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Abstract The concept of critical angle between two linear subspaces has applications
in statistics, numerical linear algebra and other areas. Such concept has been abun-
dantly studied in the literature. Part I of this work is an attempt to build up a theory
of critical angles for a pair of closed convex cones. The need of such theory is moti-
vated, among other reasons, by some specific problems arising in regression analysis
of cone-constrained data, see Tenenhaus in (Psychometrika 53:503–524, 1988). Angle
maximization and/or angle minimization problems involving a pair of convex cones
are at the core of our discussion. Such optimization problems are nonconvex in gen-
eral and their numerical resolution offers a number of challenges. Part II of this work
focusses on the practical computation of the maximal angle between specially struc-
tured cones.
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1 Introduction

The concept of critical angle (or principal angle) between two linear subspaces has
a long history going back to a late 19-th century work by the French mathematician
Camille Jordan (cf. Jordan 1875). Hotelling (1936) used the concept of critical angle
between linear subspaces for analyzing the canonical correlation between two sets
of vector-valued variables. More recent applications of critical angles between linear
subspaces include robust optimization (cf.Mohammadi 2014), linear stochastic mod-
els and ARMA models (cf.De Cock and De Moor 2000, 2002), pattern recognition
and machine learning (cf. Shashua and Wolf 2003). Part I of this work discusses the
concept of critical angle for a pair of closed convex cones. The present paper focusses
the attention on the practical computation of the maximal angle between specially
structured cones.

Let (X, 〈·, ·〉) be a Euclidian space of dimension at least two and let C(X) be the
set of nontrivial closed convex cones in X. That a closed convex cone is nontrivial
means that it is different from the zero cone and different from the whole space. The
maximal angle of a pair (P, Q) of nontrivial closed convex cones in X is defined by

�(P, Q) := max
u∈P∩SX, v∈Q∩SX

arccos〈u, v〉, (1)

where SX stands for the unit sphere of X. A pair (u, v) ∈ X
2 solving the angle

maximization problem (1) is called an antipodal pair of (P, Q). Antipodal pairs
always exist, but they are not unique in general. A necessary condition for (u, v) to be
an antipodal pair of (P, Q) is that

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ P ∩ SX,

v ∈ Q ∩ SX,

v − 〈u, v〉u ∈ P∗,
u − 〈u, v〉v ∈ Q∗,

(2)

where P∗ and Q∗ are the positive dual cones of P and Q, respectively. If the system
(2) holds, then (u, v) is called a critical pair of (P, Q) and arccos 〈u, v〉 is called a
critical angle of (P, Q). The adjective proper is added to a critical pair (u, v) and the
corresponding critical angle if u and v are not collinear. One refers to the set

�(P, Q) := {arccos〈u, v〉 : (u, v) satisfies (2)}

as the angular spectrum of (P, Q). Angular spectra have usually a finite cardinality,
but not always.

In a similar way, one can treat the angle minimization problem

�(P, Q) := min
u∈P∩SX, v∈Q∩SX

arccos〈u, v〉. (3)

Angle minimization problems like (3) arise in a number of applications, for instance
in the theory of exponential dichotomies for linear ODEs (cf.Obert 1991) and in
regression analysis of ordinal data (cf.Tenenhaus 1988).
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68 A. Seeger, D. Sossa

Example 1.1 Let Sn denote the unit sphere of Rn . As in Tenenhaus (1988, Section
2), consider two convex polyhedral cones P and Q, generated, respectively, by the
sets of vectors {g1, . . . , gp} ⊆ R

n and {h1, . . . , hq} ⊆ R
n . Canonical analysis of the

two cones P and Q is the search for two vectors u0 ∈ P ∩ Sn and v0 ∈ Q ∩ Sn

maximizing the square of 〈u, v〉 over u ∈ P ∩ Sn and v ∈ Q ∩ Sn . According to
the relative position of the cones P and Q, the problem is to find the smallest or the
largest angle between the two cones.

Example 1.2 A frequent problem arising in the analysis of cone-constrained linear
systems is to check if the kernel of a matrix A intersects nontrivially a closed convex
cone Q, i.e., if the system

Ax = 0, x ∈ Q (4)

admits a nonzero solution x ∈ X. By homogeneity, one may suppose that the solution
x is sought on the unit sphere SX. Clearly, the problem at hand is equivalent to check
if the minimal angle ϑ0 := �(kerA, Q) is equal to zero. If ϑ0 is positive but nearly
zero, then it is possible to find a unit vector x that solves (4) within a certain tolerance
level, i.e., after changing Q by a slightly larger cone.

There is no loss of generality in focussing the attention just on angle maximization.
Indeed, one readily sees that

�(P, Q) = π − �(P,−Q). (5)

Part I of this work (cf.Seeger and Sossa 2015) establishes various geometric and
analytic results concerning antipodality, criticality and angular spectra. The present
paper focusses on the computation of the maximal angle between specially structured
cones. It is worthwhile stressing that (1) and (3) are nonconvex optimization problems.
The organization of the paper is as follows. Section 2 discusses the case in which P
and Q are revolution cones. One gives explicit formulas for computing all the critical
angles. Section 3 discusses the case in which P and Q are topheavy cones. The class of
topheavy cones is quite large and includes in particular the �p- cones and the ellipsoidal
cones. Section 4 concerns the computation of the maximal angle between two cones
of matrices. A large portion of this section is devoted to a difficult question arising in
numerical linear algebra: how large can be the angle between a positive semidefinite
symmetric matrix and a symmetric matrix that is nonnegative entrywise?

1.1 Preliminary material

A critical pair of (P, Q)may not solve the angle maximization problem (1). However,
each component of a critical pair is a solution to a certain optimization problem. The
details are explained below.

Proposition 1.3 Let P, Q ∈ C(X). Then, (u, v) is a critical pair of (P, Q) if and only
if {

u minimizes 〈 ·, v − 〈u, v〉u〉 on P ∩ SX,

v minimizes 〈u − 〈u, v〉v, · 〉 on Q ∩ SX.
(6)
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Proof Theproof is immediate. The key observation is that u is orthogonal to v−〈u, v〉u
and that v is orthogonal to u − 〈u, v〉v. �	

There are many alternative characterizations of criticality. The characterization (6)
will be used later in a number of occasions. Beware that (6) is a weaker than

{
u minimizes 〈 ·, v〉 on P ∩ SX,

v minimizes 〈u, · 〉 on Q ∩ SX.
(7)

A pair (u, v) as in (7) is said to be a Nash antipodal pair of (P, Q). Nash antipodality
is a property that lies between criticality and antipodality. The following easy result is
recorded just for convenience. It concerns the maximal angle between a convex cone
and its dual.

Proposition 1.4 Let K ∈ C(X). Then, �(K , K ∗) = π/2.

Proof Since 〈u, v〉 ≥ 0 for all u ∈ K and v ∈ K ∗, it is clear that

�
(
K , K ∗) ≤ π/2. (8)

Since K ∪−K ∗ is not the whole spaceX, there exists a nonzero vector z /∈ K ∪−K ∗.
Let �K (z) denote the projection of z onto K . Moreau’s orthogonal decomposition
theorem implies that �K (z) and �K ∗(−z) are nonzero orthogonal vectors. Hence,

u := �K (z)

‖�K (z)‖ ∈ K , v := �∗
K (−z)

‖�∗
K (−z)‖ ∈ K ∗

are orthogonal unit vectors. This proves that (8) is in fact an equality. �	

2 Critical angles in a pair of revolution cones

Revolutions cones, also called circular cones, are amongst the simplest and most
commonnon-polyhedral convex cones used inmathematics.Bydefinition, a revolution
cone in X is a closed convex cone of the form

Rev(φ, b) := {x ∈ X : 〈b, x〉 ≥ ‖x‖ cosφ},
where b ∈ SX defines the revolution axis and φ ∈ [0, π/2] corresponds to the half-
aperture angle. The next theorem shows that a pair of revolution cones has at most
three critical angles. It provides also explicit formulas for computing each critical
angle.

Theorem 2.1 Let P = Rev(φ1, b1) and Q = Rev(φ2, b2), with b1, b2 ∈ SX and
φ1, φ2 ∈ [0, π/2]. Then

�(P, Q) =

⎧
⎪⎪⎨

⎪⎪⎩

{0, α1, π} if α1 ≥ 0, α2 ≥ π,

{0, α1, α2} if α1 ≥ 0, α2 < π,

{π} if α1 < 0, α2 ≥ π,

{α2} if α1 < 0, α2 < π,

(9)
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70 A. Seeger, D. Sossa

where

α1 := φ1 + φ2 − arccos〈b1, b2〉,
α2 := φ1 + φ2 + arccos〈b1, b2〉.

Proof If X is a two-dimensional space, then (9) is obtained by arguments of planar
geometry. Suppose that X is of dimension at least three. The improper critical angles
of (P, Q) are easy to identify. Indeed,

0 ∈ �(P, Q) ⇔ P ∩ Q �= {0} ⇔ α1 ≥ 0,

π ∈ �(P, Q) ⇔ P ∩ −Q �= {0} ⇔ α2 ≥ π.

So, one just needs to detect the proper critical angles of (P, Q). We claim that

{
if (u, v) is a proper critical pair of (P, Q),

then L := span{u, v} contains b1 and b2.
(10)

This claimwill be shown in amoment.As a consequence of (10), one gets the following
planar reduction principle: (u, v) is a proper critical pair of (P, Q) if and only if (u, v)

is a proper critical pair of (P ∩ L , Q ∩ L), where

P ∩ L := {x ∈ L : 〈b1, x〉 ≥ ‖x‖ cosφ1},
Q ∩ L := {x ∈ L : 〈b2, x〉 ≥ ‖x‖ cosφ2},

are viewed as revolution cones in the two-dimensional space L . In other words, one
is back to a planar setting. We now prove (10). Consider a proper critical pair (u, v)

of (P, Q) and set λ := 〈u, v〉. We distinguish between two cases:
Case 1: φ1, φ2 > 0. This case is the most interesting one. By combining Proposi-
tion 1.3 and the boundary principle for proper critical pairs (cf. Seeger and Sossa
2015, Theorem 2.3), one knows that u and v solve

⎧
⎨

⎩

minimize 〈x, v − λu〉
〈b1, x〉 = cosφ1

‖x‖2 = 1
(11)

and ⎧
⎨

⎩

minimize 〈u − λv, y〉
〈b2, y〉 = cosφ2

‖y‖2 = 1,
(12)

respectively. Hence, there exist Lagrange multipliers μ1, γ1 for the problem (11) and
Lagrange multipliers μ2, γ2 for the problem (12), such that

v − λu = γ1b1 + μ1u, (13)

u − λv = γ2b2 + μ2v. (14)
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The multiplication of (13) by u and (14) by v yields

μ1 + γ1 cosφ1 = 0, μ2 + γ2 cosφ2 = 0,

respectively. Hence,

(γ1 cosφ1 − λ) u + v = γ1b1,

u + (γ2 cosφ2 − λ) v = γ2b2. (15)

Observe that γ1 �= 0 and γ2 �= 0, because (u, v) is proper. This proves that b1, b2 ∈ L .
Case 2: φ1 = 0, φ2 > 0. In this case, P = �b1 := {tb1 : t ≥ 0}. Hence, u = b1 and
b1 ∈ L . That b2 ∈ L follows from (15) and the fact that γ2 �= 0. �	
Corollary 2.2 Let P, Q be two revolution cones as in Theorem 2.1. Then

�(P, Q) := min{π, arccos〈b1, b2〉 + φ1 + φ2}, (16)

�(P, Q) := max{0, arccos〈b1, b2〉 − φ1 − φ2}. (17)

Proof Formula (16) is a direct consequence of Theorem 2.1. Formula (17) is obtained
by combining (5) and (16). �	

3 Maximal angle between two topheavy cones

A topheavy cone in Rn+1 is a closed convex cone of the form

epi f :=
{
(ξ, t) ∈ R

n+1 : f (ξ) ≤ t
}

,

where f is a norm on R
n . Topheavy cones are pointed, have nonempty interior, and

enjoy a number of useful properties. By way of example, one can mention the duality
formula (epi f )∗ = epi ( f∗), where f∗ denotes the dual norm of f . Topheavy cones
have been studied under various points of view in the literature, see for instance Fiedler
and Haynsworth (1973), Lyubich (1995) and Seeger (2011). The next proposition
explains how to compute the maximal angle between two topheavy cones.

Proposition 3.1 Let f and g be norms on R
n. Then, cos

[
�(epi f, epi g)

]
is equal to

the optimal value of the minimization problem

⎧
⎨

⎩

minimize ξ � η

‖ξ‖2 + [ f (ξ)]2 = 1
‖η‖2 + [g(η)]2 = 1,

(18)

where � stands for the “product” operation given by

ξ � η := 〈ξ, η〉 +
[
1 − ‖ξ‖2

]1/2 [
1 − ‖η‖2

]1/2
.
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72 A. Seeger, D. Sossa

Proof The cones epi f and epi g have nonempty interior. The first and second compo-
nents of an antipodal pair must be sought on the boundary of epi f and on the boundary
of epi g, respectively. Hence, cos[�(epi f, epi g)] is equal to the optimal value of the
minimization problem ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize 〈ξ, η〉 + ts
f (ξ) = t,
g(η) = s,
‖ξ‖2 + t2 = 1,
‖η‖2 + s2 = 1.

It suffices now to get rid of the variables t and s. �	
To derive an explicit solution to the problem (18), one needs of course a bit more

information on the norms f and g. The following definition proves to be useful.

Definition 3.2 Two norms f, g on R
n are lower correlated if the minimization prob-

lems

α f := min { f (x) : ‖x‖ = 1}, (19)

αg := min {g(x) : ‖x‖ = 1}, (20)

have a solution in common.

For instance, a positive multiple of ‖ · ‖ is lower correlated to any norm on R
n .

Without further ado, we state:

Theorem 3.3 Let f, g be lower correlated norms on R
n. Then

�(epi f, epi g) = arccos

⎛

⎜
⎝

α f
[
1 + α2

f

]1/2

⎞

⎟
⎠+ arccos

⎛

⎜
⎝

αg
[
1 + α2

g

]1/2

⎞

⎟
⎠ . (21)

The above maximal angle is attained for instance with the unit vectors

(ξ0, t0) :=
⎛

⎜
⎝

w
[
1 + α2

f

]1/2 ,
α f

[
1 + α2

f

]1/2

⎞

⎟
⎠ ∈ epi f,

(η0, s0) :=
⎛

⎜
⎝

−w
[
1 + α2

g

]1/2 ,
αg

[
1 + α2

g

]1/2

⎞

⎟
⎠ ∈ epig,

where w is any vector taken from the set

S( f, g) := [
argmin‖x‖=1 f (x)

]⋂[
argmin‖x‖=1g(x)

]
.
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Proof Let w ∈ S( f, g). Since w is a solution to (19) and −w is a solution to (20), the
vectors

ξ0 := w
[
1 + α2

f

]1/2 , η0 := −w
[
1 + α2

g

]1/2

solve, respectively,

γ f := max
{
‖ξ‖ : ‖ξ‖2 + [ f (ξ)]2 = 1

}
,

γg := max
{
‖η‖ : ‖η‖2 + [g(η)]2 = 1

}
.

Let (ξ, η) be any pair satisfying the equality constraints in (18). Then

‖ξ‖ ≤ ‖ξ0‖ = γ f =
(
1 + α2

f

)−1/2
,

‖η‖ ≤ ‖η0‖ = γg =
(
1 + α2

g

)−1/2
,

and

〈
‖ξ‖−1ξ, ‖η‖−1η

〉
≥
〈
‖ξ0‖−1ξ0, ‖η0‖−1η0

〉
= −1.

Hence,

ξ � η ≥ ξ0 � η0 = −
[
1 + α2

f

]−1/2 [
1 + α2

g

]−1/2 +
[
1 − γ 2

f

]1/2 [
1 − γ 2

g

]1/2
.

In other words, (ξ0, η0) solves (18) and

cos
[
�(epi f, epi g)

] = α f αg − 1
[
1 + α2

f

]1/2 [
1 + α2

g

]1/2 .

The last equality is an equivalent way of writing (21). �	
Remark 3.4 In view of Seeger (2011, Theorem5.2), formula (21) can be rewritten as:

�(epi f, epi g) = θmax(epi f ) + θmax(epi g)

2
, (22)

where θmax(K ) denotes the maximal angle of K ∈ C(X). Formula (22) is consistent
with geometric intuition, but one must remember that f and g are assumed to be
lower correlated. Indeed, formula (22) may fail if one drops the lower correlation
assumption.
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74 A. Seeger, D. Sossa

As particular example of topheavy cone, one may consider the �p-cone

L p :=
{
(ξ, t) ∈ R

n+1 : ‖ξ‖p ≤ t
}

.

Here, p ∈ [1,∞] and ‖ · ‖p stands for the �p-norm in R
n . Of special interest are the

cases p = 1, p = 2, and p = ∞. One gets

�(L1, L1) = π/2, �(L2, L2) = π/2,

�(L1, L2) = π/2, �(L1, L∞) = π/2,

�(L∞, L∞) = 2 arccos [1 + n]−1/2 ,

�(L2, L∞) = arccos [1 + n]−1/2 + π/4.

These formulas are obtained using the proposition stated below.

Proposition 3.5 The following statements hold:

(a) Let p, q ∈ [2,∞]. Then

�(L p, Lq) = arccos
[
1 + n(p−2)/p

]−1/2 + arccos
[
1 + n(q−2)/q

]−1/2
.

(b) Let p ∈ [1,∞] and q ∈ [1, p∗], where p∗ is given by p−1 + p−1∗ = 1. Then
�(L p, Lq) = π/2.

Proof Part (a). If p and q are both in [2,∞], then the norms f (x) := ‖x‖p and
g(x) := ‖x‖q are lower correlated. Indeed,

1̂n := 1√
n

(1, . . . , 1)T ∈ [argmin‖x‖=1‖x‖p
]⋂[

argmin‖x‖=1‖x‖q
]
.

So, it suffices to substitute α f = ‖̂1n‖p and αg = ‖̂1n‖q into (21).
Part (b). For all p ∈ [1,∞], one has the duality formula L∗

p = L p∗ (cf. Lyubich 1995,
Proposition 3.1). Hence, Proposition 1.4 yields �(L p, L p∗) = π/2. On the other
hand, by applying Theorem 3.3 one gets �(L1, L1) = π/2. Hence, for q ∈ [1, p∗],
one obtains

π/2 = �(L1, L1) ≤ �(L p, Lq) ≤ �(L p, L p∗) = π/2. (23)

Of course, in (23) one uses the fact that the family {L p}p≥1 is nondecreasing with
respect to set inclusion. �	

3.1 Maximal angle between two ellipsoidal cones

An ellipsoidal cone in Rn+1 is a closed convex cone of the form

E A :=
{
(ξ, t) ∈ R

n+1 : √〈ξ, Aξ 〉 ≤ t
}
,

123



Critical angles between two convex cones... 75

where A is a positive definite symmetric matrix of order n. Hence, an ellipsoidal cone
is a particular instance of a topheavy cone. It is easy to see that the norms

f (x) = √〈x, Ax〉, g(x) = √〈x, Bx〉 (24)

are lower correlated if the eigenspaces

Emin(A) := {x ∈ R
n : Ax = λ1(A)x}

Emin(B) := {x ∈ R
n : Bx = λ1(B)x}

have a nonzero vector in common. Here, λ1(A) stands for the smallest eigenvalue
of A.

Proposition 3.6 Let A, B be positive definite symmetric matrices of order n. Then,
cos[�(E A, EB)] is equal to the optimal value of the minimization problem

⎧
⎨

⎩

minimize ξ � η

‖ξ‖2 + 〈ξ, Aξ 〉 = 1
‖η‖2 + 〈η, Bη〉 = 1.

Furthermore, if the eigenspaces Emin(A) and Emin(B) have nonzero vector in com-
mon, then

�(E A, EB) = arccos

[
λ1(A)

1 + λ1(A)

]1/2

+ arccos

[
λ1(B)

1 + λ1(B)

]1/2

.

Proof It suffices to apply Proposition 3.1 and Theorem 3.3 to the norms mentioned in
(24). Note that

α2
f = min‖x‖=1

〈x, Ax〉 = λ1(A).

Similarly, α2
g = λ1(B). �	

3.2 An ellipsoidal cone versus a nonnegative orthant

The next proposition gives a formula for computing the maximal angle between an
ellipsoidal cone and a nonnegative orthant. One uses the notation μmin(C) to indicate
the smallest Pareto eigenvalue of a squarematrixC (cf. Seeger 1999). From the general
theory of Pareto eigenvalues, one knows that

μmin(C) = min‖η‖=1
η≥0

〈η, Cη〉 (25)

whenever thematrixC is symmetric. The notationη ≥ 0 indicates that each component
of η ∈ R

n is nonnegative.
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76 A. Seeger, D. Sossa

Proposition 3.7 Let A be a positive definite symmetric matrix of order n. Let C :=
−(In + A)−1 with In denoting the identity matrix of order n. Then

�(E A,Rn+1+ ) = arccos
(
−√−μmin(C)

)
.

Furthermore, ((ξ, t), (η, s)) is an antipodal pair of (E A,Rn+1+ ) if and only if

⎧
⎪⎪⎨

⎪⎪⎩

η is a solution to (25),
s = 0,
ξ = [−〈η, Cη〉]−1/2 Cη,

t = 1 + [μmin(C)]−1‖Cη‖2.

Proof The term c := cos[�(E A,Rn+1+ )] corresponds to the optimal value of the
minimization problem ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize 〈ξ, η〉 + ts
〈ξ, Aξ 〉1/2 = t,
‖ξ‖2 + t2 = 1,
‖η‖2 + s2 = 1,
η ≥ 0, s ≥ 0.

(26)

Clearly, s = 0 at the minimum. By getting rid of the variable t , the problem (26) is
converted into ⎧

⎨

⎩

minimize 〈ξ, η〉
‖ξ‖2 + 〈ξ, Aξ 〉 = 1,
‖η‖2 = 1, η ≥ 0

The change of variables γ = (In + A)1/2ξ leads to

c = min‖η‖=1
η≥0

min‖γ ‖=1
〈(In + A)−1/2η, γ 〉.

Since the inner minimization problem is solved by

γ = −‖(In + A)−1/2η‖−1 (In + A)−1/2η,

one gets

−c = max‖η‖=1
η≥0

‖(In + A)−1/2η‖ =
⎡

⎢
⎣max‖η‖=1

η≥0

〈η, (In + A)−1η〉
⎤

⎥
⎦

1/2

=
⎡

⎢
⎣− min‖η‖=1

η≥0

〈η, Cη〉
⎤

⎥
⎦

1/2

= [−μmin(C)]1/2 .

This completes the proof of the proposition. �	
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3.3 An ellipsoidal cone versus a ray

The next proposition explains how to compute the maximal angle between an ellip-
soidal cone E A and a ray �v := {tv : t ≥ 0}.
Proposition 3.8 Let A be a positive definite symmetric matrix of order n and v :=
(η, s) be a unit vector in R

n+1. Then

(a) cos[�(E A, �v )] is equal to the optimal value of the nonconvex minimization prob-
lem {

minimize 〈ξ, η〉 + s[1 − ‖ξ‖2]1/2
‖ξ‖2 + 〈ξ, Aξ 〉 = 1.

(b) Under the additional assumption 〈η, A−1η〉1/2 > s > 0, one can write

cos
[
�(E A, �v )

] = −s min {‖x − b‖ : 〈x, Mx〉 ≤ 1} , (27)

where b := (1/s)(In + A)−1/2η and M := (In + A)1/2A−1(In + A)1/2.

Proof The proof of (a) is as in Proposition 3.1, so one concentrates on (b). For nota-
tional convenience, one writes

f (ξ) := 〈ξ, Aξ 〉1/2 = ‖A1/2ξ‖,
F(ξ) := 〈ξ, (In + A)ξ 〉1/2 = ‖(In + A)1/2ξ‖.

Note that f and F are norms on R
n . Let γ := cos[�(E A, �v )]. One has

γ = min
(ξ,t)∈E A

‖ξ‖2+t2=1

{〈ξ, η〉 + ts}

= min
f (ξ)= t

‖ξ‖2+t2=1

{〈ξ, η〉 + ts} (28)

= min
F(ξ)=1

{〈ξ, η〉 + s f (ξ)} , (29)

where (28) is a consequence of Seeger and Sossa (2015, Theorem 2.3). Since E∗
A =

E A−1 , the condition 〈η, A−1η〉1/2 > s amounts to saying that (η, s) does not belong
to dual cone of E A, i.e., there exists a unit vector (ξ̃ , t̃) ∈ E A such that 〈ξ̃ , η〉+ t̃ s < 0.
Hence, γ < 0 and, by a positive homogeneity argument, the equality constraint in
(29) can be written as an inequality constraint. In other words, one has

γ = min
F(ξ)≤1

{〈ξ, η〉 + s f (ξ)} . (30)

Observe that (30) is a convex minimization problem. Using standard rules of convex
analysis, one can show that

γ = −s min
f ◦(z) ≤1

F◦ (z − s−1η
)

, (31)
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where

f ◦(μ) = 〈μ, A−1μ〉1/2 = ‖A−1/2μ‖,
F◦(μ) = 〈μ, (In + A)−1μ〉1/2 = ‖(In + A)−1/2μ‖

are the polar norms of f and F , respectively. One can view the minimization problem
in (31) as a dual version of (30). To complete the proof of (b), it remains to introduce
in (31) the change of variables x = (In + A)−1/2z. �	

The minimization problem on the right-hand side of (27) is about finding the mini-
mal distance from a point to an ellipsoid. The numerical resolution of such a projection
problem offers no difficulty.

4 Critical angles between two cones of matrices

Let the space Sym(n) of symmetric matrices of order n be equipped with the trace
inner product 〈A, B〉 = tr(AB). This section concerns the analysis of critical angles
in a pair of convex cones in Sym(n). For notational convenience, one writes CS(n) :=
C(Sym(n)) and introduces the symbol On to indicate the set of orthogonal matrices
of order n. A nonempty setP in the space Sym(n) is said to be orthogonally invariant
if

A ∈ P ⇒ U T AU ∈ P for all U ∈ On .

For instance, the SDP cone

Pn := {A ∈ Sym(n) : A is positive semidefinite}

is orthogonally invariant.

Proposition 4.1 Suppose that at least one of the cones P,Q ∈ CS(n) is orthogonally
invariant. Let (A, B) be a critical pair of (P,Q). Then A and B commute, i.e., AB =
B A.

Proof Suppose, for instance, that P is orthogonally invariant. Write λ := 〈A, B〉. By
Proposition 1.3, one knows that A minimizes the linear form 〈B − λA, · 〉 on

P� := {X ∈ P : ‖X‖ = 1}.

Since P� is an orthogonally invariant set, the commutation principle stated in Iusem
and Seeger (2007, Lemma 4) implies that A(B − λA) = (B − λA)A. This leads to
AB = B A. �	

There is a rich literature devoted to the analysis of orthogonally invariant sets. One
knows, for instance, thatP ∈ CS(n) is orthogonally invariant if and only if there exists
a permutation invariant cone P ∈ C(Rn) such that

P = λ−1(P) := {A ∈ Sym(n) : λ(A) ∈ P}. (32)
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Here and in the sequel, the notation λ(A) stands for the vector of eigenvalues of A
arranged in nondecreasing order, i.e.,

λ1(A) ≤ · · · ≤ λn(A).

The cone P in the representation formula (32) is unique and given by

P = {x ∈ R
n : Diag(x) ∈ P},

whereDiag(x) is the diagonalmatrixwhose entries on the diagonal are the components
of x . One refers to P as the permutation invariant cone associated with P.

Theorem 4.2 Let P,Q ∈ CS(n) be orthogonally invariant and P, Q ∈ C(Rn) be the
associated permutation invariant cones. Then, �(P,Q) = �(P, Q) and �(P,Q) =
�(P, Q). Furthermore, the following statements are equivalent:

(a) (A, B) is a critical (respectively, antipodal) pair of (P,Q),

(b) There exist a critical (respectively, antipodal) pair (u, v) of (P, Q) and a matrix
U ∈ On such that A = UDiag(u)U T and B = UDiag(v)U T .

Proof The proof follows similar steps as in Iusem and Seeger (2007, Theorem 5). �	
Example 4.3 By way of example, consider the problem of finding the critical angles
between SDP cone Pn and the cone

Dn := {A ∈ Sym(n) : λn(A) ≤ tr(A)}.

Both cones are orthogonally invariant. The associated permutation invariant cones are
R

n+ and

Dn := {x ∈ R
n : max{x1, . . . , xn} ≤ x1 + · · · + xn},

respectively. Beware that Pn and Dn are non-polyhedral cones in Sym(n), so a direct
computation of �(Pn,Dn) could be difficult. Computing �(Rn+, Dn) is much easier,
because Rn+ and Dn are simplicial cones in Rn . Table 1 is filled by using Theorem 7.3
in Seeger and Sossa (2015).

Remark 4.4 It is possible to derive an explicit formula for the maximal angle between
Pn and Dn . One gets

�(Pn,Dn) = arccos

(
2 − n√

n2 − 3n + 3

)

(33)

for all n ≥ 2. For obtaining (33), we exploit the fact that Dn is a polyhedral cone
generated by n linearly independent unit vectors, namely, the permutations of the
vector

w = 1√
n2 − 3n + 3

(2 − n, 1, . . . , 1)T .
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Table 1 Critical angles
between Pn and Dn

n cos θ θ

3 1 0

−1/
√
3 0.6959π

4 1 0

−1/
√
5 0.6476π

−2/
√
7 0.7728π

5 1 0

−1/
√
7 0.6234π

−√
2/

√
5 0.7180π

−3/
√
13 0.8128π

4.1 The SDP cone versus the cone of nonnegative matrices

We now address the difficult problem of estimating the maximal angle between the
SDP cone Pn and the cone

Nn := {B ∈ Sym(n) : B is nonnegative entrywise}.

Such problem was raised in a recent paper by Goldberg and Shaked-Monderer (2014).
The following facts are known, see Goldberg and Shaked-Monderer (2014) for the
parts (a) and (d).

Proposition 4.5 One has:

(a) �(P2,N2) = �(P3,N3) = �(P4,N4) = (3/4)π .
(b) The pair of matrices achieving the maximal angle �(P2,N2) is unique and given

by

(A, B) =
([

1/2 −1/2
−1/2 1/2

]

,

[
0 1/

√
2

1/
√
2 0

])

.

(c) {�(Pn,Nn)}n≥2 is nondecreasing. More generally, �(Pn,Nn)⊆�(Pn+1,Nn+1).

(d) limn→∞ �(Pn,Nn) = π .

The next theorem lists various conditions that are necessary for antipodality in
(Pn,Nn).We start bywriting a linear algebra result concerning the smallest eigenvalue
of a nonnegative symmetric matrix.

Lemma 4.6 Let B ∈ Nn. Then,
√
2 λ1(B) + ‖B‖ ≥ 0, with equality if and only if

{
λ1(B) + λn(B) = 0,
λ2(B) = 0, . . . , λn−1(B) = 0.

(34)
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Proof To alleviate the notation, we write λi := λi (B) for all i ∈ {1, . . . , n}. Since B
is nonnegative entrywise, the spectral radius

ρ(B) := max
1≤i≤n

|λi |

of B is an eigenvalue of B. Hence, ρ(B) = λn ≥ −λ1. On the other hand,

[λ21 + · · · + λ2n]1/2 ≥ [λ21 + λ2n]1/2 ≥ |λ1| + |λn|√
2

≥ λn − λ1√
2

.

It follows that

‖B‖ + √
2λ1 ≥

(
λn + λ1√

2

)

≥ 0.

This completes the proof of the lemma. �	
Theorem 4.7 Let n ≥ 3. The following conditions are necessary for (A, B) to be an
antipodal pair of (Pn,Nn):

(a) A is not in Nn and B is not in Pn.
(b) B = ANn := ‖�Nn (−A)‖−1�Nn (−A).
(c) A = BPn := ‖�Pn (−B)‖−1�Pn (−B).
(d) Bi,i = 0 for all i ∈ {1, . . . , n}.
(e) AB = B A.
(f) rank(B) ≥ 2.
(g) rank(A) = card{i : λi (B) < 0} ≤ n − 2.

Proof Part (a). This is because the angle between A and B is at least (3/4)π .
Part (b). Note that B solves the minimization problem

f (A) := min {〈A, Y 〉 : Y ∈ Nn, ‖Y‖ = 1} .

This problem has clearly a unique solution, namely, thematrix Y = ANn whose entries
are

Yi, j = −(1/c)min{0, Ai, j }

with

c := ‖�Nn (−A)‖ =
⎡

⎣
n∑

i, j=1

(
min{0, Ai, j }

)2

⎤

⎦

1/2

.

Part (c). Similarly, A solves the minimization problem

g(B) := min {〈X, B〉 : X ∈ Pn, ‖X‖ = 1}. (35)
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We claim that BPn is the unique solution to (35). Since A and B commute, there exist
an orthonormal basis {x1, . . . , xn} of Rn and a unit vector γ ∈ R

n+ such that

A =
n∑

i=1

γi xi xT
i , B =

n∑

i=1

λi (B)xi xT
i . (36)

One has

〈γ, λ(B)〉 = 〈A, B〉 = g(B) = min‖ξ‖=1
ξ≥0

n∑

i=1

〈
ξi xi xT

i , B
〉

= min‖ξ‖=1
ξ≥0

〈ξ, λ(B)〉. (37)

Hence, γ solves the minimization problem (37). But such problem admits a unique
solution, which can be computed explicitly in terms of the λi (B)’s. One gets

γi = −(1/d)min{0, λi (B)}, (38)

with

d :=
[

n∑

i=1

(min {0, λi (B)})2
]1/2

.

By combining (36) and (38) one sees that, up to normalization, A is the projection of
−B onto Pn .
Part (d). This is a consequence of (b).
Part (e). This is a consequence of Proposition 4.1.
Part (f). As a consequence of (d), at least two eigenvalues of B are different from 0.
Part (g). Let r be the number of negative eigenvalues of B. Then, thanks to (36) and
(38), one has

A = −(1/d)

r∑

i=1

λi (B)xi xT
i

with d = [∑r
k=1 λ2k(B)

]1/2
. In particular, the rank(A) = r . In the remaining part of

the proof, we use the notation λi := λi (B). One has rank(A) ≤ n − 1, because A
must be on the boundary of Pn . Suppose that rank(A) = n − 1. One must arrive to a
contradiction. From the proof of (c), one sees that λi < 0 for all i ∈ {1, . . . , n − 1}
and

〈A, B〉 = −
(
λ21 + · · · + λ2n−1

)1/2
.

On the other hand, one has

λ1 + · · · + λn = 0, λ21 + · · · + λ2n = 1, λn > 0.
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One gets in this way

λn = 1√
2

⎡

⎣1 + 2
∑

1≤i< j≤n−1

λiλ j

⎤

⎦

1/2

>
1√
2

(39)

and 〈A, B〉 = −[1 − λ2n]1/2 > −1/
√
2, contradicting the inequality �(Pn,Nn) ≥

(3/4)π . �	

The next corollary fully settles the case n = 3.

Corollary 4.8 (A, B) is an antipodal pair of (P3,N3) if and only if

A = xxT , B = 1√
2

(
yyT − xxT

)

with x, y ∈ R
3 such that

{ ‖x‖ = 1, ‖y‖ = 1, 〈x, y〉 = 0,
yi y j ≥ xi x j for 1 ≤ i ≤ j ≤ 3.

(40)

Proof Let (A, B) be an antipodal pair of (P3,N3). Theorem 4.7(g) implies that
rank(A) = 1. Hence, A = xxT with ‖x‖ = 1. Using Lemma 4.6, one gets

cos[�(P3,N3)] = min‖u‖=1
min

B∈N3
‖B‖=1

〈uuT , B〉

= min
B∈N3
‖B‖=1

λ1(B) = −1/
√
2.

The second part of the corollary is obtained using (34). �	

Remark 4.9 If t, s are nonnegative reals such that t2 + s2 = 1, then

x =
(
1/

√
2
)

(t, s,−1)T , y =
(
1/

√
2
)

(t, s, 1)T

satisfy (40) and lead to the antipodal pair

(A, B) =
⎛

⎝
1

2

⎡

⎣
t2 ts −t
ts s2 −s
−t −s 1

⎤

⎦,
1√
2

⎡

⎣
0 0 t
0 0 s
t s 0

⎤

⎦

⎞

⎠.

Hence, the number of antipodal pairs of (P3,N3) is not finite, not even countable.
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From the proof of Theorem 4.7, one sees that

cos [�(Pn,Nn)] = min{ f (A) : A ∈ Pn, ‖A‖ = 1} (41)

= min{g(B) : B ∈ Nn, ‖B‖ = 1} (42)

with

f (A) = −
⎡

⎣
n∑

i, j=1

(
min{0, Ai, j }

)2

⎤

⎦

1/2

,

g(B) = −
[

n∑

i=1

(min{0, λi (B)})2
]1/2

.

The minimization problems (41) and (42) are hard to solve in practice, because they
are nonconvex and nonsmooth. However, the variational formulas (41) and (42) are
useful to obtain lower bounds for �(Pn,Nn).

Example 4.10 Consider for instance the case n = 5. The nonnegative matrix B

B = 1√
10

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

has unit norm and its eigenvalues are

λ1(B) = λ2(B) = −1 − √
5

2
√
10

, λ3(B) = λ4(B) = −1 + √
5

2
√
10

, λ5(B) = 2√
10

.

Hence

g(B) = −
⎡

⎣

(
−1 − √

5

2
√
10

)2

+
(

−1 − √
5

2
√
10

)2
⎤

⎦

1/2

= −1 + √
5

2
√
5

and

�(P5,N5) ≥ arccos

(

−1 + √
5

2
√
5

)

≈ 0.7575π.

Intensive numerical testing suggests that the above inequality is an equality, but we do
not have a formal proof of this fact. The strict inequality �(P5,N5) > (3/4)π was
already observed in Goldberg and Shaked-Monderer (2014).
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The next proposition is a complement to Theorem 4.7. It applies to the case n ≥ 5
only.

Proposition 4.11 Suppose that n ≥ 5. Let (A, B) be an antipodal pair of (Pn,Nn).

Then,

λ2(B) < 0 < λn−1(B).

In particular, rank(B) ≥ 4 and rank(A) ≥ 2.

Proof Let λi := λi (B) for all i ∈ {1, . . . , n}. Suppose that λn−1 ≤ 0. One must arrive
to a contradiction. One has λi ≤ 0 for all i ∈ {1, . . . , n − 1}. The inequality in (39) is
not strict, but holds in the form “≥”. One gets in such a case

〈A, B〉 = −
√

1 − λ2n ≥ −1/
√
2,

which contradicts the inequality �(Pn,Nn) > (3/4)π , cf.Example 4.10. Hence,
λn−1 > 0. If λ2 ≥ 0, then

−λ1 = λ2 + · · · + λn ≥ λn−1 + λn > λn,

contradicting the fact that λn = ρ(B). �	
It is quite difficult to obtain an explicit formula for �(Pn,Nn) when n ≥ 5. Some

words on the numerical estimation of �(Pn,Nn) are in order. As a consequence of
Seeger and Sossa (2015, Theorem 3.2), one can write

�(Pn,Nn) = 2 arccos
√
2tn,

where tn denotes the optimal value of the nonlinear program

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minimize f0(Z , t) := t,

(Z , t) ∈ Sym(n) × R,

f1(Z , t) := 1
2 [dist(Z ,Pn)]2 − t ≤ 0,

f2(Z , t) := 1
2 [dist(Z ,−Nn)]2 − t ≤ 0,

f3(Z , t) := ‖Z‖2 − 1 = 0.

(43)

The gradients of f0, f1, f2, and f3 are all easily computable. For instance, the partial
gradients of f1 and f2 with respect to Z are given by

〈∇Z f1(Z , t), D〉 = D − �Pn (D),

〈∇Z f2(Z , t), D〉 = D + �Nn (−D).

Projecting onto Pn and Nn offers no difficulty. Table 2 has been filled by solving
(43) with the help of the package “fmincon” of MATLAB. This is done for each
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Ta
bl
e
2

L
ow

er
bo

un
d
fo
r
�

(P
n
,
N

n
)

n
�

(P
n
,
N

n
)

n
�

(P
n
,
N

n
)

n
�

(P
n
,
N

n
)

n
�

(P
n
,
N

n
)

n
�

(P
n
,
N

n
)

5
0.
75

75
π

6
0.
75

75
π

7
0.
75

75
π

8
0.
76

07
π

9
0.
76

07
π

10
0.
76

09
π

11
0.
76

26
π

12
0.
76

49
π

13
0.
76

49
π

14
0.
76

58
π

15
0.
76

77
π

16
0.
76

99
π

17
0.
76

99
π

18
0.
76

99
π

19
0.
77

03
π

20
0.
77

19
π

21
0.
77

19
π

22
0.
77

19
π

23
0.
77

22
π

24
0.
77

35
π

25
0.
77

35
π

26
0.
77

35
π

27
0.
77

39
π

28
0.
77

50
π

29
0.
77

50
π
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n ∈ {5, . . . , 29}. Since (43) is a nonconvex optimization problem, we are not sure if
“fmincon” is yielding a global solution or just a local solution. For this reason, we
are rather conservative and consider the figures in Table 2 only as lower bounds for
�(Pn,Nn). These figures have been rounded down to four decimal places.

Remark 4.12 Consider a dimension n of the form n = (q + 1)(q3 + 1), with q being
a prime power. It has been shown by Goldberg and Shaked-Monderer (2014) that

�(Pn,Nn) ≥ arccos

(

−
√

q2 + 1

q + 1

)

. (44)

The lower bound (44) has the merit of being easily computable, but it applies only to
special choices of n and it is not optimal in general. Consider for instance the choice
q = 2, which corresponds to the first prime power. The inequality (44) becomes

�(P27,N27) ≥ arccos
(
−√

5/3
)

≈ 0.7677π,

but Table 2 yields the better lower bound �(P27,N27) ≥ 0.7739π.
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