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Automatic pattern recognition applied to seismic signals from volcanoes may assist seismic monitoring by
reducing the workload of analysts, allowing them to focus on more challenging activities, such as producing re-
ports, implementingmodels, and understanding volcanic behaviour. In a previouswork,we proposed a structure
for automatic classification of seismic events in Llaima volcano, one of the most active volcanoes in the Southern
Andes, located in the Araucanía Region of Chile. A database of events taken from threemonitoring stations on the
volcano was used to create a classification structure, independent of which station provided the signal. The data-
base included three types of volcanic events: tremor, long period, and volcano–tectonic and a contrast group
which contains other types of seismic signals. In the present work, we maintain the same classification scheme,
but we consider separately the stations information in order to assess whether the complementary information
provided by different stations improves the performance of the classifier in recognising seismic patterns. This
paper proposes two strategies for combining the information from the stations: i) combining the features extract-
ed from the signals fromeach station and ii) combining the classifiers of each station. In the first case, the features
extracted from the signals from each station are combined forming the input for a single classification structure.
In the second, a decision stage combines the results of the classifiers for each station to give a unique output. The
results confirm that the station-dependent strategies that combine the features and the classifiers from several
stations improves the classification performance, and that the combination of the features provides the best
performance. The results show an average improvement of 9% in the classification accuracy when compared
with the station-independent method.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Automatic detection and classification of volcano-seismic activity
has gained importance because of the growing need to monitor and
complement the existing seismic networks on active volcanoes. In
Chile, this is even more challenging due to the large number of active
volcanoes and increased economic activity around them, such as
housing, tourism, agriculture, and mining. Volcano seismic patterns
help in identifying processes that occur inside the volcano and could
urilem),
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potentially be used as precursors of an eruption (Lahr et al., 1994;
Chouet, 1996; Zobin, 2012). Tectonic seismicity, for example, although
it may not be an indication of an eruption, could be used in setting
different alert levels for the safety of citizens and authorities.

The Southern Andes Volcano Observatory (OVDAS) belongs to the
National Service of Geology andMining (SERNAGEOMIN) and is respon-
sible for volcano monitoring in Chile. OVDAS personnel have designed
and installed a network of instruments for monitoringmore than 40 ac-
tive volcanoes. OVDAS needs to process signals from volcanoes to iden-
tify on the one hand changes in base-level activity, and on the other
patterns to develop models in order to identify precursors of eruptive
stages. This requires a large number of analysts and a multidisciplinary
group of experts in the areas of volcanology, seismology, physics, and
geology, to assess and interpret volcanic seismic signals continuously.
Precursor signals of volcanic eruptions are difficult to identify; however,
experts can detect situations in which alerts can be activated.
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Table 1
Description of seismic stations used in this study.

St Cod Lat (°) S Long (°) W Dist. crater

Motín MOT 38.675 71.784 3 (north)
Laguna Verde LAV 38.701 71.651 7 (west)
Llaima LLA 38.784 71.695 10 (south)
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In the literature, many methods have been proposed for automatic
detection and classification of seismic events, to improve response
times (Carniel, 2014). The results are generally encouraging, but only
in limited experiments excluding on-line processes in which discrimi-
nation tends to be more complex. Generally, a classic pattern recogni-
tion approach has been adopted in which a database of events is
created, data are pre-processed, features are extracted and, finally, the
events are classified, that is, a classifier assigns a label (class) to the
event. The information from a single station or from several stations is
normally used to generate a single database to design and validate the
classifiers. This typically leads to a classifying process which does not
consider the information of which station recorded the event.

Data from a single stationwere used to design different classification
approaches in Masotti et al. (2006), Beyreuther et al. (2008), Rouland
et al. (2009), Langer et al. (2011), and Bicego et al. (2015). In other
works, the information of many stations was considered but they
were merged to form a single database, as in Álvarez et al. (2012),
Esposito et al. (2013), Carniel et al. (2013), Cortés et al. (2014, 2015),
Curilem et al. (2014a, 2014b), and Bicego et al. (2015). A large variety
of classification tools were used in these works, but in all of them, the
classification of events was station-independent, since even when
more than one station was considered, a single database was created
to train and validate the classification models. This procedure is used
despite the fact that most of the volcanoes are monitored by multiple
seismic stations; notmuch research has been carried out into how to ex-
ploit the complementary information contained in the signals received
from different stations to enhance classification performance. Based
Fig. 1. Location of the seismic stat
on the location of the stations and the source of the seismic activity,
the signals will suffer different types of distortion, depending on the
type of sensor, its proximity to the crater, the distance from the sources
that generated the seismic activity, or the type of terrain that waves
travel through. Moreover, the transducer response may differ from
one station to another. Hence the need arises for a classification system
that incorporates the additional information contained in signals
observed by multiple stations.

There are few works which explore the alternatives offered by the
use of multiple stations. In Scarpetta et al. (2005), the authors consid-
ered four stations and designed a specialized classifier for each station.
They performed station-dependent classification of two classes:
volcano-tectonic earthquakes and other kinds of event (thunder, quarry
blast, and explosions). The authors employed data from short-period
analogue stations and digital broadband stations in the Mt. Vesuvius
(Italy) monitoring network. Although the results show good individual
performances, the station-dependent classifiers were not combined.
Ibáñez et al. (2009) performed a portability test on the classification
system of different stations on two active volcanoes, Stromboli and
Etna (Italy), to verify whether a classifier trained with the database
from one station and one volcano could be employed to recognize sig-
nals from other stations or volcanoes. In both cases, the same type of
short-period instruments was used. Two types of events were consid-
ered: explosions and noise for Stromboli, and tremor bursts and back-
ground tremor for Etna. Hidden Markov models were used to perform
the classification. The results confirmed the robustness of the proposal,
subject to the accuracy of themanual segmentation to train themodels.
In Duin et al. (2010), the authors investigated whether combining
signals from different stations would improve the classification perfor-
mance or not, and whether a classifier trained with one station could
be tested with data from another station. They considered earthquakes,
icequakes, and long-term tremor events obtained from five seismic sta-
tions on Nevado del Ruiz (Colombia) and used subspectra quadratic
classifiers. The results showed that individual stations had significantly
different performances; also that combining signals of different stations
ions considered in the study.



Fig. 2. Time representations of events of the four classes (TR, LP, OT, VT) recorded at the different stations (MOT, LAV, LLA) using the Seismic Wave Analysis and Real-time Monitoring
(SWARM, 2011) tool.
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improved the classification results of individual station classifiers.
Finally, the authors showed that combining classifiers of different
stations did not improve the results of individual station classifiers;
however, merging the signals led to an improvement in the accuracy
of classification, showing that although the signals measured by the
different stations were similar, they contain useful additional informa-
tion. The results of thesepreliminaryworksmotivated us to applymerg-
ing strategies and evaluate if they are able to improve the capacity for
automatic classification of our classifying structures for the Llaima
volcano.

Distortions resulting from the location and quality of the stations
affect the records. This is not generally taken into account by the auto-
matic classification structures of literature, although it is interesting to
note that in practice, human analysts consider information from several
Fig. 3. Spectral representations of the events of the four classes (TR, LP, OT, VT) recorded at
Monitoring (SWARM, 2011) tool. In the graphs, the x-axis is time and the y-axis is frequency.
stations when labelling the seismic events. In the present work, we
analyse how information from different stations could be combined to
improve discrimination of the seismic events considered. The case
study is Llaima volcano, and we included three of its stations placed
strategically with respect to the crater. The general classification
structure presented here is inspired by Curilem et al. (2014a);
however, in this work, we propose different strategies for combining
the information from the stations to generate station-dependent
classifiers. The objective is to assess whether the procedure carried
out by a human analyst, who analyses several stations in order to take
a decision, can be applied to automatic classification to improve its
performance. The following sections describe the data used in this
study, the classification structures applied, the combination strategies
proposed, and the principal results obtained.
the different stations (MOT, LAV, LLA) using the Seismic Wave Analysis and Real-time



Table 2
Number of events of each class recorded at the three seismic stations.

Station

Class MOT LAV LLA
OT 166 166 166
LP 296 296 296
VT 134 134 134
TR 173 173 173
Event/station 769 769 769
Total 2307
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2. Case study: Llaima volcano and its monitoring system

2.1. The volcano

Llaima, one of the biggest volcanoes in Chile by volume and one of
the most active in South America, is a compound strato-volcano of
basaltic to andesite–basaltic composition, located in the volcanic zone
of the Southern Andes (Stern, 2004; Mora-Stock et al., 2012). It has
produced major eruptions, with a historical record of around 50 docu-
mented eruptions between 1640 and 2009 (Naranjo & Moreno, 2005),
the biggest of which was in 1640. Its latest eruption cycle (2007–
2010) gave rise to two large eruptions in January 2008 and April 2009
with VEI – volcanic explosivity index (Newhall & Self, 1982) – of 3
and 2, respectively. In general, the ascent and going up of magmatic
materials through the volcanic conduits generate a wide variety of
signals which are recorded by sensors placed around the volcanic edi-
fice. Although instrumental monitoring has been carried on since 1996
with temporary seismic stations, the National Volcanic Vigilance
Programme, started in 2009, decided to complement and expand
monitoring of the volcanowith an instrumental network. Today, Llaima
volcano has a network equipped with seismic sensors, GPS, tilt-meters,
scan DOAS (differential optical absorption) and cameras for visual
observation. The data are transmitted in real time to the national mon-
itoring and processing centre in the city of Temuco, 70 km west of the
volcano. Llaima volcano has 9 seismic stations, which together with
the other instruments are used to monitor its activity. In the present
study, only three stations were considered: Motín (MOT), Laguna
Verde (LAV), and Llaima (LLA), Table 1.

MOT is the reference station for the volcano (seismic station where
all measurements from seismic events are recorded). Historically,
these stations present good stability over time, while their different
distances from the crater, as shown in Fig. 1 and Table 1, ensure ade-
quate variability of the shape and other characteristics of seismic
records. The analysed data come from broadband seismic stations
(Güralp 6TD 30s). Only the Z componentwas considered for all stations
because it provides a better signal to noise ratio in most events.

The seismic volcanic events considered were Long-Period (LP),
Tremor (TR), and Volcano–Tectonic (VT); they were recorded from
January 2010 to December 2013. All the classified events meet the
classification threshold defined by OVDAS (which depends on the dis-
tance between seismic source and stations) i.e. their amplitudes are su-
perior to 2 μm/s and their signal-to-noise ratio (SNR) are superior to 1.5
(at the reference MOT station). The seismic record observed in the
volcano presents predominantly LP events and to a lesser degree TR;
these signals are typically associated with magmatic and hydrothermal
fluids (Chouet, 1996). The latest eruptive period included continuous
tremor and discrete tremor signals with durations longer than 5 min.
Fig. 4. General structure of the proposed pattern recognition system.
In the present work, tremor events lasting up to 10 min were included,
with a general average of approximately 2 min. The tremor was distin-
guished from distant regional seismic events by analysing the energy
variation in the frequency band 0.5–15 Hz. VT seismicity, related with
the rupture of fragile material (Chouet and Matoza, 2013), is less recur-
rent in Llaima volcano, and most frequently found in the crater and
15 km south of the crater. A fourth group called OT (other types) was
defined to cluster all the signals that did not correspond to any of the
first three events (OT principally groups non-volcanic events). The OT
set is mainly composed of background noise that is saved by analysts
twice a day to keep track of the background signal recorded by the
station. The OT set also contains ice-quake or ice breaking events,
Local Tectonic (principally the Liquiñe-Ofqui Fault Zone), Regional
Tectonic (Nazca-South America subduction zone), Distant Tectonic, av-
alanches caused by slippage of snow and ice, and other events detected
by the analysts the origin of which is unknown and which cannot be
classified in any of the above established classes. The purpose of creating
theOT classwas to offer a contrast groupof signals to train the classifiers
and thus increase their discrimination performance. This set is very
important for discriminating signals that are not related to volcanic
activity.
2.2. The database of seismic events

The database was generated by supervised selection of the events
from recorded signals. As mentioned before, the signals in this work
were treated separately according to their station. After recognising
the signal as a volcanic event, anOVDAS analyst performed the segmen-
tation (start and end recognition) from the digital file in which seismic
signals are kept after manual classification (labelling) of each event, for
all the stations, following the procedures used in the observatory. We
only considered events present at least in two of the three stations. If
an event was not recorded in one station, its start and end values
were set by replicating the start and end values of the nearest station
in which the event was recorded, considering that on Llaima the dis-
tances between seismic sources and stations are small (b10 km) and es-
timating the velocities of seismic phases (N3 km/s). The record ought to
be included in the timewindowwhichwe set (N2min). The segmented
signals were exported to the Matlab environment. A volcano seismolo-
gist also analysed thedata to confirm that the eventswere classified cor-
rectly, that is, they followed the same procedure used by OVDAS. It
should be noted that the events were segmented manually, thus their
duration is variable.

Fig. 2 shows examples of events of the different classes recorded at
different stations. Fig. 3 shows the time–frequency plots (spectrograms)
of the events of Fig. 2. Each spectrogram is obtained by normalising the
event with the maximum amplitude of its signal, and then dividing it
into segments, each one being 10% of the total length of the signal
with 86% overlap. Each window is then transformed to frequency
domain using the FFT function in Matlab to represent a slice in the
Fig. 5. Classification structure: “one versus all” structure of the classifiers with the
confidence step – the stage at which it is decided which of the two “1” values prevails –
for the output final classification.



Fig. 6. Station-independent classification: In this approach, a single classifying structure is used to classify the signals coming from any station of Llaima volcano.
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spectrogram that covers the entire duration of a window (Oppenheim
et al., 1999). Table 2 shows the distribution of the classes for each
station.
3. Classification strategies

In a previous work (Curilem et al., 2014a), a station-independent
classifying structure was proposed to classify the signals recorded at
the volcano by any seismic station. In this paper, station-dependent
event classification is performed using two different approaches:
combination of the features and combination of the classifiers. We
started with an assumption that the OVDAS analyst applies when
identifying and classifying seismic signals: the more stations reviewed,
the greater the degree of certainty in labelling an event. This section
will first present the classifying structure proposed in the previous
work, and then showhow this structurewas applied to the twomerging
approaches proposed in the present paper.
3.1. General method for the design of the station-independent classifiers

The classical pattern recognition structure shown in Fig. 4 was
applied in Curilem et al. (2014a) to design a classifying structure for
LP, VT, TR, and OT events. It can be divided in two main steps: pre-
processing and classification. The pre-processing step transforms the
signal into a feature vector that provides a discriminative parameteriza-
tion of the event. The classification step is formed by a recognizer
structure, the task of which is to assign one of the four class labels to a
particular event, according to its features. The input of the classifying
structure is a seismic event and the output is its label (OT, LP, VT, and
TR). These steps are described in detail below.
Fig. 7. Station-dependent classification: Combination of the features per station. In this approac
feature vector of 5 features × 3 stations long. In the classifying step, this new feature vector is
3.1.1. Pre-processing step
Since the most important information from volcano events is below

25 Hz, signals coming from the sensors were down-sampled from 100
to 50 Hz and filtered with a 4th order Butterworth band-pass filter
between [0.5 Hz, 24 Hz]. This band was used because most of the
seismic energy for the events considered is contained in this range.

The signals coming fromdifferent seismic stationswere inspected by
an analyst who performed a manual segmentation (definition of the
beginning and end) of the events. Thus, the events extracted from the
continuous records of many sensors have variable length and they are
stored in a unique database. Five features were extracted from the
variable length events:

− Three features from the time domain: themean, themedian, and the
maximum value of the event. These features were calculated for
each segmented event, directly from the time samples, with the
exception of the mean that is calculated over the absolute values of
the samples.

− One feature from the frequency domain: the dominant frequency.
This featurewas calculated by themeanof thefive highest frequency
peaks of the Fourier transform of each event.

− One from the time–frequency domain: the energy in 4th band
([1.56–3.13] Hz) of thewavelet transform. This feature was calculat-
ed as the ratio between the sum of the components of the 4th
wavelet band over the sum of all the wavelet components (in all
the bands). It is expressed in percentage. A Daubechies mother
wavelet type five was used with five decomposition levels.

These features were selected by a feature selection process
performed in previous works (Curilem et al., 2009, 2014a), to find
which combination of the features improved the performance of the
h, only the pre-processing step is performed by station. The feature extraction produces a
the input of the classifying structure.



Fig. 8. Station-dependent classification: Combination of the classifiers per station. In this approach, the whole pattern recognition structure is implemented for each station. A classifiers-
merging step decides the final output of the classification, according to the information of the individual classifying structures.
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classifiers. All the extracted features were linearly normalized between
[−1, 1].

3.1.2. Classifier design
Support vector machines (SVM)were used to implement the classi-

fying step. SVM is an approach which creates a linear decision hyper-
plane to separate two classes by applying a quadratic programming
optimisation process (Vapnik, 1995). When the classes are not linearly
separable, the input features are projected to an appropriately chosen
kernel-induced feature space of higher dimension. The kernel function
performs the projection of the data from its original input space to the
feature space where the two classes can be linearly separable. In this
work, we used one of the most applied kernel functions, the Gaussian
or Radial Basis Function (RBF-kernel). The decision hyperplane is calcu-
lated given c, a regularization parameter that penalizes the errors and σ,
a parameter that controls the standard deviation of the Gaussian kernel
function (Hamel, 2009). The tuning of these parameters was performed
by a grid search: the parameters c andσwere increased by powers of 2X,
where the exponents X took values in a discrete range (Hsu et al., 2003).
The SVM functions of the bioinformatics toolbox ofMatlabwere used to
solve the optimization problem.

Since SVM are binary classifiers, they have to be combined to handle
multiclass problems (Hamel, 2009). The two-class approach described
above can be extended to multiple class classification problems by
adopting methods such as the “one versus all” configuration (Giacco
et al., 2009). This is a simple combination in which each classifier
discriminates one class from all the others. Fig. 5 shows the resulting
classification structure.

Each of the outputs of the classification structure corresponds to a
class; however, this output codification presents the limitation that,
when a classifier is wrong, a disagreement situation may occur: none
or more than one classifiers may be activated for a single event. An ex-
ample is presented in Fig. 5where theOT and TR classifiers are activated
at the same time. To solve the disagreement, a confidencemeasure was
proposed at the output of the classification structure, as shown in Fig. 5.
The Bayes-based confidence measure (BBCM) was used (Yoma et al.,
2005). As mentioned before, the SVM is a two-class classifier that
finds a maximal margin decision hyperplane of the two classes, based
on a kernel function. In this proposal, a score is assigned to the distance
between the input sample and the hyperplane. If the sample is closer to
the hyperplane, the decision of the classifier is less reliable and vice
versa. Each classifier output has a score value assigned to it, to decide
which output is themost reliable. Ifmore than one classifier is activated,
this measure retrieves themost confident positive output (the onewith
the highest confidence measure) and sets all the others to zero, as
shown in Fig. 5. If all the classifiers are set to zero, thismeasure retrieves
the least confident negative output (lowest confidence measure) and
sets it to one. As a consequence, the confidence measure always
retrieves the activation of only one output: the most reliable label.

3.2. Station-independent classifying structures

Thegeneral structure proposed in Curilem et al. (2014a) is presented
in Fig. 6. This is a station-independent classifying structure, as it clas-
sifies events coming from any station. The classifying structure was de-
veloped based on a database that stored events coming from any
station. Thus a general learning process was performed.

This procedure was applied in the present work. Events randomly
selected from the database of each station were used to form a single
database, like in previous works. This database was used to design a
station-independent classifying structure.

3.3. Station-dependent classifying structures

The automatic classificationmethod presented above (Curilem et al.,
2014a) was applied in this work considering separately the information
of the different stations. The same events recorded by three different
stations were organised in separate databases that were used to imple-
ment station-dependent classifying structures. It should be noted that,
as the events included in the databases had to be recorded in at least
two of the three stations considered, the databases of this work did
not contain the same events as those considered in our previous work.

As in our previous work, we propose here a classifying structure
consisting of four SVM classifiers, one for each kind of event, and a con-
fidence step to guarantee a unique output. Here, the ranges of the grid
search took values from −5 to 10 for c and from −15 to 9 for σ, with
a step of 1. Unlike the previous work, the five features were used in all
the classifiers to simplify comparison of their performances, and a
cross-validation strategy was used to obtain the decision hyperplane
of each SVM and to validate the values of c and σ. The data were
partitioned into 5 folds or subsets. As the databases stored 768 events,
each fold contained approximately 153 events. The amount of data in
each validation fold ensured an adequate variance of the classification
performance, making more complex strategies unnecessary, for exam-
ple, the leave-one-out or the 10-folds cross-validation (Kalayeh and
Landgrebe, 1983; Mitchell, 1997). Five classifying structures were then
trained and validated: the first classifier was trained using four folds
and its performance indices were calculated using the remaining fifth
fold. The next classifier was trained using other four folds and validated
with the remaining fold. This process was repeated until all the folds



Table 4
Performance indices of the individual classifiers of the station-independent classifying
structure.

Class OT LP VT TR

Exactitude 87.26 80.88 83.09 94.15

Error 12.74 19.12 16.91 5.85

Sensitivity 69.88 75.00 60.45 80.92

Specificity 92.04 84.57 87.87 97.99
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were used for training and validation (5 iterations). The classifier that
achieved the best performance was selected and the other four classi-
fiers were discarded; however, the final performance indices were
calculated as the mean of the performance of the five classifiers, that
is, considering all the folds (thewhole data set). This process is repeated
for each class. Themain advantage of the cross-validation process is that
all the examples in the dataset are used for both training and testing,
avoiding over-fitting.

3.3.1. Strategy 1: Combination of the features
In this approach, the database stores the records from each station

separately and the pre-processing step is separated for each station, as
presented in Fig. 7. This proposal enabled us to assess whether the fact
of having input information fromdifferent stations improves the perfor-
mance of the classification structure. The procedure is as follows: each
event from the database is recorded by the three stations under study.
The five features are extracted from the three records, thus obtaining
a dimension features vector: n features × m stations per event. Here,
n = 5 and m = 3, thus 15 features per event. In this proposal, the
combination of the features is very simple: the feature vector is formed
by all the extracted features. This vector is the input to the classifying
structure that performs the identification. As shown in Fig. 7, the classi-
fication step is unique for all the stations and only the features are
station-dependent.

Fig. 7 presents the feature extraction process performed separately
from the stations of the volcano and the combination of features before
the classifying structure is applied. The training and validation of the
classifiers were performed with this new input vector. It may be
observed that the general method for the design of the pattern recogni-
tion system remains the same as presented in Fig. 4.

3.3.2. Strategy 2: Combination of the classifiers
In the second approach, each seismic station of Llaima volcano had a

complete pattern recognition structure, independent from the others, as
shown in Fig. 8. This means that the general pattern recognition struc-
ture of Fig. 4 was replicated for each station. The station-dependent
classifying structures were trained with signals coming exclusively
from their own station. This proposal enabled us to assess two situa-
tions: whether the system performance is improved by having
specialised classifiers for each station and whether this performance is
improved by merging the classifiers to generate a single decision. As
Fig. 8 shows, in this strategy, the classifiers are station-dependent. A
final stage is added to merge the decisions of the classifiers and deliver
a single system output.

The combination of the classifiersmerges the output of each station-
dependent classifying structure. Threemerging criteria were developed
in this work: one used a simple majority vote and the other two used
the confidence criterion described in Section 3.1.2. In the first case, the
final decision corresponds to the class which received the most votes
from the set of classifiers. In the second case, a confidence measure for
each classifier decision is used (Huenupan et al., 2008). BBCM is used
Table 3
Contingency table of the station-independent classifying structure.

OT LP VT TR Total

OT 116 20 26 4 166

LP 26 222 41 7 296

VT 9 43 81 1 134

TR 13 10 10 140 173

Total 164 295 158 152 769
as a confidence measure and the two schemes implemented for merg-
ing the classifiers' outputs were maximum and mean BBCM. In the
merging with maximum BBCM, the output of each local classifier is
the class selected with its corresponding confidence, and the final
decision is one of the classes previously selected by local classifiers
with the highest reliability. In themergingwithmean BBCM, the output
of each classifier is the reliability for each class (there is no local
decision). The final decision is the class that achieves the highest
mean of the all output BBCM values given by the local classifiers. For
more details see Appendix 1.
3.4. Classifier performance indices

The classification results allow constructing the contingency tables
of the classifiers. The contingency table is a tool which allows us to eval-
uate the performance of a classifier, compared to an expert. It consists of
a square matrix containing all the classes considered: the rows contain
the events of each class as classified by the expert; the columns contain
the events of each class as classified by the classification structure. The
diagonal therefore shows the agreements while the rest of the cells
show howmany events of a classwere erroneously classified in another
class.

The kappa coefficient (Landis and Koch, 1977;Witten et al., 2011) is
ameasure of agreement between the classification of the expert and the
classifying structure, for this multiclass approach. Kappa values near to
one show excellent levels of agreement. However, to simplify the
comparison of the results, the performance will also be evaluated in a
binary approach, that is considering separately the performance of
each classifier (LP, TR, VT, and OT) in the one versus all configuration.
To perform the binary evaluation, four statistical indices were used to
evaluate the performance of each classifier: sensitivity (Se) shows how
good the classifier is at recognizing the positive class; specificity (Sp)
measures the ability of recognizing the events that do not belong to
the positive class; exactitude (Ex) and error (Er) show the total successes
and errors, respectively, among the total classified events.

To calculate the performance in the multiclass approach, for n
samples of C classes, the kappa coefficient (K) is computed from the
contingency table using Eq. (1), that is, the agreement minus the
Table 5
Contingency table of the station-dependent classifying structure implemented with the
multi-station feature classifiers.

OT LP VT TR Total

OT 157 4 5 0 166

LP 9 281 5 1 296

VT 8 4 122 0 134

TR 0 0 0 173 173

Total 174 289 132 174 769



Table 6
Performance indices (%) of the individual classifiers of the station-dependent classifying
structure implemented with the multi-station feature classifiers.

Class OT LP VT TR

Exactitude 96.62 97.01 97.14 99.87

Error 3.38 2.99 2.86 0.13

Sensitivity 94.58 94.93 91.04 100.00

Specificity 97.18 98.31 98.43 99.83

22 M. Curilem et al. / Journal of Volcanology and Geothermal Research 315 (2016) 15–27
probability that the agreement is due to chance (Landis and Koch,
1977).

K ¼ Po−Pe

1−Pe
ð1Þ

where Po is the observed agreement between the classifier and the ex-
pert (diagonal), and Pe is the probability that the agreement is due to
chance (see Eqs. (2) and (3)).

Po ¼
XC

i¼1

pii ð2Þ

Pe ¼
Xc

i¼1

pi:p:i ð3Þ

where pii is the joint proportion of the agreement and pi. and p.i are the
sum of the joint proportions of the classifier (rows) and the expert
(column), respectively, for each class.

To calculate the performance in the binary approach, the following
values can be extracted from the contingency table: true positives
(TP) is the number of events correctly classified as belonging to a specif-
ic class; true negatives (TN) is the number of events correctly classified
as not belonging to a specific class; false positives (FP) and false
negatives (FN) are the number of events classified erroneously, and
the statistical indices can be obtained in percentages using Eqs. (4) to
(7), where n is the total number of events (Witten et al., 2011).

Ex ¼ TP þ TN
n

� 100 ð4Þ

Er ¼ FP þ FN
n

� 100 ð5Þ

Se ¼ TP
TP þ FN

� 100 ð6Þ
Table 7
Contingency table of the station individual classifying structures.

STATION: MOT STA

Classifier C

OT LP VT TR Total OT LP

Ex
pe

rt

OT 129 23 4 10 166

Ex
pe

rt

OT 134 5

LP 24 266 2 4 296 LP 12 273

VT 14 37 83 0 134 VT 6 2

TR 3 0 0 170 173 TR 1 3

Total 170 326 89 184 769 Total 153 283
Sp ¼ TN
TN þ FP

� 100 ð7Þ

It is important to remind that the contingency tables presented in
the next sections show the results of the whole dataset, as all the folds
of the cross-validation strategy were used as validation set.
4. Results

In this section,wemake a comparative analysis of the results obtain-
ed in the previous work with the present proposal of the two combina-
tion strategies. As stated above, the classifying structures that are being
evaluated consist of four classifiers, one for each class. The individual
performances of each classifier of the classifying structure are presented
for each strategy.
4.1. Station-independent classifiers

As in our previouswork (Curilem et al., 2014a), we implemented the
station-independent classifying structure shown in Fig. 6, but here using
the present database. This databasewas implemented selecting random
events from the three stations, avoiding to read the same event inmore
than one station (that is, just one record of each event was considered).
Table 3 shows the contingency table obtained from this classifying
structure. As mentioned before, the diagonal in Table 3 contains
the agreement between the reference class (set by the expert) and the
output of the automatic classification. The other cells show the
misclassified events: for example, in the OT line, 20 OTwere incorrectly
classified as LP, 26 as VT, and 4 as TR. The kappa value of this classifying
systemwas κ=0.63. Table 4 shows the individual performance indices
of the classifiers per class. This table shows that the exactitude (Ex) is
superior to 80% for all the classifiers. It can be seen from Table 4 that
the sensitivity is low for VT and OT (b70%) and specificity is low for LP.
4.2. Station-dependent classifiers: Combination of features

Table 5 shows the contingency table obtained by the classifier
designed with the combination of the features per station, as explained
in Section 3.3.1. The kappa value of this classifying systemwas κ=0.94.
Table 6 shows the performance indices of the best classifiers per class. A
significant improvement in the classification of the OT and TR events
can be seen in Table 6. The corresponding classifiers have errors inferior
to 4% and a sensitivity superior to 90% for all classes. The improvements
for the TR group were the most significant.
TION: LAV STATION: LLA

lassifier Classifier

VT TR Total OT LP VT TR Total

25 2 166

Ex
pe

rt

OT 141 1 23 1 166

11 0 296 LP 16 264 16 0 296

126 0 134 VT 12 11 110 1 134

0 169 173 TR 9 0 0 164 173

162 171 769 Total 178 276 149 166 769



Table 8
Performance indices (%) of the individual classifiers of the classifying structures implemented for each station.

STATION: MOT STATION: LAV STATION: LLA

Classifier Classifier Classifier

OT LP VT TR OT LP VT TR OT LP VT TR

Ex 89.86 88.30 92.59 97.79 93.37 95.71 94.28 99.22 91.94 94.28 91.81 98.57

Er 10.14 11.70 7.41 2.21 6.63 4.29 5.72 0.78 8.06 5.72 8.19 1.43

Se 77.71 89.86 61.94 98.27 80.72 92.23 94.03 97.69 84.94 89.19 82.09 94.80

Sp 93.20 87.32 99.06 97.65 96.85 97.89 94.33 99.66 93.86 97.46 93.86 99.66
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4.3. Station-dependent classifiers: Combination of classifiers

As mentioned in Section 3.3.2, the combination of classifiers
required one classifying structure per station; for this reason, the indi-
vidual classifying structures have to be evaluated separately for each
station. The classifying structures were trained and validated with
events coming exclusively from their station. Table 7 shows the contin-
gency tables obtained separately by the classifiers designed for each
station. The kappa values for MOT, LAV, and LLA, respectively, were
κ=0.78, κ=0.88, and κ=0.84. Table 8 shows their individual perfor-
mance indices.When the results of our previouswork, shown in Table 4,
are compared with the results shown in Table 8, it is interesting to
notice the improvement in the classifying performance of the OT and
TR groups for the individual station classifiers. LP classification
improved in some stations and VT recognition performance decreased
in all the stations. It is also interesting to notice that some classes are
better recognised in some stations than in others. The LAV station
presented the best recognition performance, while MOT presented the
lowest performance.

After the classifiers have been evaluated separately by station, their
combination will retrieve a unique final label. Table 9 shows the
contingency tables obtained by themerging of the classifying structures
implemented with the voting, BBCMmax and BBCMmean strategies.
The kappa values for the voting, BBCMmax, and BBCMmean merging
strategies was the same: κ = 0.0.91. Table 10 shows the performance
indices of the combination for each strategy. Table 10 shows that the
results of the three combination strategies are not significantly differ-
ent, although the voting strategy presented a slight improvement. Com-
paring the results shown in Table 6 with those shown in Table 10, the
merging of features outperformed the merging of classifiers. However,
when the results of Table 10 are compared to the results of the previous
Table 9
Contingency table of the merging of the classifying structure implemented for each station.

MERGE: voting ME

classifier

OT LP VT TR Total OT LP

Ex
pe

rt

OT 144 3 19 0 166

Ex
pe

rt

OT 140 4

LP 8 286 2 0 296 LP 6 288

VT 14 3 117 0 134 VT 6 9

TR 1 0 0 172 173 TR 1 0

Tot al 167 292 138 172 769 Tot al 153 301
work (Table 4) it is interesting to notice the significant improvement of
the merging of classifiers results for the OT, LP, and TR groups.

4.4. Final comparison of the results

Table 11 shows the kappa values for the best models of the different
combination strategies. Table 12 shows the performance indices of the
station-independent strategy and the two station-dependent strategies
proposed here. This table shows the better results achieved by treating
the information of each station separately, for all classes. In particular,
the exactitude is significantly superior when compared with the classi-
fiers of the station-independent strategy proposed in this work and in
our previous work (Curilem et al., 2014a). The improvements in the
sensitivity are outstanding for the combination of features strategy.
Analysing the sensitivity indices, OT and VT are constantly the classifiers
with the lowest performance; however, they improved for the combi-
nation of the features strategy.

Analysing the exactitude, sensitivity, and specificity of the classifiers
presented in Table 12, it can be observed that strategy 1: Combination of
the features is the strategywith the higher performances. Fig. 9 presents
the impact of the combination strategies for the classification of each
class, compared with the station-independent strategy. For all classes,
the combination of features strategy gave better results than the combi-
nation of classifiers strategy. The considerable improvement produced
by combination strategies on the performance of the VT, OT, and TR
groups can be appreciated.

Fig. 10 presents the mean error of the station-independent
classification structure proposed in the earlier work and of all the
models proposed in the present work. The improvement produced by
having individual classifiers by station and the even more significant
improvement produced by the proposed combination strategies can
RGE: BBCM max MERGE: BBCM mean

classifier classifier

VT TR Total OT LP VT TR Total

19 3 166

Ex
pe

rt

OT 141 3 19 3 166

2 0 296 LP 7 287 2 0 296

119 0 134 VT 7 8 119 0 134

0 172 173 TR 1 0 0 172 173

140 175 769 T otal 156 298 140 175 769



Table 10
Performance indices (%) for each class of the combination of the classifying structure implemented for each station.

MERGE: voting MERGE: BBCM max MERGE: BBCM mean

OT LP VT TR OT LP VT TR OT LP VT TR

Ex 94.15 97.92 95.06 99.87 94.93 97.27 95.32 99.48 94.80 97.40 95.32 99.48

Er 5.85 2.08 4.94 0.13 5.07 2.73 4.68 0.52 5.20 2.60 4.68 0.52

Se 86.75 96.62 87.31 99.42 84.34 97.30 88.81 99.42 84.94 96.96 88.81 99.42

Sp 96.19 98.73 96.69 100 97.84 97.25 96.69 99.50 97.51 97.67 96.69 99.50

Table 11
Kappa indices of the classifying structures implemented with the different strategies.

Station–
independent
classification.

Best individual
station classifiers

Station–dependent
classifiers:

Combination of the
features

Station–dependent
classifiers:

Combination of the
classifiers

Kappa
Index 0.63 0.88 0.94 0.91
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be appreciated, as can the fact that the strategy of merging the features
delivered the best results.

5. Discussion

Like in Duin et al. (2010), the results of this work show a significant
improvement in the discrimination capacity of the four classes of events
considered when station-dependent classification strategies are
applied. This is shown by the indices of agreement presented in
Table 11, and whether in the general performance indices by strategy
(Table 12) or by class (Fig. 9). Fig. 10 shows how considering the infor-
mation from individual stations results in a reduction in the global error
of the classification structures.

If the results obtained in the station-independent strategy (Table 4),
where the classifier was designed to classify signals from any station are
comparedwith the results obtained by the individual classifiers for each
station (Table 8), an improvement in the classification by stationmay be
observed. This is particularly significant in certain stations such as LAV,
where the mean of exactitude is 95.6%, compared to 86.3% obtained by
the station-independent strategy; in other words, an increase of 9.3% is
achieved for exactitude, representing a total reduction of 67.9% in
the error (from 13.7% to 4.4%). So although there is no combination
of the information, this result shows that the design of individual
Table 12
Performance indices of the classifying structures of three combining strategies.

Station–independent
classification

Station–depen
combinationo

OT LP VT TR OT LP

Ex 87.26 80.88 83.09 94.15 96.62 97.01

Er 12.74 19.12 16.91 5.85 3.38 2.99

Se 69.88 75.00 60.45 80.92 94.58 94.93

Es 92.04 84.57 87.87 97.99 97.18 98.31
classifiers by station already represents an improvement over a general
classifier for all the stations on the volcano. However, when the station-
dependent classification strategies are analysed, these results improve
still further. Fig. 10 shows that the mean error of the four classes falls
from 4.4% to 3.3% for the combination of classifiers and from 4.4% to
2.3% for the combination of features; in other words, the two strategies
for combining the information from the stations produced reductions of
25% and 48%, respectively, in themean classification error. It is interest-
ing to note that, unlike the work of Duin et al. (2010), the combination
of classifiers improved significantly the accuracy of classification.

These results are consistent with the procedure used by the human
analyst, who – among other strategies – reviews the signals from sever-
al stations to obtain a more certain classification. Reviewing several
stations is particularly important for the analyst when he/she has to dif-
ferentiate signals of volcanic origin from others. Volcanic tremors tend
to be confusedwith signals which persist in time such as environmental
noise caused by wind, rain, avalanches, etc., and which present similar
patterns. In these cases, it is very important to have at least three obser-
vation stations located in different geographical quadrants with respect
to the crater (taken as the origin of the coordinates).

In Table 3, which shows the results of the station-independent strat-
egy, it can be seen that the station-independent classification tends to
confuse VT events with OT and LP, as the sensitivity of these classifiers
dent classifier:
f the features

Station–dependent classifier:
combinationof the classifiers

VT TR OT LP VT TR

97.14 99.87 94.15 97.92 95.06 99.87

2.86 0.13 5.85 2.08 4.94 0.13

91.04 100.00 86.75 96.62 87.31 99.42

98.43 99.83 96.19 98.73 96.69 100.00



Fig. 9. Comparison of the exactitude, sensitivity, and specificity for each kind of event (OT, LP, VT, TR) for previous work, combination of features, and combination of classifiers.
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is diminished. The results of the combination strategies presented in
Tables 6 and 10 show that the capacity to discriminate between these
events increases the sensitivity of the classifiers significantly: the first
strategy presents net increases of 24.7% and30.6% for OT andVT, respec-
tively, whilewith the second strategy, the increases are 16.9% and 26.9%.
This notable improvement, mainly in the combination of features
strategy, may be explained as follows. In the case of a LP from a specific
source, which is recorded in different stations around the volcano, some
of the seismic features will be observed in more than one station
preserving common features (e.g. frequency information of the source,
arrival times, and magnitudes). The first strategy combines the features
from several stations before going on to the classification stage, thus the
classifier has information from each station in order to make a decision
and classify the event correctly. The second strategy combines the
decisions of the individual classifiers of each station. As these analyse
the information of only one station each, the decision of the classifiers
is based on less information than in the first strategy, resulting in
lower performance.

In terms of sensitivity, the OT and VT classifiers present the lower
performances (Fig. 9). This is due mainly to the fact that the OT group
includes seismic events of different origins (tectonic, avalanches, envi-
ronmental noise, etc.) which tend to be confused with VT due to their
generation mechanism, form, and frequency content, especially in the
LAV and LLA stations (Table 7).

Table 8 shows that MOT is the station which presents the lowest
sensitivity results, especially for VT events. The results obtained with
the new combination strategies show that the sensitivity increased
from 60.45% (Table 4) to 91% (Table 6) with the first combination
strategy and to 87.3% (Table 10) with the second. There are several
Fig. 10. Mean of the error index for the four classes of the classifying structures for previous w
features.
reasons for this. Some of the VT seismic events present an epicentral
distribution to the south of the volcano (Franco et al., 2014), enabling
nearer stations to record the features of these events better. It common-
ly occurs thatwhen the station is farther from the source, a loss occurs in
the energy of high frequencies in the seismic records; thus in stations far
from the source, VT signals may be confused with LP signals, as can be
seen in the VT line of Table 7, specifically in the MOT station. Apart
from this aspect related to source-reception distance, VT signals
produced mainly at the south of the crater have to cross the volcano
to be recorded by MOT, passing through low velocity zones (Bouvet
de Maisonneuve et al., 2012) in which their spectral features are modi-
fied. This, added to the lowmagnitudes of VT, makes it more likely that
this class will be confused with LP events, as the MOT station shows. It
remains to be determined why VT events present a lower sensitivity
(82%) in the LLA station, located at the south of the volcano, compared
to the LAV station (94%) located farther away from the source. Some
aspects directly linked to the generation mechanism, seismic wave
radiation pattern,s and the directivity of the source may explain this
fact. Thus, the poor performance of the MOT station classifier affects
the performance of the second combination strategy. LP events are
more restricted to sectors which are close to the main crater and more
equidistant from the three stations, so their readings are consistent in
the three stations considered in the study.

The first strategy, using the merging of the features extracted from
the three stations before the classification stage, presented better
performance. This strategy is closest to that used by a human expert,
since it includes information from several stations before taking a deci-
sion (Duin et al., 2010). However, there is an important consideration
for the implementation of this strategy: as the number of stations
ork, individual classifiers for each station, combination of classifiers, and combination of
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increases, the number of inputs of the SVMwill increase proportionally,
thus a bigger set of data will be necessary for training and validation, to
handle the complexity of the resultingmodel. However, a systemmight
be conceived which, by incorporating information on the epicentres of
events, could determinewhich stations should participate in the strate-
gy and which should be excluded, thus limiting the number of input
features. Many configurations have to be trained separately in that
case. Another scenario to analyse is when one or more stations are
down. In this case, the classification is directly affected because one or
more inputs will be missing. Different strategies have to be implement-
ed to assess these scenarios. For example, training the classifiers to
prevent missing inputs (SVM are robust to missing or incorrect input
data) or selecting from the many trained configurations the ones that
have the most reliable inputs. In the future, we plan to perform a
study on the robustness of the system by conducting tests in different
scenarios including station failures.

6. Conclusions

This paper presented a comparative study of the performance of
automatic classifiers of seismic events in Llaima volcano. Two classifica-
tion strategies which combine information from different seismic
stations are compared with a station-independent classification strate-
gy. The results show a significant improvement in classification perfor-
mance when an approach of combi\ning information from the stations
is used. In particular, a significant improvement is achieved in discrim-
inating between VT and OT events.

The results show that the strategy whichmerges the features before
classification proved to be superior to the strategy ofmerging the results
of the individual classifiers by station. It is interesting to note that the
first strategy is closer to what a human analyst does when classifying
a seismic event, because it uses the information from several stations
to make a decision. The second strategy depends on the performance
of individual classifiers and it is interesting to see that some stations
systematically produce a better performance than others.

The performance improvement of the station-dependent strategies
is significant, but direct comparison with other methods is difficult
because of the use of different volcanoes, features, type of events, and
methods. The exactitude and error values obtained in this work are
not significantly higher than those available in literature. What is very
attractive in this work is that the high performances achieved for the
Llaima volcano were obtained using very simple features, methods,
and combination strategies. This is why, the study showed a very inter-
esting approach for further improvements: integrating all the stations
into a global automatic classifying system per volcano.

Some future works are proposed based on these two strategies to
improve the robustness of the whole system. For the first strategy, we
propose to assess which stations deliver the best results in relation to
the epicentres of events; for the second, we propose a study of the
“quality” of the stations, in order to give some stations priority in the
combination process, discarding stations which might have a negative
influence on the final classification. Another important future work is
to make the classification system function on-line. An automatic event
segmentation system needs to be implemented, based on continuous
recordings, in order to apply the automatic classification system
proposed here to the selected segments.
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