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Abstract The concept of critical (or principal) angle between two linear subspaces
has applications in statistics, numerical linear algebra, and other areas. Such concept
has been abundantly studied in the literature, both from a theoretical and computational
point of view. Part I of this work is an attempt to build a general theory of critical angles
for a pair of closed convex cones. The need of such theory is motivated, among other
reasons, by some specific problems arising in regression analysis of cone-constrained
data, see Tenenhaus (Psychometrika 53:503–524, 1988). Angle maximization and/or
angle minimization problems involving a pair of convex cones are at the core of our
discussion. Such optimization problems are nonconvex in general and their numerical
resolution offer a number of challenges. Part II of this work focusses on the practical
computation of the maximal and/or minimal angle between specially structured cones.
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1 Introduction

This work is themerging point of two independent sources: the recent theory of critical
angles for a closed convex cone, as developed by Iusem and Seeger (2005), and the old
theory of principal angles for a pair of linear subspaces. Let (X, 〈·, ·〉) be a Euclidian
space of dimension at least two and let C(X) be the set of nontrivial closed convex
cones in X. That a closed convex cone is nontrivial means that it is different from
the zero cone and different from the whole space. Computing the maximal angle of
a closed convex cone is an issue of importance in a number of applications, see for
instance Clarke et al. (1997, 1999) and Peña and Renegar (2000). By definition, the
maximal angle of K ∈ C(X) is the number

θmax(K ) := max
u,v∈K∩SX

arccos〈u, v〉, (1)

where SX is the unit sphere ofX. By writing down the necessary optimality conditions
for the nonconvex optimization problem (24), one gets

u, v ∈ K ∩ SX, v − 〈u, v〉u ∈ K ∗, u − 〈u, v〉v ∈ K ∗, (2)

where K ∗ denotes the positive dual cone of K . If the system (2) holds, then (u, v)

is called a critical pair of K and arccos〈u, v〉 is called a critical angle of K . The
study of critical angles in a convex cone was initiated in Iusem and Seeger (2005)
and further continued in Gourion and Seeger (2010) and Iusem and Seeger (2007a, b,
2008a, 2009). The purpose of the present work is to introduce the first ingredients for
a theory of critical angles in a pair of convex cones. Such a theory is to encompass, as
particular cases, the theory of principal angles in a pair of subspaces and the theory of
critical angles in a single cone. The starting point of our analysis is the formulation of
the optimization problem that defines the maximal angle between two convex cones.

Definition 1.1 Let P, Q ∈ C(X). The maximal angle of (P, Q) or, more precisely,
the maximal angle between P and Q, is given by

�(P, Q) := max
u∈P∩SX,v∈Q∩SX

arccos〈u, v〉. (3)

An antipodal pair of (P, Q) is any pair (u, v) ∈ X
2 solving the above maximization

problem.

Antipodal pairs always exist, but they are not unique in general. On the other hand,
it is important to observe that (3) is a nonconvex optimization problem. As we shall
see in Proposition1.3, any antipodal pair is a critical pair in the following sense:

Definition 1.2 Let P, Q ∈ C(X). A critical pair of (P, Q) is a pair (u, v) ∈ X
2

satisfying ⎧
⎪⎪⎨

⎪⎪⎩

u ∈ P ∩ SX,

v ∈ Q ∩ SX,

v − 〈u, v〉u ∈ P∗,
u − 〈u, v〉v ∈ Q∗.

(4)
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46 A. Seeger, D. Sossa

The corresponding angle arccos〈u, v〉 is called a critical angle of (P, Q). A critical
pair (u, v) of (P, Q) is called proper if u and v are not collinear. The corresponding
angle is called a proper critical angle of (P, Q).

Definition1.2 is directly inspired from the particular case (2) relative to a single
cone. The set of critical angles of (P, Q) is denoted by �(P, Q) and it is called the
angular spectrum of (P, Q). By convention, one writes �(P, Q) = {0, π} if either
P or Q is the whole space X. In general, �(P, Q) is a nonempty closed subset of
the interval [0, π ]. Beware that the cardinality of �(P, Q) is not necessarily finite. In
other words, a pair (P, Q) may have infinitely many critical angles.

Proposition 1.3 Let P, Q ∈ C(X). A necessary condition for (u, v) ∈ X
2 to be an

antipodal pair of (P, Q) is to satisfy the system (4).

Proof Let (u, v) be an antipodal pair of (P, Q). In particular, the component u mini-
mizes the linear form 〈·, v〉 on P ∩ SX. Consider an arbitrary nonzero vector d ∈ P .
Clearly,

u(t) := ‖u + td‖−1(u + td) ∈ P ∩ SX

for all t in an interval [0, ε[. Furthermore, t = 0 is a minimum of t ∈ [0, ε[ �→ f (t) :=
〈u(t), v〉. Hence, the right-derivative

f ′+(0) = 〈v, d〉 − 〈u, v〉〈u, d〉

is nonnegative. This proves the third condition in (4). Analogously, the last condition
in (4) is obtained by using the fact v minimizes 〈u, ·〉 on Q ∩ SX. ��

In a similar way one can treat the angle minimization problem

�(P, Q) := min
u∈P∩SX,v∈Q∩SX

arccos〈u, v〉. (5)

Angle minimization problems like (5) arise in a number of applications, for instance
in the theory of exponential dichotomies for linear ODEs (cf.Obert 1991) and in
regression analysis of ordinal data (cf.Tenenhaus 1988). The necessary optimality
conditions for the angle minimization problem (5) are similar to (4), but one must
change dual cones by polar cones. On the other hand, one readily sees that

cos[�(P, Q)] = − cos[�(P,−Q)], �(P, Q) = π − �(P,−Q).

So, there is no loss of generality in focussing the attention just on angle maximization.
We give the priority to angle maximization over angle minimization. Among other
reasons, our choice is motivated by the following facts:

1. When P and Q are equal, the minimization problem (5) is of no interest, whereas
themaximization problem (3) serves to define themaximal angle of a single cone.
One of the goals of this work is to extend Iusem–Seeger’s theory of critical angles
from one convex cone to a pair of convex cones.
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2. Many angle optimization problems come originally in the maximization format,
see examples in Sect. 1.1.

3. As we shall see in Sect. 4, angle maximality has a bearing with the issue of
measuring the degree of pointedness and the degree of reproducibility of a pair
of convex cones.

Our work programme covers many different themes and for this reason the paper
may give the impression of lack of unity. The overall structure of the paper is as
follows:

• Section2 addresses duality issues. We show that there is a simple link between the
critical pairs of (P, Q) and the critical pairs of (P∗, Q∗). Section2 establishes also
a certain boundary principle, according which the components of a proper critical
pair of (P, Q) should be sough on the boundaries of P and Q, respectively.

• Section3 provides alternative characterizations of criticality and duality.
• Section4 shows that the degree of pointedness of a pair (P, Q) can be expressed
as function of the maximal angle between P and Q. Similarly, the degree of repro-
ducibility of (P, Q) can be expressed as function of the maximal angle between
P∗ and Q∗.

• Section5 addresses continuity issues. One equips the set C(X) with a suitable
metric and one shows that �(P, Q) behaves in a Lipschitz continuous manner
with respect to perturbations in P and Q.

• Section6 is devoted to the analysis of critical angles for a pair of subspaces. One
shows that, in such a particular context, the concept of critical angle coincides with
the classical concept of principal angle.

• Section7 is devoted to the analysis of critical angles for a pair (P, Q) of polyhedral
cones. In such a context, the angular spectrum �(P, Q) is a finite set. We provide
easily computable upper bounds for the cardinality of �(P, Q) and, what is more
important, we explain how to compute all the elements of �(P, Q).

1.1 Some motivating examples

The formulation of the maximization problem (3) is motivated by theoretical and
practical considerations.

Example 1.4 Consider the problemof finding a point z in the intersection of two closed
convex sets C, D ⊆ X. Von Neuman’s alternating projection algorithm produces a
sequence {zk}k∈N obtained by successive projections z2k+1 = �C (z2k), z2k+2 =
�D(z2k+1) onto C and D, respectively. If the algorithm is initialized at a point z0 near
z, then it is reasonable to expect convergence toward z. As explained in Lewis et al.
(2009, Theorem5.16), the rate of convergence depends on the coefficient

τz := max
u∈NC (z), ‖u‖≤1

v∈−ND(z), ‖v‖≤1

〈u, v〉, (6)
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48 A. Seeger, D. Sossa

where NC (·) stands for the normal cone map associated to C . Note that (6) can be
rewritten as

τz = max {0,− cos[�(NC (z), ND(z))]} ,

so one must evaluate the maximal angle between the cones NC (z) and ND(z). In a
similar context, Drusvyatkiy (2013, Proposition3.2.2) uses the term�(NC (z), ND(z))
for estimating a coefficient calledmodulus of intrinsic transversality of the pair (C, D)

at the point z.

Example 1.5 Consider the space Sym(n) of symmetric matrices of order n equipped
with the trace inner product 〈A, B〉 = tr(AB). An interesting question of linear algebra
is to compute the maximal angle between the cones

Pn := {A ∈ Sym(n) : A is positive semidefinite},
Nn := {B ∈ Sym(n) : B is nonnegative entrywise}.

One usually refers to Pn as the SDP cone in Sym(n). By relying on graph theory
arguments, Goldberg and Shaked-Monderer (2014) obtained a lower bound for the
maximal angle�(Pn,Nn) and proved the asymptotic formula limn→∞ �(Pn,Nn) =
π. It remains an open question to compute the exact value of �(Pn,Nn).

2 Duality and boundary principles for critical pairs

Let 
X denote the set of all pairs of unit vectors in X that are not collinear, i.e.,


X := {(u, v) ∈ S2
X

: |〈u, v〉| �= 1}.

To each (u, v) ∈ 
X, one can associate its conjugate pair

g(u, v) =
(

v − 〈u, v〉u
√
1 − 〈u, v〉2 ,

u − 〈u, v〉v
√
1 − 〈u, v〉2

)

.

It is not difficult to check that g : 
X → 
X is a bijection with g−1 = g. In other
words, g is an involution on 
X. The following duality principle is an extension of
Iusem and Seeger (2009, Theorem2).

Theorem 2.1 Let P, Q ∈ C(X). Let (u, v) ∈ 
X and (y, z) ∈ 
X be conjugate pairs.
Then (u, v) is a critical pair of (P, Q) if and only if (y, z) is a critical of (P∗, Q∗).

Proof Theorem2 in Iusem and Seeger (2009) takes care of the particular case in which
P is equal to Q. The proof of the general case follows the same pattern. Assume that
(u, v) is critical for (P, Q) and write λ := 〈u, v〉. Clearly,

y = [1 − λ2]−1/2(v − λu) ∈ P∗ ∩ SX,

z = [1 − λ2]−1/2(u − λv) ∈ Q∗ ∩ SX.
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Furthermore, μ := 〈y, z〉 = −λ and

z − μy = [1 − μ2]1/2 u ∈ P,

y − μz = [1 − μ2]1/2 v ∈ Q.

Hence, (y, z) is critical for (P∗, Q∗). The reverse implication is proven in a similar
way. ��
Corollary 2.2 Let P, Q ∈ C(X). Let θ, ψ ∈ ]0, π [ be conjugate angles, i.e., θ +ψ =
π . Then θ is a critical angle of (P, Q) if and only if ψ is a critical angle of (P∗, Q∗).

Proof Suppose that θ is a critical angle of (P, Q). Let (u, v) be any proper critical
pair of (P, Q) such that cos θ = 〈u, v〉. Thanks to the duality principle established in
Theorem2.1, the conjugate pair (y, z) = g(u, v) is critical for (P∗, Q∗). Since

〈y, z〉 = −〈u, v〉 = − cos θ = cos(π − θ) = cosψ,

one deduces thatψ is a critical angle of (P∗, Q∗). The proof of the reverse implication
is similar. ��

Intuitively speaking, the components u and v of a proper critical pair of (P, Q)

should be on the boundaries of P and Q, respectively. The next theorem clarifies this
point. For a set C contained in a linear subspace L of X, the symbol bdL(C) refers to
the boundary of C relative to L .

Theorem 2.3 Let L ⊆ X be the smallest linear subspace containing both P ∈ C(X)

and Q ∈ C(X). Suppose that (u, v) is a proper critical pair of (P, Q). Then u ∈
bdL(P) and v ∈ bdL(Q).

Proof Since (u, v) is proper, one has λ := 〈u, v〉 /∈ {−1, 1}. Suppose, to the contrary,
that u belongs to the interior of P relative to L , i.e., there exists a positive ε such that

u + ε(BX ∩ L) ⊆ P,

where BX is the closed unit ball of X. It follows that

0 ≤ 〈v − λu, u + εw〉 = ε〈v − λu, w〉

for all w ∈ BX ∩ L . The particular choice w = ‖λu − v‖−1(λu − v) leads to

0 ≤ ε‖λu − v‖−1 〈v − λu, λu − v〉 = −ε‖v − λu‖ < 0,

a clear contradiction. This shows that u ∈ bdL(P). The proof of v ∈ bdL(Q) is similar.
��

The next corollary follows straightforwardly by combining the duality principle
stated in Theorem2.1 and the boundary principle stated in Theorem2.3.
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Corollary 2.4 Let P, Q ∈ C(X) and (u, v) be a proper critical pair of (P, Q). Then

{
v − 〈u, v〉u ∈ bdM (P∗),
u − 〈u, v〉v ∈ bdM (Q∗),

where M ⊆ X is the smallest linear subspace containing both P∗ and Q∗.

3 Further characterization of criticality and antipodality

Let �C (x) denote the projection of a point x ∈ X onto a nonempty closed convex set
C ⊆ X. The next proposition expresses criticality for a pair (P, Q) in terms of the
projection maps �P and �Q .

Proposition 3.1 Let P, Q ∈ C(X). Let u, v be distinct points on the sphere SX. Then
(u, v) is a critical pair of (P, Q) if and only if

{
�P (u − v) = (1 − 〈u, v〉) u,

�Q(v − u) = (1 − 〈u, v〉) v.
(7)

In particular, dist(u − v, P) = dist(v − u, Q) is a necessary condition for (u, v) to
be a critical pair of (P, Q).

Proof Let λ := 〈u, v〉. Let NP (u) denote the normal cone to P at u. Note that

�P (u − v) = (1 − λ)u ⇔ �P ((1 − λ)−1(u − v)) = u

⇔ (1 − λ)−1(u − v) ∈ u + NP (u)

⇔ −(v − λu) ∈ NP (u)

⇔ u ∈ P, v − λu ∈ P∗.

Similarly, the second condition in (7) amounts to saying that v ∈ Q and u −λv ∈ Q∗.
��

Sometimes it is helpful to write the angle maximization problem (3) in any of the
following equivalent forms

cos[�(P, Q)] = min
u∈P∩SX,v∈Q∩SX

〈u, v〉, (8)

κ(P, Q) := min
u∈P∩SX,v∈Q∩SX

(1/2) ‖u + v‖ . (9)

The problems (3), (8), and (9) have clearly the same solution set. Furthermore,

κ(P, Q) = cos [�(P, Q)/2 ] . (10)

The next theorem relates (3) to the minimization problem

χ(P, Q) := min
z∈SX

max {dist(z, P), dist(z,−Q)} . (11)
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Although it is not clear at first sight, it turns out that solving (3) is equivalent to solving
(11).

Theorem 3.2 Let P, Q ∈ C(X). Then

�(P, Q) = 2 arccos[χ(P, Q)]. (12)

Suppose, in addition, that P, Q are not equal to a common ray. In such a case, the
solution set A(P, Q) to the angle maximization problem (3) and the solution set
R(P, Q) to the problem (11) are related as follows:

R(P, Q) =
{

u − v

‖u − v‖ : (u, v) ∈ A(P, Q)

}

, (13)

A(P, Q) =
{(

�P (z)

‖�P (z)‖ ,
�Q(−z)

‖�Q(−z)‖
)

: z ∈ R(P, Q)

}

. (14)

Proof If P and Q are equal to a common ray, then both sides of (12) are equal to
0. Suppose now that P and Q are not equal to a common ray. Suppose also that
P ∩−Q = {0}, otherwise both sides of (12) are equal to π and the proof of (13)–(14)
is immediate. Let z0 be a solution to (11). Hence,

dist(z0, P) = dist(z0,−Q) = χ(P, Q),

‖�P (z0)‖ = ‖�Q(−z0)‖ = s,

with s := (1 − [χ(P, Q)]2)1/2 belonging to ]0, 1[. The pair

(u0, v0) :=
(
‖�P (z0)‖−1�P (z0), ‖�Q(−z0)‖−1�Q(−z0)

)

= (1/s)
(
�P (z0),�Q(−z0)

)

is then well defined. We claim that

z0 = ‖u0 − v0‖−1(u0 − v0), (15)

κ(P, Q) ≤ (1/2) ‖u0 + v0‖ = χ(P, Q). (16)

The inequality in (16) is obvious, but it is added for convenience. Let c : X → R be
the cost function of the minimization problem (11), i.e.,

c(z) := max{dist(z, P), dist(z,−Q)}.

Since z0 minimizes (1/2)c2(·) on SX, it satisfies the optimality condition

λ1 (z0 − �P (z0)) + λ2
(
z0 − �−Q(z0)

)+ μz0 = 0, (17)
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where μ ∈ R is a Lagrange multiplier and λ1, λ2 ∈ R are nonnegative scalars adding
up to 1. Since z0 − �P (z0) is orthogonal to �P (z0) and z0 − �−Q(z0) is orthogonal
to �−Q(z0), one gets

〈z0,�P (z0)〉 = 〈z0,�−Q(z0)〉 = s2.

This and (17) yield μ + 1 = s2 and λ1 = λ2 = 1/2. Hence,

z0 = (1/2s2)
(
�P (z0) + �−Q(z0)

) = (1/2s)(u0 − v0).

This proves (15) and shows that

z0 ∈ cone
{
�P (z0),�−Q(z0)

} ⊆ L := span{u0, v0}.

In the plane L , consider the rectangular triangles co{0, z0,�P (z0)} and co{0, z0,
�−Q(z0)}. Both triangles have the same angle at the vertex 0, namely, ψ = arcsin
[χ(P, Q)]. It is plain to see that

〈u0,−v0〉 = cos(2ψ) = 1 − 2 sin2 ψ = 1 − 2[χ(P, Q)]2.

This leads directly to the equality (16). Next, let (u1, v1) be an antipodal pair of (P, Q).

Then z1 := ‖u1 − v1‖−1(u1 − v1) is well defined. From Proposition3.1 one knows
that {

�P (z1) = ‖u1 − v1‖−1(1 − 〈u1, v1〉) u1,

�Q(−z1) = ‖u1 − v1‖(1 − 〈u1, v1〉) v1.
(18)

Hence,

dist(z1, P) = ‖z1 − �P (z1)‖ = ‖v1 − 〈u1, v1〉u1‖
‖u1 − v1‖ = (1/2) ‖u1 + v1‖ = κ(P, Q)

and, similarly, dist(z1,−Q) = dist(−z1, Q) = κ(P, Q). It follows that

χ(P, Q) ≤ c(z1) = κ(P, Q). (19)

From (18) one deduces also that

(u1, v1) =
(
‖�P (z1)‖−1�P (z1), ‖�Q(−z1)‖−1�Q(−z1)

)
. (20)

The combination of (15)–(16) and (19)–(20) completes the proof of the theorem. ��

4 Antipodality, pointedness and reproducibility

The sum of two closed convex cones may not be closed. The next proposition is part
of the folklore on convex cones, cf. Beutner (2007, Theorem3.2). A pair (P, Q) of
elements in C(X) is said to be pointed if P ∩ −Q = {0}. A single cone K ∈ C(X) is
declared pointed if the pair (K , K ) is pointed.
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Proposition 4.1 Let P, Q ∈ C(X). The following conditions are equivalent and imply
that P + Q is closed:

(a) (P, Q) is pointed.
(b) There exists a positive constant β such that

β(‖u‖ + ‖v‖) ≤ ‖u + v‖ for all u ∈ P, v ∈ Q. (21)

The reverse triangular inequality (21) holds of course with β = 0, but such choice
is useless. What is interesting to know is the best constant

β(P, Q) := max {β ∈ [0, 1] : β satisfies (21)} .

Such a coefficient measures to which extent the pair (P, Q) is pointed. The next
proposition relates β(P, Q) to the maximal angle of (P, Q).

Proposition 4.2 Let P, Q ∈ C(X). Then β(P, Q) = cos [�(P, Q)/2 ].

Proof We need to prove that β(P, Q) = κ(P, Q). Assume that P and Q are not equal
to a common ray, otherwise we are done. Clearly,

β(P, Q) = min
u∈P, v∈Q
(u,v) �=(0,0)

‖u + v‖
‖u‖ + ‖v‖ .

But the Dunkl–Williams inequality implies that

1

2

∥
∥
∥
∥

u

‖u‖ + v

‖v‖
∥
∥
∥
∥ ≤ ‖u + v‖

‖u‖ + ‖v‖
whenever u, v ∈ X are nonzero vectors. Hence, β(P, Q) is greater than or equal to
κ(P, Q). The reverse inequality is obvious. ��

A pair (P, Q) of elements in C(X) is said to be reproducing if P − Q = X. A
single cone K ∈ C(X) is called reproducing if the pair (K , K ) is reproducing. Clearly,
(P, Q) is reproducing if and only if (P∗, Q∗) is pointed. The next result comes then
without surprise.

Proposition 4.3 Let P, Q ∈ C(X). The following conditions are equivalent and imply
that P∗ + Q∗ is closed:

(a) (P, Q) is reproducing.
(b) There exists a positive constant α such that αBX ⊆ co((P ∪ −Q) ∩ BX).

The notation “co” refers of course to the convex hull operation. One can see Propo-
sition4.3 as a sort of dual version of Proposition4.1. The coefficient

α(P, Q) := max {α ∈ [0, 1] : αBX ⊆ co((P ∪ −Q) ∩ BX)} (22)
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54 A. Seeger, D. Sossa

measures to which extent the pair (P, Q) is reproducing. The next proposition shows
that evaluating the reproducibility coefficient of (P, Q) amounts to compute the max-
imal angle of (P∗, Q∗).

Proposition 4.4 Let P, Q ∈ C(X). Then α(P, Q) = cos
[
�(P∗, Q∗)/2

]
.

Proof By using duality arguments (namely, calculus rules for polar sets) one can show
that the inclusion in (22) can be written in the equivalent form

α
[
(BX + P∗) ∩ (BX − Q∗)

] ⊆ BX.

Hence, α(P∗, Q∗) is equal to the coefficient

ν(P, Q) := max {r ∈ [0, 1] : r [(BX + P) ∩ (BX − Q)] ⊆ BX} .

By proceeding as in Iusem and Seeger (2008b, Theorem2), one can check that
ν(P, Q) = χ(P, Q). Theorem3.2 does the rest of the job. ��

5 Lipschitzness of the maximal angle function

Topological issues on C(X) are relative to the spherical metric δ, which is defined by

δ(K1, K2) := haus(K1 ∩ SX, K2 ∩ SX).

Here,

haus(C1, C2) := max

{

max
x∈C1

dist(x, C2),max
x∈C2

dist(x, C1)

}

stands for the classical Pompeiu–Hausdorff distance between a pair C1, C2 of non-
empty compact subsets of X. Convergence with respect to the spherical metric is
equivalent to convergence in the Painlevé–Kuratowski sense. Topological issues on
the product space C2(X) := C(X) × C(X) refer to the metric

�((P1, Q1), (P2, Q2)) := max {δ(P1, P2), δ(Q1, Q2)} .

The next proposition concerns the continuity behavior of the multivalued map
�. Upper and lower-semicontinuity of multivalued maps between metric spaces are
understood in the classical sense, cf. Aubin and Frankowska (1990, Section1.4).

Proposition 5.1 The multivalued map � : C2(X)−→−→R is upper-semicontinuous, but
not lower-semicontinuous.

Proof The values of � are closed subsets of the compact interval [0, π ]. For proving
that � is upper-semicontinuous, it is enough to check that

gr � := {(P, Q, θ) ∈ C2(X) × R : θ ∈ �(P, Q)}
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is a closed set. Let {(Pk, Qk, θk)}k∈N be a sequence in gr � converging to some
(P, Q, θ) ∈ C2(X) × R. For each k ∈ N, there exists a pair (uk, vk) ∈ X

2 such
that ⎧

⎪⎪⎨

⎪⎪⎩

θk = arccos〈uk, vk〉,
uk ∈ Pk ∩ SX, vk ∈ Qk ∩ SX,

vk − 〈uk, vk〉uk ∈ P∗
k ,

uk − 〈uk, vk〉vk ∈ Q∗
k .

(23)

Let (u, v) be the limit of some subsequence {(uϕ(k), vϕ(k))}k∈N. We write (23) with
ϕ(k) instead of k. By passing then to the limit, one deduces that (P, Q, θ) ∈ gr�. We
now prove that � is not lower-semicontinuous. Let e1, e2 ∈ SX be orthogonal. For
each integer k ≥ 1, let

uk := −k−1 e1 +
(
1 − k−2

)1/2
e2,

Pk = �uk := {tuk : t ≥ 0},
Qk = He1 := {x ∈ X : 〈e1, x〉 ≥ 0}.

A matter of computation shows that (uk,−uk) is the unique critical pair of (Pk, Qk).

Thus, �(Pk, Qk) = {π}. On the other hand,

�

(

lim
k→∞ Pk, lim

k→∞ Qk

)

= �(�e2, He1) = {0, π}.

This proves that � is not lower-semicontinuous. ��
As shown in the next theorem, the maximal angle function � : C2(X) → R is not

merely continuous, but it is also Lipschitzian.

Theorem 5.2 There exists a constant �X such that

|�(P1, Q1) − �(P2, Q2)| ≤ �X�((P1, Q1), (P2, Q2))

for all (P1, Q1), (P2, Q2) ∈ C2(X).

Proof One knows from (10) that � : C2(X) → R admits the characterization

�(P, Q) = 2 arccos (κ(P, Q)) . (24)

We claim that κ satisfies the Lipschitz condition

|κ(P1, Q1) − κ(P2, Q2)| ≤ �((P1, Q1), (P2, Q2)). (25)

The proof of (25) follows the same pattern as in Iusem and Seeger (2008b, Lemma1).
Let u2 ∈ P2 ∩ SX and v2 ∈ Q2 ∩ SX be such that 2κ(P2, Q2) = ‖u2 + v2‖. Let u1, v1
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be projections of u2, v2 onto P1 ∩ SX and Q1 ∩ SX, respectively. Hence,

2(κ(P1, Q1) − κ(P2, Q2)) ≤ ‖u1 + v1‖ − ‖u2 + v2‖
≤ ‖u1 − u2‖ + ‖v1 − v2‖
= dist(u2, P1 ∩ SX) + dist(v2, Q1 ∩ SX)

≤ e(P2, P1) + e(Q2, Q1),

where one uses the notation

e(K2, K1) := sup
u∈K2∩SX

dist(u, K1 ∩ SX).

In a similar way one gets

2(κ(P2, Q2) − κ(P1, Q1)) ≤ e(P1, P2) + e(Q1, Q2).

Thus,

2|κ(P1, Q1) − κ(P2, Q2)| ≤ max {e(P2, P1) + e(Q2, Q1), e(P1, P2) + e(Q1, Q2)}
≤ max {e(P2, P1), e(P1, P2)}︸ ︷︷ ︸

δ(P1,P2)

+max {e(Q2, Q1), e(Q1, Q2)}︸ ︷︷ ︸
δ(Q1,Q2)

.

This leads to (25). Next we observe that

�(P, Q) = arccos
(
1 − (1/2)[diam(P, Q)]2

)
, (26)

where

diam(P, Q) := max
u∈P∩SX , v∈Q∩SX

‖u − v‖.

It is not difficult to check that

|diam(P1, Q1) − diam(P2, Q2)| ≤ δ(P1, P2) + δ(Q1, Q2)

≤ 2�((P1, Q1), (P2, Q2)). (27)

The Lipschitzness of� is obtained by combining (24)–(27). To see this, one can follow
the same procedure as in Seeger (2014, Theorem 2). The details are omitted. ��

6 Critical angles in a pair of linear subspaces

Which is the minimal angle between a pair of linear subspaces? And which one is
the maximal angle? Are they other interesting angles, besides the minimal and the
maximal one?This sort of questions has lead to develop the classical theory of principal
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angles. Recall that the principal angles θ1, . . . , θm of a pair (P, Q) of nontrivial linear
subspaces of X are defined recursively by

cos θk = max
u∈Pk∩SX,v∈Qk∩SX

〈u, v〉, (28)

where m := min{dimP, dimQ} and
⎧
⎪⎪⎨

⎪⎪⎩

P1 := P, Q1 := Q,

Pk+1 := {x ∈ Pk : 〈uk, x〉 = 0},
Qk+1 := {x ∈ Qk : 〈vk, x〉 = 0},
(uk, vk) solution to (28).

The vectors uk and vk are not uniquely defined, but the θk are unique. Interesting
material on principal angles can be found in the linear algebra book by Meyer (2000,
Section5.15), see also the references Björck and Golub (1973), Miao and Ben-Israel
(1992) andRoy (1947).When P and Q are nontrivial linear subspaces ofX, the system
(4) becomes

u ∈ P ∩ SX, v ∈ Q ∩ SX, v − 〈u, v〉u ∈ P⊥, u − 〈u, v〉v ∈ Q⊥, (29)

where ⊥ indicates orthogonal complementation relative to X. In this special con-
text, there is no distinction between criticality for angle maximization and criticality
for angle minimization. As a first elementary observation, we mention the following
conjugacy principle.

Proposition 6.1 Let P and Q be nontrivial linear subspaces of X. Let θ, ψ ∈ [0, π ]
be conjugate angles. Then θ is a critical angle of (P, Q) if and only if ψ is a critical
angle of (P, Q).

Proof Clearly, (u, v) satisfies (29) if and only if (u,−v) satisfies (29). It suffices now
to observe that arccos〈u,−v〉 and arccos〈u, v〉 are conjugate angles. ��

The combination of Corollary2.2 and Proposition6.1 yields a duality result estab-
lished by Miao and Ben-Israel (1992, Theorem 3). In view of Proposition6.1, it is
enough to compute the critical angles of (P, Q) that are in the subinterval [0, π/2].
The remaining critical angles are obtained by conjugation. The next theorem shows
that the principal angles of (P, Q) are equal to the critical angles of (P, Q) that are
in [0, π/2]. In what follows, we use the notation

O(Rn,X) := {W ∈ L(Rn,X) : W T W = In},

where In is the identity matrix of order n and L(Rn,X) is the vector space of linear
maps from R

n to X. The symbol ImW refers to the image space of W .

Theorem 6.2 Let P = ImU and Q = ImV be nontrivial linear subspaces of X
represented by U ∈ O(Rp,X) and V ∈ O(Rq ,X), respectively. For θ ∈ [0, π/2], the
following four conditions are equivalent:
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(a) θ is a critical angle of (P, Q).
(b) θ is a principal angle of (P, Q).
(c) cos θ is a singular value of the rectangular matrix E := V T U.
(d) There are unit vectors x ∈ R

p and y ∈ R
q such that

[
0 ET

E 0

] [
x
y

]

= cos θ

[
x
y

]

. (30)

Furthermore, if x and y are as in (d), then (U x, V y) is a critical pair of (P, Q) and
cos θ = 〈U x, V y〉.
Proof (b) ⇔ (c). This equivalence is stated in Björck and Golub (1973, Theorem1).
(a) ⇒ (d). Let the angle θ be formed with some pair (u, v) satisfying the system (29).
There are unit vectors x ∈ R

p and y ∈ R
q such that (u, v) = (U x, V y). Hence,

cos θ = 〈u, v〉 = 〈U x, V y〉 and

V y − (cos θ)U x ∈ P⊥, U x − (cos θ)V y ∈ Q⊥.

Since P⊥ = Ker(U T ) and Q⊥ = Ker(V T ), one gets

ET y = (cos θ)x, Ex = (cos θ)y. (31)

which is an equivalent way of writing (30).
(d) ⇒ (c). By exchanging the roles of P and Q if necessary, one may suppose that
min{p, q} = p. Let x and y be as in (d). From (31), one gets ET Ex = (cos θ)2x .

Hence, (cos θ)2 is an eigenvalue of ET E and cos θ is a singular value of E .
(c) ⇒ (a). One can write E = F�GT , where G = [g1 . . . gp] and F = [ f1 . . . fq ]
are orthogonal matrices of order p and q, respectively, and � is a q × p diagonal
matrix with the singular values of E placed on the diagonal entries. Let cos θ be a
singular value of E . Suppose that cos θ is placed on kth diagonal entry of �. One
gets Egk = (cos θ) fk and ET fk = (cos θ)gk . Hence, the system (30) holds with
x = gk and y = fk . One deduces that (u, v) = (Ugk, V fk) is a critical pair of (P, Q)

producing the angle θ . ��
Let P and Q be as in Theorem6.2. By combining Theorem6.2 and Proposition6.1,

one obtains

�(P, Q) =
⋃

σ∈�(E)

{arccos σ, π − arccos σ },

where �(E) is the set of singular values of E . In particular, the critical angles of
(P, Q) are at most 2min{p, q} and they come in conjugate pairs. Such upper bound
can be sharpened as follows.

Proposition 6.3 Let P and Q be nontrivial linear subspaces of X of dimensions p
and q, respectively. Let r be the dimension of P ∩ Q. Then

card [�(P, Q)] ≤ 2min {p, q} − 2max{0, r − 1}. (32)
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Proof We assume that 1 ≤ r < min {p, q}, otherwise we are done. One can represent
P and Q as in Theorem6.2, with the additional feature that U = [W, U0] and V =
[W, V0] have a portion in common. The common part W ∈ O(Rr ,X) serves to
represent the intersection of P and Q, i.e., P ∩ Q = ImW . One has

W T W = Ir , U T
0 U0 = Ip−r , V T

0 V0 = Iq−r ,

W T U0 = 0, U T
0 W = 0, W T V0 = 0, V T

0 W = 0.

Let the angle θ be formed with some pair (u, v) satisfying the system (29). There are
vectors ξ, η ∈ R

r and x ∈ R
p−r , y ∈ R

q−r such that ‖ξ‖2+‖x‖2 = 1, ‖η‖2+‖y‖2 =
1, and

(u, v) = (Wξ + U0x, Wη + V0y). (33)

By substituting (33) into (29), one gets

⎧
⎪⎪⎨

⎪⎪⎩

W T [Wη + V0y − λ(Wξ + U0x)] = 0,
U T
0 [Wη + V0y − λ(Wξ + U0x)] = 0,

W T [Wξ + U0x − λ(Wη + V0y)] = 0,
V T
0 [Wξ + U0x − λ(Wη + V0y)] = 0,

with λ = 〈Wξ +U0x, Wη + V0y〉. After simplification, one obtains η = λξ , ξ = λη,
and

U T
0 V0y = λx, V T

0 U0x = λy. (34)

If λ /∈ {−1, 1}, then ξ = 0, η = 0 and x ∈ R
p−q , y ∈ R

q−r are unit vectors satisfying
(34). Hence, λ may take at most 2min{p − r, q − r} different values. To this count
one should add the potential candidates λ = −1 and λ = 1. One gets in this way the
upper estimate

card [�(P, Q)] ≤ 2min{p − r, q − r} + 2.

This proves (32). ��

7 Critical angles in a pair of polyhedral cones

This section is devoted to the analysis of critical angles in a pair (P, Q) of polyhedral
cones. We suppose that the reader is acquainted with the theory of faces of convex
polyhedra. The notation that we use is as follows:

F(P) := {F ⊆ X : F is a nonzero face of P},
spanF := linear subspace spanned by F,

riF := relative interior of F,

dimF := dimension of spanF,

�F := orthogonal projector onto spanF.
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For a nonzero vector u in a polyhedral cone P ∈ C(X), there exists a unique F ∈ F(P)

such that u ∈ riF . Such F is called the face associated to u.

Theorem 7.1 Let P, Q ∈ C(X) be polyhedral cones. If (u, v) is a critical pair of
(P, Q), then

�Fv = 〈u, v〉u, �E u = 〈u, v〉v, (35)

where F is the face of P associated to u and E is the face of Q associated to v. In
particular,

�(P, Q) ⊆
⋃

F∈F(P)

⋃

E∈F(Q)

�(spanF, spanE). (36)

Proof By assumption, u ∈ riF and v ∈ riE satisfy the criticality conditions stated in
(4). By proceeding as Seeger and Torki (2003, Theorem 3.4), one can check that

{
v − 〈u, v〉u ∈ (spanF)⊥,

u − 〈u, v〉v ∈ (spanE)⊥.

But this is clearly equivalent to (35). ��
By using the inclusion (36), one gets the upper bound

card[�(P, Q)] ≤
∑

F∈F(P)

∑

E∈F(Q)

card[�(spanF, spanE)]. (37)

The above inequality becomes an equality, for instance, if P and Q are nontrivial
linear subspaces. Since the double sum in (37) is finite, any pair of polyhedral cones
has finitely many critical angles. By combining (37) and the estimate

card[�(spanF, spanE)] ≤ 2min{dimF, dimE},

one gets in particular

card [�(P, Q)] ≤ 2
dimP∑

k=1

dimQ∑

�=1

cP (k)cQ(�)min{k, �}, (38)

where cP (k) stands for the number of k-dimensional faces of P . The upper bound
(38) is coarse in general, so we shall not elaborate further on the practical evaluation
of such an expression.

Corollary 7.2 Let P, Q ∈ C(X) be polyhedral cones. Let (u1, v) and (u2, v) be
critical pairs of (P, Q). If u1 and u2 have the same associated face, then the critical
angles θ1 := arccos〈u1, v〉 and θ2 := arccos〈u2, v〉 are equal or conjugate.

Proof Suppose that u1 and u2 have F ∈ F(P) as common associated face. In such a
case, Theorem7.1 yields 〈u1, v〉u1 = �Fv = 〈u2, v〉u2. By taking norms, one sees
that 〈u1, v〉 and 〈u2, v〉 have the same absolute value. This proves that θ1 and θ2 are
equal or conjugate. ��
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We now concentrate on the numerical computation of the critical angles of a pair

(P, Q) = (G(R
p
+), H(R

q
+)) (39)

of polyhedral cones inRn . Here,G = [g1, . . . , gp] and H = [h1, . . . , hq ] arematrices
of size n × p and n × q, respectively. Without loss of generality, we assume that

{
g1, . . . , gp are conically independent unit vectors,
h1, . . . , hq are conically independent unit vectors.

(40)

That a collection of vectors is conically independent simply means that no element
from the collection can be expressed as positive linear combination of those remaining.
For notational convenience, we introduce the index sets

I(G) := {I ⊆ {1, . . . , p} : I �= ∅ and {gi : i ∈ I } is linearly independent},
J (H) := {J ⊆ {1, . . . , q} : J �= ∅ and {h j : j ∈ J } is linearly independent

}
.

The cardinality of an index set, say I , is denoted by |I |. We write G I to indicate the
submatrix of G with columns indexed by I . The definition of HJ is similar. Without
further ado, we state the next theorem.

Theorem 7.3 Let (P, Q) be as in (39)–(40). Then the following statements are equiv-
alent:

(a) θ ∈ �(P, Q),

(b) there are index sets I ∈ I(G), J ∈ J (H) and vectors ξ ∈ R
|I |, η ∈ R

|J | such
that

[
0 GT

I HJ

H T
J G I 0

] [
ξ

η

]

= cos θ

[
GT

I G I 0
0 H T

J HJ

] [
ξ

η

]

, (41)

〈gk, HJ η − (cos θ)G I ξ 〉 ≥ 0 for all k /∈ I, (42)

〈h�, G I ξ − (cos θ)HJ η〉 ≥ 0 for all � /∈ J, (43)

〈ξ, GT
I G I ξ 〉 = 1, ξ ∈ int(R|I |

+ ), (44)

〈η, H T
J HJ η〉 = 1, η ∈ int(R|J |

+ ). (45)

Furthermore, when these equivalent statements hold, the critical angle θ is formed
with the critical pair (u, v) = (G I ξ, HJ η).

Proof We follow similar steps as in Iusem and Seeger (2008b, Theorem3), except
that now the polyhedral cones P and Q are not necessarily equal. Besides, we do not
restrict the attention to proper critical angles. For the sake of completeness, we give a
sketch of the proof:
(a) ⇒ (b). Let (u, v) be a critical pair of (P, Q) such that λ := 〈u, v〉 = cos θ. The
cone version of Caratheodory’s theorem ensures the existence of index sets I ∈ I(G),

J ∈ J (H), and vectors ξ ∈ R
|I |, η ∈ R

|J | with positive components, such that
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u = G I ξ and v = HJ η. The normalization conditions in (44)–(45) are obtained from
the fact that u and v are unit vectors. Criticality of (u, v) leads to the system

{
HJ η − λG I ξ ∈ P∗,
G I ξ − λHJ η ∈ Q∗,

or, equivalently,

〈gk, HJ η − λG I ξ 〉 ≥ 0 for all k = 1, . . . , p,

〈h�, G I ξ − λHJ η〉 ≥ 0 for all � = 1, . . . , q.

This yields (42) and (43). Furthermore, since

0 = 〈u, v − λu〉 = 〈ξ, GT
I HJ η − λGT

I G I ξ 〉,
0 = 〈v, u − λv〉 = 〈η, H T

J G I ξ − λH T
J HJ η〉,

one gets

GT
I HJ η − λGT

I G I ξ = 0,

H T
J G I ξ − λH T

J HJ η = 0,

which is nothing but (41).
(b)⇒ (a). If one sets (u, v) := (G I ξ, HJ η), then one can check that (u, v) is a critical
pair of (P, Q) with cos θ = 〈u, v〉. ��

The index sets I, J and the vectors ξ, η inTheorem7.3(b) are not necessarily unique.
Anyway, one can write

�(P, Q) =
⋃

I∈I(G)

⋃

J∈J (H)

�I,J (P, Q),

where �I,J (P, Q) captures the critical angles produced by (I, J ), that is,

�I,J (P, Q) := {arccos〈G I ξ, HJ η〉 : (ξ, η) as in (41)–(45)}.

One refers to (I, J ) as a successful configuration of index sets if �I,J (P, Q) is non-
empty. For each pair (I, J ), we construct�I,J (P, Q) by using the following algorithm:

– Step 1: Solve the generalized eigenvalue problem AI,J z = λ B I,J z, where

AI,J :=
[

0 GT
I HJ

H T
J G I 0

]

, B I,J :=
[

GT
I G I 0
0 H T

J HJ

]

, z :=
[

ξ

η

]

.

– Step 2: Declare “acceptable” each eigenvalue that admits an associated eigenvector
satisfying the conditions (42)–(45), where one identifies λ with cos θ . Take the
arccosinus of each acceptable eigenvalue and put it in the set �I,J (P, Q).
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Table 1 Critical angles
between the nonnegative orthant
and the Schur cone in R

5

I J cos θ θ

{2, 3, 4, 5} {1, 2, 3, 4} −1/
√
5 0.6476π

{2, 3, 4} {1, 2, 3} −1/2 0.6667π

{2, 3} {1, 2} −1/
√
3 0.6959π

{2, 4, 5} {1, 2, 3, 4} −√
2/

√
5 0.7180π

{3, 4, 5} {1, 2, 3, 4} −√
2/

√
5 0.7180π

{2} {1} −1/
√
2 0.7500π

{3, 4} {1, 2, 3} −1/
√
2 0.7500π

{3, 5} {1, 2, 3, 4} −√
3/

√
5 0.7820π

{4, 5} {1, 2, 3, 4} −√
3/

√
5 0.7820π

{3} {1, 2} −√
2/

√
3 0.8041π

{4} {1, 2, 3} −√
3/2 0.8333π

{5} {1, 2, 3, 4} −2/
√
5 0.8524π

Example 7.4 By way of example, consider the nonnegative orthant P = R
n+ and the

Schur cone

Q =
{

x ∈ R
n :

k∑

i=1

xi ≥ 0 for k ∈ {1, . . . , n − 1} and x1 + . . . + xn = 0

}

.

In this case, G = In and H is formed with the n-dimensional vectors

h1 = 1√
2

(1,−1, 0, . . . , 0)T, . . . , hn−1 = 1√
2

(0, . . . , 0, 1,−1)T.

Table 1 concerns the particular case n = 5. It displays the successful configurations
(I, J ) and the critical angles produced by each one of these configurations. As one
can see from Table1, different configurations (I, J ) may produce the same critical
angle. There are 465 configurations (I, J ) in all, but only 12 are successful. It is not
surprising that all the critical angles reported in Table1 are obtuse. This corresponds
to a general fact concerning critical angles between nonnegative orthants and Schur
cones.

Remark 7.5 Let (P, Q) be as in (39)–(40). Theorem7.3 yields the following cardi-
nality estimate

card[�(P, Q)] ≤
n∑

k=1

n∑

�=1

C p
k Cq

� (k + �),

where

C p
k :=

{
p!

k!(p−k)! if k ≤ p,

0 if k > p.
(46)
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We end this section by considering the critical angles between a polyhedral cone
P and a ray �v := {tv : t ≥ 0} generated by some unit vector v ∈ R

n . By adapting
Theorem7.3 to this special setting, one gets the following result.

Proposition 7.6 Let P be as in (39)–(40) and v be a unit vector in R
n. Then, θ ∈

�(P, �v) if and only if there are an index set I ∈ I(G) and a vector ξ ∈ R
|I | such that

(cos θ)ξ = (GT
I G I )

−1GT
I v, (47)

〈gk, v − (cos θ)G I ξ 〉 ≥ 0 for all k /∈ I,

〈ξ, GT
I G I ξ 〉 = 1, ξ ∈ int(R|I |

+ )

Furthermore, the critical pairs of (P, �v ) are exactly those of the form (G I ξ, v), with
I and ξ as above.

Proof The conditions (43) and (45) are here superfluous. The generalized eigenvalue
problem (41) becomes

[
0 GT

I v

vT G I 0

] [
ξ

1

]

= cos θ

[
GT

I G I 0
0 1

] [
ξ

1

]

,

but this is equivalent to (47). ��
The next corollary shows that, for each I ∈ I(G), the set �I (P, �v ) is empty or

a singleton. The proof of such result is omitted, because it follows straightforwardly
from Proposition7.6.

Corollary 7.7 Let P be as in (39)–(40) and v be a unit vector in R
n. For each I ∈

I(G), consider the condition

〈gk, v − v I 〉 ≥ 0 for all k /∈ I, (48)

where v I := G I (GT
I G I )

−1GT
I v is the orthogonal projection of v onto ImG I . Then

�I (P, �v ) =

⎧
⎪⎪⎨

⎪⎪⎩

{π/2} ifGT
I v = 0 and (48) holds,

{
arccos ‖v I ‖} if (GT

I G I )
−1GT

I v ∈ int(R|I |
+ ) and (48) holds,

{
π − arccos ‖v I ‖} if − (GT

I G I )
−1GT

I v ∈ int(R|I |
+ ) and (48) holds,

∅ otherwise.

In particular, card[�(P, �v )] ≤∑n
k=1 C p

k with C p
k given by (46).
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