ON REALIZATIONS OF THE GELFAND CHARACTER OF A FINITE GROUP

JORGE SOTO-ANDRADE AND M. FRANCISCA YÁÑEZ

Abstract

We show that the Gel'fand character χ_{G} of a finite group G (i.e. the sum of all irreducible complex characters of G) may be realized as a " twisted trace" $g \mapsto \operatorname{Tr}\left(\rho_{g} \circ T\right)$ for a suitable involutive linear automorphism of $L^{2}(G)$, where ρ stands for the right regular representation of G in $L^{2}(G)$. We prove further that, under certain hypotheses, T may be obtained as $T(f)=f \circ L$, where L is an involutive antiautomorphism of the group G so that $\operatorname{Tr}\left(\rho_{g} \circ T\right)=\mid\{h \in G: h g=$ $L(h)\} \mid$. We also give in the case of the group $G=P G L\left(2, \mathbb{F}_{q}\right)$ a positive answer to a question of K. W. Johnson asking whether it is possible to express the Gel'fand character χ_{G} as a polynomial in a single irreducible character η of G.

Keywords: Gelfand character, twisted trace, total character, Steinberg character, Gelfand Model.
MSC2010: 20C15, 20C

1. Introduction

The realization of the Gel'fand character χ_{G} of a finite group G, i.e. the sum of all ordinary irreducible characters of G is an old problem (9) 32 . One approach to this problem is to try to obtain χ_{G} by twisting the trace of some very natural representation (V, π) of G, like the regular representation, by a suitable linear automorphism T of its underlying space V, so as to obtain $\chi_{G}(g)=\operatorname{Tr}\left(\pi_{g} \circ T\right)$ for all $g \in G$. Recall that twisted traces appear in many contexts in mathematics [2, 3, 6].

For example it is a result in the character theory of finite groups that the central function $\theta_{1}: G \rightarrow \mathbf{C}$, defined by $\theta_{1}(g)=\left|\left\{h \in G: h^{2}=g\right\}\right|$ is a generalized character which satisfies $\theta_{1}(g)=\sum_{\pi \in \bar{G}} \nu(\pi) \chi_{\pi}(g)$ where
$\nu(\pi)=\frac{1}{|G|} \sum_{g \in G} \chi_{\pi}\left(g^{2}\right)$ is the number of Frobenius- Schur of the character χ_{π} of the irreducible representation π of G.

If (π, V) is an irreducible complex representations of a compact group G and π is self-contragradient then there exists a non degenerate bilinear form B of V, unique up to scalar multiple, such that $B(v, w)=\epsilon(\pi) B(w, v)$ where $\left.\epsilon_{(} \pi\right)= \pm 1$. Frobenius -Schur [4] proved that $\nu(\pi)=\epsilon(\pi)$ and if $\nu(\pi)=1$ then $\Pi(G)$ is conjugated to a subgroup of the orthogonal group $O(n)$ and
partially supported by Fondecyt Grant 1120571.

