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SUMMARY

This paper deals with the problem of energy planning for a solar car race. Therein, an electric vehicle
powered only by means of a battery pack and the sun’s energy must cross usually long distances in several
days, facing disturbances along the road such as road slopes, winds, cloudy weather, and vehicle failures.
Because the battery pack energy is insufficient to end the race, teams must be very careful with their energy
consumption planning, so as to drive as fast as possible to reach the goal in minimum time without emptying
the battery pack. The proposed methodology consists of a real-time implementation that measures the current
state of the vehicle and then executes a quick energy planning for the long term based on the available battery
energy and current solar radiation forecast, afterwards executing a continuous optimal control problem stage
for the short term solved by means of pseudospectral methods. This last inclusion allows for fast calculation
of trajectory updates while keeping modeling detail. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The World Solar Challenge is a worldwide known event that congregates every two years teams
from all over the world that wish to test their solar vehicles. The goal of the race is crossing Australia
from north to south, which sums a total running distance of 3000 km of highway, using only a
battery pack with a certain initial load established in the event rules and the energy given by the
sun during the race execution. Due to its extension and the exacting energy constraints, a rational
decision about how much energy to use, how and when, becomes necessary, making the best use
of the available means. It is natural, then, the use of schemes based on parametric optimization and
optimal control. It is necessary, on the other hand, to count with an adequate modeling of the vehicle
and its components, so as to accurately estimate its energy consumption.

A solar car is a very complex system, but this paper is mainly focused on its primary subsystems:
a solar energy conversion system, responsible for transforming the solar radiation into electricity;
the battery pack; and the powertrain, consisting of standard mechanical components (suspension,
steering, wheels, and brakes) and an electric motor. A complete monitoring system is in charge of
estimating important variables such as the battery state of charge (SoC) and all circulating currents
and voltages on the electric circuit, as well as temperatures and other important data concerning the
different car devices. Consequently, the problem is to drive this given solar vehicle to the finish line
in minimum time, given the real-energy availability and the technical and regulatory constraints.
To achieve this, several different strategies have been successfully tried. Researchers have already
developed analytical methods for advising the best driving strategies under different scenarios [1–3],
resorting to Pontryagin’s maximum principle [4, 5]. Studies have been made, which include most
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kinds of disturbances into account, such as slopes and cloudy days, spatially varying radiation [6],
and incorporating complex battery models. While it is true that the developed analytic methods
provide powerful tools for strategy planning, the varying conditions that are faced among different
teams, races, and route segments makes it very necessary to include numerical optimization methods
for real planning. On the other hand, the great complexity some case studies achieve makes them
also necessary. Among the numerical approaches available on the literature, stochastic solutions can
be found [1, 7], which stand out in their modeling simplicity, as well as deterministic ones which
resort to different numerical methods. Some of them make use of indirect shooting methods to solve
the maximum principle conditions [8]; others have preferred to iterate on a single constant speed
for the whole race [9, 10] using simulation and optimization techniques separately, and some others
have preferred to use dynamic programming adaptations for this purpose [7, 8, 11]. Finally, other
authors have based their planning on the empirical knowledge of the vehicle’s energy consumption
and have used very simple tools for planning the energy budget of the vehicle [12, 13].

The proposed work coincides with [7, 8, 12, 13] in pointing out the great importance of the solar
resource as a limiting factor of the vehicle’s performance but, at the same time, as a facilitator
and simplifier on the calculation strategy to implement. This is how the proposed scheme is based
primarily on estimating the future available energy and afterwards only making the most urgent
calculations (i.e., the control decisions to apply in the current instant). The schemes proposed in
[12, 13] have great simplicity and automation because they are based on empirical knowledge of
the vehicle, in a fashion that each energy consumption has a cruising speed associated through a
look-up table. The present work, however, proposes to insist in that dynamics of the vehicle vary
slow enough to sacrifice a small amount to computational speed in exchange for a greater level of
detail that allows team members to take the expected evolution of the relevant variables into account,
allowing for detection of possible failures or disturbance effects. Instead of the look-up table revision
of those references, the proposed method includes an optimal control stage based on pseudospectral
methods, not found in the consulted literature. This stage allows for incorporating dynamic detail of
the car’s modeling while using less computing resources as in a simulator–optimizer scheme based
on Runge–Kutta and parametric optimization schemes [14].

The document is organized as follows. Section 2 briefly describes the car’s modeling, stating all
the effects and assumptions included in the present paper. Section 3 describes the proposed algo-
rithm, discussing relevant inputs and outputs on its different stages. Section 4 afterwards shows
simulation results showing the algorithm’s performance in both normal and abnormal operating
conditions and discusses the goodness of its reaction against disturbances. In Section 5, a com-
parison is made between the proposed algorithm and other techniques found on the literature.
Finally, Section 6 outlines the most relevant conclusions and future work to continue improving the
proposed algorithm.

2. CAR MODELING

The car modeling will be divided into two parts: first, the mechanical aspects will be presented, and
then the electrical part will be described.

(a) Mechanical forces
In this paper, we shall consider the effects of the opposing forces applied to the vehicle.

Namely, those are the rolling resistance, aerodynamic drag, and gradient force [15]. The vehi-
cle’s movement is assumed to occur in one dimension. ‡ Solar cars are thought for highway
traffic, and therefore, a smooth path will be considered, and no wheel slip, which is also a rea-
sonable assumption for rainy days at the speed the vehicle drives. The present model is based
on that found in [3]. If the car speed is v and the applied force on the rear axle is F , the speed’s
rate of change is given by

‡Most of the World Solar Challenge event is ran this way, so neither tracking nor track curvatures are considered. In case
of difference, the fast feedback characteristic of the algorithm is to compensate any mismatch in the driver’s behavior,
assuming that the direction will be kept straight on the following instants.
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Table I. Mechanical forces parameters: meaning and values.

Symbol Meaning Value

A Vehicle front area 0:96 Œm2�
CD Drag coefficient 0:08 Œ��
Cr1 First rolling resistance coefficient 0:008 Œ��

Cr2 Second rolling resistance coefficient 1:789 � 10�4 Œs=m�
m Total mass (pilot+vehicle) 302 Œkg�
nw Number of wheels 3 Œ��

�a Air density 1:2043 Œkg=m2�

dv

dt
D
1

m
.F � Fae.v/ � Fg.r/ � Fr.v; r//; (1)

where Fae.v/, Fg.r/, and Fr.v; r/ represent the aerodynamic resistance at the speed v, the
gradient force at position r , and the rolling friction at the same speed and position. Their
expressions are given by

Fae.v/ D
1

2
CD�aA.v C vw/

2;

Fg.r/ D mg sin.�r/;

Fr.v; r/ D mg.Cr1sign.v/C Cr2v/ cos.�r/

(2)

Parameter meanings and values are given in Table I.
The presented work takes road slopes �r into account, treating them as known. This infor-
mation can be easily estimated from road data available from maps. A useful tool for these
means can be Google Earth§ r. Therefore, it is adequate to include a dynamic equation for
the travelled distance of the vehicle.

dr

dt
D v: (3)

It is important to know that wind speed vw appears as an unknown disturbance. Due to this
unawareness, the proposed algorithm treats this term as zero.

(b) Electric system

A schematic view of the vehicle’s electric system is shown in Figure 1.
The electric system of the car is very complex. Modeling it in detail can be very cumbersome and

tremendously increases the calculation time required to perform an iteration of the algorithm, with
arguable benefits from doing it. Therefore, the solar panel’s behavior is approximated considering
a static efficiency, �cel ls D 0:15. On the other hand, the high efficiency of the maximum power
point tracker system (MPPT) and battery pack suggests it is a good approximation to consider them
as perfectly efficient. However, the DC Brushless motor used deserves more attention. In [3], a loss
model of the electric motor used in the vehicle is obtained, allowing therefore an expression for
the axle power discussed on the previous section to be built. If Pin is the power input to the motor
inverter and the current vehicle speed is v, it holds that

Pin.F; v/ D Fv C k0v C k1jF jv C k2F
2: (4)

§The tool was used only for its availability and ease of usage. In the case of the race under consideration, the slope
variation is not too high, and most of the race is carried out in large open areas, where satellite estimations are expected
to be more accurate as, for example, steep hills or forest areas.
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Figure 1. A typical solar car electric system.

Table II. Motor losses model parameters.

Parameter Value

k0 0:059(N)
k1 0:043 .�/
k2 0:00785(s/kg)

The values for the parameters k0, k1, and k2 are given in Table II. In order to obtain a smooth
model, the absolute value and sign functions are approximated as

sign.x/ � tanh
� x

5N

�
; jxj �

�
1

N
log.2 cosh.Nx//

�
; (5)

with N D 0:1.
According to Figure 1, the electrical system is actually an energy-transferring system. If the

available energy in batteries is Eb and Ps.t/ is the net solar energy income, then it holds that

dEb

dt
D Ps.t/ � Pin: (6)

It is important to include this variable in the model of the car due to the limited capacity of
the batteries.

Summarizing, the complete model of the car used in this paper corresponds to

dv

dt
D
1

m

�
F �

1

2
CD�aAv

2 �mg sin.�r/ �mg.Cr1 tanh
� v

5N

�
C Cr2v/ cos.�r/

�

dr

dt
D v

dEb

dt
D Ps.t/ � Pin.F; v/:

(7)

Adding the operational limits for batteries and inverter, the regulatory speed limits and the initial
and terminal conditions for the traveled distance and battery energy, we have that if t0 and tf are
the start and finish times of the race,
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Figure 2. Summarized description of the proposed algorithm.

0 6 v.t/ 6 v.max/; 8t 2 Œt0; tf �
Eb.min/ 6 Eb.t/ 6 Eb.max/; 8t 2 Œt0; tf �
F.min/ 6 F.t/ 6 F.max/; 8t 2 Œt0; tf �

(8)

3. PROPOSED METHODOLOGY

If we were about to solve the optimal control problem of getting to the finish line in minimum
time and we wanted to add enough detail, we would soon find out many difficulties that arise with
this kind of treatments: first of all, the time scales of the different dynamic variables (for exam-
ple, the speed) are orders of magnitude faster than the whole time horizon these kind of races use
to take to be finished, which is in the order of several days. Because numerical methods for solv-
ing continuous-time optimal control problems resort themselves to parametrizations of the control
and/or state variables and then solve a nonlinear programming problem it would thus take too many
decision variables to have a detailed enough solution that can appropriately approximate the afore-
mentioned dynamics, hence degrading the performance of an online formulation of the algorithm
by making iterations too slow and the problem too hard for the numerical algorithms involved,
requiring additionally an enormous amount of computing resources. On the other hand, knowing a
detailed solution of what is expected to happen in the long term loses sense in the presence of such
unpredictable disturbances as the ones present in a solar car race. Recognizing that it is important to
predict what will happen in the long-term future but also spotting that the actual limiting resource is
the available energy, we can therefore summarize this future behavior by just considering the evo-
lution of this variable in both its shapes: the one that is stored in the batteries and the one expected
to be received from the sun. Still not abandoning the idea of having some sort of detail, we can still
include more accurate calculations for the moment in which they matter the most: the current race
time and a small period of time immediately adjacent.

The proposed algorithm, thus, consists in three stages, as shown in Figure 2: the first one consists
in planning a long-term strategy, in the time span of several days, by just considering the solar
energy income predictions for the next race days and the available battery energy at the beginning of
the current day. This requires the team to forecast the number of days the car will take to reach the
finish line, because the algorithm will force by the end of the final day the battery pack to be empty.¶

¶If the battery pack was not empty at the end of the race, it means the remaining energy could have been used to reduce
the time required to reach the goal. On the other hand, depleting the battery pack on a previous day may not necessarily
guarantee that the solar energy to receive the following days is enough to reload it and be able to sustain high speeds.
Because all these decisions depend on the weather forecast, the energy consumption for the rest of the days is left as a
decision variable.
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If Cd is the current racing day, Nd is the user-defined final race day, OE.d/s is the estimated solar
energy income for day .d/, OE.d/

b
is the battery energy estimation for the start of day .d/, and E.d/m

is the energy consumed by the inverter-motor set during day .d/, the first stage of the algorithm,
called weekly planning, is executed by solving

min°
E
.d/
m

±Nd
dDCd

�

NdX
dDCd

E.d/m

s.t.
OE
.dC1/

b
D OE

.d/

b
C OE

.d/
s �E

.d/
m ; 8d 2 ¹Cd ; : : : ; Nd º;

Eb.min/ 6 OE.dC1/
b

6 Eb.max/ ; 8d 2 ¹Cd ; : : : ; Nd º;

Em.D�min/ 6 E
.d/
m 6 Em.D�max/ ; 8d 2 ¹Cd ; : : : ; Nd º;

OE
.NdC1/

b
D Eb.min/ :

(9)

It is just necessary to run this stage once a day; with the reading of the battery SoC at the beginning
of each race day, that makes therefore OE.Cd /

b
actually a measured variable. OE.d/s is assumed given by

an appropriate radiation forecasting system. The author should note here that the decision variable
is in this problem the consumed energy of the motor in each day. A natural question that arises next
is then how is the car supposed to distribute this whole consumption during each day. Again, it is
much more important to plan the current race day instead of the following ones, assuming that the
remaining battery energy at the end of each day would remind the same when planning the following
days with more detail. The second stage is this way introduced. We will call it daily planning and
make it consist in solving

min°
E
.Cd ;k/
m

±kf
kDkc

�

kfX
kDkc

E.Cd ;k/m

s.t.
OE
.Cd ;kC1/

b
D OE

.Cd ;k/

b
C OE

.Cd ;k/
s �E

.Cd ;k/
m ; 8k 2 ¹kc ; : : : ; kf1º;

OE
.Cd ;kC1/

b
D OE

.Cd ;k/

b
C OE

.Cd ;k/
s ; 8k 2 ¹kf1 C 1; : : : ; kf 2 � 1º;

OE
.Cd ;kf 2/

b
D OE

.CdC1/

b
;

Eb.min/ 6 OE.Cd ;k/
b

6 Eb.max/ ; 8k 2 ¹kc C 1; : : : ; kf 2º;

Em.S�min/ 6 E
.Cd ;k/
m 6 Em.S�max/ ; 8k 2 ¹kc ; : : : ; kf1º:

(10)

At this point, the current day has been divided into an arbitrary number of time intervals kf 2.
These are intended to include the energy evolution from the early morning, before the sun rises and
the racing day starts, till the late night, after the racing day has finished and the sun has set. This
allows to predict the battery-stored energy trajectory during the morning and evening. On the other
hand, kf1 makes reference to the last of those intervals in which the vehicle can run, which depends
on the race regulations.

This stage is updated periodically through the day, and because this implies that at a certain point
some time intervals will be obsolete, it is not necessary to include those in the planning, motivating
that kc , the current interval, changes with the current race time. This way, the closer the clock is
from the end of the racing day, the less this stage will take to be solved.

In this work, the time intervals were chosen to have a length of 15 min. This allows a still long
prediction horizon for the third stage of the algorithm to be included and the number of intervals to
be kept small enough for each day. It is important to notice that up to this point, all stages are based
on the following principle: the time optimal solution will be based on spending the greatest amount
of energy, during each day and time interval, in such a way that the batteries are empty at the end of
the race and the energy is used in the most efficient way, which means being able to run the longest
distance possible with a given energy budget for a given time interval. This last problem is to be
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solved by the last stage of the algorithm, but before introducing it, the reader should take into account
that the energy limits used for the decision variables are chosen based on the datasheet maximum
operating values for the inverter-motor set, considering regenerative braking and forward operation.
For the weekly planning, the limits are normally to be set considering a lower continuous maximum
power than for the daily planning. Finally, another thing to take into account when applying this
algorithm is the fact that the present formulation of (9) and (10) is perfectly suitable for nearly flat
tracks, but it still allows for considering a different objective function that relates energy, time, and
space, in order to, for example, include information on spatial variation of the solar radiation or
slopes and thus enabling the algorithm to make better decisions.

The third and last stage is called continuous planning and consists of applying a continuous-time
optimal control problem solution algorithm to the problem

min
F

�r
�
t
.Cd ;kc/

f
C ıt

�

s.t.
dv

dt
D
1

m

�
F �

1

2
CD�aAv

2 �mg sin.�r/ �mg.Cr1 tanh
� v

5N

�
C Cr2v/ cos.�r/

�

dr

dt
D v

dEm

dt
D Pin.F; v/

0 6 v.t/ 6 v.max/;8t 2
h
Tc ; t

.Cd ;kc/

f
C ıt

i

0 6 Em.t/ 6 E
.Cd ;kc/

mf
;8t 2

h
Tc ; t

.Cd ;kc/

f
C ıt

i

F.min/ 6 F.t/ 6 F.max/;8t 2
h
Tc ; t

.Cd ;kc/

f
C ıt

i
v.Tc/ D vTc

r.Tc/ D rTc

Em.Tc/ D Em;Tc

Em.t
.Cd ;kc/

f
C ıt/ D E

.Cd ;kc/

mf
;

(11)

in which

E
.Cd ;kc/

mf
D E.Cd ;kc/m C

ıt�
t
.Cd ;kcC1/

f
� t

.Cd ;kcC1/
0

�E.Cd ;kcC1/m : (12)

As a remark, please note that the system (11) is identical to (7), except for a change in the direction
of the energy convention and the extraction of Ps.t/ from it. This is a consequence of having already
considered the solar energy contribution on the previous phases.

As it has been said before, the daily planning is based on a fixed, previously chosen discretization
of the current race day. On the other hand, the continuous planning is thought to be executed with
the highest periodicity of all the other stages, and therefore most of the time, it will be ran at a time
(denoted as Tc in (11)) that will not coincide with the starting instant of the current time interval
t
.Cd ;kc/
0 , letting a difference ı appear, as shown in Figure 3. If we emulate a moving-horizon model

predictive control strategy, we find out that this difference also causes the problem to include a small
portion of the next interval. This stage is thought to respect the previously made planning, and so
this is why we add an extra term in the definition of the energy limit for this problem, E.Cd ;kc/

mf
,

which includes the energy planning results for both time intervals. We also stress that in this stage,
the control problem is a free final state one, and the initial state is obtained from the information
obtained from the car’s telemetry system, vTc , rTc , and Em;Tc . The last variable makes reference to
the measure in the consumed motor energy in the current time interval. While it is true that power
integrators may develop a big measuring error with time, the formulation of the problem makes it
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Figure 3. Location of the continuous planning in the daily planning discretization.

mandatory to reset this measure to zero when a new time interval is reached, reducing therefore the
global measuring error along the race. According to all the previous, the final travelled distance for
this problem is also evaluated at the end of the moving horizon. t .Cd ;kc/

f
represents the final time of

the current time interval.
The proposed algorithm is thought to be executed on an iterative basis. The continuous planning

is to be executed several times before one iteration of the daily planning is made, but the switching
criterion between stages may vary as well. While some users may prefer to set it to a number of
iterations of the continuous, others may wait for some elapsed time between executions of the daily
planning, while it is also possible to include a tolerance criterion for the deviation of the measured
variables with respect to their predicted values. In the present paper, the last criterion is used.

For the solution of this problem, we have used the MATLAB-based, free software GPOPS 4.1 [16]
that implements the Radau pseudospectral method [17] with the multiple interval discretization and
hp mesh refinement algorithm of [18]. In summary, this method approximates the control and state
trajectories by means of the Lagrange polynomials. In a single interval formulation of this method,
the problem’s time interval is transformed to the Œ�1;C1/ interval, and then the Lagrange polynomi-
als are evaluated on the corresponding Legendre–Gauss–Radau (LGR) points. For a multiple interval
formulation of the problem, the problem’s time interval is divided in an arbitrary segment partition
and each segment is transformed as before, evaluating thus the Lagrange polynomials corresponding
to each sub-interval on the respective (LGR) points. In each case, the maximum polynomial degree
for each interval is user-defined. For the current application, a trial and error test yielded a Ni D 9

uniformly distributed interval set and led to a choice of polynomials of degree Nnpi D 20 in each
one of them.

In this last sense, it is important to justify the aforementioned choice. Table III shows a summary
of tests that were applied in order to evaluate the behavior of the solution with different configura-
tions. These tests were performed for solving problem (11) at an arbitrary initial state of null speed,
100 km far away from the starting point and an energy limit of 0.1596 kWh, as shown in Figure 4.
If the initial battery energy is 3.0 kWh, the final allowed battery energy corresponds to 2.8404 kWh.
Due to the practical uncertainty on the road slopes, the tests are run on flat terrain and on a time span
of 15 min. It is desired to maximize the travelled distance. It is noticeable that the objective function
value does not depend on the collocation configuration, but rather, the difference appears to be in
the shape of the solution itself and in the time required to calculate it (in all cases, the initial guess
used in the optimization method was the same). In that same sense, from what follows from test
number 2, it is possible to observe that increasing the number of nodes does not necessarily lead to
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Table III. Several tests on the collocation interval and node numbers.

Test Refined Solution Objective
no. Ni Nnpi NiNnpi time (s) value (km) Comment

1 9 20 180 1.43 -1.46E+2 Well defined singular arc, no oscillations.
2 25 20 500 13.25 -1.46E+2 Same solution as in 1.
3 4 20 689 3.77 -1.46E+2 Significant oscillatory solution distortion.
4 9 15 135 2.49 -1.46E+2 Slight oscillatory solution distortion.
5 9 12 108 2.29 -1.46E+2 Slight oscillatory solution distortion.
6 9 10 540 3.89 -1.46E+2 Significant oscillatory solution distortion.

Figure 4. Effect of the pseudospectral method’s configuration on the solution.

better solutions, and therefore, there is indeed an upper bound for the aforementioned magnitudes.
Tests number 4 and 5 show that there exists a range in which the respective obtained solutions are
still acceptable and could be under tolerance assumptions used in practice to obtain fast results, but
a slightly oscillatory behavior typical of collocation methods starts to appear and increases as the
number of nodes decreases. This phenomenon is shown in Figure 4. In Table III, the term ‘singular
arc’ makes reference to that region of the state space where the value Em.t/ D E

.Cd ;kc/

mf
holds true.

The first three configurations in Table III consider a fixed number of nodes per interval with a
variable number of intervals. The last three consists of the analogous for fixed number of intervals.
For generating solutions from test number 2 and on the initial guess has been obtained from the
solution of test number 1. It is important to notice that it might seem as if the smallest numbers
of nodes would yield slower solutions, but that is actually due to the oscillatory distortion effect
observed in Figure 4, in which a remarkable effect is that reducing the number of intervals to a
half has a greater impact than doing the same with the number of nodes contained on each one.
The initial guess is therefore farther from the actual solution than in the other cases. The difference
on the solution time between tests 1 and 2, and 4 and 5 follow the logic that a greater number of
variables requires, as expected, a bigger number of operations. Between tests 1 and 2, the number
of nodes is almost triplicated, whereas the solution time is multiplied almost 10 times. This is not
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DOI: 10.1002/oca



546 E. GUERRERO MERINO AND M. DUARTE-MERMOUD

only due to the fact that more calculations are needed but also due to the fact that the inclusion of
additional intervals also implies the satisfaction of additional matching conditions between them.

On GPOPS 4.1, the automatic mesh refinement algorithm of [18] is implemented. Besides
the empirical tests performed, the algorithm is allowed to start from the corresponding guesses
and increase or decrease the number of intervals and nodes. The results are as well included in
Table III. Column Refinement NiNnpi includes the number of nodes obtained after a maximum of
10 refinement iterations.

From the tests performed, the preferred configuration to be used corresponds to Ni D 9 and
Nnpi D 20. It can be seen in the aforementioned table that the number of nodes in this case
remains unaltered. Furthermore, if the thus obtained force is interpolated by Hermite piecewise
cubic polynomials [19] and the system is integrated, the relative state error at the collocation points
corresponds satisfies

e WD max
k2¹1:::NiNnpi º

jxint.k/ � xsol.k/j

jxsol.k/j
< 10�3:

xint.k/ is the result of the integration, while xsol.k/ denotes the test’s solution, both evaluated in
node k. In other cases, the increase on the total node number was very significant. These solutions
are thus discarded. The other non-varying solutions might have been taken as well, but in this paper,
a compromise is made for additional detail, thus choosing Ni and Nnpi as previously mentioned.

The Radau pseudospectral method has the advantage that the continuous-time dynamics of the
solution are greatly contained in the polynomials used to approximate the solution, leaving a reduced
information calculation burden for the numeric solver. The continuous-time problem is in this
fashion transformed in a parametric nonlinear programming problem that has a large-scale sparse
structure [20], which is very convenient for the application of methods based on sequential quadratic
programming (SQP) such as SNOPT [21]. All this results advantageous in allowing the inclusion of
a greater amount of detail in the short-term solution at the use of low computational resources and
short calculation times.

4. RESULTS

The first interesting result|| of the algorithm is that, using an Intelr Core™ 2 Duo - E6850
CPU @ 3.00GHz, 64-bit, 8.00 GB RAM, it takes about 5 s to finish a complete cycle consisting in
all its stages. This time is strongly influenced by the initial guess’ closeness to the optimal solution
of the continuous planning stage, which motivates reusing the solution of an iteration as the initial
guess of the next one.

On a real implementation, the calculation of the optimal control and its application to the real
system can be performed by separate devices. Each result of the continuous planning stage might
be transmitted to a suitable real-time controller which will store and apply it until the next curve is
received. Because each optimal control is obtained for long enough time horizons, the same horizons
are the upper bounds for an acceptable calculation time. This corresponds to 15 min in this case. It is
therefore not required to have a real-time operating system perform the optimal control calculations
but only ensure that its perfomance is high enough, because the calculation time impacts the system’s
ability to keep optimality in the presence of disturbances.In this case, it proves sufficient to use
Windows 7 Home Premiumr or Ubuntu 14.04r. The time scales considered until now make data
transferring times negligible.

In a normal operating situation, a complete cycle of the algorithm yields the results shown in
Figures 5 and 6, in which expression (10) is used for the daily planning. Figure 7 shows, on the other
hand, the effect of applying the moving horizon window. Therein it is possible to appreciate how the
moving horizon strategy works like. At 08:30 h, then at 08:35 h, and then at 08:40 h, the continuous
planning stage is executed respecting the daily planning results. In the first continuous planning

||All results are obtained by computational calculations.
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Figure 5. Weekly planning for a 5-day long race.

Figure 6. Energy planning for the first day.

iteration, the algorithm accelerates the vehicle from a null speed to an optimal one, then holds a
constant speed, and finally lets the car decelerate freely in order to maximize the traveled distance
in the considered period without going further in the use of energy. It is important to note that this
comes only from the limited time scope and energy availability of problem (11). In the same figure,
it is possible to see, on the other hand, how the iterative characteristic of the method overcomes this
effect and keeps the horizon in which the speed is held near an optimum also moving, thus never
allowing the car to freely decelerate.

Given now the case that the algorithm works properly in the absence of disturbances, let us have
a closer look into what happens when the vehicle is in the presence of those. In that case, the model
the algorithm uses to obtain the optimal curves and the car dynamics will not coincide. It is possible
to distinguish two different kinds of scenarios: one in which the disturbances directly affect the
performance of the car, such as winds, unpredicted slopes, mechanical failures and so on; and one in
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Figure 7. Continuous planning. Moving horizon effect when executing the stage at 08:30, 08:35 and 08:40 h.
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Figure 8. Results obtained while simulating a wind gust applied to the car when using different amounts of
prediction information.

which the disturbances affect actually the energy availability of the car, such as cloudy weather, and
failures in the battery pack or solar array. The proposed algorithm is able to cope with both kinds
of scenarios.

For testing the first scenario, it will be assumed that the car begins the race in an environment
such that all model parameters are accurate and the disturbances are null until 08:35 h, in which an
unknown 15 km/h opposing wind gust is applied to the vehicle, lasting until 08:40 h. The algorithm
is run considering one iteration of the daily and weekly planning stages to be fixed and applying
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Table IV. Summary of relevant results while testing the algo-
rithm under a wind gust.

Travelled distance at Consumed energy at
Scenario 08:40 h (km) 08:40 h (kWh)

Open Loop 8.614 0.118
Wind 8.085 0.111
Feedback 8.382 0.119
Omniscient 8.784 0.129

every 5 s the optimal control obtained from the continuous planning. The results for the speed are
shown in Figure 8. If the measurement data vTc , rTc , and Em;Tc had been taken from the planning
itself due to lack of instrumentation, we would obtain the curve Open Loop in that figure as the
result of the continuous planning. However, those results would not match reality after the wind
gust, effect shown by curve Wind in the same figure. When the measurement data are accurately
obtained from the car sensors, we obtain the Feedback curve. To enrich the discussion, we will also
add the Omniscient curve, which is obtained by assuming a complete knowledge on the wind gust.
Other relevant variables are summarized in Table IV.

The Open Loop and Wind scenarios show what would happen in the case we are trying to use an
implementation that is too detailed to produce fast results: the predictions are too optimistic, and
when disturbances come, the travelled distance ends being up much less as expected. On the other
hand, having a whole – but impossible to get – knowledge of the disturbances to have along the
way would allow to take much wiser decisions such as lowering the car speed during the gust and
then increase it once again. The partial knowledge had in the Feedback curve, consequently, helps
in improving the travelled distance for the given time interval, making it thus advisable to use the
developed algorithm in the solar car. It must be noted, however, that the energy consumption in
this last case is higher than the others due to the car’s struggle against the wind force. This could
have been prevented in case of counting with the appropriate instrumentation to predict this wind
gust. In any case, the energy consumption still does not differ too much from the Open Loop and
Wind scenarios.

In the case of energy income lacks or energy overspend, the main evidence for them will be the
detection of a lower SoC than what is expected to be found during a particular time interval on the
daily planning. The following study consists of three cases. In case 1, it is assumed that the car
starts at 08:30 h with its full battery pack. Case 2 assumes that at 08:45 h it is found that the car’s
available battery energy is 90% of what was expected for that time in case 1, and case 3 assumes
that at 10:30 h, the remaining energy equals 90% of the expected available energy in case 1 at the
end of the day, thus having already consumed the whole day’s planned energy. The algorithm reacts
as shown in Figure 9, where it can be seen that the algorithm tries to keep the car moving at a lower
speed, not stopping in spite of the low energy. It tries to consume less energy or to even be able to
load energy so as to accomplish with the goals from the daily planning while still advancing towards
the finish line.

5. DISCUSSION

In this section, the proposed method is compared with other optimal control techniques found on the
literature. Some of the most used approaches so far consider piecewise constant speeds as decision
variables on discrete-time processes, considering empirical loss models and planning with respect to
the present energy availability and expected solar energy income. This strategy is included under the
designation of Steady State and is in some cases implemented by the use of the dynamic program-
ming algorithm. This time the solution is performed through a standard SQP line search algorithm.
Other approaches integrate the dynamics of the vehicle as a continuous system, typically by means
of methods analog to the single-shooting method, briefly explained in the subsequent discussion.
In order to complement the discussion, the multiple shooting methodology is also included in
the analysis.
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Figure 9. Daily planning reaction under different low battery SoC cases.

For simplicity, the comparison will be performed on a fictitious one-day race, and the aim of
each algorithm will be to maximize the travelled distance during it. While all calculations con-
cerning the proposed scheme are of course subject to the energy planning previously performed as
described earlier, the other algorithms will be allowed to freely choose on this aspect. The following
implementations are thus considered:

(a) Single Shooting [9, 10, 14]: On a fixed time, it is desired to find the control that maximizes the
travelled distance subject to the previously explained constraints. For these means, the con-
trol function F in (7) is parameterized as constant q, and its value is on each iteration used to
integrate the differential part of the problem in order to evaluate the constraints (border condi-
tions and box constraints) and objective function to be minimized, thus obtaining a parametric
optimization problem instead of an infinite dimension problem. Allowing the initial and final
states to be decision variables as well with the corresponding constraints, the following system
is obtained.

min
q;s0;sf

�r.tf / D �sf;2

s.t.
Px D f .t; x; q/ as in (7)
s0 D x0

sf D s0 C

Z tf

t0

Pxdt

x.min/ 6 s0; sf 6 x.max/ as in (8)
F.min/ 6 q 6 F.max/;

(13)

in which t0 and tf correspond to the start and end times of the race, concretely, 08:30 and
17:30 h of the day. The initial state is considered as the car starting at null speed, from the
beginning of the track and with full battery pack. This corresponds to a vector s0 D Œ0; 0; 3� .
The vehicle speed must stay non-negative and under 120 km/h, and the battery pack remaining
energy must remain non-negative and under the maximum capacity, 3 kWh. The force absolute
value cannot exceed 500 N (the motor’s maximum torque is 136 Nm and the wheel radius
is 0.27 m).
From (7), the need for estimating the solar power and the road slope is seen. In Figure 10, the
first one is defined as a look-up table whose input is the day time and the output is the quantity,
while in the second case, the slope is defined by means of an analytical function. On the first
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Figure 10. Altitude profile and solar power income used as basic scenario for comparison of the proposed
method with other strategies.

case, thus, cubic spline interpolation has been used, in order to allow the dynamics right-hand
side to keep being at least C 1, which greatly helps optimization and integration convergence.
Approximation (5) is certainly used for the input power (4) with the same goal.
The problem is solved by means of Matlab’s™ fmincon SQP line search algorithm. For deriva-
tive calculations, the analytical right-hand side derivatives with respect to state and controls
are provided and the differential equations

PG D G
@f

@x

PGq D Gq
@f

@x
C
@f

@q
G.t0/ D I3�3
Gq.t0/ D .0; 0; 0/

(14)

are integrated along with the state for obtaining thus G.tf / WD
@x.tf /

@x.t0/
and Gq.tf / WD

@x.tf /

@q
,

which are in turn used to form the Jacobians for the constraint relating s0 and sf . Integrations
are performed by means of the software’s ode45 method, which implements the Dormand–
Prince Runge–Kutta (4,5) [22] pair.

(b) Multiple Shooting [9, 10, 14]: Implementation (a) might be improved by dividing the whole
time horizon into a set of sub-intervals, applying single shooting to each one of them,
and relating the corresponding subsystems to each other through corresponding continuity
conditions.

min
¹qi º

Ni�1

iD0
;¹si º

Ni
iD0

�r.tf / D �sNi ;2

s.t.
Px D f .t; x; qi / 8t 2 Œti ; tiC1�; as in (7)

8i 2 ¹0; : : : ; Ni � 1º
s0 D x0

siC1 D si C

Z tiC1

ti

Pxdt 8i 2 ¹0; : : : ; Niº

x.min/ 6 si 6 x.max/; 8i 2 ¹0; : : : ; Niº as in (8)
F.min/ 6 qi 6 F.max/; 8i 2 ¹0; : : : ; Ni � 1º

(15)

where Ni represents the number of intervals used in the discretization. In the present work, it
has been considered Ni D 80. The numerical methodology in this case is the same as in case
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(a). A remarkable consequence of this parametrization is the growth on the number of integra-
tions needed to evaluate the constraints. This is the strongest source of running time growth
in the method with respect to Single Shooting. For the derivative calculation, we employ, on
each node, the approach of (14).

(c) Steady State [6, 11–13]: Another way of obtaining optimal solutions found in the literature
are methods in which the vehicle dynamics are absent and the problem is treated as in steady
state. These approaches plan the energy consumption of the car and make use of loss models.
Following our modeling, all this would correspond to consider all time derivatives null and
therefrom obtain the required information. The following problem is obtained.

min
¹vi º

Ni�1

iD0

�

Ni�1X
iD0

�tivi

s.t.
Eb;0 D Eb0
Eb;iC1 D Eb;i CEs;i ��tiPin;i .Fi ; vi /; 8i 2 ¹0; : : : ; Ni � 1º
Eb;.min/ 6 Eb;i 6 Eb;.max/ 8i 2 ¹0; : : : ; Niº ;

(16)

where Pin;i .Fi ; vi / is obtained from (4) with approximation (5). Es;i represents the net solar
energy income corresponding to period Œti ; tiC1�; 8i 2 ¹0; : : : ; Ni�1º , obtained by integrating
the solar power over it, ıti D tiC1 � ti ; 8i 2 ¹0; : : : ; Ni�1º and Fi and ri are intermediate
variables obtained as follows. Eb0 and r0 remain the same as in the previous schemes.

riC1 D ri C�tivi ; 8i 2 ¹0; : : : ; Ni � 1º

Fi D
1

2
CD�aAv

2
i �mg.Cr1 tanh

� vi
5N

�
C Cr2vi / cos.�riC1/; 8i 2 ¹0; : : : ; Ni � 1º

(17)

The resulting nonlinear optimization problem is this way completely independent from dynamic
considerations, and therefore, all computations are performed quickly. One drawback of this method
is that the lack of dynamics inclusion makes it necessary to have a very fine discretization grid in
order to account for these effects. In this example, we are taking Ni D 720 for this method. The
problem’s structure allows for different optimization algorithms. As it is a continuous nonlinear
problem, line search SQP methods [23] are adequate, and as in the previously presented schemes,
that will be the preferred technique to use. However, in the literature, there are several examples in
which such a problem is solved by means of dynamic programming.

All scenarios have the same constraints for controls and states and the same initial conditions
for the state. For comparison between the proposed method against the techniques previously intro-
duced, we consider the World Solar Challenge 2011 race elevation profile as depicted in Figure 10,
where it can be seen it is a rather flat track. The considered solar radiation is visible in the same
figure and corresponds to real data captured by the University of Chile’s Meteorology Group at the
Geophysics Department.

The results are shown in Figure 11. Different means of comparison are shown in Table V. It is
noticeable that the energy consumption profiles, as well as the travelled distances, tend to be the
same for all methods. The proposed algorithm yields a trajectory not worse than the others in these
kinds of tracks in spite of the simplifications introduced. In terms of the interaction between force
and speed, it can be seen that the single shooting solution, being constrained to a constant force,
presents the most oscillating speed whereas the proposed algorithm, the multiple shooting, and
steady state techniques show rather constant profiles, just consistent to the conclusions in [1]. On the
applied forces, the jumps in the presented solution are due to the fact that feedback has been con-
sidered, different from the other scenarios. In this sense, Table V shows rows Partial solution time
and Whole solution time that emphasize that for the present method, the whole solution is obtained
as a sequence of partial solutions which are the ones calculated by the continuous planning stage,
and they are available quicker than in the other cases, in which the whole race must be optimized.
This might be advantageous along the race.
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Figure 11. Proposed method’s results in comparison with similar strategies.

Table V. Comparison of different methodologies for solving the optimal control problem.

Method/characteristic Proposed Single Shooting Multiple Shooting Steady State

Partial solution time (mm:ss) 00:05.00 03:53.41 18:16.40 00:34.70
Whole solution time (mm:ss) 01:26.38 03:53.41 18:16.40 00:34.70
Number of decision variables 720 7 323 720
Maximum distance (km) 540.9 541.8 543.6 541.2
Distance/energy ratio (km/kWh) 71.84 71.48 71.72 71.83
Average efficiency (%) 92.77 85.85 91.85 92.68

The proposed method is also close to the final optimal solutions computed, the small difference
is explained by the introduction of the simplifications discussed earlier. Nevertheless, on a practical
implementation, the faster feedback is expected to compensate this drawback, depending on how
far away the race conditions are from the ideal.

The applied methods impact the performance of the car. The last two rows on Table V measure
this fact. We define the average efficiency as

�average D
1

N

NX
kD1

Fkvk

Pin;k
; (18)

where the quantities are with respect to the solution of each problem. The distance/energy ratio
is calculated from the terminal values of both the travelled distance and the consumed energy on
each case. In these rows, the proposed method shows to yield better results. The consequence of
making only short-term detailed optimizations is that the vehicle will tend to operate in points where
the efficiency is maximized without considering future points. The other considered methods are
presumably accessing less efficient operating points, accepting the cost of accelerated energy loss
in exchange of additional mileage at the end of the race. This might also be risky if the modeling
assumptions or race condition considerations stop being valid at a certain point, specially if they
involve expected future energy recoveries.
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6. CONCLUSIONS

A new method for planning the energy consumption of a solar vehicle in a solar car race has
been proposed. The method is able to include detailed information on the car’s dynamics and is
based on planning the energy consumption of the vehicle first to then include the more detailed
dynamic model of the car into a continuous-time optimal control problem to be solved using
pseudospectral methods.

It has been shown through simulations that the proposed algorithm is able to include the dis-
turbed state information and thus produce trajectories fast enough, letting the car go through longer
distances in a determined amount of time than schemes who take longer times to update their plan-
ning. The proposed method is able to obtain detailed solutions for the short term in the order of 5 s,
allowing for slope differences and speed variations as described in analytic methods found in the lit-
erature. This gives the proposed algorithm advantages over less detailed methods, which are based
on keeping a constant speed all along the way. The method has been successfully compared with
other common approaches in the field of solar racing. The high degree of freedom of its control sig-
nal allows for reaching efficient operating modes with increased flexibility, and its sweeping nature
allows for fast planning on the mid-term while keeping the number of decision variables constant.

The proposed approach is itself suboptimal, because it is based on an arbitrarily chosen time
discretization of the current race day in order to execute the so-called daily planning. If this planning
was continuous, the results would not be dependent on this choice. However, if the discretization
intervals are chosen small enough, the energy predictions get more realistic, thus improving results.

It is important that the car model used for solving the continuous-time optimal control problem is
accurate enough, and it is desirable to be able to predict the disturbances with the highest accuracy
possible as well. This is due to the high dependence on this model the Radau pseudospectral method
used for solving has.

In spite the present paper focusing on a specific application, the same reasoning can be used in
any system involving solar energy: the current forecast information can be summarized to include
the energy to receive on a certain time window, and then pseudospectral methods for optimal control
could be used afterwards in order to solve the more detailed dynamics present in the given system.
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