricing): At time 0 the seller
announces both fixed prices p1 and p2.

CPP (Contingent preannounced pricing): At time 0 the
seller announces p1 and a set of prices p24151 0 0 0 1 p24Q5,

where p24QT 5 is the price the seller charges for the second
period if QT = 11 0 0 0 1Q units are available at time T .

Upon arrival a customer decides whether to buy at price
p1 or wait until T for a chance of getting the item at price p2,
where the remaining items (if any) are allocated randomly to
the interested consumers.

When consumers are rational these strategies influence
the consumers’ initial purchase decisions, and therefore the
implications are not straightforward. Note that for Q= 1,
FPP and CPP coincide. Moreover, FPP corresponds to
a special case of CPP when the seller sets p24QT 5 as a
constant independent of QT . Similar to CPP is what we
previously called dynamic-without-commitment pricing in
which at time 0 the seller only announces p1 and waits until
time T to announce p24QT 5, computed optimally for the
second period, depending on the number of units left at
the end of the first period. This latter strategy is optimal
if consumers are myopic; however, it fails when strategic
consumers anticipate the price at the second stage as a
function of the remaining items since this influences their
purchase decision upon arrival. With strategic customers the
seller may simply announce prices in advance without further
influencing customers’ behavior since consumers anticipate
p2 as a function of QT . In conclusion, it is important to note
that the best CPP may set prices for the second period that
do not lead to a subgame perfect equilibria; i.e., the second
period prices may be suboptimal for the remainder of the
selling season.

3.1. Game Setting Specification

Consider a seller having Q units of an item to be sold in
two periods. The first period is 601 T 7 and items are sold
at price p1. The second period occurs immediately after
T when the remaining items are offered at price p2 ¶ p1,
which may depend on the leftover inventory. The seller
behaves as a Stackelberg leader setting the prices for the
two periods in advance, with knowledge of the consumers’
parameters and anticipating their behavior. In the second
stage, customers observe p1 and 8p24k59

Q
k=1 and make their

purchase decision.3

Customers arrive according to a Poisson process of rate
�4t5 ∈ 601 �̄7 in the interval 601 T 7, and a customer arriving
at time t has a valuation for the item equal to v4t5 = vt ,
where vt is a random variable distributed according to Ft , a
bounded density distribution. We assume that for any fixed x,
Ft4x5 varies continuously in t. Moreover, a customer arriving
at time t with valuation vt who waits to buy the item at time
� ¾ t will value the item at that time as v4�5= vte

−�4�−t5,
where �¾ 0 is a discount factor that represents customers’
willingness to wait. Throughout we assume that customers
are strategic in that, depending of their valuation, they decide
to buy upon arrival or to wait until time T for a chance to
get the item at a lower price. As in Aviv and Pazgal (2008)
and Osadchiy and Vulcano (2010), here we assume that at
time T the remaining items are randomly distributed among
those customers that decided to wait.4
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The final piece of the model concerns the information
customers have when they arrive at the store. We assume
that customers know if there is stock available upon arrival
(i.e., whether there is at least one unit remaining) and the
initial inventory Q. Furthermore, customers know the arrival
process, the valuation distribution of all other customers, and
the fact that other customers behave strategically. Therefore
a customer buys the item immediately if and only if

v4t5−p1 ¾ 4v4T 5−p25�6G �At71 and v4t5¾ p11

where, given the consumers’ beliefs, G is the event of getting
the item at time T and At is the event that at time t there is
stock available. Alternatively, we may assume that customers
do not have any information about the stock when they
arrive. In that case a customer buys immediately if and
only if

4v4t5−p15�6At7¾ 4v4T 5−p25�6G71 and v4t5¾ p10

Interestingly, both models lead to the same condition because
G can only happen when At happens, i.e., G⊂At , so that
�6G∧At7=�6G7. Therefore,

�6G �At7=
�6G∧At7

�6At7
=

�6G7

�6At7
0

The model of Aviv and Pazgal (2008) establishes the
purchasing condition as v4t5−p1 ¾ 4v4T 5−p25�6G7, which
does not consider the information customers have at their
arrival time. The purchasing behavior we use here was also
considered by Osadchiy and Vulcano (2010),5 although their
work focuses on studying a different type of allocations
(random versus reservations) whereas in this paper we focus
on contingent pricing policies.

4. Contingent Preannounced Pricing
To analyze contingent pricing policies, we first study the
equilibrium for a fixed menu of prices. Thus we turn our
attention to the second stage equilibrium under a continent
pricing policy, where the seller decides one price p1 for the
regular season and another set of prices for the clearance
period 8p24k59

Q
k=1 ¶ p1, depending on the unsold items at

time T . Recall our previous discussion that this pricing
scheme requires that the seller commits to markdown prices
that may fail to be optimal for the second period alone
because setting prices that are optimal for the second period
only will induce customers to behave strategically, affecting
the revenue obtained in the first period. Accordingly, it
is in the seller’s best interest to commit to these prices
since failing to do so will quickly undermine the seller’s
credibility, thus inducing strategic behavior that will result
in lower revenues. Similar commitment issues are common
in electronic commerce where airlines such as LAN publish
the remaining inventory at a certain price.

We model the equilibrium as a fixed point involving an
ordinary differential equation. Then we prove existence and

show that for the single item case (Q= 1) the equilibrium
is unique, whereas for the multiple items case there may
exist multiple equilibria. It is important to mention that
existence of equilibria for the more restricted FPP was
first established by Osadchiy and Vulcano (2010) using a
sophisticated functional analysis approach. Here we present
a different proof in a more general setting, and additionally
we do not require the customer’s valuation distribution be
continuously differentiable and of bounded support.

To fix ideas, consider the FPP policy. In this case the seller
announces at the beginning of the selling horizon both prices
p1 and p2, which are fixed and independent on the posterior
inventory level. When a customer arrives to the store at
time t ∈ 601 T 7 with valuation v4t5, she has the intention to
buy if and only if 4v4t5−p15�4At5¾ 4v4T 5−p25�4G5 and
v4t5¾ p1. That is, a customer buys when her valuation is
over a threshold �4t5; i.e.,

v4t5¾ �4t5
0
= max

{

p1 �4At5−p2 �4G5

�4At5− e−�4T−t5�4G5
1p1

}

0 (1)

Note that this threshold function �4t5 depends on the decision
of other customers through the terms �4At5 and �4G5,
and therefore an equilibrium corresponds to a function
consistent with the above inequality for all customers and at
all t ∈ 601 T 7. It is, however, not clear in principle whether
such a function always exists.

More generally, consider now CPP. Here customers face
the uncertainty of the discounted price, which depends on the
unsold items at time T . Thus, a customer arriving at time t
decides to buy immediately if and only if 4v4t5−p15�4At5¾
Ɛ64v4T 5 − p25�4G57 and v4t5 ¾ p1. Then the threshold
function is defined as the following:

�4t5
0
= max

{

p1 �4At5− Ɛ6p2 �4G57

�4At5− e−�4T−t5�4G5
1p1

}

=











p1 0 ¶ t < t∗

p1 �4At5− Ɛ6p2 �4G57

�4At5− e−�4T−t5�4G5
t∗ ¶ t ¶ T 1

(2)

where

t∗
0
= max

{

T −
1
�

ln
(

p1 �4G5

Ɛ6p2 �4G57

)

10
}

0

Let q4t5
0
=�4v4t5¾�4t55= 1−Ft4�4t55, t ∈ 601 T 7 be

the probability that a customer has the intention to buy
the item upon her arrival at time t. In addition, define the
expected demand by time t as x4t5

0
=
∫ t

0 �4u5q4u5du and
the expected demand in the entire regular selling period as
�0

0
=
∫ T

0 �4u5q4u5du to characterize �4At5 and �4G5 as
follows. Conditioning on the number of items sold by time t
we get that

�4At5=

Q−1
∑

k=0

4x4t55ke−x4t5

k!
0
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In our random allocation model, given that there are k
items remaining and i customers willing to buy them at
the clearance price, the probability of getting the product is
min811 k/4i+ 159. By conditioning on the number of items
remaining and on the number of customers that arrive and
wait for a chance of getting the item, we can express the
terms �4G5 and Ɛ6p2 �4G57 as

�4G5=
�
∑

i=0

Q
∑

k=1

min
{

11
k

i+1

}

�4N I
=Q−k5�4N II4k5= i51

Ɛ6p2�4G57=
�
∑

i=0

Q
∑

k=1

p24k5min
{

11
k

i+1

}

·�4N I
= j−k5�4N II4k5= i50

Here N I , the number of items bought by time T , is distributed
Poisson with mean �0. Also N II 4k5, the number of customers
waiting to buy at price p24k5, is distributed Poisson with
mean

∫ T

0
�4t5dt −�0 −

∫ t∗4k5

0
�4t5Ft4p15dt

−

∫ T

t∗4k5
�4t5Ft4p24k5e

�4T−t55dt −�k1

where �k

0
=
∫ t∗4k5

0 min8�4t5− ẋ4t51�4t5Ft4p24k5e
�4T−t559−

�4t5Ft4p15dt, and t∗4k5= max8T − 41/�5 ln4p1/p24k55109
for k ∈ 811 0 0 0 1Q9. Here, the first term represents all arriving
customers, the second subtracts those who buy immediately,
the third and forth term subtract customers who buy neither
upon arrival nor at the second period, and the fifth subtracts
customers who wait to buy in the second period although they
will not buy if the clearance price is p24k5. The important
fact is that the previous quantities depend on x4t5 (or �4t5)
only through the quantities �01 0 0 0 1�Q.

Next, letting E�= 4�01 0 0 0 1�Q5 we can call C E� ≡�4G5
and D E�4 Ep25 ≡ Ɛ6p2 �4G57 and treating E� as a vector of
parameters we consider the following differential equation,
where �4x5=

∑Q−1
j=0 4x

je−x/j!5:

ẋ4t5=























�4t541 − Ft4p155 0 ¶ t < t∗

�4t5

(

1 − Ft

(

p1�4x4t55−D E�4 Ep25

�4x4t55− e−�4T−t5C E�

))

t∗ ¶ t ¶ T

x405= 00

(3)

This equation has a unique solution in the domain of
4�01 0 0 0 1�Q5, namely,

D
0
=

{

E� ∈�Q+12 �i ¾ 0 ∀ i ∈ 801 0 0 0 1Q91�0 +�i

¶
∫ T

0
�4t541 − Ft4p155dt ∀ i ∈ 811 0 0 0 1Q9

}

0

Proposition 1. Consider a fixed E�= 4�01 0 0 0 1�Q5. Then
(3) has a unique solution in D.

Proof. See Appendix A.

Remark 1. Note that the differential equation with initial
value (3) is nonautonomous since the right-hand side depends
on t and x4t5. Although this means that we cannot apply the
rich existing machinery for autonomous systems, we may still
establish existence and uniqueness. Furthermore, the equation
has good stability properties. Indeed, since the right-hand side
depends continuously on the parameters �i and it does not
vanish in x = 0, we can apply Kuchment (2013, Theorem 19)
to conclude that the solution varies continuously in both the
initial condition and the parameters �i. This result may also
be derived as follows. Consider ê4t1x1 E�5 the right-hand
side of Equation (3) and let ë4x1 E�5=

∫ t

0 ê4s1x1 E�5ds so
that (3) is equivalent to the functional fixed point equation
x =ë4x1 E�5. By Proposition 1 we know that this equation
has a unique solution and since ë is well behaved, the
solution x4t5 is continuous with respect to small perturbation
in E�.

Let us call x E�4t5 as the unique solution to (3), for a
given E�, and consider the function h2 D→�Q+1 defined by

h04 E�5= x E�4T 51

hk4 E�5=

∫ t∗4k5

0
min8�4t5− ẋ E�4t51�4t5Ft4p24k5e

�4T−t559

−�4t5Ft4p15dt1 for k = 11 0 0 0 1Q0

Therefore, we can finally write the following ODE with
initial value and coupled with a system of equations to define
equilibrium:

ẋ4t5=























�4t541 − Ft4p155 0 ¶ t < t∗

�4t5

(

1 − Ft

(

p1�4x4t55−D E�4 Ep25

�4x4t55− e−�4T−t5C E�

))

t∗ ¶ t ¶ T

x405= 01

h4 E�5= E�0

(4)

Definition 1. Given the parameters of the game, namely,
the arrival process rate �4t5, the discount rate �, the val-
uation distributions Ft , the initial inventory Q, and the
prices p11 8p24k59

Q
k=1, we define an equilibrium as a function

x2 601 T 7→� satisfying (4). Furthermore, we define the
corresponding threshold function as

�4t5= F −1
t

(

1 −
ẋ4t5

�4t5

)

for all t ∈ 601 T 7
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Figure 1. (Color online) Customer types for the
instance 4F 1 T 1Q1�1�1p11 p24151p24255=

4U 60117111211051− ln40055100551004510035.
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Note. I: customers that buy Immediately, S: wait Strategically, W: Wait
nonstrategically, and N: do Not buy.

4.1. Illustrative Example

We present an instance of the CPP strategy for uniform
valuation distributions and two units of initial inventory.
Figure 1 depicts the four customer types for the instance.
Customers in zone (I) buy immediately, i.e., decide to buy
upon arrival. The expected demand from these customers up
to time t is exactly x4t5, whereas the expected demand up to
time T is �0. Some customers wait strategically (S) and
decide to wait even though their valuation is higher than
the price in the first period. In Figure 1 these customers
are represented by S1 and S2. S1 denotes the customers
that try to obtain the item at time T (as long as there are
units available), whereas S2 denotes those customers that
intend to buy only when there are two items available at
time T . The third type of customers wait nonstrategically
(W ) for the second period price because their valuation is
lower than the price of the first period. In Figure 1 these
customers are represented by W1 and W2. Similar to the case
of strategic waiters, W1 customers intent to buy at time T
regardless of the number of remaining units, whereas W2 are
only interested on buying if there are two units available.
Finally, customers (N ) do Not buy.

4.2. Existence of Equilibria

We now present our main result establishing existence of
equilibria for strategic consumers. Our approach is based
on the modeling given by Equation (4). With this, and
under a mild technical condition on the probability dis-
tribution of customers’ valuation, the proof of existence
of equilibrium becomes quite simple. This condition is
that limy→� F ′4y5y2 = 0, which is very natural and easy to
achieve; for instance, any finite mean distribution F whose

density f is decreasing starting from some point � satisfies
such property (see Appendix B).

Theorem 1. Assume that the distributions Ft are such that
limy→� F ′

t 4y5y
2 = 0 for all t ∈ 601 T 7; then there exists a

solution to (4). Moreover, the solution x4 · 5 is nondecreasing.

Proof. See Appendix C. �

4.3. Uniqueness of Equilibria

In this section we first establish that when there is only one
unit on sale, we have a unique equilibrium. Interestingly, this
scenario is exactly the same as in the fixed preannounced
pricing, and consequently we have uniqueness of equilib-
ria there as well. We also give a sufficient condition for
uniqueness of equilibria for the general setting, although this
may not be easy to evaluate. This condition is similar in
spirit to that of Osadchiy and Vulcano (2010) and it states
that a certain mapping is a contraction. In general, this type
of condition is actually very strong since the contraction
requirement applies to the whole space rather than just
locally. For instance, the sufficient condition of Osadchiy and
Vulcano (2010) is only satisfied in cases where the initial
inventory is high with respect to arrival rate, the normal
period price is large with respect to the markdown, and the
discount rate is close to zero. In other words, uniqueness is
only guaranteed in very limited situations. Our condition for
Q> 1 suffers the same weakness. This situation makes our
general uniqueness result for Q= 1 fairly interesting. We
close this section by showing that when Q> 1, multiplicity
of equilibria can actually occur even in FPP.

Theorem 2. If there is a single item on sale, there exists a
unique solution to (4).

Proof. See Appendix D. �
In Appendix E, we also establish a standard condition

guaranteeing uniqueness in the multi-item case. The condition
reduces to noting that (4) has a unique solution if the
mapping h is a contraction. Unfortunately, checking the
condition is computationally expensive.

To complement the previous results, we exhibit (numeri-
cally computed) instances showing that when Q> 1, although
equilibrium is guaranteed to exist, it may not be unique.
Indeed, this is the case even with Q = 2 and with very gen-
eral distributions for customers’ valuations such as normal
or uniform. Furthermore, we construct these examples for
FPP, i.e., when p2 = p24k5 for k= 11 0 0 0 1Q. In this case
�11 0 0 0=�Q = 0, and thus the only parameter in ODE (4)
is �0. Therefore we consider the function h04�05= x�0

4T 5
defined as the unique solution to (4) only considering the
initial value x405= 0, evaluated at time T (so that �0 is
treated as a variable parameter). Let us point out that equilib-
ria correspond to the fixed points of h04�05; see Appendix A
for details.

We next describe one of these instances. Consider that
consumers’ valuation is distributed according to a normal
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Figure 2. (Color online) Multiplicity of equilibria for the instance 4F 1 T 1Q1�1�1p11 p25= 4N4102100052511141141011105.
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distribution with mean 102 and standard deviation 0005
(N41021000525). Also suppose that there are four items
Q = 4 to be sold in a selling season of length T = 1
and that customers arrive according to a Poisson of rate
� = 14. Finally, for simplicity assume that the firm set
p1 = 1 and p2 = 0. In the top left panel of Figure 2, we plot
the function h04�05 and observe that there are three fixed
points. Each fixed point is derived from a specific threshold
function �4t5 that are plotted on the right panel. Observe
that these threshold functions actually cross at t = 007. Note
that the derived equilibria are qualitatively very different.
For example, in the equilibrium corresponding to �1

0, (E1)
basically everyone waits until time t = 1 for a chance of
getting the item at price p2 = 0, whereas in the equilibrium
corresponding to �3

0 (E3), more than 58% of the customers
buy immediately, and most of these customers correspond to
those that arrive early.

From the seller’s perspective this situation is problematic.
How can it expect to optimize over p1 and p2 if it cannot a
priori identify the equilibrium that will arise? In terms of
the collected revenues, this example is quite dramatic. In
the equilibrium E1 the expected revenue for the seller is
very close to zero because with high probability all items
are sold at price p2 = 0. However, in the equilibrium E3

the expected revenue is close to 4, the largest one could
expect with such a p1 = 1. Therefore, the assumptions that
the seller could make regarding the expected equilibrium
have important consequences on the optimal pricing policy
and its corresponding expected revenue.

4.4. Equilibrium Selection

In the case of multiple equilibria, we may think that equilibria
where most customers wait to buy at the discounted price
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deliver higher surplus for these customers (which is certainly
true on average). As a consequence, the more customers
postpone their buying, the lower the seller’s profits are. This
intuition implies that it is best for all buyers to play according
to the equilibrium with the largest expected number of
customers waiting (smallest �0). The following proposition
captures this intuition for FPP; it shows that all consumers
are better off in the equilibrium giving the least profit to the
seller, making it reasonable to assume this behavior. We
believe that a more general version of this fact also holds,
but we have been unable to show it.

Proposition 2. Consider the FPP policy with the initial
inventory Q. Let �14t5 and �24t5 be two different equilibria
of the instance where �1

0 >�2
0. Then the surplus for each

customer is higher in the second equilibrium, whereas the
surplus for the seller is higher in the first equilibrium.

Proof. See Appendix F. �
Proposition 2 may also be seen as an extension of a

result of Osadchiy and Vulcano (2010). They consider
the (deterministic) asymptotic regime of the game, taking
�1Q → � but keeping the ratio �/Q constant. This leads to
a situation in which a rate of consumers arrive at the store
to buy infinitely divisible goods. In such setting, Osadchiy
and Vulcano (2010) observe that multiple equilibria may
arise but the equilibrium in which more customers wait to
buy in the second period Pareto dominates other equilibria.

On the other hand, for the general CPP policy when
the discount rate is zero (� = 0), one can observe that
�1 = · · · =�Q = 0 and that the only parameter is �0. Again,
equilibria correspond to fixed points of the real function
h04�05. Interestingly, the equilibrium with smallest �0 is
stable with respect to the best response mapping. Indeed, at
these equilibria the derivative of h0 is less than 1 since it is
the smallest fixed point. Consequently, the best response
mapping is locally a contraction. (Observe that iterating
the function h0 is equivalent to iterating the best response
mapping for the consumers.) This does not hold for equilibria
in which the slope of h0 is greater than one. Figure 3 depicts
the situation for the instance where we show multiplicity of
equilibria.

4.5. Pricing Policy Implementation

Because CPP involves a menu of prices, its implementability
requires two basic considerations regarding the inventory
level and committed prices.

Verifiability. In order to offer such a menu of prices,
ideally there should be some way of verifying the level of
inventory at time T , for either the customers or a regulator.
Currently, the technological conditions are such that they
allow online tracking of the inventory level. Indeed, there are
many companies such as online retailers (e.g., Amazon.com)
that reveal such information when the inventory level is
low—“only x in stock—order soon.” Other companies
such as airlines show the exact seats available not only to
travel agencies but also to final customers. More recently,

Figure 3. (Color online) Equilibrium convergence
depending on the initial �0.
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when selling tickets to sport events and performing shows,
companies are revealing not only the number of seats
available but also their exact location in the venue.

Commitment. From an equilibrium perspective, strategic
customers take the preannounced prices as given and decide
accordingly. Sellers therefore have to commit to those
prices, which may, however, be suboptimal when exclusively
considering the second period. Arguably, committing to
those preannounced prices is in the seller’s best interest not
only because its credibility and reputation are put on trust
but also because if a seller fails to do so, its action would
rather likely be discovered, which could induce customer
strategic behavior that would result in lower revenues in the
long run. In a way, this commitment issue is related to a
result by Su and Zhang (2009) stating that a seller may be
better off by committing to a certain availability guarantee.

4.6. Insights on the Potential Gains of CPP

To wrap up this section, we provide two simplified situations
that illustrate how and why CPP can outperform FPP. In
the first CPP is used as a barrier in revenue management
terms. The intuition is that by setting (and announcing) a
high second period price if the inventory is high, the seller
induces high valuation customers to purchase the item upon
arrival (discouraging strategic waiting). Additionally, when
the inventory is low enough, the seller understands that high
value customers have already purchased and thus it sets a
low price so that low valuation customers have incentives
to buy. In the second situation CPP is simply used as a
price discrimination tool over those customers waiting in the
second period. These two phenomena can also be observed
in the computational results of §6, although here we present
them in stylized situations that do not fit the specifics of our
model.
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Consider first a simple example in which there are two
customers: one with valuation 1 and the other with valu-
ation 2. Both customers arrive uniformly in the interval
60117 and there are two items on sale. Here, the optimal
contingent pricing is to set p1 = 2 − �, p2415= 1 − �, and
p2425= 2 − �. With these prices the high valuation customer
buys upon arrival (actually she is indifferent between buying
and waiting, but adding an arbitrarily small discount rate
would make her strictly prefer buying) since if she does not
buy, the two units would be left at time 1 and thus the price
will not decrease. Also, the customer with low valuation
just waits and buys at price p2415 = 1 − �. The revenue
for the seller is then arbitrarily close to 3. On the other
hand, the best policy in which p2415= p2425, i.e., the best
FPP policy, satisfies p1 = 3/2 − �, p2415= p2425= 1 − �.
Here again the high valuation customer buys upon arrival
and the low valuation waits until time 1, for a revenue of
almost 5/2. Thus, the revenue under CPP is 20% higher and,
by varying the parameters of this example, we can obtain
instances in which CPP collects twice as much revenue as
the optimal FPP. Note that this last example shows that
under CPP the prices 8p24k59

Q
k=1 may increase in k. This is

rather unforeseen since in order to maximize the seller’s
revenue, one may expect that the price increases as units are
more scarce.

To illustrate the price discrimination effect, we consider a
discrete time situation in which the regular selling season is
condensed to a single point. Customers arrive in the regular
season and wait until the markdown, which occurs in the
second period: there are two items and many customers. Two
of the customers have valuation 2 and arrive with probability
1/2. Another customer has valuation 1 and arrives with
probability 1. Finally, there is a large number customers with
very small valuation v > 0 who arrive with probability 1. In
this case the optimal FPP is to set p1 = 2 − � and p2 = v.
For these prices the equilibrium is that the valuation 2
customers buy at price p1, whereas all others wait for price
v leading to a revenue of 41/45× 44 − 2�5+ 41/25× 42 −

�+ v5+ 41/45× 42v5, which is arbitrarily close to 2 + v.6

On the other hand, in CPP we may set p1 = 1075, p2415= 1,
and p2425 = v, which leads to the equilibrium in which
customers with valuation 2 buy at price p1, the customer
with valuation 1 buys at price p2 independent of the leftover
inventory, and customers of valuation v only buy if two
units are left. Conditioning on the number of customers
of valuation 2 that arrive, the revenue can be expressed as
41/45× 43055+ 41/2541075 + 15+ 41/45× 42v5= 2025 + v/2.
For a small v, this CPP policy is 1205% higher than the
optimal FPP.

Another situation in which CPP may significantly outper-
form FPP occurs when the seller is uncertain about how the
market will react to the product on sale. Say there are two
possible scenarios, each occurring with some probability
known by the seller: the success scenario in which the arrival
rate and/or the customers’ valuation are relatively high and
the failure scenario in which the arrival rate and/or the

customers’ valuation are relatively low. In this context, as
explored in §6.4, CPP provides significantly more flexibility
to respond to the market conditions.

5. Optimal Pricing
In this section we formulate the seller’s optimization problem
for contingent preannounced pricing schemes and propose
a gradient ascending method to obtain the corresponding
solution.

Given the results in the previous sections, we can explicitly
write the seller’s problem. The problem can be considered
as a Stackelberg game where the seller first announces
a menu of prices p1 and 8p24k59

Q
k=1, and then customers

respond based on their threshold function (�4t5), which we
know exists although it may not be unique. In the case of
nonuniqueness, we consider the worst case for the seller as
argued in §4.4. This corresponds to the lowest value of �0.
Accordingly, the seller’s revenue function can be written as

�CPP4p11 Ep25=p14Q−Ɛ4QT 55+Ɛ4p24QT 5min8QT 1S+W95

=p1

�
∑

k=0

min8k1Q9�4N I
=k5

+

Q
∑

k=1

�
∑

i=0

p24k5min8i1k9�4N I
=Q−k5

·�4N II4k5= i50

Here S and W denote respectively the number of cus-
tomers waiting strategically and not strategically to buy
in the second period (§4.1). Also N I and N II4k5 denote
respectively the number of customers who buy the item
at their arrival and those who wait to buy at time T at
price p24k5 (§4). Then the problem for the seller is to solve
�∗

CPP = max0¶p24k5¶p11∀k∈8110001Q9�CPP4p11 Ep25.
To illustrate the complexity of the problem, we consider a

seller offering a single item during a unit horizon to patient
consumers (i.e., �= 0), whose valuation is deterministic and
equal to 1. Assume also that the clearance price is fixed to
p2 = 0 (so the seller only decides p1). The seller’s objective
function simplifies to the expression � = p41 − e−�5, where
p is the price to charge in the first period. Note that �, the
expected demand up to time T , depends on p. To find the
value of �, we can obtain an implicit solution of Equation (4).
Thus, the seller’s optimization is

max
p¾0

{

p41 − e−�52 s.t. 0 = ln
41 −p54�−�5

1 − e−�+�

}

0

Obtaining p from the constraint and replacing it in the
objective function leads to the one dimensional problem
max0¶�¶�41− 41− e−�+�5/4�−�5541− e−�5. Unfortunately,
even for this very simple instance a closed form solution
cannot be obtained and thus we need to rely on numerical
optimization tools.
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In general, the customers’ response can be incorporated
into the first stage problem as a fixed point constraint. Thus
the seller’s optimization problem is

max8�CPP4p11 8p24k59
Q
k=152 s.t. h4 E�5= E�90 (5)

Note that the objective function �CPP also depends on
E� and that h also depends on p1 and 8p24k59

Q
k=1. Thus,

E� depends on p1 and 8p24k59
Q
k=1 through the fixed point

equation h4 E�5 = E�. We now present a gradient method
for the problem, involving an explicit computation of the
gradient. This is new to the pricing literature.

Algorithm 5.1 (Optimization algorithm for CPP)

1 Start from an initial point x405 = 4p11 8p24k59
Q
k=15

such that p1 ¾ p24k5 for all k.
2 Calculate ï�CPP4p11 8p24k59

Q
k=15. This requires

not only computing the partial derivatives of �CPP

with respect to prices but also those with respect to �i

and then, by the chain rule and using the fixed point
constraint in (5), the derivatives of �i with respect
to prices.

3 Move in the gradient direction
x4m+15 = x4m5 +� ·ï�CPP4p11 8p24k59

Q
k=15,

imposing p1 ¾ p24k5¾ 0 for all k.
4 Stop if convergence criterion is satisfied.

Otherwise, go to 2.

In Appendix G we derive the analytical expres-
sion for ï�CPP4p11 8p24k59

Q
k=15 of problem (5). As men-

tioned above, this is nonobvious since the objective
�CPP4p11 8p24k59

Q
k=15 depends also on E�, which in turn

depends on p11 8p24k59
Q
k=1 through the fixed point con-

straint. Therefore, to compute the total derivative of the
objective with respect to some price, say, p1, we compute
¡�CPP/¡p1 +

∑Q
i=04¡�CPP/¡�k54¡�k/¡p15. Interestingly, we

can obtain an explicit expression for this where ¡�k/¡p1 is
obtained by taking derivative in the fixed point constraint.
The resulting gradient depends only on the prices of the
iteration and on the corresponding E� solving h4 E�5= E�.

A consequence of the previous comment is that in step 2,
for a given price vector, it may happen that there are multiple
equilibria, and therefore the gradient will depend on which
one we choose. If this is the case we select the equilibrium
with the smallest value of �0, as discussed in §4.4. To this
end we use the following heuristic that performs quite well
in our experiments. Given a set of prices, the idea is to
search over values of �0 while adjusting the remaining
�11 0 0 0 1�Q so that an equilibrium is attained. Specifically,
we start by letting �

405
k = 0 for all k = 11 0 0 0 1Q and explore

the values of �0 = �
405
0 in the interval 601 �̄07 from left

to right until a value such that h14 E�4055 = �
405
0 is found.

Then we update E�4i+15 = h4 E�4i55 and if � E�4i+15 − E�4i5�2 < �
we stop. Otherwise, we use these fixed values �

4i+15
k for

k = 11 0 0 0 1Q and again search from left to right the value of
�

4i+15
0 such that h14 E�4i+155=�

4i+15
0 .

Note that Algorithm 5.1 can be used to obtain a local
optimal solution starting from an arbitrary initial solution.

Thus, to solve a particular instance we use it for different
starting points and select the best solution obtained among
those found. The gain of this gradient method compared to a
derivative free method in which the objective is evaluated
multiple times around a given point in order to estimate
the gradient is quite significant. Indeed, for instances with
medium initial inventory (say Q= 8) our method already
appears to be 100 times faster.

6. Numerical Experiments
In this section we numerically solve the seller’s optimization
problem for contingent preannounced pricing schemes using
the gradient method. We examine the solution and equilib-
rium properties via a numerical experiment where we vary
the number of items to be sold Q, the arrival rate �, and the
discount time valuation � in a factorial design. Since we
are interested on the cases when there is some scarcity, we
consider instances in which the expected arrival of customers
is at least the initial inventory. The time horizon is set
to T = 1 and customers’ valuations distributed U60117.7

Note that � determines the relative valuation of a customer
between t = 0 and t = T , so if �= − ln400255, customers
value the item at t = T at 25% of what they value it at t = 0.

6.1. Detailed Instance

For illustration purposes we show one instance in full detail.
Customers arrive to the store following a Poisson process of
rate 8 and, discount the future moderately (�= − ln400755);
there are Q = 4 items to be sold. Table 1 shows the results
for CPP, FPP, and a single price SP policy, which sets a
single price for the whole season. This specific instance is
useful to clarify the main characteristics of the proposed
policy. Note first that, as expected, in this example �CPP >
�FPP >�SP. Second, although the preannounced policies
decrease the percentage of customers buying upon arrival, the
total demand increases because the percentage of nonbuyers
decreases. Third, the contingent policy reduces the percentage
of customers strategically waiting; by setting a higher price
in the first period, more customers wait nonstrategically.

6.2. CPP vs. FPP

We start the study by comparing the performance of CPP and
FPP under mild conditions. The instances run for this case
are the combinations of Q ∈ 81121 0 0 0 1109, � ∈ 81121 0 0 0 1109,
and � ∈ 801− ln4007551− ln4005051− ln4002559, considering
only the cases were �¾Q. Because FPP is a special case of
CPP, the latter yields higher revenues than does the former.
Despite this fact, it is interesting to investigate the factors
that mediate this improvement.

(i) Main effects. On average CPP yields 0.92% higher
revenues than FPP does. This difference can reach up to
4.4%. Greater differences were found on instances with
medium Q/� ratio (between one and two) and medium dis-
count factor (moderate impatience). Intuitively, if Q/� is too
large a scarcity effect pops in, eliminating the discrimination
tool CPP has at the clearance season. On the other hand,

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
0.

89
.6

8.
74

] 
on

 1
1 

A
ug

us
t 2

01
6,

 a
t 0

7:
31

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Correa, Montoya, and Thraves: Contingent Pricing with Strategic Consumers
262 Operations Research 64(1), pp. 251–272, © 2016 INFORMS

Table 1. Results for the instance 4F 1 T 1Q1�1�5=

4U 601171114181− ln4007555.

CPP FPP SP

�∗ 10729 10696 10684
p∗

1 00603 00594 00595
p∗

2 00603 4p24155 00490
00603 4p24255
00418 4p24355
00408 4p24455

Average I (%) 3006 2902 4005
Average S (%) 901 1104 000
Average W (%) 1300 305 000
Average N (%) 4703 5508 5905
�∗ I (%) 7909 7701 10000
�∗ S (%) 803 1705 000
�∗ W (%) 1108 504 000
�∗ N (%) 000 000 000
� 20451 4�05 20336 4�5

00111 4�15
00111 4�25
00000 4�35
00000 4�45

Note. I: customers that buy Immediately, S: wait Strategically, W: Wait
nonstrategically, and N: do Not buy.

when customers are very impatient (high discount factor �),
the advantage of the CPP strategy vanishes as customers
became more myopic.

(ii) Increasing prices with remaining inventory. The prices
in the second period may increase with Q for the CPP
strategy. Indeed, we observe this condition on 87% of the
instances with Q> 1. This arises in cases where customers
have some degree of impatience and there is a relatively
high number of units to sell. To understand why the seller
would offer such prices, consider the discount price to be
equal to the first period price (p24Q5= p1) when no units
are sold in the first period, whereas if some units are sold
in the first period, say k, the discount price could be such
that p24k5 < p24Q5 (0 < k<Q). Then impatient customers
realize that if they wait, they could get the product for the
same price as in the first period, but with a lower surplus
(�> 0). Table 2 depicts instances in which discount price
equals the regular price if no units are sold in the first period.
However, as demand increases the seller changes its strategy
and stop adopting nondecreasing discount prices.

(iii) Effect of customers’ patience. We observe that greater
differences in profits between CPP and FPP are obtained
when customers have medium impatience (�∼ ln400755; see,
e.g., Figure 4). When customers have medium impatience,
the seller’s CPP strategy consists of further discriminating
the customers who wait. Interestingly, if customers are very
impatient, customers’ valuation in the second period will
be low independently of how perfect the information is
about Q; as a consequence, the advantage of CPP versus
FPP diminishes.

6.3. CPP vs. FPP for Large Initial Inventory

Now we study how our methodology can be applied to
bigger initial inventories. For a high initial inventory (Q),

Figure 4. (Color online) Revenue comparison for CPP
vs. FPP, v ∼U60117, Q = 3.
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the optimization problem in CPP becomes more challeng-
ing since the dimension of the space grows at the same
rate as the number of available units. We solved this opti-
mization problem applying the gradient ascend method
starting from a number of different price menus. These
price menus were generated by grouping prices p24k5 for
similar values of k and then considering all combinations in
a multidimensional grid (taking prices to be multiples of 0.1).
The instances run for this case are the combinations of
T = 1, Q ∈ 8101201301401509, � ∈ 81012013014015011009,
� ∈ 801− ln4007551− ln4005051− ln4002559, and customers’
valuation U60117. As before, we consider the cases where
�¾Q. As it is somewhat expected, we observed smaller rel-
ative differences between the preannounced policies than in
the case of smaller inventories. Specifically, CPP delivers on
average 0070% higher revenues than does FPP. The intuition
behind this fact is that with larger arrival rates the process
becomes more deterministic, making it easier for the seller
to anticipate the number of units left at time T . Naturally
this implies that the advantage of CPP as a discrimination
tool vanishes. Table 3 exhibits the situation and also shows
that, as before, the differences are higher with moderately
impatient consumers.

Table 3. Percentage difference between CPP and FPP
for 4F 1 T 5= 4U 60117115.

� Q � 10 20 30 40 50 100

0 10 0 0.17 0.36 0.39 0035 0019
20 0.02 0.01 0.11 0017 0034
30 0 0.11 0001 0039
40 0 0001 002
50 0 0005

− ln400755 10 1.32 1.59 0.79 0.35 0025 0006
20 1.29 1.43 1.27 1035 0018
30 1.24 1.19 106 0039
40 1.23 1024 007
50 1018 1032
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Table 2. Optimal prices in CPP for instances 4F 1 T 1Q1�5= 4U 6011711121− ln4007555.

� 1 2 3 4 5 6 7 8 9 10

p∗
1 0.527 0.555 0.579 0.613 0.644 0.672 0.695 0.698 0.718 0.736

p2415
∗ 0.360 0.392 0.579 0.613 0.644 0.672 0.695 0.505 0.519 0.531

p2425
∗ 0.527 0.555 0.424 0.429 0.435 0.442 0.450 0.487 0.497 0.508

6.4. Uncertain Market

We explore how CPP behaves when there is a finite number
of customer segments that can be attracted by the new
product. Each segment differs in the valuation toward the
product and the arrival rate. For simplicity we consider two
segments and that only one of them is finally attracted by
the product.

Consider that there is a finite set of possible scenarios S,
where each scenario s ∈ S corresponds to a customer arrival
rate �s and a valuation distribution function Fs for them.
The probability of each scenario is rs ¾ 0 (

∑

s∈S rs = 1).
Customers know which scenario is realized (i.e., what type
of customers they are); however, the seller only knows the
probability of each scenario. This information structure may
be natural when new products are introduced in the market
and in particular was studied by Kanoria and Nazerzadeh
(2014). Note that Theorems 1 and 2 hold because they are
applied to each scenario. To solve the optimization problem,
we apply Algorithm 5.1 with a slight change in step 2, in
which the gradient should be computed as the weighted sum
of the gradients of each scenario.

We ran the set of instances described as follows. There are
two possible scenarios, each occurring with probability 1/2.
In one scenario the valuation distribution is U61099120017,
whereas in the other it is U60099110017. That is, it is equally
likely that the product is a success or a failure. For both
scenarios we consider the same values of Q, �, and �,
where Q ∈ 81121314159, � ∈ 8112131415161718191109,
� ∈ 801− ln4007551− ln400551− ln4002559, and T = 1.

We observed that over the studied instances, CPP out-
performs FPP by 407% on average, with differences of up
to 23%. Figure 5 shows these percentage differences among
the policies for different levels of impatience and arrival
rates. It can be seen that for each level of impatience there
is an arrival rate level that delivers maximum difference
between the strategies. Unlike the case with one customer
type, the greater differences are observed when customers
are more impatient. Indeed, we found that CPP benefits
from the arrival of low valuation customers when customers
are patient. In contrast, if customers are impatient, CPP
benefits from the arrival of high valuation customers.

To understand the reason behind these results, we ana-
lyze in more detail the following instance: T = 1, Q= 2,
�= 0, �= 4. In this case, CPP charges prices p1 = 1053,
p2415= 1053, and p2425= 0099, whereas FPP charges p1 =

1046 and p2 = 0099. Thus if arriving customers are of low
type, customers wait for the discount in the second period
and both pricing strategies get the same revenues. However,
if arriving customers are of high type, CPP only discounts

the price in the second period when there are no sales in the
first period. This allows the seller to increase the price in the
first period since now buying at time T is not as attractive
as in FPP.

Additionally, when customers are impatient, FPP charges
high prices without taking into consideration low valuation
customers, whereas CPP will leave some discounted prices
low in order to extract surplus from them. For example, in
the instance T = 1, Q= 2, �= − ln400755, and �= 4, the
optimal prices are p1 = 1099, p2415= 1099, and p2425= 0056
for CPP and p1 = 1099 and p2 = 1099 for FPP.

7. Conclusion, Implications, and
Future Work

The research investigating customers’ strategic behavior
and best pricing strategies to implement has driven a great
deal of attention in the management science community.
In this paper, we explore preannounced pricing schemes
and their equilibrium solution for a seller facing strategic
consumers who have uncertainty about the initial inventory
level. We prove that existence of equilibrium is guaranteed
but not its uniqueness and obtain interesting insights by
solving numerical instances of the problem. Along the way
we propose a new modeling approach based on differential
equations, defining equilibria as the fixed point of a function.
With this novel approach we are able to prove existence of
equilibria and its uniqueness in the case of a single unit. In
addition, we warn that uniqueness cannot be guaranteed in

Figure 5. (Color online) Revenue comparison for CPP
and FPP where v ∼U60099110017 with proba-
bility 1/2 and v ∼ U61099120017 with probabil-
ity 1/2.
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the multiunit case. Because even for very simple instances it
was not possible to obtain closed-form solutions, we develop
a gradient optimization method and solve a set of numerical
instances to better understand the characteristics of the
problem. In particular, we investigate how the performance
of different pricing policies depends on customer willingness
to wait, customer arrival rate, the initial number of items
offered, and consumer uncertainty about the initial inventory
level. Despite the theoretical multiplicity of equilibria, we
find that in the vast majority of instances there is only one
equilibrium. Our numerical results confirm the advantage of
using the contingent preannounced pricing policies when
facing strategic consumers. These advantages come from
having two discrimination tools instead of one in the case
FPP. The menu of prices in the second period can help as a
barrier to discourage strategic waiting and simultaneously
a discrimination mechanism for the customers waiting. In
contrast, FPP cannot do that. We also explore a situation
in which the seller is uncertain about how the market will
perceive the product on sale. Naturally this uncertainty turns
out to amplify the advantage of using CPP over FPP since
its higher flexibility permits to better adapt to the different
scenarios.

We conclude by noting some additional extensions of the
present research. First, the assumption that all customers
have the same willingness (or ability) to wait can be relaxed
by allowing for heterogeneity in the parameter �. This
may complicate the analysis but may enrich the results
by offering the seller an additional source of potential
discrimination. Second, it would be interesting to extend the
results presented here to more pricing periods and ultimately
to a continuous time price path. This latter problem may
have more structure and provide deeper insights on how an
optimal pricing strategy should look like. Also, by taking
advantage of the ODE approach, one could explore the
design of more effective algorithms for solving the price
optimization problem. Finally, an interesting direction is to
consider further pricing methods for the clearance period,
such as running an appropriate auction.
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Appendix A: Proof of Proposition 1
Let us call ê4t1 x5 the right-hand side of the ODE (3).

ẋ4t5=















�4t541−Ft4p155 0¶ t<t∗

�4t5

(

1−Ft

(

p1�4x4t55−D E�4 Ep25

�4x4t55−e−�4T−t5C E�

))

t∗¶ t¶T

x405=00

We first prove that the solution is unique and then prove
existence of a solution.

(i) Uniqueness: Note that ê4t1x5 is nonincreasing in x
since for t ∈ 6t∗1 T 7,

¡ê4t1 x5

¡x
= −�4t5F ′

t

(

p1�4x4t55−D E�4 Ep25

�4x4t55− e−�4T−t5C E�

)

·
p1e

−�4T−t5 −D E�4 Ep25

4�4x5−C E�e
−�4T−t552

�′4x5

¶ 00

The last inequality follows since D E� is the expected discount
price, which is always below p1e

−�4T−t5, for t¾ t∗. Then
for each t, we can write ê4t1x5 as minus the derivative
(with respect to x) of a convex function �4t1 x5; i.e., ẋ4t5=

−¡x�4t1x4t55. To prove uniqueness, let us suppose that
there exist two solutions x4t5 and y4t5 satisfying ẋ4t5=

−¡x�4t1 x4t55 and ẏ4t5= −¡x�4t1 y4t55. Then

d4x4t5− y4t552

dt

= 24x4t5− y4t554ẋ4t5− ẏ4t55

= −24x4t5− y4t554¡x�4t1 x4t55− ¡x�4t1 y4t555

¶ 01

where the last inequality follows because any nondecreasing
real function g satisfies that 4x− y54g4x5− g4y55¾ 0, and
¡x�4t1 ·5 is nondecreasing. Then 4x4t5− y4t552 is nonincreas-
ing. Adding that x405− y405= 0 and 4x4t5− y4t552 ¾ 0, we
conclude that x4t5= y4t5.

(ii) Existence: Let us redefine the initial value ODE
equivalently as

ẋ4t5=











































�4t541 − Ft4p155 if 0 ¶ t < t∗1 x ∈ 601+�5

�4t5

(

1 − Ft

(

p1�4x4t55−D E�4 Ep25

�4x4t55− e−�4T−t5C E�

))

if t∗ ¶ t ¶ T 1 0 ¶ x <�−14C E�e
−�4T−t55

0 if t∗ ¶ t ¶ T 1 �−14C E�e
−�4T−t55¶ x1

x405= 00

(A1)

In this differential equation we have simply extended the
value of ẋ4t5 as zero whenever the denominator �4x4t55−

e−�4T−t5C� becomes zero.
Clearly ê4t1 x5 is continuous in t and x; then by Peano’s

Theorem (Hale 1980, Theorem 1.1), there exists a solution
to (A1) near the initial value. Furthermore, if �̄ denotes the
maximum possible value of �4t5, we have that 0 ¶ê4t1 x5¶
�̄, so that 0 ¶ x4t5¶ �̄T . Then by extending the solution to
the maximal interval (Hale 1980, Theorem 2.1), there exists
a solution to (A1) for all t ∈ 601 T 7.

Thus we have proved that (3), or equivalently (A1), has a
unique solution. �
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Appendix B
Proposition 3. Let F be a finite mean distribution whose
density f is decreasing starting from some point �; then
limy→� F ′4y5y2 = 0.

Proof. Assume for a contradiction that lim supy→� f 4y5y2 =

2�> 0; then for all M > 0 there exists x > 2M such that
f 4x5x2 >�. Consider a sequence 8xi9

�
i=1 where x1 = � , x2

is some x > 2x1 so that x2f 4x5 > �, x3 is some x > 2x2 so
that x2f 4x5 > �, and so on. Note that for all x ∈ 6xi1 xi+17
we have that f 4x5¾ �/x2

i+1 because x2f 4x5¾ x2f 4xi+15=

x2
i+1f 4xi+15x

2/x2
i+1 >�x2/x2

i+1. Then

∫ �

�
xf 4x5dx =

�
∑

i=1

∫ xi+1

xi

xf 4x5dx

>
�
∑

i=1

∫ xi+1

xi

�x

x2
i+1

dx

=

�
∑

i=1

�

2

(

1 −

(

xi
xi+1

)2)

>
�

2

�
∑

i=1

3
4

= �1

which contradicts the finite mean assumption. �

Appendix C: Proof of Theorem 1
By the Brouwer fixed point Theorem, we need to prove
that h4 · 5 is continuous and that it transforms a convex
compact set into itself. Clearly D is bounded and closed, then
compact. Also D is convex because it is polyhedral because
it can be specified by finite number of linear inequalities.

Let us now verify that h4D5⊆D. Clearly, the solution
x E�4t5 of (3) is nonnegative for all t ∈ 601 T 7, so x E�4T 5¾ 0.
Because of the form of the right-hand side of (3) and
the definition of t∗, we have that �4t5 − ẋ E�4t5 = �4t5 ·

Ft4max84p1�4x4t55−D E�4 Ep255/4�4x4t55−e−�4T−t5C E�51 p195
¾ Ft4p15 for all t ∈ 601 T 7, in particular for t ∈ 601 t∗4k57
with 1 ¶ k¶Q. Also, from the definition of t∗4k5, we have
Ft4p24k5e

�4T−t55¾ Ft4p15 for t ¶ t∗4k5. Therefore we have
that min8�4t5− ẋ E�4t51�4t5Ft4p24k5e

�4T−t559−�4t5Ft4p15

¾ 0 and
∫ t∗4k5

0 min8�4t5 − ẋ E�4t51�4t5Ft4p24k5e
�4T−t559 −

�4t5Ft4p15dt ¾ 0, concluding that h is nonnegative.
To finish the proof of h4D5⊆D, we need to observe that

x E�4T 5+

∫ t∗4k5

0
min8�4t5− ẋ E�4t51�4t5Ft4p24k5e

�4T−t559

−�4t5Ft4p15dt

¶
∫ T

0
�4t541 − Ft4p155dt0

Indeed,

x E�4T 5+

∫ t∗4k5

0
min8�4t5− ẋ E�4t51 Ft4p24k5e

�4T−t559

−�4t5Ft4p15dt

=

∫ T

0
ẋ E�4t5dt

+

∫ t∗4k5

0
min8�4t5− ẋ E�4t51�4t5Ft4p24k5e

�4T−t559

−�4t5Ft4p15dt

¶
∫ T

0
ẋ E�4t5dt +

∫ t∗4k5

0
�4t5− ẋ E�4t5−�4t5Ft4p15dt

¶
∫ T

0
ẋ E�4t5dt +

∫ T

0
�4t5− ẋ E�4t5−�4t5Ft4p15dt

=

∫ T

0
�4t541 − Ft4p155dt0

Finally, we observe that h4 · 5 is a continuous function
in D. For this to hold it is sufficient to prove that the
right-hand side of (A1) is continuous in t and � and locally
Lipschitz in x (Hale 1980, Theorem 3.2) . The continuity in
t and � is straightforward, whereas the locally Lipschitz
property in x follows since

¡ê4t1 x5

¡x
= −�4t5F ′

t

(

p1�4x4t55−D E�4 Ep25

�4x4t55− e−�4T−t5C E�

)

·
p1e

−�4T−t5 −D E�4 Ep25

4�4x4t55−C E�e
−�4T−t552

�′4x5

= −�4t5F ′

t

(

p1�4x4t55−D E�4 Ep25

�4x4t55− e−�4T−t5C E�

)

·

(

p1�4x4t55−D E�4 Ep25

�4x4t55−C E�e
−�4T−t5

)2

·
p1e

−�4T−t5 −D E�4 Ep25

4p1�4x4t55−D E�4 Ep255
2
�′4x51

and thus the conditions limy→� F ′
t 4y5y

2 = 0 and F ′
t bounded

for every t ∈ 601 T 7 imply that ¡ê4t1 x5/¡x is bounded. Then
by the Brouwer fixed point theorem, we conclude that there
is at least one fixed point of h in D. �

Appendix D: Proof of Theorem 2
Because in we are in the case in which Q = 1, we note
immediately that �1 = 0, and for simplicity we denote
�=�0. Observe that when t ∈ 601 t∗7 the solution is clearly
unique and given by x4t5=

∫ t

0 �4t541 − Ft4p155dt, and thus
�4t5= p1. Moreover, it is clear that in this interval x4 · 5 is
nondecreasing.

We can then concentrate in the case t ∈ 6t∗1 T 7. The idea
of the proof is to show that the real function h04�5= x�4T 5,
defined in Equation (4), has derivative at most one for �
between 0 and �̄ =

∫ T

0 �4t541 − Ft4p155dt, which is an
upper bound on �. For this we consider the quantity a� =

−�+
∫ T

0 �4t5dt−
∫ t∗

0 �4t5Ft4p15 dt−
∫ T

t∗
�4t5Ft4p2e

�4T−t55 dt
and note that C� can be computed in terms of a�. Thus
consider the following change of variables in the right-hand
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side of (4):

K4�5
0
= − ln4C�5=�− ln

1 − e−a�

a�

0

Note that since C� ∈ 40115, then K4�5∈ 401+�5. So for
t ∈ 6t∗1 T 7, we can rewrite the differential equation (4) as

ẋ4t5= �4t5

(

1 − Ft

(

p1 −p2e
x4t5−K

1 − e−�4T−t5ex4t5−K

))

t ∈ 6t∗1 T 71

x4t∗5=

∫ t∗

0
�4t541 − Ft4p155dt (D1)

x�4T 5=�0

In what follows we prove that h0 is Lipschitz of con-
stant equal to 1 with respect to K (for K > 0) and that
dK4�5/d�¶ 1.

Claim 1. x�4T 5 is Lipschitz of constant 1 as a function of K.
Recall that x4t5 is nondecreasing and consider K1 <K2;
let x14t5 and x24t5 be the corresponding solutions to (D1).
Equivalently to prove that 4x24T 5− x14T 55/4K2 −K15¶ 1,
we will show that x14T 5−K1 ¾ x24T 5−K2. To show this we
see that the inequality holds for any t ∈ 601 T 7. Indeed, the
assertion is obvious for t ∈ 601 t∗7 since x1 and x2 coincide in
that interval, so x14t

∗5−K1 > x24t
∗5−K2. Recall that both

x1, and x2 are increasing and continuous functions. Consider
then the point u ∈ 6t∗1 T 7 satisfying x14u5−K1 = x24u5−K2

(if no such u exists, then we have finished the proof).
From the form of (D1) it is clear that ẋ14u5= ẋ24u5 and
x14u5−K1 = x24u5−K2, so then both curves x14t5−K1

and x24t5−K2 will be exactly the same up to t = T . Hence
x14t5−K1 ¾ x24t5−K2 for every t ∈ 601 T 7. In particular
x14T 5−K1 ¾ x24T 5−K2.

To verify that 4x24T 5−x14T 55/4K2 −K15 >−1, let us call
ê4t1 x1K5 the right part of the ODE (D1) and observe

¡ê4t1 x1K5

¡K
= �4t5F ′

t

(

p1 −p2e
x−K

1 − e−�4T−t5ex−K

)

· ex−K p1e
−�4T−t5 −p2

41 − e−�4T−t5ex−K52
¾ 00

Consider K1 < K2 and the respective solutions to the
ODE (D1) x14t5 y x24t5. Clearly these are equal up to t = t∗,
and because of the last inequality, ẋ24t

∗5¾ ẋ14t
∗5, which

means that the curve x24t5 goes over x14t5 just after t∗.
Thus, if these curves do not intersect in 6t∗1 T 7 the claim

is proved. Otherwise, suppose that both curves intersect
in u ∈ 6t∗1 T 7. Then because x14u5= x24u5 and using the
inequality just above, it implies that ẋ14t5¶ ẋ24t5. With the
same argument, x14t5 can never cross x24t5. However, if
at any t they touch, the second curve will continue with a
steeper slope. Consequently, x24T 5¾ x14T 5, which means
that 4x24T 5−x14T 55/4K2 −K15¾ 0 >−1, concluding the
proof of the first claim.

Claim 2. dK4�5/d�< 1. This comes from some algebraic
manipulations that we outline here.

dK4�5

d�
= 1 −

d

d�

(

ln
1 − e−a�

a�

)

= 1 −
d

da�

(

ln
1 − e−a�

a�

)

da�

d�

= 1 −

(

1 − e−a�

a�

)−1
d

da�

(

1 − e−a�

a�

)

4−15

= 1 +

(

1 − e−a�

a�

)−1

e−a�
1 + a� − ea�

a2
�

0

Therefore 441 − e−a�5/a�5
−1 > 0, e−a� > 0 and 1 + a� −

ea� ¶ 0, i.e., for a single value of �. Then dK4�5/d�¶ 1,
and this can only hold with equality if a� = 0. We conclude
the proof of the claim by noting that dK4�5/d� = 1 +

41/41 − e−a�55e−a�441 +a� − ea�5/a�5= 4e−a� +a� − 15/
4a�41 − e−a�55 > 0.

In this way we have shown that dh04�5/d� =

dh04K4�55/d�= 4dh04K4�55/dK54dK4�5/d�5¶ 1 and the
inequality is strict except for a single value of �. Therefore
we can conclude that there is only one fixed point of h0. This
in turn implies that we have a unique function x4t5 in each
interval 601 t∗7 and 6t∗1 T 7. This concludes the uniqueness of
the threshold when Q = 1. �

Appendix E: Condition for Uniqueness in
the Multi-Item Case
Theorem 3. For E�∈D, consider the function ê4t1x1�5
corresponding to the right-hand side of ODE (3) and x
its corresponding solution; i.e., x = x E�4t5. Let t�4k5 be the
intersection of F −1

t 41 − ẋ4t5/�4t55 and p24k5e
�4T−t5 in case

it exists, and t�4k5= 0 otherwise.
Then if for all E� ∈D we have that

max
j=010001Q

Q
∑

k=0

∣

∣

∣

∣

¡hk

¡�j

∣

∣

∣

∣

= max
j=010001Q

∫ T

0
exp

(

∫ T

s

¡ê4u1x1�j5

¡x
du

)

¡ê4s1 x1�j5

¡�j

ds

+

Q
∑

k=1

∫ t�4k5

0
exp

(

∫ t�4k5

s

¡ê4u1x1�j5

¡x
du

)

¡ê4s1 x1�j5

¡�j

ds

< 1

There exists a unique solution to (4).

Proof. Since h2 D → D, where D ⊂ �Q+1, a sufficient
condition to show that h has a unique fixed point (and thus that
(4) has a unique equilibrium) is that h is a contraction, i.e.,

�Jh�� = max
j=010001Q

Q
∑

k=0

∣

∣

∣

∣

¡hk

¡�j

∣

∣

∣

∣

< 11
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where the elements of the Jacobian Jh are

¡h0

¡�j

=
¡x�4T 5

¡�0

1
¡hk

¡�j

= −
¡x�4t

�4k55

¡�j

0

It turns out that we can explicitly compute these terms as a
function of the solution to (3). To this end we need to find
the derivative of the solution of a differential equation with
respect to a parameter evaluated at some time t. Consider a
parameter � ∈�, the parameter (which takes the form of �j )
with respect to which we want to take the derivative, and
consider the differential equation for x

dx4t5

dt
=ê4t1 x1�5

x405= 00
(E1)

Taking derivative respect to t of dx4t5/d�, we have that

d

dt

dx4t5

d�
=

d

d�

dx4t5

dt
=

dê

d�
=

¡ê

¡x

¡x

¡�
+

¡ê

¡�

=
¡ê

¡x

dx

d�
+

¡ê

¡�
0

Then

d

dt

dx4t5

d�
−

¡ê4t1 x1�5

¡x

dx

d�
=

¡ê4t1 x1�5

¡�
0 (E2)

Thus we obtain another ODE where the unknown is
dx4t5/d�. Note that we are taking derivative of the solution
x4t5 of (E1) with respect to �; thus the second argument
of ê4t1x1�5 corresponds more precisely to that solution
x�4t5. To simplify notation, we express ê4t1 x�4t51�5 simply
as ê4t1x1�5. Interestingly we can solve ODE (E2) using
the integrating factor method, obtaining that its solution is
given by

dx4t5

d�
=

∫ t

0
exp

(

∫ t

s

¡ê4u1x1�5

¡x
du

)

¡ê4s1 x1�5

¡�
ds1

proving the result. �
Note that in the previous result the partial derivatives of

ê can be explicitly computed as

¡ê4t1x1�5

¡x
= 0 ·14t<t∗5−

[

�4t5F ′
t

(

p1�4x5−D E�4 Ep25

�4x5−C E�e
−�4T−t5

)

·
p1C E�e

−�4T−t5−D E�4 Ep25

4�4x5−C E�e
−�4T−t552

xQ−1e−x

4Q−15!

]

·14t¾ t∗5

¡ê4t1x1�05

¡�0

= 0 ·14t<t∗5−

[

�4t5F ′

t

(

p1�4x5−D E�4 Ep25

�4x5−C E�e
−�4T−t5

)

·

((

−
¡D E�4 Ep25

¡�0

)

4�4x5−e−�4T−t5C E�5

+4p1�4x5−D E�4 Ep255e
−�4T−t5

¡C E�

¡�0

)

·44�4x5−C E�e
−�4T−t5525−1

]

·14t¾ t∗5

¡ê4t1x1�k5

¡�k

= 0 ·14t<t∗5−

[

�4t5F ′

t

(

p1�4x5−D E�4 Ep25

�4x5−C E�e
−�4T−t5

)

·

((

−
¡D E�4 Ep25

¡�k

)

4�4x5−e−�4T−t5C E�5

+4p1�4x5−D E�4 Ep255e
−�4T−t5

¡C E�

¡�k

)

·44�4x5−C E�e
−�4T−t5525−1

]

·14t¾ t∗5

where 14A5 is the indicator function = 1 if A is true and = 0
if A is false.

Appendix F: Proof of Proposition 2
For ease of notation we use �=�0 throughout the proof,
which requires three technical lemmas.

Lemma 1. dC�/d�¶ 0.

Proof. It is intuitively clear that C� must be decreasing
on �, since if the expected number of customers who buy
immediately at their arrival increases, then there will be
fewer units left by the end of the season, and the chances
of getting the item for a waiting customers decrease. More
formally,

C� =

�
∑

i=0

Q
∑

k=1

min
{

11
k

i+ 1

}

�Q−ke−�

4Q− k5!

4a�5
ie−a�

i!

= e−�−a�

�
∑

i=0

Q
∑

k=1

min
{

11
k

i+ 1

}

�Q−k

4Q− k5!

4a�5
i

i!
1

where a� =
∫ T

0 �4t5dt −�−
∫ t∗

0 �4t5Ft4p15dt −
∫ T

t∗
�4t5 ·

Ft4p2e
�4T−t55dt, and thus da�/d�= −1. Then e−�−a� > 0

is independent of �. Instead of dC�/d�< 0 we are going to
show that e�+a�4dC�/d�5 < 0.

e�+a�
dC�

d�

=

Q−1
∑

k=1

�
∑

i=1

min
{

11
k

i+ 1

}

·

[

�Q−k−1

4Q− k− 15!

4a�5
i

i!
−

�Q−k

4Q− k5!

4a�5
i−1

4i− 15!

]

+

Q−1
∑

k=1

�Q−k−1

4Q− k− 15!
−

Q−1
∑

i=1

4a�5
i−1

4i− 15!
−

�
∑

i=Q

Q

i+ 1

4a�5
i−1

4i− 15!

=

Q−1
∑

k=1

k−1
∑

i=0

�Q−k−1

4Q− k− 15!

4a�5
i

i!
−

Q
∑

k=1

k−1
∑

i=1

�Q−k

4Q− k5!

4a�5
i−1

4i− 15!

+

Q−1
∑

k=1

�
∑

i=k

k

i+ 1
�Q−k−1

4Q− k− 15!

4a�5
i

i!

−

Q
∑

k=1

�
∑

i=k

k

i+ 1
�Q−k

4Q− k5!

4a�5
i−1

4i− 15!
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=

Q−1
∑

k=1

k−1
∑

i=0

�Q−k−1

4Q− k− 15!

4a�5
i

i!
−

Q
∑

k=2

k−1
∑

i=1

�Q−k

4Q− k5!

4a�5
i−1

4i− 15!

+

Q−1
∑

k=1

�
∑

i=k

k

i+ 1
�Q−k−1

4Q− k− 15!

4a�5
i

i!

−

Q
∑

k=1

�
∑

i=k

k

i+ 1
�Q−k

4Q− k5!

4a�5
i−1

4i− 15!

=

Q−1
∑

k=1

�
∑

i=k

k

i+ 1
�Q−k−1

4Q− k− 15!

4a�5
i

i!

−

Q
∑

k=1

�
∑

i=k

k

i+ 1
�Q−k

4Q− k5!

4a�5
i−1

4i− 15!

= −

Q−1
∑

k=1

�
∑

i=k

i+ 1 − k

4i+ 154i+ 25
�Q−k−1

4Q− k− 15!

4a�5
i

i!

−
�Q−1

4Q− 15!

�
∑

i=1

1
i+ 1

4a�5
i−1

4i− 15!
¶ 00 �

Lemma 2. Consider �14t5, �24t5 two different equilibria of
an instance were �1 >�2; then it holds that x�14t5¾ x�24t5
∀t ∈ 601 T 7.

Proof. Assume �1 >�2 and recall the ODE that defines an
equilibria

ẋ4t5

=































�4t541−Ft4p155 0¶ t<t∗

�4t5

(

1−Ft

(

p1

∑Q−1
i=0 44x4t55ie−x4t5/i!5−p2C�

∑Q−1
i=0 44x4t55ie−x4t55/i!−e−�4T−t5C�

))

t∗¶ t¶T 1

x405=01 x4T 5=�0 (F1)

Calling ê4t1x1�5 the right-hand side of the differential
equation of (F1), we need to show ¡ê4t1x1�5/¡� ¾ 0.
First we calculate ¡ê4t1 x1�5/¡C�. In 601 t∗7 this is equal 0,
whereas in 6t∗1 T 7

¡ê4t1 x1�5

¡C�

= −�4t5F ′

t

(

p1�4x5−p2C�

�4x5−C�e
−�4T−t5

)

·
p1e

−�4T−t5 −p2

4�4x5−C�e
−�4T−t552

�4x5¶ 00 (F2)

By Lemma 1 we have dC�/d� ¶ 0, so we have the
result. �

The following is a standard result for Poisson random
variables.

Lemma 3. If N is a Poisson random variable with mean
x > 0, then 4d/dx5P4N 4x5¶ n5= −�4N 4x5= n5 < 0 for all
n ∈�+ .

Proof of Proposition 2 Recall that �4At5 =
∑Q−1

k=0 4x4t55ke−x4t5/k!; then by Lemma 3, 4d/dx5�4At5¶ 0.
By Lemma 2, if �1 >�2, then x�1

4t5¾ x�2
4t5 ∀t ∈ 601 T 7;

thus

�4At � �
15¶�4At � �

250 (F3)

Also, because of Lemma 1 we have that

�4G � �15¶�4G � �250 (F4)

We will prove the desired result by distinguishing six
cases. Recall that threshold functions may cross each other;
hence we will consider all possible cases for the customers’
valuations. Consider a customer arriving at time t ∈ 601 T 7
with valuation vt .

(i) �24t5¶�14t5¶ vt . From Equation (F3) in this case
it is clear that 4vt − p15�4At � �15 is at most 4vt − p15 ·

�4At � �
25.

(ii) �24t5¶ vt <�14t5. Since in the first equilibria cus-
tomers prefer to buy immediately rather than waiting and
from Equation (F3), we have that

4vte
−�4T−t5

−p25�4G � �15¶ 4vt −p15�4At � �
15

< 4vt −p15�4At � �
250

We conclude that the surplus in the first equilibria is less
than that under �2; i.e.,

4vt −p15�4At � �
15 < 4vte

−�4T−t5
−p25�4G � �250

(iii) min8p11 p2e
�4T−t59¶ vt <�24t5¶ �14t50 Because of

Equation (F4), customers surplus is higher in the second
equilibria

4vte
−�4T−t5

−p25�4G � �15¶ 4vte
−�4T−t5

−p25�4G � �250

(iv) �14t5 < �24t5¶ vt . This case is exactly as case (i);
customers’ surplus in the second equilibria is 4vt −p15�4At �

�15, which at most can be equal to customers’ surplus in
the first equilibria 4vt −p15�4At � �

25.
(v) �14t5¶ vt <�24t5. From Equation (F3) and because

in the first equilibria customers prefer to wait rather than
buying immediately, we have

4vt −p15�4At � �
25 < 4vt −p15�4At � �

15

¶ 4vte
−�4T−t5

−p25�4G � �150

We conclude that the surplus in the first equilibria is less
than that under the second; i.e.,

4vte
−�4T−t5

−p25�4G � �15 < 4vt −p15�4At � �
250

(vi) min8p11 p2e
�4T−t59p1 ¶ vt <�14t5�24t5. This case is

exactly as case (iii); indeed, by Equation (F4) customer’s
surplus in the first equilibria 4vte

−�4T−t5 − p25�4G � �15
is at most customers’ surplus on the second equilibria
4vte

−�4T−t5 − p25�4G � �25. The latter inequality is true
because of Equation (F4).
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We excluded the cases in which vt < min8p11p2e
�4T−t59

since the surplus is zero in both equilibria. It follows that
equilibria where more consumers decide to wait (lower �) is
preferred by all customers.

Now we check that the seller’s utility is larger under the
first equilibrium. This utility is

�FPP = p1

�
∑

k=1

�ke−�

k!
min8Q1k9

︸ ︷︷ ︸

A

+p2

Q
∑

k=1

�
∑

i=0

�Q−ke−�

4Q− k5!

4a�5
ie−a�

i!
min8k1 i9

︸ ︷︷ ︸

B

0

dA

d�
=e−�

�
∑

k=1

[

�k−1

4k−15!
−
�k

k!

]

min8Q1k9

=e−�
Q−1
∑

k=1

k

[

�k−1

4k−15!
−
�k

k!

]

+e−�
�
∑

k=Q

Q

[

�k−1

4k−15!
−
�k

k!

]

=e−�

[

1−4Q−15
�Q−1

4Q−15!
+

Q−2
∑

k=1

�k

k!

]

+e−�Q
�Q−1

4Q−15!

=

Q−1
∑

k=0

�ke−�

k!
0

e−�−a�
dB

d�

=

Q−1
∑

k=1

�
∑

i=0

min8k1 i9
�Q−k−1

4Q− k− 15!

4a�5
i

i!

−

Q
∑

k=1

�
∑

i=1

min8k1 i9
�Q−k

4Q− k5!

4a�5
i−1

4i− 15!

=

Q−1
∑

k=1

k
∑

i=0

i
�Q−k−1

4Q− k− 15!

4a�5
i

i!
−

Q
∑

k=1

k
∑

i=1

i
�Q−k

4Q− k5!

4a�5
i−1

4i− 15!

+

Q−1
∑

k=1

�
∑

i=k+1

k
�Q−k−1

4Q− k− 15!

4a�5
i

i!

−

Q
∑

k=1

�
∑

i=k+1

k
�Q−k

4Q− k5!

4a�5
i−1

4i− 15!

= −
�Q−1

4Q− 15!
−

Q−1
∑

k=1

k
∑

i=0

�Q−k−1

4Q− k− 15!

4a�5
i

i!

−
�Q−1

4Q− 15!

�
∑

i=1

4a�5
i

i!
−

Q−1
∑

k=1

�
∑

i=k+1

�Q−k−1

4Q− k− 15!

4a�5
i

i!

= −

Q−1
∑

k=1

�
∑

i=0

�Q−k−1

4Q− k− 15!

4a�5
i

i!
−

�Q−1

4Q− 15!

�
∑

i=0

4a�5
i

i!
0

Then

dB

d�
= −

Q−1
∑

k=1

�Q−k−1e−�

4Q− k− 15!
−

�Q−1e−�

4Q− 15!
= −

Q−1
∑

k=0

�ke−�

k!

so that

d�FPP

d�
= 4p1 −p25

Q−1
∑

k=0

�ke−�

k!
¾ 01

concluding that the seller’s surplus is higher in equilibria
number 1. �

Appendix G: Optimization
We now obtain an analytical expression for ï�CPP4p11
8p24k59

Q
k=15. Let us call ak the Poisson rate of the customers

who may intend to buy in the second period when there are
k items available at time T ; more precisely,

ak =

∫ T

0
�4t5dt −�0 −

∫ t∗4k5

0
�4t5Ft4p15dt

−

∫ T

t∗4k5
�4t5Ft4p24k5e

�4T−t55dt −�k0

The seller problem including the consumers’ response can
be written as

max p1

�
∑

k=0

min8k1Q9
�k

0e
−�0

k!

+

Q
∑

k=1

�
∑

i=0

p24k5min8i1 k9
�Q−k

0 e−�0

4Q− k5!

4ak5
ie−ak

i!
(G1)

s.t. x E�4T 5=�0 (G2)
∫ t∗4k5

0
min8�4t5− ẋ E�4t51�4t5Ft4p24k5e

�4T−t559

−�4t5Ft4p15dt =�k1 for k = 11 0 0 0 1Q1 (G3)

where x E�4T 5 is the solution of Equation (3). Note that we
need to compute the total derivatives of the objective function
�CPP with respect to prices after replacing constraints (G2)
and (G3); then by the chain-rule we obtain that

d�CPP

dp1

=
¡�CPP

¡p1

+
¡�CPP

¡�0

¡�0

¡p1

+

Q
∑

k=1

¡�CPP

¡�k

¡�k

¡p1

d�CPP

dp24j5
=

¡�CPP

¡p24j5
+

¡�CPP

¡�0

¡�0

¡p24j5
+

Q
∑

k=1

¡�CPP

¡�k

¡�k

¡p24j5
1

for j = 11 0 0 0 1Q

To obtain explicit expressions for ¡�0/¡p1 and ¡�0/¡p24k5
for k = 11 0 0 0 1Q, we take derivative of constraint (G2) with
respect to p1 and p24k5 and identify the terms in both sides
of the resulting equation.

¡x�4T 5

¡�0

¡�0

¡p1

+

Q
∑

j=1

¡x�4T 5

¡�j

¡�j

¡p1

+
¡x�4T 5

¡p1

=
¡�0

¡p1

¡x�4T 5

¡�0

¡�0

¡p24k5
+

Q
∑

j=1

¡x�4T 5

¡�j

¡�j

¡p24k5
+

¡x�4T 5

¡p24k5
=

¡�0

¡p24k5
1

for k = 11 0 0 0 1Q
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Rearranging terms we obtain

¡�0

¡p1

=
¡x�4T 5/¡p1 +

∑Q
j=14¡x�4T 5/¡�j54¡�j/¡p15

1 − ¡x�4T 5/¡�0

1

¡�0

¡p24k5

=
¡x�4T 5/¡p24k5+

∑Q
j=14¡x�4T 5/¡�j54¡�j/¡p24k55

1 − ¡x�4T 5/¡�0

0

Similarly, ¡�k/¡p1 and ¡�k/¡p24j5, are obtained by deriving
constraints (G3) with respect to p1 and p24j5:

¡�k

¡p1

=−
¡x�4t

�4k55

¡p1

−

∫ t∗4k5

0
�4t5F ′

t 4p15dt

¡�k

¡p24j5
=

[

−
¡x�4t

�4k55

¡p24j5
−

∫ t∗4k5

t�4k5
�4t5F ′

t 4p24k5e
�4T−t55

·e�4T−t5dt

]

·14j=k5−
¡x�4t

�4k55

¡p24j5
·14j 6=k5

where t�4k5 is defined in the proof of Theorem 3. In case
there is an intersection of �4t5 and p24k5e

�4T−t5, this is
unique since �4t5 is nondecreasing whereasp24k5e

�4T−t5 is
strictly decreasing when � > 0. Note that for � = 0 we
impose t�4k5= 0 since all �k for k = 11 0 0 0 1Q will be zero.

To make the gradient explicit we still need a number of
expressions thatare detailed below. Note that for some we
need again the integrating factor method used in Theorem 3.

¡�CPP

¡p1

=

�
∑

k=1

�k
0e

−�0

k!
min8Q1k9+

Q
∑

k=1

�
∑

i=1

p24k5min8i1 k9

·
�Q−k

0 e−�0

4Q− k5!

4ak5
i−1e−ak

4i− 15!

(

1 −
ak

i

)

dak

dp1

¡�CPP

¡p24k5
=

�
∑

i=1

min8i1 k9
�Q−k

0 e−�0

4Q− k5!

4ak5
i−1e−ak

4i− 15!

·

[

ak

i
+p24k5

(

1 −
ak

i

)

dak

dp24k5

]

¡�CPP

¡�0

= p1

Q−1
∑

k=0

�k
0e

−�0

k!
+

Q−1
∑

k=1

�
∑

i=1

p24k5min8i1 k9

·
�Q−k−1

0 e−�0

4Q− k− 15!
4ak5

i−1e−ak

4i− 15!

(

ak

i
−

�0

Q− k

)

−

�
∑

i=1

p24Q5min8i1Q9e−�0
4ak5

i−1e−ak

4i− 15!

¡�CPP

¡�k

=

�
∑

i=1

p24k5min8i1 k9
�Q−k

0 e−�0

4Q− k5!

4ak5
i−1e−ak

4i− 15!

·

(

1 −
ak

i

)

4−15

dx�4T 5

dp1

=

∫ T

0
exp

(

∫ T

s

¡ê4u1x1p15

¡x
du

)

¡ê4s1 x1p15

¡p1

ds

dx�4T 5

dp24k5
=

∫ T

0
exp

(

∫ T

s

¡ê4u1x1p24k55

¡x
du

)

·
¡ê4s1 x1p24k55

¡p24k5
ds

dx�4T 5

d�k

=

∫ T

0
exp

(

∫ T

s

¡ê4u1x1�k5

¡x
du

)

¡ê4s1 x1�k5

¡�k

ds

¡ê4t1x1p15

¡p1

= −�4t5F ′
t 4p15·14t<t∗5

−

[

�4t5F ′
t

(

p1�4x5−D E�4 Ep25

�4x5−C E�e
−�4T−t5

)

·

((

�4x5−
¡D E�4 Ep25

¡p1

)

4�4x5−e−�4T−t5C E�5

+4p1�4x5−D E�4 Ep255e
−�4T−t5

¡C E�

¡p1

)

·44�4x5−C E�e
−�4T−t5525−1

]

·14t¾ t∗5

¡ê4t1x1p24k55

¡p24k5
= 0 ·14t<t∗5

−

[

�4t5F ′
t

(

p1�4x5−D E�4 Ep25

�4x5−C E�e
−�4T−t5

)

·

((

−
¡D E�4 Ep25

¡p24k5

)

4�4x5−e−�4T−t5C E�5

+4p1�4x5−D E�4 Ep255e
−�4T−t5

¡C E�

¡p24k5

)

·44�4x5−C E�e
−�4T−t5525−1

]

·14t¾ t∗5

¡ê4t1x1 E�5

¡x
= 0 ·14t<t∗5−

[

�4t5F ′

t

(

p1�4x5−D E�4 Ep25

�4x5−C E�e
−�4T−t5

)

·
p1C E�e

−�4T−t5−D E�4 Ep25

4�4x5−C E�e
−�4T−t552

xQ−1e−x

4Q−15!

]

·14t¾ t∗5

¡ê4t1 x1�05

¡�0

= 0 · 14t < t∗5

−

[

�4t5F ′

t

(

p1�4x5−D E�4 Ep25

�4x5−C E�e
−�4T−t5

)

·

((

−
¡D E�4 Ep25

¡�0

)

4�4x5− e−�4T−t5C E�5

+ 4p1�4x5−D E�4 Ep255e
−�4T−t5

¡C E�

¡�0

)

· 44�4x5−C E�e
−�4T−t5525−1

]

· 14t ¾ t∗5

¡ê4t1 x1�k5

¡�k

= 0 · 14t < t∗5

−

[

�4t5F ′

t

(

p1�4x5−D E�4 Ep25

�4x5−C E�e
−�4T−t5

)
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·

((

−
¡D E�4 Ep25

¡�k

)

4�4x5− e−�4T−t5C E�5

+ 4p1�4x5−D E�4 Ep255e
−�4T−t5

¡C E�

¡�k

)

· 44�4x5−C�e
−�4T−t5525−1

]

· 14t ¾ t∗5

dak

dp1

= −

∫ t∗

0
�4t5F ′

t 4p15dt

dak

dp24j5
=











−

∫ T

t∗
�4t5F ′

t 4p24j5e
�4T−t55e�4T−t5 dt j = k

0 j 6= k

C E�=

�
∑

i=0

Q
∑

k=1

min
{

11
k

i+1

}

�Q−k
0 e−�0

4Q−k5!

4ak5
ie−ak

i!

dC E�

dp1

=

Q
∑

k=1

�Q−k
0 e−�0

4Q−k5!

�
∑

i=1

min
{

11
k

i+1

}

4ak5
i−1e−ak

4i−15!

·

(

1−
ak

i

)

dak

dp1

−

Q
∑

k=1

�Q−k
0 e−�0

4Q−k5!
e−ak

dak

dp1

dC E�

dp24k5
=

�Q−k
0 e−�0

4Q−k5!

�
∑

i=1

min
{

11
k

i+1

}

4ak5
i−1e−ak

4i−15!

·

(

1−
ak

i

)

dak

dp24k5
−
�Q−k

0 e−�0

4Q−k5!
e−ak

dak

dp24k5

dC E�

d�0

=

Q−1
∑

k=1

�
∑

i=1

min
{

11
k

i+1

}

�Q−k−1
0 e−�0

4Q−k−15!
4ak5

i−1e−ak

4i−15!

·

(

ak

i
−

�0

Q−k

)

+

Q−1
∑

k=1

�Q−k−1
0 e−�0

4Q−k−15!
e−ak

−

�
∑

i=1

min
{

11
Q

i+1

}

4aQ5
i−1e−aQ

4i−15!
e−�0

dC E�

d�k

=
�Q−k

0 e−�0

4Q−k5!

·

[

e−ak +

�
∑

i=1

min
{

11
k

i+1

}

4ak5
i−1e−ak

4i−15!

(

ak

i
−1
)]

D�=

�
∑

i=0

Q
∑

k=1

p24k5min
{

11
k

i+1

}

�Q−k
0 e−�0

4Q−k5!

4ak5
ie−ak

i!

dD E�

dp1

=

Q
∑

k=1

p24k5
�Q−k

0 e−�0

4Q−k5!

�
∑

i=1

min
{

11
k

i+1

}

4ak5
i−1e−ak

4i−15!

·

(

1−
ak

i

)

dak

dp1

−

Q
∑

k=1

p24k5
�Q−k

0 e−�0

4Q−k5!
e−ak

dak

dp1

dD E�

dp24k5
=

�Q−k
0 e−�0

4Q−k5!

[

�
∑

i=1

min
{

11
k

i+1

}

4ak5
i−1e−ak

4i−15!

·

(

ak

i
+p24k5

(

1−
ak

i

)

dak

dp24k5

)

+e−ak

(

1−p24k5
dak

dp24k5

)]

dD E�

d�0

=

Q−1
∑

k=1

�
∑

i=1

p24k5min
{

11
k

i+1

}

�Q−k−1
0 e−�0

4Q−k−15!
4ak5

i−1e−ak

4i−15!

·

(

ak

i
−

�0

Q−k

)

+

Q−1
∑

k=1

p24k5
�Q−k−1

0 e−�0

4Q−k−15!
e−ak

−

�
∑

i=1

p24Q5min
{

11
Q

i+1

}

4aQ5
i−1e−aQ

4i−15!
e−�0

dD E�

d�k

=p24k5
�Q−k

0 e−�0

4Q−k5!

·

[

e−ak +

�
∑

i=1

min
{

11
k

i+1

}

4ak5
i−1e−ak

4i−15!

(

ak

i
−1
)]

Endnotes

1. Through their On the Counter website http://www
.landsend.com/otc/index.html.
2. The conditions for equilibrium specified for Osadchiy
and Vulcano (2010) can be tough to satisfy. Indeed, for the
example in their paper uniqueness can be guaranteed for
only about 10% of the cases.
3. Note that from now on we use 8p24k59

Q
k=1 in addition to

p24QT 5 to emphasize the dependency of p2 on the number
of items remaining. Where not needed we just use p2.
4. More precisely, in the model of Aviv and Pazgal (2008)
there is a second period of positive length starting at T .
5. The only difference between our modeling approach
for FPP and Osadchiy and Vulcano’s is that for a buyer
arriving at time t, with valuation vt , and buying at time � at
price p, they consider the utility function 4vt −p5e−�4�−t5,
whereas we consider it as vte

−�4�−t5 −p. However, this slight
difference does not affect the implied results.
6. It is easy to observe that if we want p2 = 1 we need to
set p1 = 1025 to induce high valuation customers to buy
upon arrival, which leads to a revenue of 2.
7. The results are robust under different distributions of
customers’ valuations.
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