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Abstract

RESUMEN DE TESIS
PARA OPTAR AL GRADO DE DOCTOR EN
CIENCIAS DE LA INGENIERÍA
MENCIÓN FLUIDODINÁMICA
POR: SERGIO PALMA M.
PROF. GUÍA: CHRISTIAN IHLE B.

Sedimentation of polydisperse particles at low Reynolds numbers in inclined

geometries Numerical and laboratory experiments

Hydraulic transport of particles at high concentrations in the industry is a widely used technique to deliver
different sorts of granular materials by carrying them mixed with fluid, water in most cases. In the first chapter
of this thesis, we will discuss the most important aspects of the dynamics of suspensions. In particular, we will
explain the physics of dilute suspensions, semi dilute suspensions and concentrated suspensions. Additionally,
a review of sedimentation of particles will be presented. Sedimentation is a process by which solid particles are
separated from a fluid, usually under the action of gravitational forces. Sedimentation is one of the oldest known
techniques used in industry to clean fluids or, alternatively, to recover particles. In the second chapter, we will
show the results of a numerical-experimental work of sedimentation of quasi-monodisperse particles. A series
of sedimentation experiments and numerical simulations have been conducted to understand the factors that
control the final angle of a static sediment layer formed by quasi-monodisperse particles settling in an inclined
container. The set of experiments includes several combinations of fluid viscosity, container angle and solids
concentration. A comparison between the experiments and a set of two-dimensional numerical simulations shows
that the physical mechanism responsible for the energy dissipation in the system are the collisions between the
particles. The present results provide new insights into the mechanism that sets the morphology of the sediment
layer formed by the settling of quasi-monodisperse particles onto the bottom of an inclined container. Tracking
the interface between the suspension solids and the clear fluid zone reveals that the final angle adopted by the
sediment layer shows strong dependencies on the initial particle concentration and the container inclination,
but not the fluid viscosity within the small particle Reynolds number range tested. It is concluded that (1) the
hindrance function plays an important role on the sediment bed angle, (2) the relation between the friction effect
and the slope may be explained as quasi linear function of the projected velocity along the container bottom,
and (3) prior to the end of settling there is a significant interparticle interaction through the fluid affecting to
the final bed organization. We can express the sediment bed slope as a function of two dimensionless numbers,
a version of the inertial number and the particle concentration. The present experiments confirm some previous
results on the role of the interstitial fluid on low Stokes number flows of particulate matter. Finally, we will
show the results of a numerical work. Here, we have used a continuum mixture model to solve numerically
the momentum and continuity equations associated with the sedimentation dynamics of highly concentrated
fluid-solid mixtures in tilted duct at low Reynolds numbers. The set of numerical simulations included several
combinations of fluid viscosity, duct angle and solid concentration of particles. This research aims to show
the phenomenology and dynamics associated with the sedimentation of monodisperse particles under different
physical conditions and the characterization of the final stage of the sediment layer in two kinds of inclined
geometries, with and without a horizontal section. Using scaling arguments, a mathematical expression formed
by three dimensionless groups including the inertial number, particle concentration and the ratio between the
sedimentation Grashof number to the Reynolds number is proposed to explain the height of the sediment layer
in the slope change zone of a duct. Additionally, we have found that the initial particle concentration is a very
relevant variable for knowing under what conditions the duct could get obstructed. In combination with some
system angles, they might represent a risk of duct plug. Imposing a condition of obstruction, we have found
dimensionless parameters that result in the blockage of the duct in the slope change zone. . The main results
of the thesis were submitted in two scientific articles, the first one published in the Journal Physics of Fluids,
and the second has been submitted to the International Journal of Multiphase Flow.
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Resumen

RESUMEN DE TESIS
PARA OPTAR AL GRADO DE DOCTOR EN
CIENCIAS DE LA INGENIERÍA
MENCIÓN FLUIDODINÁMICA
POR: SERGIO PALMA M.
PROF. GUÍA: CHRISTIAN IHLE B.

Sedimentación de partículas polidispersas a bajos números de Reynolds en

geometrías inclinadas Experimentos numéricos y de laboratorio

El transporte hidráulico de partículas a altas concentraciones es una tecnología ampliamente utilizada en la
industria para transportar diferentes tipos de materiales granulares mediante la mezcla con fluidos, agua en
la mayoría de los casos. En el primer capítulo de esta tesis, vamos a discutir los aspectos más importantes
de la dinámica de las suspensiones. En particular, vamos a explicar la física de las suspensiones diluidas,
suspensiones semi-diluidas y suspensiones concentradas. Adicionalmente, una revisión de la sedimentación de
partículas será mostrada. La sedimentación es un proceso por el cual las partículas sólidas se separan de
un líquido, generalmente bajo la acción de fuerzas gravitacionales. La sedimentación es una de las técnicas
más antiguas conocidas utilizadas en la industria para limpiar fluidos o, alternativamente, para recuperar
partículas. En el segundo capítulo, vamos a mostrar los resultados de un trabajo numérico experimental de
sedimentación de partículas ligeramente polidispersas. Una serie de simulaciones numéricas y experimentos
de sedimentación se han realizado para comprender los factores que controlan el ángulo final de una capa de
sedimento estática formada por partículas cuasi-monodispersas que sedimentan en un contenedor inclinado. El
conjunto de experimentos incluye varias combinaciones de la viscosidad del fluido, ángulo del contenedor y
concentración de sólidos. Una comparación entre los experimentos y un conjunto de simulaciones numéricas
en dos dimensiones muestra que el mecanismo físico responsable de la disipación de energía en el sistema son
las colisiones entre las partículas. Los resultados proporcionan nuevos conocimientos sobre el mecanismo que
establece la morfología de la capa de sedimento formada por la sedimentación de las partículas en el fondo de
un contenedor inclinado. El seguimiento de la interfaz entre los sólidos de la suspensión y la zona clara de fluido
revela que el ángulo final adoptada por la capa de sedimento muestra fuertes dependencias de la concentración
inicial de partículas y la inclinación del recipiente, pero no la viscosidad del fluido dentro de un rago de números
de Reynolds de partículas pequeños. Se concluye que (1) la función de escondimiento juega un papel importante
en el ángulo de la capa de sedimentos, (2) la relación entre el efecto de fricción y la pendiente puede ser explicado
como una función casi lineal de la velocidad proyectada a lo largo del fondo del contenedor, y ( 3) antes de la
finalización de la sedimentación hay una interacción entre partículas significativa a través del fluido que afecta
a la organización de la capa final. Podemos expresar la pendiente del lecho de sedimentos como una funci|ón
de dos números adimensionales, una versión del número inercial y la concentración de partículas. Los presentes
experimentos confirman algunos resultados anteriores sobre el papel del fluido intersticial en los flujos a bajos
número de Stokes de partículas. Por último, vamos a mostrar los resultados de un trabajo numérico. Aquí, hemos
utilizado un modelo de mezcla continuo para resolver numéricamente las ecuaciones de momento y continuidad
asociadas con la dinámica de sedimentación de mezclas de líquido y sólido altamente concentradas en un conducto
inclinado a bajos números de Reynolds. El conjunto de simulaciones numéricas incluye varias combinaciones de
la viscosidad del fluido, ángulo de conducto y concentración de partículas. Esta investigación tiene como objetivo
mostrar la fenomenología y dinámica asociada a la sedimentación de partículas monodispersas bajo diferentes
condiciones físicas y la caracterización de la etapa final de la capa de sedimento en dos tipos de geometrías
inclinadas, con y sin una sección horizontal. Usando argumentos de escala, una expresión matemática formada
por tres grupos adimensionales, incluyendo el número inercial, la concentración de partículas y la relación entre
el número de sedimentación Grashof para el número de Reynolds se propone para explicar la altura de la capa de
sedimento en la zona de cambio de pendiente de un conducto. Además, encontramos que la concentración inicial
es una variable muy importante para saber bajo qué condiciones el conducto podría obstruirse.Los principales
resultados de esta tesis se presentaron como dos artículos científicos, el primero publicado en el Journal Physics
of Fluids, y el segundo trabajo bajo revisión en el International Journal of Multiphase Flow.
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Thinking is easy, acting is difficult, and to put one’s thoughts into action is the most difficult thing in the world.

Johann Wolfgang von Goethe

Learn from yesterday, live for today, hope for tomorrow. The important thing is not to stop questioning.

Albert Einstein
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Main objective

The main objective of this PhD thesis is to study the sedimentation of mono and bi-disperse
particles under different physical conditions and the characterization of the final stage of a sediment
layer in open and closed inclined geometries.

Specific objectives

• To design, build and operate an experimental set-up to study the process of sedimentation of
particles in open and closed inclined geometries.

• To implement the optical light transmission technique for tracking the interface between the
particle suspension and the clear fluid zone.

• To implement and solve a continuum mixture model in COMSOL Multiphysics with the CFD
package to investigate particle sedimentation processes.

• To employ the dimensional analysis theory to characterize the slope of a sediment layer in tilted
containers and, the height of the sediment layer of inclined ducts.
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Chapter 1

An introduction to suspension dynamics

1.1 Introduction

The suspensions of solid particles in a viscous fluid are very common in all areas of daily life,
from biological systems, such as blood, household cleaning products, paints and industrial processes
such as the transport of concentrates ores and the concentrates of organic waste, as well as chemical
pharmaceutical processes, among many others, Figure 1.1.1, (Davis & Acrivos, 1985; Guazzelli & Hinch,
2011). Suspensions are a class of fluids, called complex fluids, which can be differentiated according to
the physical and chemical nature of the solid particles in suspension. In most investigations related to
suspensions, it is considered that the particles do not agglomerate, they are chemically stable and solid
particles in the fluid, which can be either Newtonian or non-Newtonian. In general, the solid particles
are considered spherical because of the simplicity to model the phenomenon from a mathematical point
of view. The research for the dynamics of suspensions is relatively recent, being of particular interest
the dense or highly concentrated suspensions, for applications within the chemical industry, mining
and oil.

When we speak of suspensions and the focus is on length scales of the order of a particle,
the mechanics of these physical systems is controlled by the Navier-Stokes equations. Although
it is possible to search theoretical solutions of these equations for each of the particles, however,
due to the complicated nature of the phenomenon, there are numerous interactions between many
particles simultaneously and between the particles and the fluid; and thus the mathematics becomes
extraordinarily complicated, even at small particle volume fractions. For much larger scales, sizes of 100
particles radii, it is more appropriate to consider the suspension as a fluid, i.e., as a continuous medium
(Duran, 2012; Guazzelli & Morris, 2012). The mechanics for the suspension of low concentrations
(diluted) was studied in detail by Einstein (1906) and intermediate concentrations (semi-dilute) in the
work of Batchelor (1977, 1970) and Batchelor & Green (1972b,a). However, due to the complexity
of the problem there are no known constitutive relations between the stress and strain rate for
highly concentrated suspensions, or hyper concentrated, and therefore the rheology is equally little
understood, which accordingly means it is an area with considerable projection research (Shapley et al. ,
2004).

Experiments of suspensions in complex fluids in the last two decades have revealed very interesting
findings. These include: shear-thinning, thixotropy, shear-thickening, rheopexy and yield stresses
(Barnes et al. , 1989; Barnes, 2000; Tanner, 2000), which are detailed below. Shear-thinning is a term
used to describe rheology suspensions for the non-Newtonian fluids that suffer a decrease in viscosity
when the fluid is subjected to shear stress. Many authors believe that it is a synonym of pseudo
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plastic behaviour. Furthermore, thixotropy is a special case of shear-thinning, which features the time
dependence. On the other hand, shear-thickening is a term used to explain the fluids which increase
their viscosity with an increasing strain rate. Additionally, rheopexy is a property of non-Newtonian
fluids, showing an increase in viscosity as time passes. Finally, yield stress is the stress level at which
a material ceases to behave elastically. Many experiments in recent decades have focused on studying
the viscosity of fluids with a high concentration of particles, however, the complexity of their physics
has prevented the unification of a single theoretical model for description. It is not only experiments
that have played an important role in the study of suspensions but the development of ever-faster
computers and better numerical techniques that have contributed greatly to the understanding of the
rheology and physical suspension (Prosperetti & Tryggvason, 2009; Yeoh & Tu, 2009).

From the perspective of numerical simulations, it is possible to find in literature diverse mathemati-
cal models to represent the behaviour of particles, fluids, and mixing between particles and fluids
(suspensions); which have advantages and disadvantages. In the case of dry granular media, the
most used techniques at present are molecular dynamics, event-driven molecular dynamics, direct
simulation Monte Carlo and Rigid-body dynamics. A detailed review of each of these models can
be found in the books written by Poschel & Schwager (2005) and Thornton (2015). These models
are known to be computationally very expensive, because for each time step, the model requires
calculating the interaction forces between particles. On the other hand, the most commonly used
technique for simulating suspensions at low Reynolds numbers and a wide range of Peclet numbers, is
the Stokesian dynamics (Brady & Bossis, 1988; Sierou & Brady, 2002). In the Stokesian dynamics the
equations modeling Stokes flow are simultaneously solved at discrete time steps for all the particles
(Sierou & Brady, 2002).

1.2 Sedimentation in vertical containers

Sedimentation is the process by which solid particles immersed in a fluid are deposited on the
bottom of a container by the action of gravity. The sedimentation process is frequently used in the
chemical and pharmaceutical industry, in the mining and oil industries as well as the wastewater
and treatment plants. This physical mechanism has been widely used for separating solids from fluids
(Burger et al. , 2011). Due to the importance of sedimentation in several areas of engineering, extensive
research has been conducted as much experimental and theoretical-numerical in recent decades. One
of the early works was that of Stokes, who studied the motion of a rigid spherical particle immersed
in a Newtonian fluid by gravity, albeit descending by a very low Reynolds number. Stokes proposed
the following equation (see Lamb (1932) and references therein),

ust =
2a2(ρs − ρf )g

9η
, (1.2.1)

where ust is the sedimentation velocity of the particle, a is the particle radius, ρs is the particle density
and ρf is the fluid density, η is the viscosity of the fluid and g is the acceleration of gravity. Since the
work of Stokes, investigations have focused on studying the generalization of Stokes’ law considering
particles for different sizes, different shapes (spherical and non-spherical), drops and bubbles, in

2



Figure 1.1.1: Different types of granular media. The first and second rows show different types of granular materials
in nature and engineering and, the last row shows the application of some suspensions (mixture of granular material
and fluid) in engineering, copper concentrates and mine waste transport (Nedderman, 2005; Burger et al. , 2011; Duran,
2012).

Newtonian fluids and non-Newtonian. In the 70s, Batchelor (1974) investigated the transportation
properties of two-phase materials, as well as sedimentation of particles at low concentrations in viscous
fluids. Leal (1980) found that the Brownian mechanics is only relevant for sufficiently small particles
in the sedimentation process due to gravity, but there will be occasions when these statistical effects
are very important. Subsequently, the stability and coagulation of suspensions under shear flows was
study by Schowalter (1984). In particular, he studied the Van der Waals forces and forces of electrical
attraction.

Most of the investigations carried out consider a suspension consisting of rigid spherical particles
of the same shape and size, immersed in a Newtonian fluid and very small particle Reynolds numbers,
corresponding to the range of Stokes, Re ≪ 1. Furthermore, it is assumed that the particle suspension
is stable, i.e., that Brownian motion of particles and attractive forces such as Van der Waals are very
small, so that the particles do not clump with each other. A suspension of particles immersed in a
fluid housed in a container, which is initially homogeneously mixed, is generally divided into three
regions when the settling process begins. A clear fluid layer will form on the top of the container and
its thickness increases with time, as the particles begin to accumulate in the bottom of the container.
Therein, under this layer is the suspension area and the sediment layer.

3



This area is characterized by the containment by all zero speed particles that were initially
suspended. If the particle suspension is diluted, i.e., it has a very low concentration of particles,
the particles sediment at the speed defined by Stokes using equation (1.2.1). We can be generalize the
sedimentation velocity for many particles. This can be done by multiplying the speed by a function
of Stokes concealment that depends on particle concentration f(φ) (Davis & Acrivos, 1985). This
function models the interaction of particles in a fluid medium. Thus, the velocity of sedimentation for
the suspension, is commonly written as u = ustf(φ). The function f(φ) depends only on the particle
concentration and is a decreasing monotonously function that has a maximum at f(0) and a minimum in
f(1). However, it only makes physical sense for the maximum value of particle packing, f(φmax = 0.62).
In general, this correction to Stokes’ law works very well when the suspensions are non-colloidal. For
colloidal suspensions, the function will depend on the concentration and interactions between particles,
f(φ, F ). Here, F is a function that describes interactions between particles (Davis & Acrivos, 1985).
As mentioned above, the third region corresponds to a layer of sediment that is formed on the bottom
of the container. This region is assumed that the concentration of particles is both a constant (only
present in non-cohesive media) and maximum value of particle packing, which is about 0.60. The
latter area is also called the thickening layer. Dixon (1979), who worked with mathematical thickening
models, found that the rate of sedimentation and the compaction of particles in the background
depended on the concentration of particles in the sediment layer, the gradient concentration of the
forces between particles and the depth of the sediment layer. There are discontinuities of the particle
concentration along the three regions; these occur in the interfaces between certain areas: the layer of
sediment-suspension between the suspension and the fluid layer-clear. The first theory that described
discontinuities between areas was obtained by Kynch (1952). It is imperative to find a function f(φ)
allowing us to correctly model the interaction between many particles in a sedimentation process in
order to obtain a correct physical understanding of the phenomenon. During last century, several
models of f(φ) have been proposed. We summarize below the most widely used models. Steinour
(1944) proposed an empirical equation,

f(φ) = (1 − φ)exp(−4.19φ). (1.2.2)

Some years after, Hawksley (1951) published a model slightly different,

f(φ) = (1 − φ)exp
( −2.5φ

1 − 0.609φ

)

. (1.2.3)

Three years later, Richardson & Zaki (1954a) published a model widely used in physics and engineering.
Here, this equation is valid for low Reynolds numbers.

f(φ) = (1 − φ)4.65. (1.2.4)

On the other hand, Oliver (1961) proposed another empirical model. However, this model has some
limitations for high concentration values, as can be seen in Figure 1.2.1,
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f(φ) =
1

(1 − φ)

[

(1 − 2.15φ)(1 − 0.75φ1/3)
]

. (1.2.5)

In the 70s, Barnea & Mizrahi (1973) proposed the following exponential model,

f(φ) =
(1 − φ)

(1 + φ1/3)exp
(

5φ
3(1−φ)

) . (1.2.6)

Figure 1.2.1 shows these models. Here, we can see that the behaviour is very different at low particle
concentrations. The models presented above are empirical. Ideally, it would be appropriate to have
models that come from the first principles of physics. Here, we present some of the work done by
this approach. One approach is the cell model, which involves solving the equations of the fluid and
the suspension within an imaginary cell (Prosperetti & Tryggvason, 2009). The relationship between
cell volume and the particle volume is set equal to the concentration of particles in suspension. Once
calculated f(φ) ∼ 1 − αφ1/3, the value of the constant α depends on the appropriate choice of the cell
and the conditions around it. This model gives acceptable results although not very reliable. Therefore,
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Figure 1.2.1: Different hindered functions proposed by Steinour (1944); Hawksley (1951); Richardson & Zaki (1954a);
Oliver (1961); Barnea & Mizrahi (1973).

we need to calculate f(φ) through a more accurate mathematical analysis in the sedimentation problem
for various particles. Unfortunately, due to the complexity of the physical problem as well as from a
mathematical point of view, the analysis has been carried out for systems with low concentrations of
particles and therefore its applicability in engineering sciences is limited.

When the particle concentration is very high, the analysis is complicated, because in most cases,
the integrals obtained from the calculations diverge. To solve this kind of mathematical problem,
various techniques have been used. Batchelor (1972) first introduced normalization techniques for
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analysis of sedimentation in a statistically homogeneous and diluted suspension. Subsequently other
authors have worked on mathematical techniques for the study of sedimentation (Jeffrey, 1974; O’Brien,
1979; Batchelor, 1974). Additionally, Hinch (1977) who proposed a set of differential equations
describing the behaviour for the two-phase macroscopic homogeneous materials and showed that
parameters such as the sedimentation rate could be calculated iteratively. In the 80s, Feuillebois (1984)
investigated the sedimentation for monodisperse spheres in a dilute suspension, which is homogeneous
in the horizontal axis but having a different concentration profile in the vertical axis. In dilute systems,
the origin of the function f(φ) depends on the configuration of the particles. Saffman (1973) discussed
this topic and he considered three possibilities: (a) regular periodicity matrix particle, (b) fixed
periodicity matrices (c) random matrix periodicity. In a regular array, strength and speed are the
same for each particle (Sangani & Acrivos, 1982), f(φ) ∼ 1 − βφ1/3 + O(φ), where β is a constant
depending on the chosen configuration, β = 1.76. Regarding (b), Hinch (1977) proposed an expression
described by

f(φ) ∼ 1 − 3√
2

φ1/2 − 135
64

φ ln φ − 12φ + ... (1.2.7)

The vast majority of the work, both experimental and theoretical, sedimentation has focused
on monodisperse suspensions. The problem is that most practical cases are related to engineering
processes of polydisperse particle sedimentation, whereas, due to the distribution of sizes and shapes,
the particles move at different speeds. In general, the discussion is restricted for suspensions with
rigid spherical particles and small Reynolds numbers. One feature that differs from monodisperse
suspensions is the relative movement between particles of different sizes. If this movement between
two particles is close enough, then a permanent doublet attraction due to Van der Waals force acting
between them will form, for some values of Peclet number.

Davis (1984) and Melik & Fogler (1984) studied the stability of a polydisperse suspension and
conditions for the coagulation of particles in an unstable suspension. Investigations of stable flows,
i.e. suspensions that did not show particle coagulation indicate that the particle concentration is not
constant. Instead, when the sedimentation develops the particles fall faster and moving away from
each other and in turn creating different regions within the suspension. The lower region before the
sediment layer, contains all particle species, whilst the region that is above is devoid of the faster
moving particles. Each region contains fewer particles than the region below whereas the region above
has the slower moving particles, Figure 1.2.2.

In many cases the regions are separated by a discontinuity within the distribution of particle
concentration. In general, it has been assumed that the spatial distribution of the particles in the
horizontal plane is uniform, being completely true in dilute suspensions, i.e. suspensions with low
concentrations, however, not in the case of bi-dispersed suspensions. The first researcher to show this
was Whitmore (1955), who described this phenomenon after performing experiments in suspensions
with two types of particles: heavy and neutrally buoyant particles. Their results showed that after
leaving the well-mixed suspension, therein started a lateral segregation of the particles which caused
the appearance of vertical fingers. The appearance of vertical fingers is an interesting phenomenon
from the point of view of fluid physics, but not from the practical point of view, of which it poses no
improvement in the sedimentation rate, etc. Figure 1.2.3 shows a typical scheme of the formation of
vertical fingers during a sedimentation process.
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Figure 1.2.2: Regional sedimentation processes for the different types of particles.

Figure 1.2.3: Diagram of vertical fingers over a sedimentation process for various types of particles. The experimental
picture can be seen in the publication of Weiland et al. (1984) and Davis & Acrivos (1985).

Herein, we will focus on the process of polydisperse sedimentation maintaining constant particle
distribution in the horizontal axis. When we have a diluted dispersion of particles, each particle
falls with the Stokes velocity, equation (1.2.1). The Stokes’ model provides an adequate quantitative
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description for particle sedimentation at low concentrations. However, when the concentration of total
particles of the particles exceeds the value of 0.01, the behaviour is totally different from that predicted
by the above law, due to the physical interaction of particles for different sizes. Generally speaking,
when a polydisperse suspension is insufficiently diluted, the concentration of particles in the different
regions will be different. Smith (1966) and then Stamatakis & Tien (1988) derived a sedimentation
model for a discrete distribution of N particles. They proposed the following model for calculating the
variation of the suspension interface,

dhi+1

dt
= −

∑k
i=1 ust i,jφi,j

εi − εs
k = 1, 2, 3, ..., N. (1.2.8)

Here, h is the distance of the interface between the particle suspension and the sediment layer, j is
type particle and i is the zone. The type particle j has a radius aj, density ρj , particle concentration φj

and Stokes settling velocity ust,j , where the average sedimentation rate depends on the concentration
of local particles with all particles present. This can be expressed mathematically as

vj = ustfi(~φ). (1.2.9)

Where ~φ is the vector associated with the particulate concentration. In general, the function
f(~φ) will be different for each type of particle and depending on the physical effects between them,
Brownian forces, etc. As noted, average speeds are related to the concentration of particles for all types
of particles in suspension, equation (1.2.8) involves a system of algebraic equations nonlinear coupled
with φ

(k+1)
i unknowns. Once known the value of φ

(k+1)
i , and equation (1.2.9) can describe the complete

phenomenology of the sedimentation process. As shown above, algebraic equations are transformed
into differential equations; they can easily be solved by finite differences. To solve the systems of
equations described above (algebraic and differential), it is vital to know the function f(φ) for many
types of particle suspensions, i.e., polydisperse. In the mid-60s, Smith (1965) published a theoretical
work, which showed a model for the sedimentation of particles for various sizes; extending the work of
Happel (1958) that was presented some years before. The Smith’s theoretical model allows prediction
of the trends in particle velocities that are descending as a function of particle concentration, however,
often this model underestimates the velocities.

Two decades later, Lockett & Al-Habbooby (1973, 1974) conducted sedimentation experiments
for the binary mixture particles. In these studies, researchers suggested that the function f given by
Richardson & Zaki (1954b) could be used in each of the particles in the suspension, simply by using
the total particle local concentration φ = Σφi. In a later work, Mirza & Richardson (1979) found that
velocities theoretically predicted by the models of Lockett & Al-Habbooby (1973, 1974) were greater
than those found in experiments. To solve this inconsistency and to obtain a better representation of
the experimental results, an empirical correlation factor (1−φ)0.4 to the predicted rates was applied. In
the described mathematical models, the results of the sedimentation monodisperse processes were used
to describe the effects of interactions between particles in the processes of sedimentation for various
particles. Moreover, in the processes where low concentration of particles is dominant for interacting
pairs, the process of interference that is due to the presence of particles can be determined analytically
(Batchelor, 1982). Subsequently, Batchelor (1982) published a paper that extended this results for a
distribution of N particles. The expression can be written as
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vi = ui



1 +
N
∑

j=1

Zijφj



 , i = 1, 2, 3, ..., N, (1.2.10)

where Zij is a dimensionless parameter which depends on the reduced density λ = (ρj − ρ)/(ρi − ρ)
and the size ratio λ = aj/ai and the Peclet number. The calculation of the sedimentation term Zij for
a pair of particles of different sizes is much more complicated than for identical particles.

1.3 Sedimentation in inclined containers

In general, the sedimentation process is slow when the particles are small. Therefore, there is a
necessity in engineering to improve the efficiency and speed of these processes. One of the most used
systems in recent decades, consists of a container where the inclined settling times may be decreased by
an order of magnitude. Sedimentation processes in inclined ducts have been among the subject of study
in recent decades. The first person to see an improvement in settling time was a doctor called Boycott
almost a century ago. Boycott (1920) observed that blood cells settle much faster at the bottom of the
test tubes, when they were inclined with respect to the vertical, unlike in tubes that were completely
vertical. Following this discovery, published in the journal Nature (Boycott, 1920), many scientists
have worked on this phenomenon, for monodisperse, including polydisperse and, slightly polydisperse
suspensions.

An interesting summary of all the investigations carried out in the first decades of the last century
is the Hill et al. (1977). The improvement in the rate of the sedimentation process is that the particles
must travel a much shorter distance until they reach a wall, consequently, as soon as the particles reach
the bottom wall they begin to slide, as shown in Figure 1.3.1. Once the particles reach the bottom wall,
a layer of sediment rapidly moves downward reaching the bottom of the container, this is formed due to
the action of gravity. As a result of being a closed system, the downflow of particles occurs immediately
in an upward flow towards the particle free zone, accelerating the process of sedimentation.

Figure 1.3.1: Different regions of a tilted sedimentation process in a container.
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The so-called Boycott effect has been analysed in recent decades analytically by various author.
Hill et al. (1977) were the first to analyse the phenomenon theoretically using equations of continuous
media, particularly fluid mechanics to understand and get through to numerical flow profiles as well
as sedimentation rates simulations. Some years later, Probstein & Hicks (1978), Rubinstein (1980)
and Leung (1983); Leung & Probstein (1983) made analyses from first principles of the process of
inclined sedimentation in two dimensions where the assumed fluid was viscous. They classified the
flow into three zones, a layer of clear fluid, a layer in suspension and finally a layer of sediment.
Herbolzheimer & Acrivos (1981) developed a theory to determine the velocity profiles in the aforementio-
ned three layers. After the work of Boycott (1920), Ponder (1926), Nakamura & Kuroda (1937)
developed a kinematic model (now known as model PNK) to describe the production rate of clear
fluid in the container by

S(t) = ustf(φ)b
(

cos θ +
L

b
sin θ

)

, (1.3.1)

where S is the rate in production volume of clear fluid, ust is the speed of Stokes, f(φ) is the
function of concealment, b is the width of the container, L is the length of the container and θ is
the angle to the vertical. We know that the speed improvement in the settling process described
by equation (1.3.1) is valid when the flow is in a laminar regime. Under certain conditions to be
described later, waves appear on the interface of the sediment layer and the layer of clear fluid.
Several studies have been developed in this area in recent years from a theoretical and experimental
view (Probstein & Hicks, 1978; Leung, 1983; Davis et al. , 1983). In particular, the theory of linear
stability has been used to understand under what physical conditions occur instabilities (waves) within
the process of sedimentation (Herbolzheimer, 1983; Leung, 1983; Davis et al. , 1983), as seen in Figure
1.3.2.

Figure 1.3.2: Instabilities (waves) in a settling particle process in a tilted container.

Acrivos & Herbolzheimer (1979) developed a theory to quantitatively describe the sedimentation
of small particles in inclined ducts. In this work, they assumed that the flow was laminar and the
Reynolds number was small, also the concentration of particles and the geometry were variable. They
found that the rate of sedimentation S depends on two dimensionless groups, besides the geometry of
the container: a Reynolds sedimentation number of the system Re, typically in the range (1 − 10) and
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Λ, the ratio between a sedimentation number Grashof and Reynolds number of the system, which is
typically very large. The definition of these dimensionless numbers are presented below,

Re ≡ Lρf u0

µf
=

2
9

La2ρf (ρs − ρf )g
µ2

f

, (1.3.2)

Λ ≡ L2g(ρs − ρf )φ0

u0µf
=

9
2

(

L

a

)2

φ0, (1.3.3)

where L is a characteristic length of the macroscopic system, φ0 is the initial concentration of particles,
u0 is Stokes velocity, ρs is the density of suspended particles, a is the particle radius, ρf is the fluid
density and µf is the fluid viscosity. Using asymptotic analysis they concluded that when Λ −→ ∞
for a duct, S can be predicted very well by the Ponder-Nakamura-Kuroda theory, which was obtained
using only kinematic arguments. The theory proposed by Acrivos & Herbolzheimer (1979) gives an
expression for the layer thickness for the clear fluid that is formed below the upper face of the container,
also the velocity profiles in the clear fluid layer as well as in the suspension region. The sedimentation
rate and the layer thickness for the clear fluid were measured in an inclined container under the
following experimental conditions: φ0 ≤ 0.1, Re ∼ O(1), Λ values ranging from (105 − 107) and θ
values between (0◦ − 50◦), where θ is the tilt angle. This research suggests that deviations from theory
PNK reported in other studies are likely due to flow instabilities causing re-suspension of particles
generating a reduction in the efficiency of the sedimentation process.

It has been said that in certain cases the interface between the fluid layer and the clear suspension
layer become wavy. It is very clear that the appearance of this type of wave limits the efficiency of the
sedimentation inclined containers, particularly when the waves break on the bottom of the container.
Davis et al. (1983) performed a linear stability analysis to investigate in detail the conditions of
formation and growth of waves during a long monodisperse sedimentation particle process, narrow
ducts are inclined with respect to the vertical. They found that the highest rates of amplification
waves were predicted by solving differential equations governing the instabilities both asymptotically
for disturbances of long wavelength perturbations as well as moderate wave lengths. The theory showed
good agreement with the experimental results. In particular, they found that for long and narrow ducts
were efficient settlers. In later works, Herbolzheimer (1983) found using asymptotic solutions for long
waves, that the critical Reynolds number is proportional to the tangent of the angle of the conduit,
multiplied by the ratio between the thickness of the clear fluid layer and b/H For long waves in the
sedimentation process, the flow is stable only if

Rc <
140
57

Λ−1/3δ

b/H

tan θ

ρ
, (1.3.4)

where b is the width of the duct, H is the height of the suspension, δ is the clear fluid layer, ρ the
density of the suspension and θ is the angle of inclination relative to the vertical. Figure 1.3.3 shows
the theoretical and experimental curves of the stability analysis of the dimensionless variables proposed
by Herbolzheimer (1983) as a function of the angle. A clear correspondence between experiments and
theory can be seen.
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Figure 1.3.3: Comparison between experiment and theory of the dimensionless functions associated with the stability of
the suspension, depending on the angle of the system (Herbolzheimer, 1983).

1.4 Dense granular flows

The dynamics of granular materials has been extensively studied over the past 40 years due to the
great importance in engineering and basic sciences (Nedderman, 2005; Duran, 2012; Andreotti et al. ,
2013). Granular materials are unique to behave as gases and solids. In gaseous state, kinetic theory
has been widely used to simulate this kind of behaviour (Brilliantov & Poschel, 2010). On the other
hand, the quasi static regime is often described using the plasticity theory. During the last 15 years,
many experimental studies were conducted to characterize dense granular flows. Here, we present the
most relevant results (Jop et al. , 2006; Pouliquen et al. , 2006; Forterre & Pouliquen, 2008).

Let us assume a granular material composed of spherical particles of diameter d and density ρ,
under a confining pressure P . Da Cruz et al. (2005) suggested that the shear stress τ is proportional
to the confining pressure P through

τ = Pµ(I), (1.4.1)

where the friction coefficient µ depends on the inertial number I, defined by

I =
γ̇d
√

P
ρs

. (1.4.2)
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As discussed by MiDi (2004) and Forterre & Pouliquen (2008), the number I can be interpreted
as two times that control the granular movement: (a) a microscopic time scale d/

√

P/ρd, which
represents the time it takes for a single particle to fall in a hole of size d under the pressure P and
which gives the typical time of rearrangements, and (b) a macroscopic time scale 1/γ̇ related to the
mean deformation. The shape of µ(I) was obtained from numerical simulations and experiments for
simple geometries. Figure 1.4.1(a) and (b) show the evolution of the ratio of shear stress to normal
stress τ/P as function of I, for a plane shear and inclined geometry, respectively. Additionally, Figure
1.4.1(c) shows the friction coefficient µ as a function of I. The numerical and experimental results for
these two geometries show that µ(I) is

µ(I) = µs +
µ2 − µs

I0/I + 1
, (1.4.3)

where I0 is a physical constant. The adjustable parameters from experiments are: µs = tan 21◦,
µ2 = tan 33◦ and, I0 = 0.3. This empirical model goes from a minimum value µs for very low I up to a
value µ2 when I increases. Jop et al. (2006) found that the average volume fraction φ can be express
as

φ = φmax − (φmax − φmin)I, (1.4.4)

where φmax = 0.6 and φmin = 0.5. These two equations can be applied to predict and describe different
flow configurations.
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Figure 1.4.1: Rheology of dense granular flows. (a) Ratio of shear stress to normal stress τ/P as a function of I for a
plane shear geometry. (b) Ratio of shear stress to normal stress τ/P as a function of I for an inclined geometry and (c)
Friction coefficient µ as a function of I . (Jop et al. , 2006; Pouliquen et al. , 2006; Forterre & Pouliquen, 2008)

Following the success of the dense granular media rheology applied to some simple configurations,
it has encouraged some researchers to extend the model to a tensorial formulation. Jop et al. (2006)
assumed that the volume fraction is constant in the limit of dense granular systems. In their work,
Jop et al. (2006) proposed that the constitutive law of the granular fluid takes the following form

σij = −Pδij + τij, (1.4.5)
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where P is the isotropic pressure and

τij = ηγ̇ij , with η =
µ(I)P

|γ̇| . (1.4.6)

Here, |γ̇| is second invariant of the shear rate tensor, |γ̇| =
√

(1/2)γ̇ij γ̇ij. This tensorial formulation
is obtained by assuming that the stress and strain rate tensors are parallel. However, Cortet et al.
(2009) showed that this assumption is not true in all cases. Although this rheological model has been
experimentally validated for simple configurations, it is still an open problem that requires further
investigation.

In the following chapters, two original research papers developed during the PhD work are
presented. The focus of this thesis is the sedimentation of slightly polydisperse particles and the
characterization of the sediment layer in open and closed geometries, using an experimental and
numerical approach. The first is entitled "Particle organization after viscous sedimentation in tilted
containers", published in Physics of Fluids, 2016; and the second one is entitled "Characterization of
a sediment layer of concentrated fluid-solid mixtures in tilted ducts at low Reynolds numbers" under
revision in the International Journal of Multiphase Flow, 2016.

14



Chapter 2

Particle organization after viscous sedimentation

in tilted containers

This chapter has been submitted as research paper, authored by Sergio Palma, Christian Ihle,
Aldo Tamburrino and Stuart Dalziel, in Physics of Fluids (2016) (published).

Abstract

A series of sedimentation experiments and numerical simulations have been conducted to understand
the factors that control the final angle of a static sediment layer formed by quasi-monodisperse
particles settling in an inclined container. The set of experiments includes several combinations of
fluid viscosity, container angle and solids concentration. A comparison between the experiments and
a set of two-dimensional numerical simulations shows that the physical mechanism responsible for
the energy dissipation in the system is the collisions between the particles. The results provide new
insights into the mechanism that sets the morphology of the sediment layer formed by the settling of
quasi-monodisperse particles onto the bottom of an inclined container. Tracking the interface between
the suspension solids and the clear fluid zone reveals that the final angle adopted by the sediment
layer shows strong dependencies on the initial particle concentration and the container inclination,
but not the fluid viscosity. It is concluded that (1) the hindrance function plays an important role on
the sediment bed angle, (2) the relation between the friction effect and the slope may be explained as
quasi linear function of the projected velocity along the container bottom, and (3) prior to the end
of settling there is a significant interparticle interaction through the fluid affecting to the final bed
organization. We can express the sediment bed slope as a function of two dimensionless numbers, a
version of the inertial number and the particle concentration. The present experiments confirm some
previous results on the role of the interstitial fluid on low Stokes number flows of particulate matter.
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2.1 Introduction

Sedimentation is a process by which solid particles are separated from a fluid under the action of
the gravitational force (Davis & Acrivos, 1985). Such a process is one of the oldest known techniques
used in petroleum, pharmaceutical, mining and chemical industry to clean fluids or, alternatively, to
recover solid particles (Guazzelli & Hinch, 2011). The sedimentation of particles at high concentrations
has been studied from a kinematic perspective in the context of vertical gravitational settlers (Kynch,
1952; Burger et al. , 2011).

Differently from the case of settling in upright containers, where fluid-particle and interparticle
interactions can be expressed as a function of the local concentration only (Davis & Acrivos, 1985),
settling on inclined planes also depends on local shear (Herbolzheimer & Acrivos, 1981; Phillips et al. ,
1992). The impact of shear on particle dynamics in confined or inclined geometries can be further
amplified by shear-induced diffusion occurring at sufficiently high particle sizes and concentrations
(Phillips et al. , 1992; Leighton & Acrivos, 1987). The settling process at high concentrations has been
studied in the context of sheared Couette cells as effectively Newtonian fluids (Leighton & Acrivos,
1987; Phillips et al. , 1992), and also to explain the flow and particle organization process in flows
over inclined planes with a constant particle supply (Nir & Acrivos, 1990; Kapoor & Acrivos, 1995).
In particular, the flow of a sediment layer that forms on an inclined surface as a consequence of
the steady sedimentation of monodisperse spherical particles was investigated experimentally and
theoretically by Kapoor & Acrivos (1995). They modified the model proposed by Nir & Acrivos (1990)
to include shear-induced diffusion due to gradients in the shear stress as well as a slip velocity along
the wall due to the finite size of the particles. When sedimentation occurs in an upright container with
vertical walls and a horizontal bottom, particles tend to be distributed in horizontal layers according
to their size and relative volume fractions (e.g. Davis & Acrivos (1985)). In contrast with upright
containers, iso-concentration lines are not necessarily aligned with an inclined lower boundary for the
container and have been found to follow a power law of the bottom coordinate (Nir & Acrivos, 1990;
Kapoor & Acrivos, 1995).

A related boundary-induced flow is driven by the Boycott effect, which results in the enhancement
of the sedimentation process due to the presence of an inclined upper boundary in the system that
creates a clear fluid layer on top that accelerates the settling compared to the upright situation, where
particles must settle over the entire depth into the bottom in a container with vertical walls. Around 30
years ago there were several investigations (e.g. Acrivos & Herbolzheimer (1979); Herbolzheimer & Acrivos
(1981); Leung & Probstein (1983); Shaqfeh & Acrivos (1986)) that examined theoretically the flow
fields within the various zones of inclined geometries. Such researchers derived analytic expressions
for the velocity profiles within the clear fluid layer underneath the downward facing wall and within
the suspension for a wide range of parameters. The formation and flow of the sediment layer on the
upward facing surface was neglected in most of these studies. Leung & Probstein (1983) studied the
sediment layer as an effective Newtonian fluid, but since no theory was available for determining the
volume fraction of particles within the flowing concentrated sediment, such a model assumed a stepwise
particle concentration distribution. Particle settling in viscous fluids upon inclined planes has been
extensively investigated for small Stokes and particle Reynolds numbers (Herbolzheimer & Acrivos,
1981; Kapoor & Acrivos, 1995; Peacock et al. , 2005). Motivated by the study of submarine granular
flows, Cassar et al. (2005) have focused on the dense flow regime occurring when the whole sediment
layer is flowing down the slope and when no deposition occurs (Cassar et al. , 2005). They studied
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the variation of the mean velocity and the pore pressure below the avalanche as a function of the two
control parameters, the surface inclination and the layer thickness. Such results were analysed using
a theoretical model obtained from dry granular flows substituting the inertial time scale by a viscous
time scale. Their model was expressed in terms of a so-called inertial number (Forterre & Pouliquen,
2008), a dimensionless ratio of time scales that we shall employ in our interpretation of results.

Courrech du Pont et al. (2003) have suggested that granular avalanches can flow according to
three different regimes depending on the time scale associated to the particle motion in the fluid. In
particular, prior to the collision of a single particle with a neighbour, the particle may have not reached
its terminal velocity, thus defining the free-fall regime. If the terminal velocity has been reached, it
can be within a viscous or an inertial regime, depending on the balance of forces. The parameters
controlling these dynamics are the Stokes number, the particle to fluid density ratio, and the particle
Reynolds number. In particular, for small values of the Stokes number, they confirm the previous
observation that the presence of a viscous fluid has the ability to exhaust the available kinetic energy
after collisions, rendering them inelastic (Gondret et al. , 2002; Joseph et al. , 2001). This is a key
element to understanding the particle and fluid dynamics of dense mixtures flowing in liquids confined
in rotating cylinders and on inclined planes. On one hand, the settling in an initially homogeneous
suspension in an inclined container may be effectively the same as that in an upright container away
from the bottom, where particle hindrance is a dominant effect during the settling. This behaviour
has been observed in thickeners and clarifiers, whose bottom is often conical (Concha, 2014). On the
other hand, those particles moving near the inclined boundary may experience close interactions via
the interstitial fluid or direct contacts, which may cause particle velocity gradients. The result of these
three stages with different dynamics form a particle bed that is not parallel to the bottom.

In the present paper, we study the final shape of the particle bed within a large inclined container
by means of numerical simulations and experiments. The particle motion is in the viscosity-dominated
regime, and thus the particle Reynolds number, and the Stokes number, are small. We seek a relation
between the angle of inclination of the container and the angle of the surface of the particle bed. The
aforementioned flow characteristics —both away from and close to the sediment layer— are captured
using scaling arguments to explain the prevailing mechanisms that control the final bed organization.
In Section 2.2, we detail the experimental procedure used to track the interface between the suspension
and the clear region and measure the final angle of inclination of the sediment layer. Also, we present the
mathematical model and the numerical procedure used for the numerical simulations. In Section 2.3,
we discuss the results of our experiments and numerical simulations, and conclude in Section 2.4.

2.2 Materials and Methods

2.2.1 Experiments

The experimental set-up is shown schematically in Figure 2.2.1(a) and consists of an inclined
transparent acrylic settling container of 25 × 21 × 3 cm3 (width × height × thickness) filled with an
initially homogeneous suspension of negatively buoyant spheres in a viscous liquid. We considered
different combinations of initial particle concentration (φ0), container inclination angle measured from
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the horizontal plane (θs), and liquid viscosity (ηf ).

Figure 2.2.1: (a) Schematic of the experimental setup. (A): acrylic container, (B): resin beads, shown in grey, (C): video
camera, (D): adjustable lab jack, (E): inclined support, (F): LED back lighting. (b) General configuration of the problem.
In all the experiments, the camera is aligned with the bottom of the tank. The angle of the sediment layer measured
respect to the base of the container is θp.

A solution of glycerine (C3H8O3) and water was used in all experiments. The glycerine concentrations
ranged from 45% to 55% by volume, resulting in dynamic viscosities between 6.30 ± 0.08 mPa·s and
11.48 ± 0.15 mPa·s, and densities between 1.13 ± 0.02 g/cm3 and 1.16 ± 0.02 g/cm3, (Cheng, 2008).
For all the experiments we kept the fluid at 20◦C, and thus controlled both the density and viscosity
with the glycerine concentration.

The particles used were spherical, partially translucent resin beads (Puroliter PCR833 Gel SAC
- Special Grading, Na+ Form) with radius a = 125 ± 13 µm and density ρs = 1.31 ± 0.07 g/cm3.
We measured a loose packing volume fraction of 0.61 ± 0.02, close to that expected for monodisperse
spheres. We estimated this value by measuring the volume of water displaced when a known volume
of packed particles was immersed in water. We measured the angle of repose of the dry particles with
respect to the horizontal plane, θd = 19.9◦ ± 0.3◦. This has been measured as the cone angle obtained
after releasing the particles from a height of 15 cm on a rough surface made of the same particles,
stuck to the bottom, horizontal plane. This experiment has been repeated 20 times to obtain statistical
convergence. The parameter θd has been used as a reference to define the reservoir inclination angles
from 0 to 1.51θd, the former case corresponding to a horizontal sediment layer.

We illuminated the flow trough an acrylic diffuser using a 24 W cool white LED panel consisting
of 200 emitters giving a diffusive backlighting without significant heating. In the present measurements
we used an 8-bit, 12 frames/sec UniqVision UP900DS-CL RGB camera with a spatial resolution of
640 × 480 pixels2, to record a region of 25 × 14 cm2. This region excludes a 7 cm length band at the
top of the tank. Although the camera’s resolution precluded the use of pattern matching algorithms
to obtain the downslope component of the particle velocity field, it allowed the measurement of the
location of the solids interface with considerable accuracy, as was later verified with the output of
the numerical simulations. The length of influence of the walls have been found to be of about 5 cm,
whereas the edges of the interrogation windows are at a minimum distance of 10 cm from the walls.
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Table 2.1: Set of experimental conditions.

Values
System angle θs (◦), ± 0.5◦ [0, 10, 20, 30]
Fluid viscosity ηf (mPa·s), ± 1.3% [6.30, 7.25, 8.40, 9.78, 11.48]
Initial volume fraction φ0 (%), ±0.1% [5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0]

In addition, we have attached black tape to the bottom of the tank, where the transparent acrylic
walls are joined, in order to minimize the light penetration from the walls into the particles. The
image post-processing was undertaken with DigiFlow ver 3.4 (Dalziel, 2012). We conducted a total of
140 experiments, exploring all different combinations of 4 inclination angles, 5 fluid viscosities and 7
particle volume fractions, as listed in Table 2.1.

The procedure for each experiment is summarized as follows. The empty container was positioned
on top of the inclined surface after this had been carefully set an angle of θs, with the same angle
set for the camera. The suspension, previously stored in a beaker, is then poured into the inclined
container. Immediately after, it was gently agitated for 2 min to keep the particles in suspension
while allowing bubbles to rise to the surface. To minimize air entrainment, this step was undertaken
avoiding sloshing or splashing of the mixture. We have tested the initial homogeneity of the suspension
comparing different concentration profiles along the x axis for the case θs = 0. We started the video
recording during the mixing process to ensure the whole settling experiment was captured. The particle
settling process in the system with an inclined container took between 60 s and 240 s, depending on
the glycerin/particle concentration combination.

The settling process finally evolved into the formation of a sediment layer, whose upper surface
was found to be approximately linear in most of the experiments (see Figure 2.2.8, Section 2.3).
Previous work (Kapoor & Acrivos, 1995) has suggested that the sediment layer can be modelled by,
h(x) ∼ xa, a ≤ 1, with the coordinate x aligned with the tank bottom. The present set of experiments
showed that a ≈ 1 gives a reasonable approximation of the finally settled condition in the central
region of the container. This allows a simple description of the settled bed using a uniform slope as
a relevant single parameter. Once the settling process was completed, the sediment layer formed an
angle θ = θs − θp with respect to the horizontal, where, θp is the angle measured from the base of
the container, as depicted in Figure 2.2.1(b). This angle was determined using linear regression on
measurements of the height of the interface between the fluid and the sediment layer. The angle θ was,
in general, less and equal to the angle of repose θd. The back lighting of the translucent particles in
these quasi-two-dimensional experiments allowed the transmitted light intensity to be related to the
particle concentration.

Figure 2.2.2 shows the experimental calibration curve obtained from the volume fraction of
particles as a function of the mean normalized transmitted light intensity over the container, in =
(1/NM)

∑

j

∑

k in(j, k), where in is the light intensity at the nodes i and j, with 1 ≤ i ≤ N
and 1 ≤ j ≤ M . Here, N and M correspond to the vertical and horizontal number of nodes in
the measurement window, respectively. The calibration experiment consisted of relating the mean
normalized intensity of light at t = 0 in a centred 60 × 60 mm2 window, with the mean concentration
of particles, measured by a mass balance. We repeated these steps for different concentrations of
particles and fluids. Each experiment was repeated three times. A relation between concentration and
the normalized mean intensity over the container, in, is given by the empirical fit
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φ = α1in
α2 + α3in + α4 (2.2.1)

We determined the coefficients α1 to α4 using a Levenberg-Marquardt algorithm (More, 1978), the
results of which are given in Table 2.2. In the same figure, the inset shows the mean normalized
transmitted light intensity as a function of the vertical axis in a calibration experiment using a vertical
container, for a viscosity of ηf1 = 6.30 ± 0.08 mPa·s and an initial volume fraction of φ0 = 5.0 ± 0.1 %.
The profile corresponds to the final state of the particle sedimentation. For each initial volume fraction,
vertical profiles of the light intensity (taken as the Euclidean norm of the RGB vector of the pixel values)
were determined at 25 evenly spaced locations along the horizontal axis of the acrylic container. These
profiles were then averaged and normalized to yield the transmitted light. The grey line represents
the mean normalized intensity profile in(z) and the black lines correspond to the fluctuations in the
concentration profiles. It shows that the scatter is small compared to the mean profile obtained.

The mean normalized transmitted light intensity over the container in has an error of 1% for
in > 0.20 and 0.3% for in ≤ 0.20. The corresponding uncertainties have been calculated as the
standard deviation of intensity curves corresponding to the 25 light intensity profiles. This calibration
allowed us to determine the concentration of quasi-monodisperse particles at any instant along the
vertical axis, φ = φ (z, t). The error in the volume fraction has been calculated in terms of the error in
the intensity measurement using the uncertainty theory. The model proposed for the volume fraction of
particles has an error less than 1% for in ≤ 0.05, 0.2% for 0.05 < in < 0.40 and 5% for 0.40 < in < 0.80.
Figure 2.2.3 shows the volume fraction of particles and the mean normalized transmitted light intensity
as a function of the vertical axis for different times. This profile, φ = φ (x = L/2, z), corresponds to
the vertical centerline of the tank for an upright container (θs = 0.0 ± 0.5◦), an initial volume fraction
φ0 = 5.0 ± 0.1% and a liquid phase dynamic viscosity of ηf1 = 6.30 ± 0.08 mPa·s. The concentration
profiles were calculated from the normalized light intensity using equation (2.2.1).

Given the relation between the light intensity and the local concentration, the upper surface of
the sediment layer is found by simply identifying the normalized intensity contour where in = 0.0435,
corresponding to φ ≈ 40%. The orientation θp of the deposit was then determined from the least
squares fit of a straight line to the central 10 cm of the tank.

2.2.2 Numerical simulations

We have complemented the experiments with a set of two-dimensional numerical simulations
using a mixture model. Although numerical models such as dynamic contact, molecular dynamics and
discrete elements are capable of capturing more aspects of the interactions between the particles, such
techniques are very expensive computationally for dry granular flows, and even more so if considering
the interaction with a fluid (Poschel & Schwager, 2005). Due to the favourable relation between

Table 2.2: Fit coefficients for light intensity function (2.2.1). The values ∆αj
represent the corresponding fit errors. The

obtained correlation coefficient for the fit parameters is R2 = 0.9998.

Values 1 2 3 4
αj 0.0080 −2.21 −33.50 33.50
∆αj 0.0001 0.01 0.01 0.01
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Figure 2.2.2: Experimental calibration curve, showing the volume fraction of particles as a function of the mean normalized
transmitted light intensity over the container at t = 0, in = (1/NM)
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light intensity as a function of the vertical axis in a calibration experiment using a vertical container, for a viscosity of
ηf1 = 6.30 ± 0.08 mPa·s and an initial volume fraction of φ0 = 5.0 ± 0.1 %. The profile corresponds to the final state of
the particle sedimentation.
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Figure 2.2.3: Volume fraction of particles as a function of the vertical axis for various times. Inset: Mean normalized
transmitted light intensity as a function of the vertical coordinate normal to the bottom. Experimental conditions:
θs = 0.0±0.5◦, an initial volume fraction φ0 = 5.0±0.1% and a liquid phase dynamical viscosity of ηf1 = 6.30±0.08 mPa·s.
The curves correspond, from top to bottom elapsed times between 1 s and 10 s after the start of the experiment, with
1 s increments. The measurements between z = 0 and z = 10 mm have been discarded due to the reflection of light at
the junctions of the acrylic container.

computational accuracy and economy (Poschel & Schwager, 2005; Zienkiewicz et al. , 2013), we have
chosen this continuum approach. The objective of these simulations is two-fold. First, the numerical
simulations allowed tracking of the settling process through the concentration and flow velocity output
before the final settling condition. Second, the present mixture model does not have a built-in repose
angle (or internal friction) condition. Consequently, this model allows us to assess whether or not the
internal friction is an important mechanism for setting the final slope of the sediment layer.
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Figure 2.2.4: (a) Computational domain and Boundary conditions. (b) Detail of free triangular mesh used in all numerical
simulations (upper left corner).

The dynamics of the suspension can be modeled by two momentum equations, one for the particles
and the other for the fluid, plus a continuity equation for each of the two phases present (Enwald et al. ,
1996). Assuming that there is no mass transfer between the two phases, the continuity equations for
the continuous and dispersed phase are, respectively, ∂t (ρf φf ) + ∇ · (ρf φf uf ) = 0 and ∂t (ρsφs) + ∇ ·
(ρsφsus) = 0. The subscripts f and s refer to quantities associated with the continuous phase (fluid) and
the dispersed phase (solids). In this model, both the continuous and the dispersed phases are considered
incompressible and, in the case of the dispersed phase, inelastic. In the present case, particle Reynolds
numbers are within the Stokes regime, which justifies the incompressibility assumption for both phases.

An elasticity hypothesis of the dispersed phase would affect the particle motion after inter-particle
collisions and their potential to squeeze fluid out of the sediment layer differently than in the rigid case.
Here, as Stokes numbers are very small, all liquid-mediated collisions are indeed inelastic, as discussed
below. On the other hand, particle elasticity would alter the loose packing fraction well below the
sediment surface, due to the effect of lithostatic pressure. As our experiments and simulations include
only relatively shallow particle layers, overburden pressures are not enough to deform the disperse
phase at the bottom, thus allowing to plausibly assume that particles are effectively rigid. On the
other hand, the intent of the present work is to study particle organization of natural sediments, which
are rigid indeed. As the continuous and the dispersed phase are coupled by the total mass conservation
requirement, φf + φs = 1, the following continuity equation for the mixture is obtained:

∇ · (φsus + uf (1 − φs)) = 0. (2.2.2)

The momentum equations for the continuous and disperse phase, using a non-conservative form (Ergun,
1952), are, respectively,

ρf
∂uf

∂t
+ ρf (uf · ∇) uf = −∇p + ∇ · τ f +

∇φf · τ f

φf
+ ρf g +

Fm,f

φf
, (2.2.3)
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ρs
∂us

∂t
+ ρs (us · ∇) us = −∇p + ∇ ·

(

τ s

φs

)

+ ∇φs ·
(

τ s

φ2
s

)

− ∇ps

φs
+ ρsg +

Fm,s

φs
. (2.2.4)

Here, p is the pressure of the mixture, which is assumed equal for both phases, and ps is a pressure
term related to the contribution of the disperse phase to the total pressure, in this case attributed to
a purely collisional mechanism, a function ultimately related to the local gradient of the solid fraction
and an empirical function mimicking an effective modulus of elasticity, as used in fluidised systems (see,
for a review, Massoudi et al. , 1992).

The viscous stress tensor of each phase is indicated by τ in the momentum equations and g is
the acceleration due to gravity. The momentum transfer between the phases, Fm, is a volume force
exerted upon one of the phases on the other phase. In the momentum equations described above,
the continuous phase is considered Newtonian. Hence, the viscous stress tensor is defined as,τ f =
ηf [∇uf + (∇uf )T − 2 (∇ · uf ) I/3] and τ s = ηs[∇us + (∇us)T − 2 (∇ · us) I/3] (Enwald et al. ,
1996), where ηf and ηs are the dynamic viscosities of the respective phases and I is the identity tensor.
The dispersed phase requires a viscosity term to model the behaviour of the particles at low and
high concentrations. Here, ηs = ηf (1 − φs/φs,max)−5/2φs,max is calculated using the model proposed
by Krieger & Dougherty (1959). If φd → 0, then ηs = ηf , and if φs → φs,max, then ηs = ∞. The
interphase momentum transfer is governed by the drag force modelled as Fm,f = −Fm,s = β (us − uf ),
where β is the drag coefficient. In the present set of simulations, the method proposed by Gidaspow
(1994) for the particle pressure term, and that of Wen & Yu (1966) for the drag coefficient for fluids
with a high concentration of particles in volume, are considered and detailed in the Appendix 2.5.1.

The continuity equation of the mixture (2.2.2) and momentum transport equations of both
phases, (2.2.3) and (2.2.4), are discretized by the Galerkin finite element method (Zienkiewicz et al. ,
2013). We have used COMSOL Multiphysics with the CFD package to solve the system of differential
equations described above for the experimental conditions of the Table 2.1. The boundary conditions
associated with the computational domain are depicted in Figure 2.2.4(a). First, we consider no-slip
conditions and no penetration for both phases in all the domain borders, so that uf = us = 0 at
wj, with j ∈ {1, ..., 4} (Figure 2.2.4(a)). Regarding the dispersed phase, we imposed a zero-outflow
condition in the container, i.e., φsus · n = 0 at wj. Figure 2.2.4(b) shows the free triangular mesh
used in this work for the discretization of the differential equations. In order to choose the appropriate
mesh size for the calculations, a set of simulations for different mesh sizes has been performed under
three different numerical conditions, θs = 10◦, ηf = 6.30 mPa·s and φ0 = 0.05, 0.10 and 0.20.

Figure 2.2.5 shows an example of the sediment layer angle dependence with the number of mesh
elements for the case with θs = 10◦, φ0 = 0.20 and ηf = 6.30 mPa·s. We see that the angle of the
sediment layer reaches θp ≈ 8◦ with about 10, 000 mesh elements, increasing slightly to θp = 8.07◦

when 20, 000 mesh elements are used and reaching a constant value θp = 8.09◦ when over 25, 000 mesh
elements are used in the calculations. A compromise between convergence and computational time has
been used with 40, 000 triangular elements and a 0.10 s time step for the subsequent calculations. The
latter corresponds to 1/4 of the time it takes one sphere to displace its own size at the Stokes settling
velocity. Notably, the time step depends on the fluid viscosity, in our case requiring ∆t between 0.1 s
and 0.2 s. All runs were set to simulate 500 s of real time, thus exceeding the overall bed formation
times in the experiments, with output saved every 2 s.
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Figure 2.2.5: (a) Convergence of free triangular mesh. θp as a function of number of mesh elements. The solid line
represents the trend points. Numerical conditions, θs = 10◦, φ0 = 20%, 2ηf = 6.30 mPa·s. (b) Same graph on a
logarithmic scale.

Convergence was assessed when the sediment layer angle, defined as the locus of a solids volume
fraction equal 0.40, remained static. This concentration cut-off criterion is justified by the abrupt
transition predicted by the mixture model at about this value of the particle concentration as the
sedimentation progresses for sufficiently long times, as depicted in Figure 2.2.6. The inset in Figure 2.2.6
shows the component of the velocity of particles us parallel to the bottom of the container, for different
times. An example showing the computed concentration field and the boundary of the sediment layer
below is shown in Figure 2.2.7. The upper, dashed white line in the bottom-right panel represents the
sediment layer definition according to the threshold limit for φ = 0.40, defined herein. The grayscale
bar represents the concentration of particles.

The set of differential equations and the corresponding initial and boundary conditions used in
this work represent a continuum mixture model, and therefore it provides a continuous description of
the velocity and particle concentration field. In contrast, when the actual settling process is finished,
a discontinuity on the particle concentration field appears at a finite time. This sharp change in
the particle concentration may not be captured by the present continuum mixture model in detail.
The result of equations (2.2.3) and (3.2.4) for steady state and the zero-velocity condition represent
a hydrostatic particle concentration field, which contradicts the various final angles of the sediment
layer found herein. The adjustment of the continuum model from the sloping sediment layer to a
hydrostatic state occurs over a much longer time scale than the formation of the bed. The present
continuum mixture model is thus only useful during the transient process where the sediment layer is in
progress. However, the identification of an abrupt change in the numerical output in the concentration
as described above gives a robust and reasonable indication of such a settled condition. This is exposed
by comparison with the experimental results in the next section.
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Figure 2.2.6: Particle concentration profile for φ0 = 15.0 ± 0.1%, ηf1 = 6.30 ± 0.08 mPa·s and θs = 10.0 ± 0.5◦, measured
at (x = L/2, z) for various times. Inset: component of velocity us parallel to the bottom of the container. The vertical,
dashed line represents φ = 0.4.

Figure 2.2.7: Particle concentration field obtained from numerical simulations for 60 s, 120 s, 180 s and 240 s. The upper,
dashed white line in the bottom-right panel represents the sediment layer definition according to the threshold limit for
φ, equal 0.40, defined herein. The experimental conditions are the same as shown in Figure 2.2.6. The grayscale bar
represents the concentration of particles.
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Figure 2.2.8: Accumulated particle mass,
∫

φ(x, z)dz, as a function of the longitudinal coordinate for different times.
Inset: Particle accumulation for long times, with a slope close to m ≈ 1.02. The corresponding integral has been
calculated within the measurement window. Experimental conditions: φ0 = 15.0 ± 0.1%, ηf1 = 6.30 ± 0.08 mPa ·s and
θs = 10.0 ± 0.5◦.

2.3 Results and discussion

A comparison between the experimental and simulated bed formation processes, summarized
in Figure 2.3.1, shows an excellent agreement between the experiments and the numerical output.
The striking similarity between simulations and experiments suggests that the dominant mechanism
of sediment formation is not given by interparticle friction, but by fluid-mediated collisions. The
rationale for this conclusion is that while the numerical model determines the pressure in both the
continuous (fluid) and discrete (solid) phases, and so determines pressure forces for collision, and
determines viscous shear stresses, it does not provide the contact friction associated with settling the
angle of repose for dry material. This is consistent with the experimental observation of inelastic
collisions for Stokes numbers below about 10, the latter defined by Courrech du Pont et al. (2003)
as St = (1/9)[ρs(ρs − ρf )ga3 sin(θs − θp)]1/2/ηf , whereas in the present set of experiments the Stokes
and particle Reynolds number ranges are 0.00721 − 0.001474 and 0.00370 − 0.03380, respectively. A
consequence of such a particle interaction mode is that there is no available kinetic energy left for
bouncing (Gondret et al. , 2002; Joseph et al. , 2001).

Figure 2.3.2 shows the numerical particle velocity field superimposed on the experimental particle
concentration obtained using the light extinction method described above, for an initial volume fraction
of φ0 = 0.15, a viscosity of ηf = 6.30 mPa·s and two angle system (a) θs = 0◦ and (b) θs = 20◦. The
numerical simulation predicts velocities below 0.5 mm/s above the sediment layer, whereas within
the high concentration zone (extending about 15 mm above the bottom), the velocity is almost zero,
indicating the final settled configuration of particles is reached.

The particle settling process that forms the sediment layer and controls its final angle is the
consequence of three different processes that the particles experience in sequence, as anticipated in
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Figure 2.3.1: Comparison between experimental and numerical results. The solid line indicates the identity. Inset:
Relative difference (RD %) between experiments and numerical simulations as a function of the initial volume fraction
for different viscosities.

Section 3.1. Figure 2.2.8 shows that the settling process finally evolves into the formation of a sediment
layer, whose upper surface was found to be approximately linear in most of the experiments and
simulations. The first process is the quasi-vertical sedimentation of particles (Figure 2.3.3) that drives
the linear increase with time seen in the height of the deposit. As particles approach, the sediment
layer they contribute to the second process, the formation of a particle flow at a concentration near the
packing value. This down-slope flow redistributes the particles towards the lower parts of the container,
leading to the observed θ < θs. Additionally, this layer introduces the possibility of some degree of
reorganisation due to collisions and local mixture viscosity values (Leighton & Acrivos, 1987). The
final settled condition is obtained, with θ less than the angle of repose, after concentration increases
and finally the direct contacts among each other render the particles immobile. Despite the existence of
velocity fluctuations as predicted by Ham & Homsy (1988) (and references therein), for a many-particle
interaction process and seen in the velocity fields of Figure 2.3.2, a Kynch-like sedimentation process,
where local shearing is not predominant (except by the fluid-particle shearing) (Kynch, 1952), gives a
good description of the settling.

The lower panel shows the sedimentation of quasi-monodisperse particles in a tilted container
for different times. As the time passes, the particles begin to settle to the bottom of the container
and progressively increase their angle θp, measured from the bottom of the container. Unlike the
case when the container is upright, once the particles reach the bottom of the container, they start
to move down due to the angle of inclination and gravity, until finally the motion ceases because
of the increasing concentration of particles and the rapid dissipation of energy from the particle
interactions (Gondret et al. , 2002; Joseph et al. , 2001) and, the final layer of sediment is formed.
The dominance of the hindered settling mechanism is shown to fit the experimental concentration
profile correction to the settling velocity with the hindrance function proposed by Richardson & Zaki
(1954a), F = (1 − φ0)n (Figure 2.3.4). In addition to the excellent fit between experimental data
and this model, the fit parameter (n = 4.98) closely resembles the typical value n ≈ 5 referred in
the literature (e.g. Davis & Acrivos, 1985; Guazzelli & Hinch, 2011). As the resulting dynamics of
the sedimentation away from the container bottom (including the velocity fluctuations and particle
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Figure 2.3.2: Evolution of the interface of the suspension, from 10 s to 25 s after the start of the experiment considering
a frame of reference aligned with the bottom of the tank. θs corresponds to the angle of the bottom of the tank measured
from the horizontal plane. The experimental conditions are φ0 = 0.15, ηf = 6.3 ± 0.08 mPa·s for (a) θs = 0.0 ± 0.5◦

and (b) θs = 20.0 ± 0.5◦. The white arrows represent the computed particle velocity of the disperse phase, us from the
numerical simulation for the same experimental conditions.

self-diffusion) has been found to be independent of the container size (Guazzelli & Hinch, 2011), the
details of the flow near the boundaries of the container remain irrelevant for the purposes of the particle
dynamics in the interior.

The mean height of the sediment layer increases with the bottom plane slope. (Figure 2.3.5).
This result is consistent with the trend predicted by Kapoor & Acrivos (1995) using boundary layer
arguments. As in their work, the present observations show a quasi-linear thickness profile in the
range φ ∈ [0.05, 0.20]. Figure 2.3.6 shows the final angle of the settled layer measured with respect to
the horizontal, θ = θs − θp, as a function of the initial volume fraction of particles, φ0, for different
viscosities, ηf , and container angles of inclination θs.

While for the smaller values of θs the final angle of the sediment layer tends to change linearly
with the initial concentration, at the highest bottom angle, θ tends to decrease more abruptly with
concentration. This is explained by both the nonlinearity of the individual particle velocity projection
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Figure 2.3.3: Time evolution of the height of the interface of the suspension, at x = L/2, for various container angles,
φ0 = 5% and ηf = 6.30 ± 0.08 mPa·s. The black solid lines represent the numerical simulations. Inset: Measured final
height of the sediment layer as a function of the initial volume fraction of particles.

0 0.05 0.1 0.15 0.2 0.25
0.1

0.15

0.2

0.25

0.3

0.35

0.4

E x p e r i m e n t a l d at a

−−Ri ch ar d s on an d Zak i , 1954

G ar s i d e an d Al -D i b ou n i , 1977

Le i gh t on an d Ac r i v os , 1987

− Th i s wor k , n = 4 . 98

φ 0

v
(
z
)
(
m
m
/
s
)

Figure 2.3.4: Velocity of the interface of the suspension, ws = w0(1 − φ0)n, in terms of the particle concentration. The
best fit of the experimental data, using the Richardson-Zaki model corresponds to n = 4.98(Garside & Al-Dibouni, 1977;
Leighton & Acrivos, 1987).

on the bottom slope and the increasingly important effect of the particle concentration on the settling
bottom. Figure 2.3.6(a) shows that increasing the initial concentration towards the packing limit causes
the difference between the angle of the sediment layer and the container to decrease to zero, implying
that the sediment layer evolves to a position parallel to the bottom. An interpretation of this trend is
that for initial concentrations approaching the packing limit, the mean free path between particles is
on the order of one particle diameter. A time scale for the encounter of two of them, before an inelastic
contact occurs, is 4ρf a2/ηf . Assuming that the prevailing energy dissipation precludes the occurrence
of interparticle friction, then at volume fractions near the maximum packing fraction, particles tend
to end their motion near their starting point, and thus θ → 0 in this limit. However, for volume
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Figure 2.3.5: Mean height of the sediment layer, hmean, as a function of the initial volume fraction and container
inclination. The solid lines are for visual aid purposes.

fractions much smaller than the packing limit, it is possible to see, in light of the present numerical
simulations and experimental results, that the vertical settling stage accounts for a significant part
of the overall effect of the particle concentration in the formation of the final angle of the sediment
layer. Figure 2.3.6(b) shows that θ is independent of viscosity in the viscous flow experiments range
investigated. Courrech du Pont et al. (2003) have explained this as the result of the flow of particles
for small Stokes numbers.
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During the final stages of the particle motion, the individual particle momentum decays due to the
collisions with their neighbours and due to the interaction with the ambient fluid. This process may be
explained following a rheological constitutive model relating particle microscopic rearrangements with
the time scale resulting from the (macroscopic) shear rate, modelled by Forterre & Pouliquen (2008)

30



(and references therein) as

τ = Pµ(I). (2.3.1)

Here, τ is the shear stress, P is the pressure and µ is a friction coefficient, expressed in terms
of I = 2aγ̇/

√

P/ρs. The dimensionless variable I can be interpreted as the ratio between two time
scales: (a) a microscopic time scale 2a/

√

P/ρd, which represents the time it takes for a single particle
to fall in a hole of size 2a under the pressure P and which gives the typical time of rearrangements,
and (b) a macroscopic time scale 1/γ̇ related to the mean deformation. Here, γ̇ is the shear rate
and a is the particle radius. It has been recently shown that both (2.3.1) and the dimensionless
number I are useful not only for characterising dry granular flows, but also for granular flows when
the ambient fluid is viscous (Courrech du Pont et al. , 2003; Cassar et al. , 2005). An example is
given by Courrech du Pont et al. (2003), where they used a rotating drum geometry to predict the
final angle of both dry and liquid-immersed spheres: the corresponding equilibrium angles have been
effectively expressed in terms of I using the Stokes number as a means to distinguish whether the
particle motion is dominated by gravity, inertia or viscous dissipation. While in the first case the
particles keep accelerating, in the last they effectively reach their terminal velocities.

In the present experiments, the spheres fall and feed a dense layer until all the particles are within
the sediment layer. A downward motion occurs until the overall system energy is exhausted and a
static layer of angle θs − θp is formed. It is observed that a relevant velocity scale in the problem is the
sedimentation velocity, ws = w0F (φ0) (w0 is the settling velocity of an individual particle in an infinite
medium), with F a hindrance function as described above. In the present flow, the sheared region
near the bottom is a few spheres thick, and so the particle radius will be considered as a characteristic
length scale. Although during the particle vertical descent phase (before the influence of the inclined
bottom) there is no significant shear, the bottom of the container induces some vorticity in its vicinity
and a thin, particle-rich layer develops to carry the particles down slope as they sediment onto the
sediment layer. In this layer, the shear rate scales with γ̇ ∼ ws sin θs/a, the settling velocity projection
parallel the container bottom. This flowing layer provides a scale for the granular pressure from the
immersed weight and projected area of the particles giving P ∼ (4/3)g(ρs − ρf )a. The dimensionless
parameter I may be then expressed in this viscosity dominated system as I = Rep (I0r)1/2 sin θs,
where Rep = 2aρf ws/ηf is the usual definition for the particle Reynolds number, r = ρs/ρf and
I0 = (3/4)η2

f /ρf g(ρs − ρf )a3. In the present set of experiments the particle Reynolds numbers are
in the Stokes regime. The weak dependence of the final angle of the sediment layer on the ambient
fluid viscosity, along with the fundamental idea in the constitutive model of Cassar et al. (2005)
that the friction coefficient is a simple function of the dimensionless parameter I, suggests a relation
µ ∼ I = (Rep sin θs)

c1 (I0r)
c2
2 , where for c1 = c2 = 1 the expression becomes independent of the fluid

viscosity within Stokes flow.

Near the bottom, the inertia of the layer flowing down slope is likely to scale with buoyancy. If vb

is the velocity of this layer, then g(ρs − ρf ) ∼ ρf v2
b /ℓ, where the corresponding length scale is taken as

the interparticle distance near the bottom, ℓ = 2a(φm/φ)1/3 (Bagnold, 1954; Coussot & Ancey,
1999). Thus, 2ag(ρs−ρf )/ρf

v2
b

∼ (φ/φm)1/3. Again, adding a monomial function to µ yields µ ∼
(Rep sin θs)

c1 (I0r)
c2
2 (φ/φm)

c3
3 , where this time c3 = 1 reflects the proposed scaling. Figure 2.3.7 shows

the best fit for this model in terms of the slope of the final angle of the sediment layer, µ = tan θ,
and the dimensionless combination (Rep sin θs)c1 (I0r)

c2
2 (φ/φm)

c3
3 . The results indicate an excellent
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fit, with c1 = 1.09 ± 0.01, c2 = 1.03 ± 0.02 and c3 = 1.11 ± 0.02 with a prefactor close to 2.4. The fact
that the parameters c1, c2 and c3 are close to the unity confirms that the viscosity does not play a
significant role, provided it is high enough to ensure that the particle Reynolds number is well below
the unity.
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2.4 Conclusions

The work presented here provides new insight into the mechanism that sets the morphology of the
sediment layer formed by the settling of quasi-monodisperse particles onto the bottom of an inclined
container. A key finding is that the final angle adopted by the sediment layer shows strong dependencies
on the initial particle concentration and the container inclination, but not the fluid viscosity. The idea
of hindered settling is central to understanding these results as it allows the formation of a particle-rich
layer that advects particles down-slope just above the sediment layer as it forms. Indeed, our results
suggest that the result of this mechanism scales directly with the projection of the hindered settling
velocity onto the sloping deposit.

While hindered settling depends on viscous forces as well as continuity requirements, the fluid
viscosity does not play a direct role in setting the final morphology for low particle Reynolds numbers
as it enters the settling velocity ws = w0F (φ), and consequently the settling flux φws, only through w0.
Viscosity does, however, control the time scale over which the morphology is established. In contrast,
the final state depends strongly on the initial concentration as this enters the settling flux in a nonlinear
manner. That fluid-mediated particle interactions (via the hindrance function) dominate over solid
friction is demonstrated through our numerical simulations. These simulations that reproduce the
experimental results despite using a mixture model that is devoid of any solid friction term and
considers the granular material as incompressible. This, in turn, confirms that the dissipation is
dominated by viscous forces as the particles approach rather than solid friction after they collide.
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Although the present study has been performed in a container with a fixed aspect ratio, it is
reasonable to speculate how this may affect the morphology of the sediment layer. For a given initial
concentration and container width, increasing the container height will increase the period of time
during which the particle-rich layer flows down slope above the developing sediment deposit, and so we
would expect the surface of the final deposit to be more horizontal in a manner similar to the decrease
in θ seen here by increasing the initial concentration. Conversely, increasing the width of the container
(while keeping the height constant) will not significantly alter the down-slope flux while increasing
the volume of particles needing to be transported to achieve a given θ. Thus, we would expect θ to
increase towards θs and the deposit to be of a more uniform thickness (for extreme high or low aspect
ratios, the Boycott effect may become important and contribute to the final slope in a manner not
described here). Additionally, simply changing the size of the container while maintaining the same
aspect ratio will change the time scale over which the sediment layer is created, but not its morphology.

Finally, from a practical point of view, these results are important for future application in
engineering sciences, specifically in chemical and pharmaceutical industry (e.g., the application of
blood cell sedimentation for monitoring of the bioequivalence of drugs based on acetylsalicylic acid),
petroleum and mining industry (e.g., transporting of copper concentrates and mining waste), as well
as in many kinds of industrial separation processes of granular material from a fluid (e.g., water
treatment). In mineral processing, the concentration stage uses water as a carrier fluid for comminution
products, where an important part of the fluid is recovered in thickeners. Although the settling
mechanism in the mid section of thickeners is vertical, the bottom of these equipment is conical,
inducing a particle flow component parallel to the bottom. On the other hand, in the wastewater
treatment industry it is common to find lamella settlers, whose working principle is the Boycott effect.
Knowing that the final angle adopted by the sediment layer shows strong dependencies on the initial
particle concentration and the container inclination, but not the fluid viscosity in this Stokes number
range, might improve the design and operation in these examples.
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2.5 Appendix

2.5.1 Drag coefficient

To characterize the drag coefficient β for the drag force Fm,f = −Fm,s = β (us − uf ) in the
numerical model, the method proposed by Gidaspow (1994) along with the model by Wen & Yu (1966)
has been used. Specifically,

β =



















150ηf φ2
s

φf d2
s

+
1.75φsρf |uslip|

ds
φd < 0.20

3φf φsρf cD|uslip|φ−2.65
f

4ds
φs > 0.20,

(2.5.1)

where uslip = us − uf , the diameter of the particles is ds and cD is the drag coefficient for a single
particle. The drag coefficient is a function of the particle Reynolds number, and is determined from,

cD =







24
Rep

[

1 + 0.15Re0.687
p

]

Rep < 1000

0.44 Rep > 1000.
(2.5.2)

The particle Reynolds number in the model is defined as Rep = φf dsρf |uslip| /ηf . Finally, for
mixtures of particles and fluid, it is necessary to have a model for the solid pressure, ps in (3.2.4). The
solid pressure models the particle interaction due to collisions and friction between the solid particles.
The implemented approach uses a gradient-based diffusion model expressed as ∇ps = −χ (φf ) ∇φf ,
where the empirical function χ (φf ) has the form χ (φf ) = 10a1φf +a2 . The function χ (φf ) represents
the modulus of elasticity for the dispersed phase and has dimensions of pressure in the international
system of units (Ettehadieh et al. , 1984). Here, a1 = −10.50 and a2 = 9.00 (Gidaspow et al. , 1989).

2.5.2 Error analysis of φ

If φ is a function that depends on five variables φ = φ(α1, α2, α3, α4, in), equation (3.2.1), where
∆α1, ∆α2, ∆α3, ∆α4 and ∆in are the uncertainties of the variables, respectively. The error of φ can

be calculated by ∆φ =
√

∑N
i=1 ((∂φ/∂xi) ∆xi)

2, (Taylor, 1982). Then, the final expression for the error
of φ can be expressed as follow,

∆φ =
√

∆ν2 (α1α2να2−1 + α3)2 + ν2α2∆α2
1 + ν2α2 log(ν)2α2

1∆α2
2 + ν2∆α2

3 + ∆α2
4 (2.5.3)

where we have defined, ν ≡ in. Figure 2.5.1 shows the results of the error calculations.
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īn

(∆
φ
/
φ
)
%

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

īn
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Chapter 3

Characterization of a sediment layer in tilted

ducts

This chapter has been submitted as research paper, authored by Sergio Palma, Christian Ihle and
Aldo Tamburrino, in the International Journal of Multiphase Flow (2016) (under revision).

Abstract

In this paper we use a continuum mixture model to solve numerically the momentum and
continuity equations associated with the sedimentation dynamics of highly concentrated fluid-solid
mixtures in tilted duct at low Reynolds numbers. The set of numerical simulations include several
combinations of fluid viscosity, duct angle and solid concentration of particles. This research aims to
show the phenomenology and dynamics associated with the sedimentation of monodisperse particles
under different physical conditions and the characterization of the final stage of the sediment layer in
two kinds of inclined geometries, with and without a horizontal section. Using scaling arguments, a
mathematical expression formed by three dimensionless groups including the inertial number, particle
concentration and the ratio between the sedimentation Grashof number to the Reynolds number is
proposed to explain the height of the sediment layer in the slope change zone of a duct. Additionally,
we have found that the initial particle concentration is a very relevant variable for knowing under
what conditions the duct could get obstructed. In combination with some system angles, they might
represent a risk of duct plug. Imposing a condition of obstruction, we have found dimensionless
parameters that result in the blockage of the duct in the slope change zone. The results can be
applied in the transport of fluid-solid mixtures and, in the engineering design of ducts with abrupt
slope changes.
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3.1 Introduction

Sedimentation is the process by which solid particles immersed in a fluid are deposited at the
bottom by the action of gravity. Sedimentation is one of the oldest known techniques used in industry
to clean fluids or, alternatively, to recover particles from suspensions (Guazzelli & Hinch, 2011). In
1920, Boycott noted that certain blood corpuscles settled faster at the bottom in inclined test tubes
than in test tubes that were in an upright position. This improvement in the sedimentation velocity is
due to that in an inclined duct, the suspension has a short distance to reach the lower side of the duct,
before they start to slide down to the bottom of the duct, whereas in a upright duct all the sediment
is slow and there is no vertically rapid sliding (Leung & Probstein, 1983; Leung, 1983).

H(t)

b

(a)

(b)

(c)

(d)

(e)

Figure 3.1.1: Schematic of the conceptual model: (a) Sediment bed, (b) Clear fluid region, (c) Suspension region, (d)
Clear fluid region and (e) Sediment layer.

For almost five decades the behaviour of inclined settlers was described using a kinematic model
called PNK in recognition of Ponder (1926) and Nakamura & Kuroda (1937) who developed it. A
typical phenomenon observed in inclined settlers for laminar flow is displayed in Figure 3.1.1. The
PNK model states that the production rate of clear fluid per unit depth of a rectangular settler
is given by S = w0F [cos θ + H tan θ/b], where w0 is the sedimentation velocity of a particle, F is
a hindered function which accounts for the interaction of many particles immersed in a fluid, θ is
the angle of inclination of the system, H is the instantaneous height of the suspension and b is the
space between the walls of the duct. PNK theory often overestimates the efficiency of an inclined
settler, however it does not consider the dynamics of fluid movement as it is based solely on a mass
balance (Acrivos & Herbolzheimer, 1979). When a settler is inclined, a thin layer of clear fluid is formed
along the upper wall. Due to the density of the fluid being less than the density of the suspension in the
vicinity, a force is experienced which causes the fluid to accelerate upwards (Guazzelli & Morris, 2012).

Resistance to this upward movement is given by the viscous and inertial forces acting within
the clear fluid layer as well as the upper wall of the settler and regions of particle suspension. If the
velocities within the layer of clear fluid are very large, it might be possible that waves appear along
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the interface between the suspension region and the clear fluid layer. These waves can grow and break
as they ascend to the settler, thus dragging the suspension to the clear fluid layer and decreasing
the efficiency of the settler (Herbolzheimer, 1983). In order to predict the performance of an inclined
settler, it is necessary to describe the formation and growth of these instabilities.

Works related to the dynamics of suspensions in tilted settlers in the decade preceding ninety,
can be found in Davis & Acrivos (1985). Current analytical theories to describe the dynamics of
suspensions in tilted ducts are generally based on the analysis presented by Acrivos & Herbolzheimer
(1979), who studied the process using a simplified model. The equations used consist of a continuity
equation for each phase, i.e., one for the solid phase and one for the fluid phase, an equation of
momentum mixture describing the suspension of particles as a whole and a relationship between the
velocities of each phase. Neglecting inertial effects and assuming that the suspension region has a
uniform concentration of solids, these authors used boundary layer analysis to find expressions for the
geometry and flow within the clear fluid layer. In addition, they determined that the kinematics of
the sedimentation process is described by two dimensionless groups, a sedimentation Reynolds number
and quotient of a settler Grashof and Reynolds number, which are given by Re = Hw0Fρf /ηf and
Λ = H2g(ρs − ρf )φ/ηf w0F , respectively. In this expression, φ is the volume fraction of particles in the
suspension zone. The hypothesis of negligible inertial forces established in the work of these authors
implies that the analysis is limited to the settlers where Λ ≫ 1 and ReΛ−1/3 ≪ 1.

Finally, they found that the rate of production of clear fluid would be predicted by the theory
PNK whenever the interface between the suspension region and the clear fluid layer remains stable and
Λ → ∞. Herbolzheimer (1983) developed this analysis to settlers under viscous conditions (ReΛ−1/3)
and he compared his theoretical results with experimental results of instability waves on the interface.
Later, Shaqfeh & Acrivos (1986) included inertial effects and extended the theory for all values of
ReΛ−1/3. Comparisons between experimental and analytical results for the clear fluid layer predicted
by this theory have been very satisfactory, particularly for the more viscous cases where ReΛ−1/3 is
small. In this paper we have used a continuum mixture model to solve numerically the momentum
and continuity equations associated with the sedimentation dynamics of high concentrated fluid-solid
mixtures in tilted ducts. While previous works were able to describe the operation of settlers when
the interface of clear fluid layer is stable, they do not define under what kind of conditions this occurs.
Acrivos and other researchers have applied linear stability theory to the region surrounding the clear
fluid layer to find conditions under which small perturbations in the interface will grow over time.
Subsequently, Nir & Acrivos (1990) did experiments on inclined surfaces and found that for given
values of the concentration of particles in the suspension, the sediment flow remained constant only if
the angle of the system exceeded a minimum value. Additionally, a discontinuity in the concentration
of particles in the suspension was found.

Afterwards, Kapoor & Acrivos (1995) implemented the model proposed by Nir & Acrivos (1990)
but including the effects of shear-induced diffusion due to gradients in the shear stress likewise the
slip velocity along the walls of the duct. The focus of this research is on the nonlinear dynamics
associated with the migration of particles at low slopes, and in particular the consequences for axial
transport of solid material under these conditions, with emphasis on the conditions for the generation
of obstructions at high particle fractions. In Section3.2, we provide the mathematical model used for
our numerical simulations, and the numerical procedure used in our calculations. In Section 3.3, the
results of our numerical simulations are presented and discussed. Finally, the conclusions are showed
in Section 3.4.
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3.2 Governing equations

A set of numerical simulations has been made using COMSOL Multiphysics with the CFD
package, featuring the multiphase model proposed by (Enwald et al. , 1996), which is described as
follows. The dynamics of a suspension can be modelled by two equations of momentum transfer, one
for particles and the other for the fluid, plus a continuity equation for both phases. Assuming that the
mass transfer between the two phases is zero, the continuity equations for the continuous and dispersed
phase are, respectively, ∂t(ρf φf ) + ∇ · (ρf φf uf ) = 0 and ∂t(ρsφs) + ∇ · (ρsφsus) = 0, where φ is the
volume concentration, ρ is the density and u is the velocity. The subscripts f and s refer to quantities
associated with the continuous phase (fluid) and the dispersed phase (particles). In this model, both
the continuous and the dispersed phase are considered incompressible. Therefore, the above equations
can be simplified as,

∂φf

∂t
+ ∇ · (φf uf ) = 0, (3.2.1)

∂φs

∂t
+ ∇ · (φsus) = 0. (3.2.2)

If equations (3.2.1) and (3.2.2) are coupled by the volume conservation condition φf + φs = 1, an
equation of continuity for the mixture is obtained,

∇ · (φsus + uf (1 − φs)) = 0. (3.2.3)

The momentum equations for the continuous and dispersed phase, respectively, using the non-conservative
form introduced by Ergun (1952) are,

ρf φf

[

∂uf

∂t
+ (uf · ∇)uf

]

= −φf ∇p + ∇ · (φf τ f ) + φf ρf g + Fm,f , (3.2.4)

ρsφs

[

∂us

∂t
+ (us · ∇)us

]

= −φs∇p + ∇ · (φsτ s) + φsρsg + Fm,s. (3.2.5)

Here, p is the pressure of the mixture, which is assumed equal for both phases. The viscous
stress tensor of each phase is indicated by τ in the momentum equations, g is the acceleration due to
gravity and Fm corresponds to the exchange of momentum between the phases, thus corresponding to
a volume force exerted by one of the phases on the other phase. In the equations presented above, the
influence of the polydispersity of the particles in the dispersed phase has been neglected. Equation
(3.2.5) can be written as (Enwald et al. , 1996),

ρsφs

[

∂us

∂t
+ (us · ∇)us

]

= −φs∇p + ∇ · τ s − ∇ps + φsρsg + Fm,s, (3.2.6)
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where ps is the solid pressure. In the momentum equations described above, the continuous phase is
considered Newtonian. Hence, viscous stress tensor is defined as

τ f = ηf

[

∇uf + (∇uf )T − 2
3

(∇ · uf )I
]

, (3.2.7)

τ s = ηs

[

∇us + (∇us)T − 2
3

(∇ · us)I
]

, (3.2.8)

where η is the dynamic viscosity of the respective phase and I is the identity tensor (Enwald et al. ,
1996). In order to model the Newtonian viscosity associated to a set of particles in a mixture there
is a variety of formulations. In this paper, we have worked with the model proposed by Krieger
(1972) because is one of the most validated experimentally at high concentrations of particles over the
years (Krieger & Dougherty, 1959; Frankel & Acrivos, 1967; Stickel & Powell, 2005). Specifically, we
take

ηs = ηf

(

1 − φs

φs,max

)

−2.5φs,max

. (3.2.9)

In order to avoid singularities in the numerical solutions when volume concentrations tend to
zero, the momentum equations are divided by their corresponding volume concentrations. Therefore,
equation (3.2.4), corresponding to the continuous phase, becomes

ρf
∂uf

∂t
+ ρf (uf · ∇)uf = −∇p + ∇ · τ f +

∇φf · τ f

φf
+ ρf g +

Fm,f

φf
, (3.2.10)

and equation (3.2.6), corresponding to the dispersed phase, becomes

ρs
∂us

∂t
+ ρs(us · ∇)us = −∇p + ∇ ·

(

τ s

φs

)

+ ∇φs ·
(

τ s

φ2
s

)

− ∇ps

φs
+ ρsg +

Fm,s

φs
. (3.2.11)

The equations to be solved numerically simultaneously are (3.2.3), (3.2.10) and (3.2.11). On the
other hand, the term associated to the interphase momentum transfer, especially in fluids having a
high concentration of particles, is given by the drag force, defined as Fm,f = −Fm,s = β(us − uf ),
where β is the drag coefficient. For fluids with a high concentration of particles by volume, it can be
calculated by the method proposed by Gidaspow (1994) in conjunction with the model proposed by
Wen & Yu (1966) for the drag coefficient

β =



















150ηf φ2
s

φf d2
s

+
1.75φsρf |uslip|

ds
φs < 0.20,

3φf φsρf cD|uslip|φ−2.65
f

4ds
φs > 0.20.

(3.2.12)
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Figure 3.2.1: Schematic of the conceptual model: (a) G1: Inclined duct geometry. (b) G2: Inclined duct geometry plus a
horizontal section. The walls of the ducts and measurement profiles are represented by wj , with j ∈ {1, ..., 6} and MPj ,
with j ∈ {1, ..., 4}, respectively. The variable hSL is used to test the convergence, as detailed in Figure 3.2.2.

Here, uslip = us − uf is the relative velocity between the solid and liquid phases, ds is the diameter
of the particles and cD is the drag coefficient for a single particle in an infinite medium. The drag
coefficient is a function of the particle Reynolds number, which is determined from

cD =







24
Rep

[

1 + 0.15Re0.687
p

]

Rep < 1000,

0.44 Rep > 1000.
(3.2.13)

Furthermore, the local particle Reynolds number is defined as, Rep = φf dsρf |uslip| /ηf . For
mixtures of particles and fluid, it is necessary to have a term associated with the interaction of particles.
This term is commonly called solid pressure (ps) (Gidaspow, 1994). The solid pressure models the
particle interaction due to collisions and friction, between the solid particles. The solid pressure model
implemented herein uses a gradient diffusion based assumption in the manner of ∇ps = −χ(φf )∇φf ,
whereas the empirical function χ(φf ) has the form χ(φf ) = 10a1φf +a2 . The function χ(φf ) represents
the modulus of elasticity for the dispersed phase (Ettehadieh et al. , 1984). Empirical values for
the constants of this function have been obtained by different researchers (Gidaspow & Ettehadieh,
1983; Ettehadieh et al. , 1984). Although there are several coefficients a1 and a2 in the literature, the
numerical results of the sedimentation process do not change significantly depending on the choice.
Here, a1 = −10.50 and a2 = 9.00, with χ in Pa (Gidaspow et al. , 1989). This model is valid in the
international system of measures.

The continuity equation of the mixture (3.2.3) and the momentum transport equations of both
phases, (3.2.10) and (3.2.11), are discretized by the Galerkin finite element method (FEM) (Zienkiewicz et al. ,
2013). The various simulation conditions have been given in Table 3.1. The boundary conditions
associated with the computational domain can be seen in detail in Figure 3.2.1. Firstly, we
consider no-slip conditions and no penetration for both phases in all domain borders, so that uf =
us = 0 at wj, with j ∈ {1, ..., 6}, where wj stands for the surface defining the wall j. Regarding the
dispersed phase, we imposed a condition of no-flow to outside the settler, i.e., φsus · n = 0 at wj and
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(1 − φs)uf · n = 0 for the continuous phase. The system of equations has been integrated from 0 to
800 s, with a time step of 0.1 s which is about 1/4 of the time it takes a particle of the above features,
to travel a distance equal to its own size at a velocity equal to the Stokes. However, due to the high
storage space required for each of the simulations, only the information every 2 s has been stored.

Equations (3.2.3), (3.2.10) and (3.2.11) are nonlinear convection-diffusion equations. These may

Table 3.1: Set of parameters of numerical simulations.

Fluid-Solid properties Value

Particle density, ρs (Kg/m3) 1200
Fluid density, ρf (Kg/m3) 1000
Particle diameter, ds (µm) 600
Max. vol. fraction, φs,max 0.62
Angle system, θs (◦) [5, 10, 15, 20, 25, 30]
Initial vol. fraction, φd0 (%) [10, 15, 20, 25, 30, 35, 40]
Fluid viscosity, ηf (mPa·s) [100, 200, 300]

Numerical parameters Value

Length scale 1, L0 (mm) 40
Length scale 2, L1 (mm) 500
Time step, ∆t (s) 0.1
Simulation Time, T (s) 800

become numerically unstable when the Galerkin method is used for discretization. Therefore, it is
necessary to apply stabilization techniques to the finite element method in order to obtain physically
meaningful solutions. There are three types of methods in COMSOL Multiphysics to numerically
stabilize the equations of the form ∂tu + (β · ∇)u = ∇ · (c∇u) + F , namely isotropic diffusion, diffusion
of streamlines and crosswind diffusion. In the above equation, β is the convective velocity vector, c
is the diffusion coefficient and u is the scalar property transported. When the convection-diffusion
equation is discretized using the Galerkin finite element method, numerical problems occur for Peclet
numbers greater than 1 that necessarily should be controlled in each time step, (Johnson, 1988).

The isotropic diffusion is equivalent to add a term, cart = δidh |β|, where h is the mesh size. Here,
δid is an adjustable parameter. Thus, the equation which is solved in simple terms is ∂tu + (β · ∇)u =
∇ · ((c + cart) ∇u) + F . It has used a value of δid = 0.25 in all simulations because it is the best
parameter value that allows to obtain properly the convergence of all calculations after a series of 30
preliminary tests. In order to choose an appropriate mesh size for the calculations, a set of simulations
for different mesh sizes has been performed under four physical and numerical conditions as can be
seen in Table 3.2. Figure 3.2.2 shows the height of the sediment layer at location MP3 for the inclined
geometry G2 (Figure 3.2.1) as function of the number of mesh elements. The solid line in Figure 3.2.2
represents the trend points for different physical conditions and the gray region represents the area of
convergence of the numerical solutions.

Considering the input conditions of Table 3.2, it is observed that the height of the sediment
layer reaches to hSL ≈ 35 mm, hSL ≈ 33 mm, hSL ≈ 30 mm and hSL ≈ 10 mm for Case 1, Case
2, Case 3 and Case 4, respectively, with about 10, 000 mesh elements, whereas it rapidly approaches
to hSL ≈ 35.21 mm, hSL ≈ 33.08 mm, hSL ≈ 30.14 mm and hSL ≈ 10.04 mm for Case 1, Case
2, Case 3 and Case 4, respectively. Here, the convergence plateau starts using about 20, 000 mesh
elements. Inside this region it was not possible to observe a significant difference in the variable hSL
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Figure 3.2.2: (a) Convergence of free triangular mesh. hSL (mm) as function of number of mesh elements. The solid
line represent the trend points for different physical conditions and gray region represents the area of convergence of the
numerical solutions. (b) Same graph on a logarithmic scale.

with increasing the value of mesh elements. Given that, the finest mesh implies an 8 hours calculation
in excess of the intermediate mesh within the plateau, and 12 hours relative to the coarsest using a
4th generation Intel Core i7 Processor.

In this work we have used a compromise number of free triangular mesh composed by 30, 000
elements in order to optimize the calculation time of all numerical simulations. The same procedure
was performed to analyse the convergence of the solutions for geometry G1, thus obtaining the similar
results. We have done the convergence analysis in MP3 of the geometry G2 because of its relevance in
the flux of particles in the sedimentation process. A physical validation of the results is given in the
next section.

Table 3.2: Set of conditions for convergence analysis.

Angle Initial volume fraction

Case 1: θs = 30◦ φ0 = 0.40
Case 2: θs = 5◦ φ0 = 0.40
Case 3: θs = 5◦ φ0 = 0.30
Case 4: θs = 10◦ φ0 = 0.10

3.3 Results and discussion

A set of sedimentation numerical experiments was carried out under different physical conditions,
including duct angles and particle concentrations. In order to measure and characterize the sediment
layer in this type of geometry, a decision must be made to define the boundary between the sediment
layer and the fluid clear layer. The height of the sediment layer, hSL, has been defined when the
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particle concentration along MP3 is greater than or equal to 0.40. This value of the volume fraction
corresponds to the abrupt transition in the particle concentration from 0.40 to very small values near
to zero, (see Figure 2.2.6).

Figure 3.3.1 shows the sedimentation process of an initial homogeneous mixture of φ0 = 0.30 for
geometry G1 (Left panel) and G2 (Right panel). Both panels correspond to the particle concentration
field for t = 200 s, t = 400 s, t = 600 s and t = 800 s, whereas t = 800 s is the final time of the
sedimentation process. In each figure, the insets show the detail of the particle concentration at the
bottom of the duct as well as at the slope change zone, respectively, where the colour bar represents
the concentration of particles. Here, the minimum and maximum concentration are 0 and 0.60,
respectively. The numerical conditions are θs = 30◦, φ0 = 0.30 and ηf = 100 mPa·s. Such conditions
have been chosen because they represent an experimental condition for a large angle, additionally a
high concentration of particles, without necessarily being the largest concentration calculated. From
this figure, we can infer that there is a difference of 25% in the height of the sediment layer at the
extreme left of geometry G1 and G2 for t = 800 s. This difference in the build-up of granular material
is due to the shape in the geometries; while a duct with a horizontal section shows a 73% of the
accumulation of particles, the tilted geometry shows an accumulation near to the 100% of its total
capacity, 98%.

On the other hand, Figure 3.3.2 shows the magnitude and direction of the velocity field of the
dispersed phase (particles) for t = 50 s, t = 100 s, t = 150 s and t = 200 s for geometry G1 (Left panel)
and G2 (Right panel), where the black arrows represent the particle flow direction and the colour bar
represents the magnitude of the velocity of particles. Here, the minimum and maximum speed are 0
and 3.5 mm/s, respectively. We have shown the sedimentation process only for short times because
at this time it is possible to observe more clearly the different stages of particle flow, both upward
and downward the duct. The different stages of particle flow, both upward and downward the duct,
have been described for other researchers considering only a tilted duct without a horizontal section
(geometry G1) (Acrivos & Herbolzheimer, 1979; Herbolzheimer, 1983; Guazzelli & Morris, 2012). A
comparison of the particle flow between G1 and G2 shows that although in the latter there is a
horizontal section where the boundary condition is further away, the most important zone where the
flow of particles is developed is in the inclined section. In particular, the inset of Figure 3.3.2 shows
that there is a fraction of particles that move towards the horizontal section. Such amount of particles
is quantified below.

Figure 3.3.3(a), shows the maximum magnitude of the velocity of the dispersed phase for: θs = 5◦,
θs = 10◦, θs = 20◦ and θs = 30◦ for geometry G1 and G2 as a function of time. Such maxima occurs at
t = 100 s, t = 130 s, t = 160 s and t = 200 s for θs = 30◦, θs = 20◦, θs = 10◦ and θs = 5◦, respectively.
The measurements correspond to the line MP1 (see Figure 3.2.1) and the numerical conditions are
φ0 = 0.30 and ηf = 100 mPa·s. In addition, from Figure 3.3.3(a) it is observed that the upward flow
is always faster than the downward flow independently of the angle of the system. In general, the
magnitude difference between the upstream and downstream is 31%, 24%, 17% and 13% for θs = 5◦,
θs = 10◦, θs = 20◦ and θs = 30◦, respectively, for both geometry G1 and G2. Once the process of
settling on an inclined duct begins, a thin layer of free fluid particle appears in the upper wall of the
duct. In this small layer free of particles, the fluid velocity is greater because it has a smaller section area
than the suspension region, as can be seen in Figure 3.1.1, (see also (Herbolzheimer & Acrivos, 1981;
Davis & Acrivos, 1985; Peacock et al. , 2005)). Figure 3.3.3(a) shows that the larger the angle of the
duct, the velocities of the particles are larger both upward and downward. On the other hand, Figure
3.3.3(b) shows the measurements along MP2. Here, the behaviour is totally different as mentioned
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Figure 3.3.1: Sedimentation process and particle concentration field for t = 200 s, t = 400 s, t = 600 s and t = 800 s. Left
panel: geometry G1 and right panel: geometry G2. Inset: detail of φs, at the bottom of the duct and at the slope change
zone, respectively. The numerical conditions are θs = 30◦, φ0 = 0.30 and ηf = 100 mPa·s. The colour bar represents the
concentration of particles.

above. It cannot clearly see when the peak in the velocity of the dispersed phase occurs, as in the
previous case. However, the downward flow is faster than the upward flow. It can be seen from this
figure that the maximum velocities of the particles decrease with the angle of the system. In this case,
the maximum speeds only reach 2 mm/s. This value is approximately 1.5 times smaller than the value
obtained in MP1 for an angle of 30◦. Here, the particle flow during the early stages of motion is greater
going downwards than upwards. This can be attributed to the proximity to the change in slope area
where conditions of symmetry in geometry are lost, unlike what happens in the previous case.

On the other hand, Figure 3.3.4 shows the maximum magnitude of the velocity of the dispersed
phase for: θs = 5◦, θs = 10◦, θs = 20◦ and θs = 30◦ for G2 as a function of time. The measurements
correspond to MP3 and MP4. Here, the measurements obtained from MP4 show that the speeds are
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Figure 3.3.2: Magnitude of the velocity field of the dispersed phase for t = 50 s, t = 100 s, t = 150 s and t = 200 s.
Left panel: geometry G1 and right panel: geometry G2. Inset: detail of us, at the middle of the duct and at the slope
change zone, respectively. The black arrows represent the particle flow direction. The numerical conditions are θs = 30◦,
φ0 = 0.30 and ηf = 100 mPa·s. The colour bar represents the magnitude of velocity of particles.

very small compared with those obtained from MP3. This behaviour of the particles is expected due
to the largest flows related to the Boycott effect and are in fact in the inclined section. Here, the
particle flow during the early stages of motion is 1.2 times higher for particles that are going upward
than for particles going down. Regarding the accumulation of particles in the slope change, the top
panel of Figure 3.3.5 shows the accumulated particle mass

∫

φdz for (a) θs = 10◦ and (b) θs = 30◦ as a
function of the horizontal distance of geometry G2. In all cases, we have made the calculations using
an initial concentration of φ0 = 0.30. Additionally, we have shown only the time curves corresponding
to t = 0 s , t = 200 s, t = 400 s, t = 600 s and t = 800 s for clarity. These figures show that the larger
the angle of the system, the greater the build-up of granular material near to the slope change zone
(x = 0). Furthermore, the amount of material transported along the horizontal section can be seen
in the lower panel of Figure 3.3.5. Here, we can infer that the area in the horizontal section affected

46



0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

G 1 :Down

G 2 :Down

G 1 :Up

G 2 :Up

θ s = 5 ◦

θ s = 10 ◦

θ s = 20 ◦

θ s = 30 ◦

(a)

t (s)

m
a
x‖

u
s
‖

(m
m
/
s)

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

G 1 :Down

G 2 :Down

G 1 :Up

G 2 :Up

θ s = 5 ◦

θ s = 10 ◦

θ s = 20 ◦

θ s = 30 ◦

(b)

t (s)

m
a
x‖

u
s
‖

(m
m
/
s)

Figure 3.3.3: Maximum magnitude of the velocity of the dispersed phase for: θs = 5◦, θs = 10◦, θs = 20◦ and θs = 30◦

for G1 and G2 as a function of time. The measurements correspond at (a): MP1 and (b): MP2. The numerical conditions
are φ0 = 0.30 and ηf = 100 mPa·s.
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Figure 3.3.4: Maximum magnitude of the velocity of the dispersed phase for (a): θs = 5◦, (b): θs = 10◦, (c): θs = 20◦

and θs = 30◦ for G2 as a function of time. The measurements correspond at MP3 and MP4. The numerical conditions
are φ0 = 0.30 and ηf = 100 mPa·s.

by the flow of particles has a range of about 150 mm from the slope change (x = 0) having a greater
influence due to an angle (b) θs = 30◦ than to (a) θs = 10◦. The accumulation of granular material in
the slope change zone is better identified in Figure 3.3.6 at final settling times.

Figure 3.3.6 shows the height of the sediment layer along MP3 normalized by the width of the duct,
hSL/L0, as a function of: (a) the angle duct for different initial concentrations of particles and fluid
viscosities, and (b) the initial concentrations of particles for distinct inclination angles of the system
and fluid viscosities. In other words, the data represents the build-up of granular material in the slope
change between the inclined section and the horizontal section of the duct, under different physical
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situations. Moreover, from Figure 3.3.6 it is observed that the dependence between the normalized
height and the initial concentration of particles is much more relevant than the dependence on the
inclination of the system but that, in light of the resulting numbers, it is the combination of duct
slopes and concentrations which control the risk of plug formation. In particular, we can see that for
initial particle concentrations greater than 30% (0.30), an accumulation of solid material of 70% (0.70)
is obtained at MP3. On the other hand, when the concentration is around 40%, the accumulation
of solid material reaches a value of 80% and 94% of the duct width for θs = 5◦ and for θs = 30◦,
respectively, for a viscosity of ηf1 = 100 mPa·s and, 74% and 88% of the duct width for θs = 5◦ and
for θs = 30◦, respectively, for a viscosity of ηf3 = 300 mPa·s.

The present analysis thus suggests the existence of better and worse combinations of angles and
concentrations, for the duct obstruction in the slope change zone. In light of the above results, we can
find the obstruction condition of the duct, making a simple linear extrapolation (i.e., hSL/L0 = 1), from
the data of Figure 3.3.6b. Hence, the particle concentration values for which the duct is obstructed
are φ0 = 47.9% and φ0 = 45.0% for θs = 5◦ and θs = 30◦, respectively, for a viscosity of ηf1 = 100
mPa·s. In Table 3.3, the results of duct obstruction for the rest of the variables are summarized. The
results show that the conditions of obstruction (initial concentration of particles) increased 2.2% to
increase the viscosity of 100 mPa·s to 200 mPa·s and 1.6% by increasing the viscosity of 200 mPa·s to
300 mPa·s, in all cases, regardless of the angle of inclination; being a total increase of 3.8%.

Finally, we will make an analysis of scale that allows to define an expression for the height of the
sediment layer on the slope change based on certain dimensionless numbers. Thus, it has been shown
with experiments and numerical simulations that the shear stress in mixtures and granular flows can
be written as τ = Pµ(I), where the friction coefficient depends o, a single dimensionless parameter, I,
(Forterre & Pouliquen, 2008; Cassar et al. , 2005). Although there is no friction term in our numerical
model, we mentioned the work of Forterre & Pouliquen (2008); Cassar et al. (2005) to put in context
the inertial number. The latter dimensionless parameter is called the inertial number and is defined
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Table 3.3: Duct obstruction conditions.

ηf1 = 100 mPa·s ηf2 = 200 mPa·s ηf3 = 300 mPa·s
φ0 φ0 φ0

θs = 5◦ 47.9% 49.0% 49.8%
θs = 10◦ 47.5% 48.6% 49.4%
θs = 15◦ 46.9% 47.9% 48.8%
θs = 20◦ 46.3% 47.5% 48.4%
θs = 25◦ 45.2% 46.4% 47.1%
θs = 30◦ 45.0% 45.6% 46.3%

as,

I =
2aγ̇

√

P/ρs
, (3.3.1)

where this dimensionless number can be interpreted as the ratio between two time scales: (a) a
microscopic time scale tmicro = 2a/

√

P/ρs which represents the time it takes for a single particle
to fall to a hole of size 2a under the pressure P and which gives the typical time of rearrangements,
and (b) a macroscopic time scale tmacro = 1/γ̇ related to the mean deformation. Here, γ̇ is the shear
stress rate and a is the particle radius. It is observed that a relevant velocity scale in the problem
is the sedimentation velocity, ws = w0F , where w0 = (2/9)a2(ρs − ρf )g/ηf , it is the velocity for an
individual particle in an infinite medium and F is a hindrance function. In this work we have used
the model proposed by Richardson & Zaki (1954a), F = (1 − φ)n, with a typical value of n = 5,
(Guazzelli & Hinch, 2011).

In a recent work to describe sediment bed formation in inclined containers, Palma et al. (2016b,a)
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Figure 3.3.6: Normalized height of the sediment layer as a function of (a): the angle of the system for different initial
volume fraction of particles and fluid viscosities, and (b): the initial volume fraction of particles for different angles and
fluid viscosities. The measurements correspond at MP3.

have expressed the inertial number as I ≡ Rep(I0r)1/2 sin θs, where Rep = 2aρf ws/ηf is the definition
for the particle Reynolds number, r = ρs/ρf and I0 = (3/4)η2

f /ρf g(ρs − ρf )a3 and, the concentration
particle number as Φ ≡ (φ/φm)1/3. In this context, it has been found that such time scale balance
is appropriate to describe a dimensionless version of the sediment layer. On the other hand, it has
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been shown that the kinematics of a sedimentation process of monodisperse particles in an inclined
duct (without a horizontal section) is described very well by two dimensionless numbers, R and Λ,
(Hill et al. , 1977; Acrivos & Herbolzheimer, 1979; Herbolzheimer & Acrivos, 1981; Herbolzheimer,
1983; Davis & Acrivos, 1985). Thus, the ratio of a sedimentation Grashof number to the Reynolds

number can be written as Λ = 18
(

H
2a

)2 φ
F , Herbolzheimer & Acrivos (1981). Here, it is possible define

H = L1 sin θs, (see Figure 3.2.1) and Γ = 9φ
2F .

Finally, the latter dimensionless number can be written as Λ ≡ Γ
(

L1 sin θs
a

)2
. In the present

set of numerical experiments the latter dimensionless numbers R and Λ, are in the range 10−3 − 10−1

and 104 − 106, respectively. In this manner, when the condition Λ ≫ 1 and RΛ−1/3 ≪ 1 are satisfied,
the flow is laminar and viscous, and the sedimentation process in the inclined duct can be explained
by the PNK theory. For our numerical experiments Λ ∼ 106 and RΛ−1/3 ∼ 10−4. Due to the
evidence presented above, it is natural to propose Λ as a relevant dimensionless number for the
inclined duct with a horizontal section. Although numerically we are in the same ranges where it
has developed several quantitative approaches using asymptotic analysis (Acrivos & Herbolzheimer,
1979; Herbolzheimer & Acrivos, 1981; Herbolzheimer, 1983), the complicated geometry presented here
precludes the development of a rigorous theoretical formulation to calculate the concentration of
particles in the slope change zone and speed of the particles. In summary, the relevant dimensionless
parameters are

I = Rep(I0r)1/2 sin θs, (3.3.2)

Φ =
(

φ

φm

)1/3

, (3.3.3)

Λ = Γ
(

L1 sin θs

a

)2

. (3.3.4)

The present results suggest that the numerical measurements of the height of the sediment layer
at MP3, hSL, can be represented by I, Φ and Λ dimensionless groups. In this work, we have left
fixed the ratio L0/L1 constant. Figure 3.3.7 shows the best fit in terms of the dimensionless height
of the sediment layer, hSL/L0, and the dimensionless group c0

[

Rep(I0r)1/2 sin θs

]c1
[

(φ/φm)1/3
]c2

[

Γ(L1 sin θs/a)2
]c3. The corresponding fit was obtained using a multi-dimensional Levenberg-Marquardt

nonlinear regression algorithm, (Bard, 1974; More, 1978). The results indicate an excellent fit, with
c0 = 1.79 ± 0.04, c1 = 1.02 ± 0.03, c2 = 1.07 ± 0.01 and c3 = 0.51 ± 0.02, with an error of 0.1%
compared to the theoretical slope of value 1. We can express the height of the sediment layer at MP3

approximately as
hSL = 1.8L0IΦ

√
Λ. (3.3.5)

Finally, applying the obstruction condition of the duct (i.e., hSL/L0 = 1) to the equation (3.3.5), we
obtain

Φ =
α

I
√

Λ
, (3.3.6)

being α ≡ 1/1.8. In this manner, using the equation (3.3.6) is feasible to generalize the results of Table
3.3.
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Figure 3.3.7: Data fit for hSL/L0 as a function of the dimensionless group Π = c0

[

Rep(I0r)1/2 sin θs

]c1
[

(φ/φm)1/3
]c2

[

Γ(L1 sin θs/a)2
]c3

. The solid line indicates the identity. The fitted coefficients are c0 = 1.79 ± 0.04, c1 = 1.02 ± 0.03,
c2 = 1.07 ± 0.01 and c3 = 0.51 ± 0.02.

3.4 Conclusions

In this paper we have solved numerically the continuity and momentum equations associated with the
problem of sedimentation of fluid-solid mixtures at high concentrations in tilted ducts, under different
physical conditions using COMSOL Multiphysics with the CFD package. The variables studied were
the initial particle concentration, the fluid viscosity and the angle of the duct. A rich phenomenology
associated with the dynamics of mixtures at high particle concentrations and at different angles was
observed. The present results shown that the initial particle concentration is a very relevant variable for
knowing under what conditions the duct could get obstructed and, in combination with some system
angles, such conditions might represent a risk of duct plug. In particular, we have found that viscosity
is not as important as the initial concentration of particles and the angle of the system.

Additionally, we found a mathematical expression using scaling arguments, formed by three
dimensionless groups including the inertial number, particle concentration and the ratio between the
sedimentation Grashof number to the Reynolds number to explain the height of the sediment layer in
the slope change zone of a duct. Imposing a condition of obstruction, we have found a combination
of initials concentrations of particles and fluid viscosities that shall block the duct in the slope change
zone. Finally, we have related and extended these results with a dimensionless expression describing
the phenomenon of obstruction. Although the present results are expressive of the effect of solids
concentration and duct angles, a more in depth analysis is required to unveil the physics of the particle
organization near the zone where the slope change occurs. This is currently being done experimentally
by the present group of researchers.
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Chapter 4

Conclusions

The present thesis has successfully presented the results of a set of different numerical and
laboratory experiments in order to study distinct relevant features of sedimentation of mono and
polydisperse particles in inclined geometries. During this PhD work, an experimental set-up was
designed, built and operated to investigate the process of sedimentation of particles in open and closed
inclined geometries. Additionally, the optical light transmission technique has implemented for tracking
the interface between the particle suspension and the clear fluid zone, during a sedimentation process.
Finally, the dimensional analysis theory has been used to characterize the slope of a sediment layer
in tilted containers and, the height of the sediment layer of inclined ducts. The realization of these
specific objectives has helped to achieve in very good terms the main goal of this doctoral thesis.

To carry out this experimental work, it has been necessary to test and implement various experimen-
tal techniques for studying the movement of particles at high concentrations within a viscous fluid. Two
experimental techniques were implemented: PTV (particle tracking velocity) and PIV (particle image
velocity). Unfortunately, these techniques do not work well in the presence of a high concentration of
particles. After many attempts to obtain consistent results, it was decided to use another but easier
technique. This technique described in chapter one, it is called TLI (transmitted light intensity). Even
though the principle of this technique is simply based on illuminating a container from behind with
a light in order to quantify and relate the transmitted intensity to the concentration of particles, it
worked extremely well. This technique has allowed to track the interface between the suspension zone
and the clear fluid zone of particles. Also, it was used to measure the height of the sediment layer at
the end of the sedimentation process.

On the other hand, although there are different methods and numerical techniques to simulate
the flow of dry and wet granular materials (discrete and continuous models), which have advantages
and disadvantages in terms of calculations’ time and accuracy of their results, the continuum mixture
used has proven to give consistent and accurate results for the sedimentation processes studied in this
thesis. However, adding a term related to friction and particle’s angle of repose would mean that
this model can be applied in many more circumstances, especially in engineering problems, where the
friction is more relevant.
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Particle organization after viscous sedimentation in tilted containers

Regarding the experimental and numerical work carried out. Here, it has been presented a new
point of view of the mechanism that sets the morphology of the sediment layer formed by the settling
of mono and slightly polydisperse particles onto the bottom of an inclined container. One of the most
significant results of the experiments was that the final angle adopted by the sediment layer showed
firm dependencies on the container inclination and the initial particle concentration, but not in the fluid
viscosity within the small particle Reynolds number range tested. Additionally, the experimental and
numerical results showed that the concept of hindered settling is crucial to understand the formation
of a particle layer that move particles down-slope just above the sediment layer as it forms. The results
suggested that this mechanism scales directly with the projection of the hindered settling velocity onto
the sloping deposit.

On the other hand, the fluid viscosity does not play a direct role in setting the final morphology
of particles for low particle Reynolds numbers. Thus, it plays a weak role in the settling velocity.
Furthermore, for long times the process depends strongly on the initial concentration as this enters
the settling flux in a nonlinear manner. The numerical simulations have demonstrated that the
fluid-particle interactions dominate over solid friction. These simulations have reproduced the experimen
tal results despite using a mixture model that considers the granular material as incompressible.

This result confirms that the dissipation is dominated by viscous forces as the particles approach
rather than solid friction after they collide. In the case of the dispersed phase, as well inelastic.
Here, particle Reynolds numbers are within the Stokes regime, which justifies the incompressibility
assumption for both phases. As our experiments and simulations include only relatively shallow particle
layers, overburden pressures are not enough to deform the disperse phase at the bottom, thus allowing
to plausibly assume that particles are effectively rigid.

Even though the present experiment has been performed in a container with a fixed aspect ratio,
it is reasonable to speculate how this may affect the morphology of the sediment layer. Increasing the
container height will increase the period of time during which the particle-rich layer flows down slope
above the developing sediment deposit, for a given initial concentration particle and container width
and so we would expect the surface of the final deposit to be more horizontal in a manner similar to
the decrease in θ seen here by increasing the initial concentration.

Contrarily, increasing the width of the container will not significantly alter the down-slope flux
while increasing the volume of particles needing to be transported to achieve a given θ. Thus, we would
expect θ to increase towards θs and the deposit to be of a more uniform thickness (for extreme high
or low aspect ratios, the Boycott effect may become important and contribute to the final slope in a
manner not described here). Additionally, simply changing the size of the container while maintaining
the same aspect ratio will change the time scale over which the sediment layer is created, but not its
morphology.
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Finally, from a practical point of view, these results are important for future application in
engineering sciences, specifically in chemical and pharmaceutical industry (e.g., the application of
blood cell sedimentation for monitoring of the bioequivalence of drugs based on acetylsalicylic acid),
petroleum and mining industry (e.g., transporting of copper concentrates and mining waste), as well
as in many kinds of industrial separation processes of granular material from a fluid (e.g., water
treatment). In mineral processing, the concentration stage uses water as a carrier fluid for comminution
products, where an important part of the fluid is recovered in thickeners. Although the settling
mechanism in the mid section of thickeners is vertical, the bottom of these equipment is conical,
inducing a particle flow component parallel to the bottom.

On the other hand, in the wastewater treatment industry it is common to find lamella settlers,
whose working principle is the Boycott effect. Knowing that the final angle adopted by the sediment
layer shows strong dependencies on the initial particle concentration and the container inclination, but
not the fluid viscosity in this Stokes number range, might improve the design and operation in these
examples.

Characterization of a sediment layer in tilted ducts

Regarding the numerical work carried out, we have solved the continuity and momentum equations
associated with the problem of sedimentation of fluid-solid mixtures at high concentrations in tilted
ducts, under different physical conditions using COMSOL Multiphysics with the CFD package. The
variables studied were the initial particle concentration, the fluid viscosity and the angle of the duct.
A rich phenomenology associated with the dynamics of mixtures at high particle concentrations and
at different angles was observed.

The present results showed that the initial particle concentration is a very relevant variable for
knowing under what conditions the duct could get obstructed and, in combination with some system
angles, they might represent a risk of duct plug. In particular, we have found that viscosity is not as
important as the initial concentration of particles and the angle of the system. Additionally, we found
a mathematical expression using scaling arguments, formed by three dimensionless groups including
the inertial number, particle concentration and the ratio between the sedimentation Grashof number
to the Reynolds number to explain the height of the sediment layer in the slope change zone of a duct.

Imposing a condition of obstruction, we have found a combination of initials concentrations of
particles and fluid viscosities that shall block the duct in the slope change zone. Finally, we have related
and extended these results with a dimensionless expression describing the phenomenon of obstruction.
Although the present results are expressive of the effect of solids concentration and duct angles, a more
in depth analysis is required to unveil the physics of the particle organization near the zone where the
slope change occurs.
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To complement the numerical results obtained in this section. Laboratory experiments are being
made to understand the process of settling slightly polydisperse particles. In these experiments, we
will study the instabilities in the sedimentation process (with special emphasis at the slope change
zone). Here, we will try to answer the questions of how and when instabilities growth, in order to
know what will be the consequences in engineering transport of mixtures fluid-particles. Preliminary
results are shown in next section. We believe that the results presented in this research will represent
a small step forward in the understanding of the formation of sediment layers on sloping geometries,
and future engineering applications.
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Chapter 5

Future work

I would like to show some preliminary experimental results related with the sedimentation process
in inclined ducts. The results obtained in this series of experiments will be presented to the scientific
community of physics of fluids, as an ISI paper during 2017.

We have made experiments with two types of particles. Glass particles with a diameter d1 =
1000 ± 30 (µm) and a density of ρ1 = 2.50 ± 0.01 (g/cm3) and, resin particles with a diameter d2 =
600 ± 10 (µm) and a density of ρ2 = 1.10 ± 0.02 (g/cm3). The main objective of this experiment
is to characterize the height of the sediment layer at the slope change zone as a function of particle
concentration (both species) and the inclination angle of the duct. Figure 5.0.1 shows the sedimentation
process in a tilted duct as a function of the concentration particle.

Figure 5.0.1: Sedimentation process in a tilted duct as a function of the concentration particle. Experimental conditions:
θs = 25◦ and particle percentages d1 = 7.5% and d2 = 92.5%. The images correspond to the final time of the sedimentation
process.
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Additionally, we are interested in studying, characterize and analyze the instabilities that occurs
at the interface between the clear fluid layer and the suspension region. Figure 5.0.2 shows the
sedimentation process in a tilted duct as a function of time.

Figure 5.0.2: Sedimentation process in a tilted duct as a function of time. Experimental conditions: θs = 25◦, φ = 0.40
and particle percentages d1 = 7.5% and d2 = 92.5%.

Finally, we are interested in studying the instabilities due to the resuspension of particles. Figure
5.0.3 shows the resuspension process in a tilted duct as a function of time. Advances in understanding
these physical phenomena could bring an endless number of benefits in engineering and applied physics
related to particle suspensions.
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Figure 5.0.3: Resuspension process in a tilted duct as a function of time. Experimental conditions: θs = 25◦, φ = 0.40
and particle percentages d1 = 7.5% and d2 = 92.5%.
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