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An emerging issue in urban computing environments is the seamless selection, composition, and delivery
of user-centric services that run over what is known as the Internet of Things (IoT). This challenge is
about enabling services actuated by IoT devices to be delivered spontaneously from the perspective of
users. To accomplish this goal, we propose the Service-Oriented Internet of Things (SoIoT), a user-centric
IoT-based service framework, which integrates services that utilize IoT resources in an urban computing
environment. This framework provides a task-oriented computing approach that enables the composition
of IoT-based services in a spontaneous manner to accomplish a user task. Tasks can also be recommended
to users based on the available IoT resources in an environment and on the contextual knowledge that
is represented and managed in social, spatial, and temporal aspects. These tasks are then bound to a set
of service instances and performed in a distributed manner. This final composition ensures the Quality of
Service (QoS) requirements of the tasks and is assigned to multiple client devices for the efficient utilization of
IoT resources. We prove the practicality of our approach by showing a real-case service scenario implemented
in our IoT-based test-bed as well as experimental results.
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1. INTRODUCTION

Urban computing is an emergent paradigm that has evolved from ubiquitous comput-
ing. Urban-computing environments differ from those considered in ubiquitous com-
puting mainly in terms of scalability. They are denser in terms of the number of users,
larger regarding their physical settings, and more diverse in relation to the types of
users. The main goal of urban computing is to enable users to access networked ser-
vices embedded in the computing infrastructure or on the Web anytime and anywhere
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Fig. 1. Concept of IoT-based service composition and provision.

[Shklovski and Chang 2006]. Recently, we have witnessed an increase in the number
of smart objects in these environments, such as smartphones, smart TVs, robots, in-
telligent appliances, public displays, smart vehicles, and traffic sensors. Smart objects
can be connected via standard protocols such that they are always accessible through
the Internet or an ad-hoc network. These capabilities of smart objects have led to the
emergence of a new paradigm known as the Internet of Things (IoT), where diverse
configurations of smart objects can be made to undertake user tasks in a collaborative
manner [Atzori et al. 2010; Guinard et al. 2010].

For instance, the scenario shown in Figure 1 assumes that there is a user who drives
his car downtown to buy a digital camera as his daughter’s birthday present. He must
then return home by 7 o’clock. Because the streets are crowded, his car’s navigation
system shows the fastest path by interacting with public cameras and traffic lights.
Finding a parking spot on a downtown street is always challenging for him. Fortunately,
his smartphone shows a suitable area to park by interacting with public cameras and
parking meters that, by working together, locate parking spots. After he parks his car,
his smartphone proposes the best stores to find digital cameras. This information is ob-
tained from social network services that contain reviews of camera shops satisfying his
preferences as reported by colocated users and/or by users who have visited the venues.

In order to realize this envisioned scenario, it is necessary to address the complex-
ity that emerges from the increasing number of smart objects and from the different
levels of abstraction in users’ goals and smart-object functionalities. In fact, the mere
abundance of smart objects in urban computing environments does not guarantee the
effective, proactive support of users. Moreover, this is a challenge due to the over-
whelming number of options and limited bandwidth, as well as the many users in a
local environment competing with one another for the same set of smart objects. On the
other hand, there is a gap between low-level functions of smart objects and high-level
user goals, which are usually represented as a series of activities. Therefore, there
is a need to recognize the IoT as a configuration of diverse smart objects necessary
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to support user activities. The diversity of users’ goals, a large amount of smart ob-
jects, and the scale of urban-computing environments make the realization of the IoT
a challenging and complex issue.

To accomplish this goal, we propose what is termed the Service-Oriented Internet
of Things (SoIoT), a user-centric IoT-based service framework that integrates smart
objects available on the IoT. To bridge the gap between user goals and IoT functionalities
and to deal with the complexity problem, we propose an ontology model with which
user goals and environmental contexts can be formally represented and analyzed. We
have also developed an approach to identify services that can be provided by utilizing
available smart objects and having them composed together to meet user goals. We
use a task-oriented service framework [Jimenez Molina and Ko 2011a; Huerta-Canepa
et al. 2008] to provide user-centric services using IoT-based services in an urban-
computing environment. In this framework, user goals are represented as an explicit
task definition that is a coordination of activities. Activities consist of configurations of
abstract services that can be instantiated by orchestrating available service instances,
including services that can be actuated through the IoT, composed of smart objects.

These goals require a proper semantic description model of activities and urban-
computing environments based on different contextual factors. In order to support
user tasks, our framework uses this model to discover feasible activities based on the
information of smart objects in the proximity of users as well as the contextual knowl-
edge modeled and represented socially, spatially, and temporally. This is done with a
reasoning mechanism that identifies a set of tasks that makes use of the activities,
which are then proposed to the users. This final composition ensures the Quality of
Service (QoS) requirements of the tasks; it is also assigned to multiple client devices for
the efficient utilization of smart objects on the IoT. We demonstrate the effectiveness
and practicality of our framework by showing a real-case service scenario implemented
in our IoT-based test-bed and through experimental results.

The remainder of this article is organized as follows. In Section 2, we introduce
SoIoT, its overall architecture, and its essential technical elements. Section 3 describes
a real-case scenario in our test-bed. In Section 4, we explain the experimental results
to demonstrate the effectiveness and efficiency of our system. In Section 5, we dis-
cuss related works. We present our conclusions and suggestions for future work in
Section 6.

2. THE SOIOT FRAMEWORK

2.1. Framework Architecture

In order to realize our research goal of supporting user tasks with an appropriately
configured IoT of smart objects available in an urban-computing environment, we
identify the following technical requirements: (1) to enable users to select their tasks
based on their own perspective; (2) to transform users’ task needs into a form that
is machine-processable; and (3) to support users’ tasks and enhance them via smart
objects in the IoT by semantically connecting the gaps among users’ needs, tasks, and
smart objects. We reflect these requirements in the system architecture of the task-
oriented service framework, SoIoT, as shown in Figure 2.

The mobile client looks for available smart objects and notifies the activity selector
via their inputs, outputs, preconditions, and effects. These functions are realized by
means of the smart-object discoverer and the IoT description manager, respectively,
which ensures the reliable and flexible detection and broadcasting of smart objects.
The task manager selects and filters those activities that can utilize the available
smart objects considering the contextual information that characterizes the urban-
computing environment and the users. The contextual information is provided by the
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Fig. 2. Overall architecture of the SoIoT framework.

context manager. The activity selector carries out the selection and filtering functions
using activity ontologies, which will be explained in Section 2.3. Additionally, the task
manager identifies task templates from a repository that contains the coordination of
filtered activities and ranks, and recommends a task list to users through a mobile
client. The former is realized by the task composer, the latter by the task recommender.

Recommended tasks are presented to the users by the visualizer. If the user chooses
one of the tasks, the client requests its execution flow from the task manager and
actuates the necessary smart objects through the task executor. The execution flow
is obtained by dynamically binding the abstract services of the activities to concrete,
available service instances. The modules in charge of this are the task broker, the service
discoverer, and the execution coordinator. We explain the details of these mechanisms
in later sections.

The task manager can be run either on a designated server in a local IoT environment
or in a cloud-computing environment. The repositories reside in a cloud and manage
the ontologies, task/activity templates, and service descriptions. The mobile client runs
on users’ mobile devices, such as their smartphones. The architecture is extendable in
that there can be any number of mobile clients interacting with a task manager, and
new task/activity templates and services can be registered in the repositories in the
cloud as they are developed to utilize new types of smart objects on the IoT.

2.2. IoT Discovery

The IoT connection manager looks for available smart objects around users in a local
area. From the task manager, it also receives descriptions of the services that can be
provided by utilizing smart objects. The service descriptions are represented in Web
Services Description Language (WSDL)1 and include information about the operations
and interface details of the services. We adopted a multicast Domain Name Server
(DNS) detection and broadcasting2 method to discover and register available smart
objects on the IoT. When the smart-object discoverer sends a query to the smart objects

1http://www.w3.org/TR/wsdl20/.
2http://jmdns.sourceforge.net/.
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Fig. 3. Ontology model for representing activities, urban-computing environments, and social groups.

in the surrounding area, the smart objects respond with specific information, such as
their names and interface descriptions.

Here, we extended the task-selection mechanism of our previous work [Jimenez
Molina and Ko 2011a]. This mechanism systematically matches the capabilities of
smart objects against the types of services that are appropriate for the activities of
user tasks in a local environment, as described in next two sections.

2.3. A Semantic Activity Description Model

Activities are described in terms of the types of factors and properties derived from
essential aspects that define the context governing the interactions among users and
smart objects in urban-computing environments. The rationale for describing the con-
textual information, which characterizes both the urban-computing environments and
the situations in which users are involved, is based on the work of Kostakos et al. [2009].
They define three aspects of an urban-scale ubiquitous computing infrastructure—the
social structure of users’ routines, the spatial structure of the infrastructure, and the
temporal rhythms of users’ behaviors in urban-computing environments.

As shown in the ontology model (Figure 3), the social aspect of an urban-computing
environment is described in terms of its level of publicness attached to the space. This
refers to the publicness spectrum of the public realm (absolutely public, quasi-public,
or private places) [Banerjee 2001]. The spatial aspect is composed of environmental
constraints, as represented by ranges of temperature, noise, humidity, and brightness.
The temporal aspect is described by the temporal pattern of utilizing a place, which
comprises the multiple place potentials that the place may have at different times
[Kostakos et al. 2009]. The temporal pattern is described by a tuple of properties
composed of the season, day of the week, phase of the day, and place potential—
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the most likely user behaviors as determined by urban designers. The place-potential
ontology represents the situations that can occur in a place, such as presenting, eating,
and shopping [McCullough 2001]. The place potential of a place can be regarded as the
locational context that needs to be considered to select location-based services.

On the other hand, user types are described in terms of the level of familiarity
(denoting the strength of the social ties between users, such as familiars, strangers,
or familiar strangers [Paulos and Goodman 2004]), and the social encounter types
engaged in by users—shared interactions users potentially would carry out based
on their personal and social characteristics. These can include physical, anonymous
virtual, or identity-aware virtual encounters [Jimenez Molina and Ko 2011a; Paulos
and Goodman 2004]. A social-group type is described in terms of users’ preferences,
that is, their demographic information, such as their age, gender, and occupation, and
by other social properties of the users.

To build the activity ontology, we utilized the dataset from the American Time-Use
Study3 (2007 version), which recorded 65,635 user activities. An activity is described in
terms of its inputs, outputs, preconditions, and effects. Inputs and outputs are described
as independent ontologies, arranged by subsumption relationships. Outputs produce
publicness-level effects and environmental effects. Thus, cases in which the activities
violate the publicness level of the environment should be avoided. Finally, the environ-
mental effects generated by activities in an environment need to be consistent with the
environmental constraints attached to the place. The favorable place potential relation-
ship represents the appropriate places in which to perform the activity. In addition, the
types of social groups that can be supported by an activity can be represented in the ac-
tivity ontology. Ontologies for the activities, their inputs and outputs, urban-computing
environments, place potentials, and social preferences are compiled to define common
vocabularies to represent their semantics. The aspects and properties described in this
model are utilized by the task-selection mechanism described in the next section.

The ontology data is represented in Web Ontology Language (OWL)4, which is a
standard ontology language for the Web. The semantic reasoning with which to select
and compose user tasks is implemented using Jess5, a popular rule engine for the Java
platform.

2.4. Task Selection and Composition

Figure 4 shows the overall process of selecting, instantiating, and executing a task
based on the smart objects available in an IoT environment. To support a user’s goal,
SoIoT selects and recommends a set of feasible unit-tasks. A unit-task is a combination
of abstract services that can be instantiated to support a user activity. An abstract ser-
vice defines a set of service capabilities that can be provided by utilizing a set of smart
objects. This task-selection mechanism takes place on the server side of the framework
and follows a bottom-up view of the task-composition process by initially considering
smart objects that are available in the surrounding environment to identify only locally
supported tasks. Given these smart objects, locally supported activities are identified
and later tailored into tasks based on the task templates in the task repository. A task
template defines a flow of activities (represented as unit-tasks) that need to be per-
formed to accomplish a user goal. A task template can be reused to accomplish similar
goals in different IoT environments. During the composition process, the social, spatial,
and temporal aspects in the environment are considered as restrictions when binding

3http://www.bls.gov/tus/.
4http://www.w3.org/TR/owl-features/.
5http://www.jessrules.com/.
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Fig. 4. Smart-object-based task selection and composition process.

activities into unit-tasks. In this way, the resulting tasks can reflect the user’s context
and requirements.

2.4.1. IoT-based Selection of Feasible Tasks. Activities are the building blocks of user
tasks. These activities are identified by detecting smart objects surrounding a user or
a group of users and by semantically matching the smart-object functions against the
capabilities required by the activities (Stage 1 in Figure 4).

Then, the social, spatial, and temporal contexts are considered to filter the set of fea-
sible activities. These resultant activities reflect the environment and users’ contexts,
and the social requirements (Stage 2 in Figure 4) [Jimenez Molina and Ko 2011a].
That is, (1) their effects do not violate the environmental constraints or the level of
publicness of the urban-computing environment; (2) they are appropriate for the cur-
rent temporal pattern of using the environment; (3) they are appropriate to support
the social encounters defined by the familiarity types of users; and (4) they satisfy the
users’ demographic information and preferences.

The detailed method used to identify interoperable unit-tasks considering the social,
spatial, and temporal contexts of an IoT environment is as follows. Let UA and UB be two
unit-tasks, with (IA, OA) and (IB, OB) denoting their inputs and outputs, respectively.

Even when the outputs of UB are semantically similar to the inputs or outputs of
UA, the social effect of UB may violate the “publicness authorization level” associated
with the inputs and outputs of UA. Therefore, to verify the interoperability of UA and
UB in terms of social effects, it is necessary to identify and analyze the publicness
associated with the inputs and outputs of the unit-tasks. Let IA = {iA1, . . . , iAn}, OA =
{oA1 , . . . , oAm}, and OB = {oB1 , . . . , oBp}. In addition, let sm(IA, OB) be a function that
checks the semantic similarity between the inputs of UA and the outputs of UB. This
similarity is evaluated using the ontological semantic distance measure developed in
our previous work [Jimenez Molina et al. 2009]. The semantically similar inputs of

ACM Transactions on Internet Technology, Vol. 16, No. 2, Article 8, Publication date: April 2016.



8:8 I.-Y. Ko et al.

UA and outputs of UB are represented as I∗
A and O∗

B, respectively, where IA ⊇ I∗
A =

{i∗
A1

, . . . , i∗
An1

}, and OB ⊇ O∗
B = {o∗

B1
, . . . , o∗

Bn1
}, (n1 ≤ n) ∧ (n1 ≤ p), with i∗

Aj
� o∗

Bj
(∀ j =

1, . . . , n1) denoting the semantic similarity between the input and output parameters.
Inputs and outputs of a unit-task that have a “private” publicness authorization level
can be exposed in an urban-computing environment only when there is a unit task
on which the outputs have a “private” publicness level effect. Otherwise, the social
effects would violate the authorization level of the first unit-task. Another example
is that a “quasi-public” publicness authorization level cannot be exposed in a public
environment.

To consider the spatial context, the interoperability measurement has been extended
to consider the coexistence of tasks in the same place. If there are coexisting tasks,
their effects are aggregated and then checked as to whether or not the aggregated
effects violate the environmental constraints. In the temporal aspect, the consistency of
“temporal availabilities” between the outputs of UA and the inputs of UB is checked. For
example, a unit-task that requires an input with a “continuous-processing frequency”
can interoperate with another unit-task for which outputs are generated continuously.
However, the first unit-task cannot interoperate with a task that produces outputs
with a “single-processing frequency.”

2.4.2. Task Composition. In this phase, a set of feasible unit-tasks are combined that
can be performed in the current user environment to support user activities for a
task. This is done by semantically matching the filtered activities against the activities
coordinated in the task templates that are available in the repository [Jimenez Molina
and Ko 2011a] (Stage 3 in Figure 4). This stage produces a set of tasks that are feasible
in the given environment with regard to the utilization of the existing smart objects
while taking into account the contextual information.

In order to compose and provide services in a spontaneous manner, it is essential to
find the set of services that meet users’ requirements in terms of QoS in a reasonable
response time. In a task template, the QoS requirements of the task are represented
as the weights of the quality attributes of the services for each activity. When a user
chooses a task template to instantiate in an environment, the user needs to check the
QoS requirements of the task as a service-level agreement. For example, a user may
want to watch a movie in full-HD quality in a dark (less than 70lux) and quiet (less
than 100db) environment for the “Watching a Movie” task; the user needs to check
whether a task template meets such requirements by accessing the description of the
task template.

However, if there are many candidate services that are available in an environment,
selecting appropriate services that meet users’ preferences (QoS requirements) for
service compositions (user tasks) can be complex [Benouaret et al 2013]. Specifically,
during the task-instantiation process, finding a set of services that meet the multi-
aspect QoS requirements of a task is a well-known NP-hard problem [Li et al. 2010].
Specifically, in an urban-computing environment, there may be a number of services
that provide a similar level of functionality at various quality levels in different aspects.
Therefore, there must be an efficient means of creating a service composition for a task
while maximizing the integrated quality of the selected services. For this purpose,
we developed an improved QoS constraint decomposition approach that adaptively
samples services and finds the best set of services according to given QoS constraints,
as described in Cho et al. [2012].

The adaptive QoS constraint decomposition approach estimates the most probable
constraint values for the quality attributes of each abstract service in a task. The ap-
proach then identifies probable groups of candidate services in which services can be
sampled for each abstract service. Candidate services are the service instances that
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Fig. 5. Adaptive QoS constraint decomposition.

can be used to instantiate an abstract service of a user task. The quality ranges of can-
didate services are adaptively divided into subranges using the “estimated quality.” In
Figure 5, a value range between two vertical bars defines a subrange. As shown in the
figure, the average values (represented as small white circles) of the quality attributes
for all candidate services are calculated for each abstract service. The constraints of
abstract services for each quality attribute are then calculated, and the global con-
straints are distributed accordingly. A distributed constraint value is referred to as an
estimated quality, which becomes the pivot point at which to divide the entire quality
range into an equal number of subranges. In each subrange, a representative service
is randomly sampled.

The estimated quality is calculated as follows: Equation (1) calculates the average
QoS value (AQV) of a quality attribute of an abstract service. Equation (2) then esti-
mates the local constraints of the quality attributes (Estimated Quality, EQ) for each
abstract service.

AQV h
k =

∑l
i=1 qi

k

l
(1)

EQh
k = AQV h

k∑n
i=1 AQV i

k
× GCk (2)

Here, qi
k is the value of the kth quality attribute of the ith service, l is the number of

candidate services, h is the number of QoS constraints (1 ≤ h ≤ m), m is the total
number of QoS constraints, k is the number of abstract services (1 ≤ k ≤ n), n is the
total number of abstract services and AQV j

k is the average value of the kth quality
attribute in the jth abstract service of the task. GCk is the global constraint of the kth

quality attribute.
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The quality ranges are divided based on the estimated quality. Given that services
for which the quality is better than the estimated quality are more likely to lead to
successful compositions, the subranges must be narrower for a quality attribute that
has harder constraints. The service that generates the highest utility value is then
selected for each abstract service, while the QoS value of a subrange represents the
local constraints. The utility of a service is the integrated quality of the service for a
task, which indicates the degree to which it meets the quality requirements of the task.
The utility of a service is computed as follows:

Utilservice(si) =
r∑

k=1

Qmax(k) − qi
k

Qmax(k) − Qmin(k)
× wk (3)

In this equation, Qmax(k) is the maximum QoS value of the candidate service instances
for the kth quality attribute, Qmin(k) is the minimum QoS value of the candidate services
for the kth quality attribute, qi

k is the value of the kth quality attribute of the service
si, wk is the weight value of the kth quality attribute, and r is the number of quality
attributes.

The shaded bar in Figure 5 represents the appropriate QoS value range in the first
quality aspect for the abstract service. In other words, the services in the shaded bar be-
come the candidates for local optimization. Finally, the best set of services (represented
by the stars in Figure 5) is found by inspecting the utility value of all combinations
of service candidates. The set of services that generates the highest utility value is
determined by means of integer programming.

2.4.3. Task Ranking and Recommendation. The composed tasks are ranked based on the
values obtained by a utility function (Stage 4 in Figure 4). The utility of a service
composite (a task candidate shown in Figure 4) is calculated by aggregating the utility
values of the unit-tasks included in the composite. The utility of a unit-task can then
be calculated by aggregating the QoS utility values of the service instances that are
selected for the unit-task during the previous stage. The following equations describe
the process by which the utility levels of a unit-task and a service composite are
measured, respectively.

Utilunit−task(utk) =
n∑

i=1

l∑

j=1

Utilservice(si, j)∗xi, j (4)

Utiltask =
m∑

k=1

Utilunit−task(utk) (5)

In these equations, n denotes the number of abstract services and l is the number of
sampled service instances for the abstract services. utk represents the kth unit-task for
a given task. si, j represents the jth sampled service instance for the ith abstract service
of a unit-task. xi, j indicates whether or not the candidate service instance is selected
to instantiate the abstract service.

The degree of semantic interoperability between unit-tasks (see Section 2.4.1) is
also considered while calculating the utility value of a service composite. Finally, this
ranked list of tasks is presented to the user through a mobile client such that the user
can decide which one most suitably matches one’s goals.

2.5. Task Execution

The final step takes place after the user has chosen a task to perform (Stage 5 in
Figure 4). While the task is inferred in a bottom-up manner, its deployment is
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Fig. 6. Task transformation and smart-object assignment to mobile devices.

determined using a top-down approach. In other words, the service discovery engine
identifies the service instances that can utilize the smart object operations to realize
the abstract services of the activities in the task. These service instances that are
bound to the smart objects are orchestrated into an execution flow by the execution
coordinator in accordance with the coordination logic of the activities in the task. We
use Business Process Execution Language (BPEL)6 to describe such an orchestration.

The BPEL engine in the task executor of the mobile client receives the execution flow
and coordinates the execution of the services by means of the message engine. This
module in the mobile client manages the invocation of smart objects. This is done by
sending Simple Object Access Protocol (SOAP)7 messages via the HTTP protocol to the
smart objects.

The services of a user task need to interact with each other to perform the task.
The smart objects that are utilized by the services need to exchange data accordingly.
Therefore, in an urban-scale IoT environment, it is inefficient to coordinate the services
of a user task in a centralized manner. SoIoT provides a means of utilizing users’ mobile
devices to make direct connections to the necessary smart objects and to coordinate the
services in a distributed manner for a user task. However, assigning services to multiple
mobile devices that are associated with multiple smart objects in an IoT environment
is a multifactor optimization problem, which is known as an NP-hard problem in which
the optimum cannot be found in polynomial time. Therefore, we developed a heuristic
approach that makes the most efficient service assignment to mobile devices using a
graph-coloring algorithm [Laurent and Hao 2009]. This approach allocates the services
required for a given task to the most appropriate mobile devices that are associated
with the necessary smart objects. It then detects contextual changes and triggers a
reconfiguration of the task, as described in Choi et al. [2013].

With a graph-coloring algorithm, the approach distributes a task to mobile devices
in an efficient manner, as follows:

1) Task transformation (Figure 6(a)): The first step is to transform a user task into an
undirected graph G = (V, E), where:
V is the vertex set, which is composed of the services, S, of the user task, T; and E
is the edge set, which is composed of the pairs of services that need to be performed

6https://www.oasis-open.org/committees/wsbpel/.
7http://www.w3.org/TR/soap12-part1/.
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Table I. Smart Objects and Their Operations in the Test-bed Environment

Smart Object Operations
Projector Power On/Off, Input URL, Adjust Lamp Up/Down, Adjust Lamp Left/Right,

Adjust Lamp Brightness, Adjust Lamp Contrast
Air conditioner Power On/Off, Set Temperature, Set Wind Power
Light Power On/Off, Brightness Setting
Smart TV Power On/Off, Set Volume, Set Display Mode, Set Channel, Input URL
Smart board Up, Down, Stop
Smart object Operations
Print Power On/Off, Input URL, Cancel

in parallel; that is, the end time of a service, Si, should be later than the starting
time of another service, Si+1.

2) Computing a maximum clique: From the transformed graph, the maximum-size
clique is found using a randomized heuristic algorithm.

3) Matching the best mobile devices: Find the best set of client mobile devices for the
maximum clique using integer programming. (The different colors (shadings) shown
in Figure 6(b) represent different mobile devices).

4) Sorting the unassigned services: Sort the remaining services in descending order
based on the number of adjacent services.

5) Assigning smart objects (Figure 6(b)): Assign valid and high-utility smart objects to
services in the order used in Step 4.

6) Finding better smart objects: Improve the assignments by applying a greedy algo-
rithm iteratively.

If the service assignment to the client mobile devices fails, SoIoT backs off to the sec-
ond stage of the composition process (Figure 4) and reconfigures the service composite
to utilize a different set of smart objects in the IoT environment.

3. A USER-CENTRIC SERVICE COMPOSITION AND DELIVERY SCENARIO

In this section, we demonstrate how the SoIoT framework satisfies user-centricity
requirements using a scenario based on our test-bed. When a user enters the test-
bed, the user’s mobile device (which has the SoIoT client) dynamically finds the smart
objects available in the room. The task manager on the server side then extracts
feasible activities based on the available local smart objects, after which it recommends
feasible tasks from the extracted activities. The recommended tasks that reflect the
high-level goal of the user are shown on the user’s mobile device. When the user
chooses a particular task, abstract services for the activities of the task are bound to
service instances. During the process of activity instantiation, the client mobile device
detects and controls smart objects, enabling service instances to utilize the smart
objects properly.

3.1. Environmental Settings

Our IoT test-bed contains a number of smart objects, such as those shown in Table I.
We prepared our test-bed by implementing an agent for each smart object. Agents
are developed in Java and deployed on a Beagle Board8. An agent can receive SOAP
messages from clients and execute functions on physical devices. However, each smart
object provides a different type of control interface. Therefore, an adaptor is required
to connect the interfaces of an agent and a smart object (see the architecture of the
smart object shown in Figure 7).

8http://www.beagleboard.org/.
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Fig. 7. Running the service scenario “have a meeting” in the test-bed environment.

For instance, in order to set the temperature of an air conditioner, a client sends a
SOAP message to an agent via the HTTP protocol. The message contains an operation
for setting the preferred temperature of the air conditioner. The agent extracts the
operation name and the preferred temperature through the SOAP message engine.
Next, a signal is generated using a method that corresponds to the operation. Finally,
an object adaptor operates the function of the smart object based on the signal.

3.2. “Have A Meeting” Scenario

1) Mary is a visiting scholar in our department this fall. This afternoon, she needs to
give her introductory research presentation to the members of the department. Pre-
viously, she installed the client of the task-oriented framework on her smartphone.
As she enters the seminar room, her smartphone multicasts a greeting message to
all of the smart objects in the room. As a reply, each smart object returns its IP
address to the network and descriptions of its operations. Figure 7 shows some of
the detected smart objects (projector, air conditioner, light control, smart TV, smart
board, printer, smart curtains) and their operations.

2) Her smartphone sends the functionality and interface information of each of the
smart objects’ operations to the task manager in a room server. For instance, set
temperature, set brightness, and set volume operations define the input values for
the operations in charge of executing their respective smart-object functionality.
In turn, the executing operations produce cool air, luminosity, and an audio stream
as the respective outputs of the corresponding smart objects. In addition, the effects
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produced by these outputs in the seminar room can be defined as a decreased
temperature, greater brightness (in candelas), and by the noise level (in decibels) of
the room.

3) With the functionality and interface information of smart objects, the activity selec-
tor identifies activities such as (1) “setting up the meeting environment,” in charge
of turning on and executing the lights, the projector, and the air conditioner, outputs
of which suitably match the smart objects; (2) “selecting and playing a movie,” for
which the audio stream matches the output of a smart TV; (3) “opening curtains” to
make the room brighter, for which the luminosity output is consistent with the “set
brightness” operation; (4) “presenting a PowerPoint file,” for which the presentation
output matches that of the “play file” operation of the projector, and (5) “printing
a presentation file,” which is consistent with the output of the printer operations.
These are only examples of the types of feasible activities that can be selected based
on the smart objects installed in our test-bed.

However, the activity selector filters out activities such as selecting and playing
a movie, and opening the curtains to make the room brighter from the feasible set.
The former is filtered out for the following reasons: (1) the temporal pattern of using
the seminar room states that during the afternoon hours on weekdays during the
spring or fall semester, the place potential is set to academic tasks (during summer
vacations, during the nighttime, or during weekends, the place potential may be
set to leisure tasks, allowing professors and students to use the room for such
purposes); (2) the publicness-level effect (“private”) of this activity is not consistent
with the publicness level (“quasi-public”) of the seminar room. The latter is filtered
out because the environmental constraints of our test-bed state that the luminosity
of the room needs to be less than 120 candelas, which is violated if daylight is added
to the brightness of the internal lights.

Given the set of resultant activities, the activity selector identifies tasks such as
having a meeting or watching an online lecture as most appropriate for the situation
in this scenario. The task template of the former is composed of the following activi-
ties: setting up the meeting environment, setting up the communication, presenting
the material, and closing the meeting environment. Nevertheless, these two tasks
are simply illustrative cases of the multiple tasks that our task manager is able to
match in the repository.

4) The smartphone in Figure 7 shows the user interface when Mary selects the “having
a meeting” task. The list at the top of the interface is the recommended task list
sent by the task manager. It contains the selected tasks described earlier. During
the execution process, the current activity is located in the center and is high-
lighted (see the “presenting material” activity shown on the smartphone in Fig-
ure 7). The user interface shows each activity as a visual icon. Activities already
executed fade out and slide up for the subsequent activities (such as “closing the
meeting environment,” as shown on the smartphone), which gradually appear at the
bottom.

5) The task manager retrieves the task template described in BPEL of the “having a
meeting” task, after which it binds the smart objects shown in Figure 7 (except for
the printer).

6) The smartphone invokes smart objects using the SOAP messages generated by the
BPEL engine. In this case, the air conditioner and lights are turned on as the initial
activities, and the setting up of the meeting environment commences. When the
environmental setup is finished, the client waits for user input pertaining to the
selection of presentation materials. As Mary chooses the file for the presentation,
the file is transferred to the computer and displayed on the screen by the projector.
While presenting the slides, Mary can remotely control the presentation on her
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smartphone. When the meeting is over, Mary notifies her smartphone so that the
client can command the projector and computer to be powered off.

This scenario is computationally complex in that the five candidate activities need to
be matched against a large number of user activities (according to the American Time-
Use Study dataset) based on the six smart objects that are available in the room. In
addition, filtering the candidate activities by considering various factors in the social,
spatial, and temporal aspects of the environment is not a trivial task, as explained in
the third step of the scenario.

4. EVALUATIONS OF THE QOS-AWARE SERVICE COMPOSITION
AND DISTRIBUTED COORDINATION

We evaluate the practicality of our approach in terms of its efficiency in bridging the gap
between user needs and available resources. As stated in the introduction section, this
refers to the capability of SoIoT to guarantee the QoS of service composites and to utilize
smart objects on the IoT efficiently. For a quantitative evaluation, we conducted two
different experiments. The first was intended to test the assurance of QoS as provided
by our adaptive QoS-aware service selection approach. The second experiment aimed
to test the efficiency of service allocations by means of our distributed coordination
approach. Both experiments were conducted separately in order to isolate any cross-
effect between them.

4.1. Evaluation Settings

We conducted a number of simulations to test our approach of dynamically binding
abstract services to a set of generated Web services. The Web service dataset was
generated based on the quality attributes in the Quality of Web Service (QWS) dataset,
as measured by commercial benchmark tools [Al-Masri and Mahmoud 2008]. The QWS
dataset includes QoS values of 5,000 Web services, with a number of abstract services
that have more than 50 different service instances. The global QoS constraints (task-
level QoS) were considered as given by the users. We tested our approach while varying
the number of available Web services for the composition, the hardness of the global
constraints, and the time performance. Mixed-integer programming (lp_solve, Java
version 5.5.2) is used for the evaluation [Nemhauser and Wolsey 1999]. The metrics for
the evaluation were (i) the ratio of successful compositions, (ii) the computation time
performance, and (iii) the overall QoS of the composite and its closeness to the optimal
solution.

The second part of the evaluation was done to confirm the efficiency and effectiveness
of the distributed service coordination approach. These are measured as the optimality
of the coordinated set of services in terms of the overall utility score and as the suc-
cessfulness of avoiding service assignments that conflict with clients’ mobile devices.
Experiments were done by incrementally increasing the number of collaborating mo-
bile devices and smart objects. Access permissions to smart objects were granted to
clients at a 30% probability. In addition, services were generated in seven different
categories in a probability distribution that was obtained from the Intel dataset, which
contains information on 263,612 user sessions for 136 smartphone users [Paulos and
Goodman 2004]. We performed the experiments 1000 times by generating different
datasets of a user task (service composite), smart objects, and client devices.

The experiments are conducted using Eclipse Java EE Indigo SR2 and JDK 1.7.0_03.
The experimental platform runs Windows 7 with an Intel Core i7-2600 CPU operating
at 3.40GHz with 8.00GB of RAM.
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Fig. 8. Evaluation results of the adaptive QoS constraint decomposition approach.

4.2. Effectiveness of the Adaptive QoS Constraint Decomposition Approach

Success Ratio: Figure 8(a) shows the number of successful compositions as the hard-
ness of the constraints changes. We compare our approach of considering constraints
by dividing the quality range into subranges while adapting to the hardness of the
constraints against the traditional approach of considering the constraints as a whole.
The number of sampled services is fixed at 10 and the global constraints are initially
determined by the maximum quality values for each abstract service. In the simula-
tion, we observe whether the composite services meet the global constraints as the
hardness of the constraints decreases. In addition, we run the simulation 1000 times
for each hardness level of constraints. The result shows that our technique of consid-
ering constraints adaptively achieves a greater number of successful compositions as
compared to sampling services from equally divided QoS subranges. In addition, we
found that the number of successful compositions drops as the hardness of the con-
straints increases because it becomes more difficult to find a set of services that meet
the global constraints.

Optimality: Figure 8(b) represents the optimality of the service compositions be-
tween the adaptive service selection and the nonadaptive service selection approaches.
The optimality is determined by the ratio of utility values generated by using each of
the approaches to those generated with the optimal method, which uses integer pro-
gramming without sampling. For example, regarding the execution time of a given task,
if the elapsed time of a service composition that is found by using integer programming
is 100ms, and the elapsed time of the service composition that is made by SoIoT is
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90ms, then we can say that the optimality of the service composition is 100%. However,
if SoIoT can only find candidate services by which the task can be performed in 120ms,
the optimality of the service composition is 83.3%. The experimental result shows that
both approaches maintain optimality levels that exceed 90% regardless of the hardness
of the QoS constraints because both approaches select services that have the highest
utility in each subrange. However, the results of our approach are closer to the optimal
values. In addition, when there are hard constraints, the standard error of the adaptive
approach is much smaller than in the other case.

Performance: Figure 8(c) shows the changes in computation time when finding
appropriate services as the number of candidate services increases. We compare our
approach, adaptive service selection, against a method that uses integer programming
without sampling. In the experiments, the number of candidate services ranges from
100 to 2000 while the number of abstract services in the task is fixed. The result shows
that, when the integer programming algorithm is applied, the service composition
time increases exponentially. Our approach, however, requires less computation time
because the adaptive service selection process uses integer programming only with
smaller samples and not for all candidate services. Therefore, even if the number
of candidate services grows, it does not affect the computation time of our approach
directly because its time complexity is related to the number of samples and the number
of abstract services. This makes our framework scalable to a large number of services
in urban-computing environments.

4.3. Evaluation of the Distributed Coordination of IoT-based Services

We aimed to test our service coordination approach by simulating a service composition
distribution among simulated devices. The metrics considered here were the overall
utility and the number of conflicts in the service distribution process. The utility score
represents the efficiency of performing a user task across multiple mobile devices; it
is calculated based on the communication efficiency between smart objects that are
connected to the mobile devices and the time performance when executing the services.
In addition, a conflict occurs when the number of concurrent services assigned to the
same client exceeds one.

Test cases are created by increasing the number of client mobile devices involved in
the distributed service coordination from one to ten. For each test case, 1000 experi-
ments were performed. We used a random-coloring algorithm, which assigns services
to mobile devices in a randomized manner, as the baseline approach for comparison
purposes in this evaluation.

Overall Utility: The efficiency of the execution of a task is measured as the total
utility score, as calculated based on the performance of the client mobile devices when
running the services of a user task. As shown in Figure 9(a), the proposed approach
outperforms the random-coloring algorithm by a significant margin when there are
two or more clients. With one client, the total utility scores are nearly identical, as the
same client is assigned to all services. In Figure 9(a), which describes the total utility
scores of the random-coloring and distributed-coordination approaches relative to the
local-optimization approach, we find that the distributed-coordination approach shows
a result nearly as good as that of the local-optimization approach.

Conflict Avoidance: As shown in Figure 9(b), the distributed-service-coordination
approach produced the lowest number of conflicts among the three approaches. When
the number of collaborating clients exceeds five, local optimization and the random
algorithm produce more than ten conflicts. The distributed-service-coordination ap-
proach, on the other hand, results in nearly zero conflicts when the number of collab-
orating clients exceeds seven. This result implies that, as the number of clients that
participate in a task execution increases, the performance will not be degraded unless
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Fig. 9. Evaluation results of the distributed-service coordination approach.

the allocation algorithm considers the flow structure of the task. As the number of col-
laborating clients is increased, all three approaches generate fewer conflicts (although
there are some fluctuations when using the random approach). As shown in the fig-
ure, the distributed-service-coordination approach is much more effective when used
to reduce the number of conflicts with fewer client mobile devices. In this simulation,
when the number of client mobile devices reaches nine, the distributed service coordi-
nation approach starts to generate no conflicts, whereas other approaches continue to
generate a significant number of conflicts.

5. RELATED WORKS

5.1. Task-Oriented Frameworks

Many researchers have attempted to identify user activities in an accurate and efficient
manner by taking into account the contextual information of ubiquitous computing en-
vironments. Gaia [Roman et al. 2002] is a user-centric, location-aware and event-driven
framework for building ubiquitous computing applications. Gaia provides a mechanism
for building new applications and for making use of a predefined application model.
This model consists of an ontology of generic applications that is used to generate
customized applications in an active space. It allows applications to change their struc-
ture dynamically by means of interspace user migration. One of the limitations of this
framework involves the static binding of user information within predefined and avail-
able applications in a ubiquitous computing environment. In addition, Gaia uses an
approach in which services are defined based on a system perspective rather than on a
user perspective.

Aura [Sousa and Garlan 2002] adopts a task-oriented computing approach for
user-centric service provision in ubiquitous computing environments. In Aura, user-
centricity is realized by describing user goals in coarse-grained tasks. As stated by
Wang and Garlan [2000], “users can interact with the system in terms of high-level
tasks instead of individual services or applications.” Tasks are dynamically mapped to
virtual services, which are, in turn, associated with actual devices or applications while
maximizing the degree of user utility. Although Aura is a typical task-oriented frame-
work, it assumes certain knowledge pertaining to the relationships between virtual
services and concrete service providers. This limitation implies static binding between
different levels of abstraction and granularity.

The IST Amigo framework [Mokhtar et al. 2005] is an example of a task-oriented
service provision in the ambient systems domain. Ambient systems are of interest, as
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they pertain to the present study with regard to how they share a number of identi-
cal features with ubiquitous computing environments. Both attempt to support user
applications transparently with user goals in an environment and to meet the require-
ment of user-centricity. A drawback of the IST Amigo framework is that workflows
are directly mapped to available services without any mediation process and without
abstract layers. This leads to a lack of flexibility and prevents the reusability of com-
pound services. That is, applications cannot be developed during runtime operations
by reusing the predefined compositions of abstract services that are appropriate for
specific workflows. Additionally, applications cannot easily be reconfigured by varying
the composition of abstract services such that they better represent user goals.

5.2. IoT-Based Service Provision

There are also studies that attempt to connect services and real-world objects. To
connect services and smart objects, for example, SECE [Boyaci et al. 2010] uses gate-
ways to connect devices to services, while SOCRADES [Guinard et al. 2010] uses WS-∗
standards (BPEL, WSDL, and SOAP) to integrate services and smart objects.

Sense Everything, Control Everything (SECE) is an event-driven system that uses
an English-like language. It allows a user to create new services that connect/combine
communication and social devices in the real world. SECE retrieves all information
from various sources to personalize the new services. In the communication between
smart objects and SECE, SECE uses gateways and servers to control and connect
sensors and actuators. However, this approach has several drawbacks. Using a non-
standard system can cause scalability or interoperability problems between services
and the system. Our system uses Web Services standards (BPEL, WSDL, and SOAP),
which are scalable and provide an easy way to connect a new smart object. Using WS-∗
standards offers several advantages in terms of flexibility and interoperability.

The Service-Oriented Cross-layer Infrastructure for Distributed Smart Embedded
devices (SOCRADES) is a service integration system that uses Web Service standards
to combine services and smart objects. In addition to the use of Web Service standards
(the Device Profile Web Service), it uses a Web-oriented pattern (RESTful API) to
connect a service to a smart object. The key contribution of this work is the Real-
World Service Discovery and Provisioning Process (RSDPP). RSDPP helps developers
discover services for which the output can be utilized in a composite service, which is
built. When a new device joins a network, it multicasts a message to other devices in
the network. Our approach, which identifies services based on available smart objects,
is an extension of this approach for mobile and urban-computing environments. In our
approach, mobile clients can discover services and orchestrate service compositions.
The SOCRADES approach works by composing individual services rather than by
providing high-level abstractions of user tasks.

6. CONCLUSIONS

In order to provide user-centric services utilizing IoT resources in urban-computing
environments, we introduced a task-oriented service framework called SoIoT. We hold
that smart objects, which are the building blocks of the IoT, can create synergy between
computationally augmented objects and services in general, such as Web services. In
this article, we presented how the proposed framework can utilize smart objects based
on a semantic representation model of tasks and a smart object description model. In
addition, a runtime infrastructure provides a spontaneous composition of services that
utilize smart objects in an environment according to a task template.

The major contribution of this work is in its design of a task-oriented service frame-
work in which smart objects on the IoT can be utilized from the perspective of users.
Through experiments with our test-bed, we learned about essential issues and how to
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overcome the technical difficulties associated with incorporating smart objects on the
IoT for the provisioning of user-centric services. The first lesson is that the mere incor-
poration of the mediating process between user tasks and smart objects is not capable
of demonstrating practicality to support users. It is necessary to consider the semantics
of user activities, urban-computing environments, and user types. This required us to
undertake exhaustive work to populate various ontologies based on our description
model. As a result, we realized the effectiveness of our framework to bridge the gap
between users’ needs, tasks, and smart objects. In fact, the selection of meaningful
tasks for a user in accordance with the situation in which the user is involved confirms
the appropriateness of combining a bottom-up approach with a top-down approach. In
addition, the social, spatial, and temporal contexts are shown to be effective to filter
out those activities that do not contribute to supporting users’ needs.

In future research, we will investigate methods that can be used to reduce the human
effort required to populate the ontologies based on the proposed model (described in
Section 2.3) by adopting state-of-the-art technologies for the automatic generation of
ontologies. Specifically, we will focus on overcoming the technical challenges pertain-
ing to ontology creation, such as the bottleneck problem of manual knowledge crafting,
and the issues of noise, authority, and validity in Web data for ontology learning [Wong
et al. 2012]. In addition, we will extend the QoS-based service composition approach to
maintain reasonable optimality and successfully provide composite services. Because
there can be numerous smart objects that provide the same or similar functionalities,
it is necessary to resolve the problem of how the service provision framework finds
the most appropriate functionality within the given QoS constraints. Last, we will in-
clude the cognitive resource-aware approach described in our earlier research [Jimenez
Molina and Ko 2011b] to reconfigure the service coordination step in an efficient and
user-friendly manner.
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