Gradual Certified Programming in Coq

Eric Tanter

PLEIAD Lab, Computer Science Dept (DCC)
University of Chile, Santiago, Chile

etanter@dcc.uchile.cl

Abstract

Expressive static typing disciplines are a powerful way to
achieve high-quality software. However, the adoption cost
of such techniques should not be under-estimated. Just
like gradual typing allows for a smooth transition from
dynamically-typed to statically-typed programs, it seems
desirable to support a gradual path to certified program-
ming. We explore gradual certified programming in Coq,
providing the possibility to postpone the proofs of selected
properties, and to check “at runtime” whether the properties
actually hold. Casts can be integrated with the implicit coer-
cion mechanism of Coq to support implicit cast insertion a
la gradual typing. Additionally, when extracting Coq func-
tions to mainstream languages, our encoding of casts sup-
ports lifting assumed properties into runtime checks. Much
to our surprise, it is not necessary to extend Coq in any way
to support gradual certified programming. A simple mix of
type classes and axioms makes it possible to bring gradual
certified programming to Coq in a straightforward manner.

Categories and Subject Descriptors D.3.3 [Software]:
Programming Languages—Language Constructs and Fea-
tures; F.3.1 [Logics and Meanings of Programs]:. Spec-
ifying and Verifying and Reasoning about Programs—
Specification Techniques

Keywords
gradual typing, casts, program extraction, Coq.

1.

In Certified Programming with Dependent Types, Chlipala
sketches two main approaches to certified programming [5].
In the classical program verification approach, one sepa-
rately writes a program, its specification, and the proof that

Introduction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

DLS’15, October 27, 2015, Pittsburgh, PA, USA

© 2015 ACM. 978-1-4503-3690-1/15/10...$15.00
http://dx.doi.org/10.1145/2816707.2816710

Certified programming, refinements, subset types,

26

Nicolas Tabareau

Inria
Nantes, France

nicolas.tabareau@inria.fr

the program meets its specification. A more effective tech-
nique is to exploit rich, dependent types to integrate pro-
gramming, specification and proving into a single phase:
specifications are expressed as types, as advocated by Sheard
et al. [25] in what they call language-based verification.
While rich types are a powerful way to achieve high-quality
software, we believe that the adoption cost of such tech-
niques is not to be under-estimated. Therefore, it seems de-
sirable to support a gradual path to certified programming
with rich types, just like gradual typing allows for a smooth
transition from dynamically-typed to statically-typed pro-
grams [26]. Indeed, the idea of progressively strengthen-
ing programs through a form of gradual checking has al-
ready been applied to a variety of type disciplines, like types-
tates [12,/30]], information flow typing and security types [8,
9], ownership types [24], annotated type systems [28], and
effects [3]]. Recent developments like property-based test-
ing for Coq [7] and randomized testing based on refinement
types annotations [23] are complementary efforts to make
language-based verification more practical and attractive.

In this article, we consider a gradual path to certified pro-
gramming in Coq, so that programmers can safely postpone
providing some proof terms. We focus mostly (but not ex-
clusively) on subset types, which are the canonical way to
attach a property to a value. Subset types are of the form
{a:A | P a}, denoting the elements a of type A for which
property P a holds. More precisely, an inhabitant of {a:A |
P a} is a dependent pair (a ; p), where a is a term of type A,
and p is a proof term of type P a.

Constructing a value of type {a:A | P a} requires the
associated proof term of type P a. Currently, Coq has two
mechanisms to delay providing such a proof term. First, one
can use Program, a facility that allows automatic coercions
to subset types leaving proof obligations to be fulfilled af-
ter the definition is completed [27]. This is only a small de-
lay however, because one must discharge all pending obliga-
tions before being able to use the defined value. The second
mechanism is to admit the said property, which makes Coq
accept a definition on blind faith, without any proof. This
solution is unsatisfactory from a gradual checking point of
view, because it is unsafe: there is no delayed checking of
the unproven property. Therefore, a function that expects a

value with a given property might end up producing incor-
rect results. The motto of gradual checking, trust but verify,
is therefore not supported.

The main contribution of this work is to provide safe
casts[ﬂ for Coq, paving the way for gradual certified pro-
gramming, and to show that this is feasible entirely within
standard Coq, without extending the underlying theory and
implementation. When casting a value a of type A to the rich
type {a:A | P a}, the property P a is checked as needed,
forbidding unsafe projection of the value of type A from the
dependent pair. Note that because Coq is dependently-typed
(ie. types can be dependent arbitrarily on computations and
values), there is no rigid compile-time/runtime distinction:
therefore, cast errors can possibly occur both as part of stan-
dard evaluation (triggered with Eval) and as part of type
checking, during type conversion.

A key feature of our development is that we support a
smooth gradual path to certified programming that avoids
imposing a global monadic discipline to handle the possibil-
ity of cast errors. Technically, this is achieved thanks to the
(possibly controversial) choice of representing cast failures
in Coq as an inconsistent axiom, so that failed casts manifest
as non-canonical normal forms (e.g. a normal form of type
bool is either true, false, or a cast failure).

Section [2] provides an informal tour of gradual certified
programming with subset types in Coq, through a number
of examples. We then dive into the details of the approach,
namely type classes for decidability (Section |3)) and an ax-
iomatic representation of casts (Section [)). Section [5] then
discusses implicit cast insertion a la gradual typing. Sec-
tions [6] and [7] focus on higher-order casts, with both sim-
ple and dependent function types—the latter being subtly
more challenging. Section [8| describes the use of casts to
protect functions extracted to mainstream languages that do
not support subset types. Section [J briefly describes the
main properties of our approach, which follow directly from
being entirely developed within standard Coq. Section [I0]
shows how our approach scales beyond subset types to other
dependently-typed constructions, such as record types, and
illustrates how it is possible to customize the inference of
decision procedures. Section [TT]discusses related work and
Section [12] concludes.

The code presented in this paper is available as a Coq
library at https://github.com/tabareau/Cocassel

2. Gradual Certified Programming in Action

We start by introducing gradual certified programming with
subset types through a number of examples of increasing
complexity, culminating in a small gradually certified com-
piler. For now, we only appeal to the intuition of the reader;

I'Note that we use the name “cast” in the standard way [19] to denote a
type assertion with an associated runtime check—this differs from the non-
traditional use of “cast” in the Coq reference manual (1.2.10) where it refers
to a static type assertion.

27

we discuss the technical details of the approach in Section
and beyond.

2.1 First Examples

We now show how casts behave with examples. In this pa-
per, we denote the first and second projections of a pair as .;
and ., respectively. First consider a simple definition that is
rejected by Coq:

Definition[n_not_ok|: {njnat | n < 10} :=5.

This definition is rejected, because the value should be a
dependent pair, not just a natural number. Using Pro gramE]
we are left with the obligation to prove that 5 < 10, which is
arguably not too hard.

We could instead use our basic cast operator—denoted
?—to promote 5 to a value of type {n:nat |

n < 10}. The
semantics is that, if we ever need to evaluate n_goodl’| we

will check whether 5 is less than 10:

Definition n_good :{ninat||n </ 10}:=?5.

Eval compute in[n_good]
= (5; Le.le_.n_.S 59 (...))
{n : nat | n < 10}

We indeed have a dependent pair, whose first component is
the number 5 and second component is the proof that 5 < 10
(elided). We can naturally project the number from the pair:

Eval compute infn_good;.
=5
. nat

Of course, we may be mistaken and believe that 15 < 10:
Definition n_bad : {n:nat|| n < 10} :=? 15.

The cast error now manifests whenever we evaluate [n_bad

Eval compute in[n_bad]

= failed_cast 15 (16 <= 10)
{n : nat | n < 10}

Importantly, a failed cast does not manifest as an excep-
tion or error, since Coq is a purely functional programming
language. Instead, as we will explain further in Section
failed_cast is a normal form (ie., it cannot be further re-
duced) of the appropriate subset type, which indicates both
the casted value (15) and the violated property (16 < 10).

Crucially, because evaluates to a failed cast, we
cannot project the natural number, since we do not even have
a proper dependent pair:

2progran is a definition facility that allows automatic coercions to subset
types leaving proof obligations to be fulfilled after the definition is com-
pleted [27], but before the definition can be used.

3 Coq does not impose any fixed reduction strategy. Instead, Eval is param-
eterized by a reduction strategy, called a conversion tactic, such as cbv (aka.
compute), lazy, hnf, simpl, etc.

https://github.com/tabareau/Cocasse
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#:nat scope:x '<' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#:nat scope:x '<' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'

Eval compute inl.

= let (a, _) :=
failed_cast 15 (16 <= 10) in a
: nat

At this point, it is worthwhile illustrating a major differ-
ence with the use of admit, to which we alluded in the intro-
duction. Consider that we use admit to lie about 15:

Program Definition n_real_bad :/{ninat|||n|</10}:=
15.
Next Obligation. Admitted.

In this case, [n_real_bad|is an actual dependent pair, with the

use of proof_admitted (an inhabitant of False) in the second
component:

Eval compute in[n_real_bad]

= (15; match proof_admitted return (16 <= 10)
.
: {n : nat | n < 10}

This means that we are able to project the number from

without revealing the lie:
Eval compute inn_real_bad];.

= 15
: nat

2.2 Casting Lists

Casting a list of elements of type A to a list of elements of
type {a: A | P a} simply means mapping the cast operator
? over the list. For instance, we can claim that the following
list is a list of 3s:
Definition list_of_3: list|{n:nat|| n =3} :=

map ? (32221 :2nil).

If we force the evaluation of we obtain a list of
elements that are either 3 with the proof that 3 = 3, or a failed
cast:

Eval compute in[fist_of_3]
= (3; eq_refl)
:: fajled_cast 2 (2 = 3)
:: failed_cast 1 (1 = 3) :: nil

: list {n : nat | n = 3}

Note the difference between a list of type |list| {a : A |
P a} and a list of type {/ : list A | P [}. While the former
expresses that each element a of the list satisfies P a, the
latter expresses that the list / as a whole satisfies P [. Casting
works similarly for other inductively-defined structures.

2.3 A Gradually Certified Compiler

We now show how to apply casts to a (slightly) less artificial
example. Consider a certified compiler of arithmetic expres-
sions, adapted from Chapter 2 of CPDT [3].

28

Source language. The source language includes the fol-
lowing binary operations:
Inductive binop : Set := Plus | Minus | Times.
Expressions are either constants or applications of a bi-
nary operation:

Inductive exp: Set :=
| Const : nat—
| Binop - oinor] o] > B o)
The semantics of binary operations is as expected:

Definition evalBinop (b:[binop) :|nat|—|nat|—|nat:=
match b with

|[PTus|= Iplus

|[Minus| = sub

|[Times|= mult

end.

So is the semantics of evaluating expressions:

Fixpoint evalExp (e:[exp) :|nat|:=
match ewith
|[Const{n = n
|[Binop|b el €2 =
(evalBinop| b) (evalExp|el) (evalExp|e2)
end.

Stack machine. We now introduce the intermediate lan-
guage of instructions for a stack machine:

Inductive instr: Set :=
| iConst :|nat|—
| iBinop : [binop| —
A program is a list of instructions, and a stack is a list of
natural numbers:

Definition prog :=|list[instr}
Definition stack :=|list/nat.

Executing an instruction on a given stack produces either
a new stack or Nonelif the stack is in an invalid state:

Definition runlnstr (i (ss: [stack): option =
match i with
|[iConst{n = Some|(n :: s)
|[Binop|b =
match s with
| argl - arg2 s’ =
Some ((evalBinop|b) argl arg2::|s’)
| — = None
end

end.

Running a program simply executes each instruction, recur-
sively:
Fixpoint runProg (p: (s: [stack): [option =
match p with
| |nil = |Some s

| il:]p’ = match|runlnst]i s with

http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#:nat scope:x '<' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Lists.List.html#map
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '::' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '::' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '::' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nil
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#plus
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#sub
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#mult
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#None
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#Some
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '::' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '::' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '::' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#Some
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '::' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#None
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nil
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#Some
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '::' x

|[None = None
||Some|s’ = [runProg|p’ s’
end
end.

Compiler. 'We now turn to the compiler, which is a recur-
sive function that produces a program given an expression:

Fixpoint compile (e:[exp) : [prog]:=
match e with
||Const{n = [iConst|n |::|nil
|[Binop|b el e2 =
[compile| e ++|[compile|e2 ++{iBinop| b :: nil
end.

Hint: there is a bug!

Correct? Of course, one would like to be sure that[compile]
is a correct compiler. The traditional way of certifying the
compiler is to state and prove a correctness theorem. In
CPDT, the compiler correctness is stated as follows:

Theorem compile_correct : V (e:[exp),
FiProg {omptile) 1=[Some vl .

Namely, executing the program returned by the compiler on
an empty stack yields a well-formed stack with one element
on top, which is the same value as interpreting the source
program directly.

It turns out that the theorem cannot be proven directly
by induction on expressions because of the use of nil/in the
statement of the theorem: the induction hypotheses are not
useful. Instead, one has to state a generalized version of the
theorem, whose proof does go by induction, and then prove
as a corollary [3].

Instead of going into such a burden as soon as the com-
piler is defined, one may want to assert correctness and have
it checked dynamically. With our framework, it is possible to
simply cast the compiler to a correct compiler. To make the
following exposition clearer, we first define what a correct
program (for a given source expression) is:

Definition correct_prog (e: (p: : Prop :=

[runProg] p il =/Some| (evalExp| e ::nil).

To exploit gradual certified programming to claim that
compile|is correct using a cast, we could try to use our cast
operator ?, to attempt to give [compile] the type {f: -
| V efexpl [correct_prog|e (f e)}. This is however unde-

cidable because the property quantifies over all expressions.
(In fact, such a cast is rejected by our framework, as dis-
cussed in Section E[) Instead, we need to resort to a higher-
order cast operator, denoted V7, which can lazily check that
the compiler is “apparently” correct by checking that it pro-
duces correct programs whenever it is used:

Definition correct_comp :=
Ve: {p:[lprog||correct_prog|e p }.

Definition compile_ok :[correct_comp|:= V7 [compile}

29

Let us now exercise compile_ok}l The following evaluation
succeeds:

Eval compute in
[compile_oK| (Binop|[PTus| (Const]2) (Const]2)).

= (iConst 2 iConst 2 iBinop Plus :: nil;
eq_refl)
{p : prog | correct_prog ...}

However, the cast fails when using a (non-commutative!)
subtraction operation:

Eval compute in
[compile_ok| (Binop[[Minus|(Const|2) (Const|1)).

= failed_cast (iConst 2 :: iComnst 1
iBinop Minus :: nil)
(Some (0 :: nil) = Some (1 :: nil))
{p : prog | correct_prog ...}

Indeed, the compiler incorrectly compiles application
nodes, compiling sub-expressions in the wrong order! The
last argument of failed_cast—the invalid property—is
explicit about what went wrong: the compiler produced a
program that returns 0, while the interpreter returned 1.

Finally, suppose we write a function that requires a
correct compiler as argument:

Definition runc (c: (e: =
(c e).1/nill
We can use the cast framework to pass as ar-
gument, but in case the compiler behaves badly, fails
because it cannot apply the projection .; to a failed cast:

Eval compute in (V?|compile
(Binop|[Minus| (Const]2) (Const]| 1)).

(let (a, _) := failed_cast
(Some (0 :: nil) = Some (1
option stack

:: nil))

Again, note that if we had used admit to lie about [compile]
then would not have detected the violation of the prop-
erty, and would have therefore returned an incorrect result.

3. Casts and Decidability

What exactly does it mean to cast a value a of type A to a
value of the rich type {a : A | P a}? There are two challenges
to be addressed. First, because we are talking about safe
casts, it must be possible to check, for a given a, whether
P a holds. This means that P a must be decidable. Second,
because it may be the case that P a does not hold, we must
consider how to represent such a “cast error”, considering
that Coq does not have any built-in exception mechanism.
For decidability, we exploit the type class mechanism of
Coq, as explained in this section. For failed casts, we exploit
axioms (Section [).

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#None
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#None
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#Some
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '::' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nil
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '++' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '++' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '::' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nil
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nil
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#Some
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '::' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nil
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nil
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nil
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#Some
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:list scope:x '::' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nil
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nil

3.1 Decidable Properties
Thetype class, which is used in the Coq/HoTT li-

brary*} is a way to characterize properties that are decidable.
To establish that a property is decidable, one must provide
an explicit proof that it either holds or not:

Class Decidable (P : Prop) :=dec: P+ P.

Note that the disjunction is encoded using a sum type (+,
which is in Type) instead of a propositional disjunction (V,
which is in Prop) in order to support projecting the under-
lying proof term and use it computationally as a decision
procedure for the propertyﬂ

The Coq type class system can automatically infer the
decision procedure of a complex property, using type class
resolution, when a cast is performed. For that, the appropri-
ate generic decidability instances must be provided first, but
those instances are implemented only once and are already
part of the library or can be added as needed. For
example, the following instance definition (definition omit-
ted) allows Coq to infer decidability—and build the asso-
ciated decision procedure—for a conjunction of two decid-
able properties by evaluating the decision procedure for each

property:

Instance Decidable_and (P Q: Prop) (HP :[Decidabl¢ P)
(HQ :|Decidable| Q) : [Decidable| (P |A Q).

Also, whenever a proposition has been proven, it is obvi-
ously decidable (inl is the left injection on a sum type):

Instance Decidable_proven (P : Prop) (ev : P):

[Decidabld P :=linl ev.

This instance allows programmers to mix proven and decid-
able properties, for instance by inferring that P A Q is decid-
able if P is decidable and Q is proven.

Another interesting instance is the one exploits the fact
that every property that is equivalent to a decidable property
is decidable:

Definition Decidable_equivalent {P P’ : Prop}
(HPP’ : P’ <> P) ‘{|Decidable| P’} : [Decidable| P.

We will exploit this instance in Section [I0]to synthesize
more efficient decision procedures.

If type class resolution cannot find an instance of the
[Decidable|class for a given property, then casting to a subset
type with that property fails statically. This happens if we
try to cast directly to a function subset type with a
universally-quantified property, as discussed in Section 2]

“https://github.com/HoTT/HoTT

3 An equivalent decision procedure mechanism is implemented in the Ssre-
flect library [13], using boolean reflection. We discuss the differences be-
tween the two approaches in Appendix@ It must be noticed already that
the differences are minor and our cast mechanism works perfectly well with
both ways of formalizing decidability.

30

3.2 Leveraging Type Class Resolution

Depending on the structure of the property to be established,
we can get decidability entirely for free. In fact, in the com-
piler example (Section [2.3), the decidability of
was automatically inferred! We now explain how this au-
tomation was achieved.

The property is about equality of the results
of running programs, which are [option|[stack, or more ex-

plicitly, loption|/list jnats. The type class already
allows, with its instances, to automatically obtain complex
correct decision procedures based on composition of atomic
ones (Sect.[3). For[correct_prog|to enjoy this full automation,

the library needs to include instances that allow
equality of lists and options to be inferred. More precisely,

we provide a type class for decidable equality,|Decidable_°|

Class Decidable— (A : Type) :=
{eq-dec:Vab:A,Decidable (a=) }.

Based on this decidable equality class, we can define once
and for all how to derive the decidability of the equality
between lists of A or options of A provided that equality is
decidable for A:

Instance Decidable_eq_list : V A (HA:[Decidable_]A)
(I1:list A), Decidable (I'=1").

Instance Decidable_eq_option : V A (HA:[Decidable_]A)
(0 0’:loption|A), Decidable (o= 0").

By also declaring the corresponding in-
stances for the |ist and loption| type constructors, the type

class resolution mechanism of Coq is able to automatically
build the correct decision procedures for properties that state
equality between arbitrary nestings of these type construc-
tors, such as A well-furnished decidability 1i-
brary allows developers to seamlessly enjoy the benefits of
gradual certified programming.

We come back to decidability in Section [T0} when de-
scribing casts on rich records, in order to show how one can
specialize the decision procedure to use in specific cases, for
instance to obtain a procedure that is more efficient than the
default one.

4. Casts and Axioms

Intuitively, the basic cast operator ? should be defined as a
function of type A — {a: A | P a} (assuming that P a
is decidable). To perform such a cast implies exploiting the
decidability of P a: checking (and hence evaluating) whether
P a holds or not. If it holds true, the cast succeeds. The [casi]
function can simply return the dependent pair with the value
a and the proof. If P a does not hold, the cast fails. How
should such errors manifest?

6 A similar type class is also used in the Cogq/HoTT library under the name
DecidablePaths.

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:type scope:x '+' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:'x7E' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '/x5C' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#inl
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#inl
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
https://github.com/HoTT/HoTT
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option

4.1 The Monadic Approach

The traditional way to support errors in a purely functional
setting is to adopt a monadic style. For instance, we could
define to return |option| {a:A | P a} instead of just
{a:A | P a}. Then, a cast failure would simply manifest
as None. This is all well and understood, but has serious
consequences from a software engineering point of view: it
forces all code that (potentially) uses casts to also be written
in monadic style. Because the philosophy of gradual typing
entails that casts may be added (or removed) anywhere as
the software evolves, it means that the entire development
has to be defensively written in monadic style. For instance,
consider the definition of ffundin Section 2.3t

Definition runc (c: correct_comp) (e: exp) :=
runProg (¢ €).1 nil.

If it were possible to check eagerly that is cor-
rect, the monadic cast would produce a value of type op-
tion| correct_comp, and the client calling Y
would simply have to locally deal with the potential of fail-
ure. However, since correct_comp is undecidable, the only
solution is to delay casts, which means that the casted com-
piler would now have type V e : exp, option {p : prog |
[rect_progle p}. This in turn implies that all users of the com-
piler (such as[runc)) have to be prepared to deal with optional
values. The argument type of would have to be changed,
and its body as well because (¢ ¢) would now return an op-
tion|correct_prog| not alcorrect_progl This non-local impact
of deciding to statically establish guarantees or defer them to
runtime is contrary to the smooth transition path that gradual
typing is meant to support.

After all, every practical functional programming lan-
guage does some compromise with purityﬂ supporting side
effects like references and exceptions directly in the lan-
guage, rather than through an explicit monadic encoding.
The upside of sacrificing purity is that these side effecting
operations can be used “transparently”, without having to
adopt a rigid discipline like monads, which—despite various
improvements such as [22]—is still not free from software
engineering challenges. So, what does it mean to embed cast
errors in such a transparent manner in Coq?

4.2 The Axiomatic Approach

We introduce a novel use of axioms, not to represent what is
assumed to be true, but to represent errors. This allows us to
provide theoperator as a function of type A — {a: A | P
a}. Specifically, we introduce one axiom, [failed_cast] which
states that for any indexed property on elements of type A,
we can build a value of type {a: A | P a}:ﬂ

7Even Haskell has impure features such as undefined, unsafeCoerce
and unsafePerformIO0, for pragmatic reasons.

8 We declare the two first arguments of|failed_cast|as implicit (between {}),
and only leave the value a and the msg argument as explicit. The argument
msg is apparently redundant, since it is just defined as P a in[cas however,

31

Axiom failed_cast : V {A:Type} {P : A|—|Prop}
(a:A) (msg: Prop),[{a:A|| P d}.

Obviously, is a lie. This lie is used in the
definition of the[casfoperator, in case the decision procedure

indicates that the property does not hold:
Definition cast (A:Type) (P : A|—|Prop)
(dec : vV a, Decidable (P a)) : A —|{a:|A||P a} :=
funa: A =
match dec a with

liinllp = (a;p)
[inr| - = [failed_cast]a (P a)
end.

The operator applies the decision procedure to the
given value and, depending on the outcome, returns either
the dependent pair with the obtained proof, or a[failed_cas(]
Considering the definition of we see that a cast fails if
and only if the property P a does not hold according to the
decision procedure.

A subtlety in the definition of is that the casted value
must not be exposed as a dependent pair if the decision
procedure fails. An alternative definition could always return
(a ; x) where x is some error axiom if the cast failed. Our
definition has the advantage of reporting a cast failure as
soon as the casted value is used (even though the property
attached to it is not)ﬂ

We introduce the ? notation for [cast} asking Coq to infer
the property and the evidence of its decidability from the
context:

Notation ”?” := - —).
4.3 Heresy!

Using an axiom to represent failed casts is (slightly!) hereti-
cal from a theoretical viewpoint. As a matter of fact, one can
use a cast to inhabit False, for instance by pretending that 0
comes with a proof of False and then projecting the second
component:

Definition unsound :|False:=(? 0).o.

In this sense, the monadic approach is preferrable, as it
preserves consistency. However, the axiomatic approach is
an interesting alternative to using plain axioms and admitted
definitions in Coq—which are, after all, the only pragmatic
solutions available to a Coq practitioner who does not want
to wrestle with a given proof immediately. Axiomatic casts
are superior in many ways:

e As discussed above, we cannot project the value compo-
nent of a subset type with a failed cast (recall that using
admit provides no such guarantee).

declaring it as an explicit argument together with a allows for clear and
concise error messages when cast fails, reporting the violated property for
a given value, as illustrated in SectionEl

° Appendix B briefly discusses the interplay of evaluation regimes and the
representation of cast failures as non-canonical normal forms.

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nil
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#inl
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#inr
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#False

® When things go right (i.e. the cast succeeds), there is no
axiom or admitted definition that will block type conver-
sion and evaluation.

e Statically establishing a property or using a cast does not
affect the types involved, so the programmer can seam-
lessly navigate the gradual checking spectrum without
having to perform non-local refactorings.

All in all, both the monadic and axiomatic approaches
to gradual verification are feasible, and are likely to please
different crowds. In fact, we have implemented both ap-
proaches in the Cocasse library. In this paper we focus on
the axiomatic approach, because of its disruptive potential
and software engineering benefits. We believe this approach
will be more appealing to pragmatic practitioners who are
willing to compromise consistency to some extent in order
to enjoy a smooth gradual verification environment. Also, as
we discuss in Section[I2] there are alternatives to be explored
to make the axiomatic approach less heretical.

5. Implicit Casts

The major technical challenge addressed in this work is
to provide casts for subset types within Coq. These casts
have to be explicitly placed by programmers, much like
in the seminal work of Abadi er al. on integrating static
and dynamic typing [1], or in the gradual information flow
type system proposed by Disney and Flanagan [8]. Gradual
typing is however generally associated with a mechanism
of implicit cast insertion: the source language, which may
not even feature explicit casts, is translated to an internal
language with explicit casts [26].

It is possible to achieve implicit cast insertion in Coq by
exploiting the implicit coercion mechanismm

Implicit coercions in a nutshell. Let us first briefly illus-
trate implicit coercions in Coq. Assume a decidable indexed
property on nat, which is used to define a type [rich_nat
Variable P :|nat — Prop.
Variable P_dec : V n:nat, Decidable (P n).
Definition rich_nat :=|{j:[nat|| P n}.
To define an implicit coercion from values of type[rich_naf
to |nat, we first define a function with the appropriate type,
and then declare it as an implicit Coercion: Definition

rnat_to_nat : fich_nad—/lnat :=
funn=n.q.
Coercionlmat_to_nafl: rich_nat — nat.
We can now pass a[rich_naf|to a function that expects a nat,
without having to explicitly apply the coercion function:

Variable f :|nat|—|nat.

Variable s :Em
Check f's.

Ohttps://coq.inria.fr/distrib/current/refman/
Reference-Manual021.html

Implicit cast insertion. In order to implicitly insert casts,
it is enough to define a standard implicit coercion based on
a function that introduces casts. For instance, we define an
implicit coercion (cast insertion) from nat|to [rich_naf}

Definition nat_to_rnat :Inatl—/kich_naf:= ?.

Coercionm: nat — rich_nat.

Calling a function that expects a with a [nat
argument is now type-correct. Under the hood, the implicit
coercion takes care of inserting the cast:

Variable g: —|nat.
Variable n:nat.
Check g n.

Compared to standard gradual typing, the limitation of
this approach is that Coq does not support universal coer-
cions, so one needs to explicitly define the specific coer-
cions that are permitted. This is arguably less convenient
than a general implicit cast insertion mechanism, but it is
also more controlled. Because types are so central to Coq
programming, it is unclear whether general implicit cast in-
sertion would be useful and not an endless source of confu-
sion. Actually, even in gradually-typed languages with much
less powerful type systems, it has been argued that a mech-
anism to control implicit cast insertion is important [2]]. We
believe that the implicit coercion mechanism of Coq com-
bined with casts might be a good tradeoff in practice.

6. Higher-Order Casts, Simply

We now consider cast operators for functions. As expected,
function casts are enforced lazily similarly to higher-order
contracts [10]. We first focus on non-dependent function
types of the form A— B. One could want to either strengthen
the range of the function, claiming that the return type is {b :
B | P b}, or vice-versa, to hide the fact that a function expects
rich arguments of type {a: A | P a}.

6.1 Strengthening the Range

The operator below takes a function of type
A—B and returns a function of type A — {b : B | P b}. It
simply casts the return value to the expected subset type:

Definition cast_fun_range (A B : Type) (P : B|— Prop)
(dec : ¥ b, Decidable (P b)) :
(A — B)— A|—=|[{b:B|||Pb}:=
funfa=7(a).

Notation ”—7":= (cast_fun_range|_ _ _).

Example. We can cast a nat| — nat function such as |S
(successor) to a function type that ensures the returned value
is less than 10:

Definition top-_succ :|nat|—|{n:nat||n|<|/10} := —?|S.

Then, as expected:

Eval compute in[fop_succ]6.

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
https://coq.inria.fr/distrib/current/refman/Reference-Manual021.html
https://coq.inria.fr/distrib/current/refman/Reference-Manual021.html
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#:nat scope:x '<' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S

= (7; Le.le.n_.S 79 ...)
: {n : nat | n < 10}

And:

Eval compute inffop_succ|9.

= failed_cast 10 (11 <= 10)
: {n : nat | n < 10}

6.2 Weakening the Domain
Similarly, turns a function of type {a : A |

P a} — B, which expects a value of a subset type, into a
standard function of type A—B, by casting the argument to
the expected subset type:

Definition cast_fun_dom (A B : Type) (P: A|— Prop)
(dec: ¥V a, Decidable (P a)) :
{a:A|Pa}|— B)—A—B:=
funfa=f(a).
Notation ”?—" := (cast_fun_dom|_ _ _ _).

Example. The standard division function on natural num-
bers in Coq, div, is total and pure, but incorrect: when the
divisor is 0, the result is 0. We can use subset types to de-
fine a pure and correct version, which is total on a
restricted domain, by requiring its second argument to be
strictly positive:

Definition divide: nat|— {n: nat||n|>/0} —|nat:=
funa b =diviab.q.

Using this function now forces the programmer to pro-
vide a proof that the second argument is strictly positive.
This can be achieved with the standard cast operator ?. Al-
ternatively, we can cast into a function that accepts
plain |nats, but internally casts the second argument to en-
sure it is strictly positive:

Definition divide’: nat —/nat/—nat :=

fun a = [7=] (divide] a).

As expected, applying[divide’| with O as second argument
produces a cast failure.

Eval compute in[divide’]1 0.

= match (let (a, _) := failed_cast 0 (1 <= 0)
: nat

Arguably, it is more correct for division by zero to man-
ifest as a failure than to silently returning 0. We will also
see in Section [§] that weakening the domain of a function is
helpful when extracting it to a target language that does not
support subset types, because the assumptions expressed in
the richly-typed world translate into runtime checks.

7. Higher-Order Casts, Dependently

The higher-order cast operators defined above are not ap-
plicable when the target function type is dependently-typed.
Recall that in Coq, a dependently-typed function has a type

of the form V a: A, B a, meaning that the type of the result
(B a) can depend on the value of the argument a.

For instance, in Section 2.3] we cast [compile] to the de-

pendent function type correct_comp, which is an alias for
the type V e: exp, {p: prog |[correct_progle p}. An alternative
would have been to downcast[runc| which expects a correct
compiler, to a looser function type that accepts any compiler
(similarly to what we have done above with[divide]). We now
discuss both forms of casts; as it turns out, weakening the
domain of a dependently-typed function is a bit of a chal-
lenge.

7.1 Strengthening the Range

Strengthening a function type so that it returns a rich de-
pendent type is not more complex than with a simply-typed
function; it just brings the possibility that the claimed prop-
erty on the returned value also depends on the argument:

Definition cast_forall_range (A: Type) (B: A|—|Type)
(P:V a:A, B a|— Prop)
(dec : ¥ a (b : B a), Decidable (P a b)) :
(Va:A,Ba)|— Va A{blBa|Pab}:=
funfa=7(a).

Notation V7" := (cast_forall_range| - _ _).

Examples. We can cast anat — nat/function to a dependently-
typed function that guarantees that it always returns a value
that is greater than or equal to its argument:
Definition f_inc:
(nat|—{nat)|—V n :|nat, {m:nat||| (n <|m) } := V7.
Then, as expected:

Eval compute in[fZind]S|3.

= (4; Le.le.n.S 23 ...)
: {m : nat | 3 <= m}

And:
Eval compute in(fun _=10)3.

= failed_cast 0 (3 <= 0)
: {m : nat | 3 <= m}

The above example casts a simply-typed function to
a dependently-typed function, also illustrating the binary
property P a b in the range. In the following example, the
casted function is dependently-typed. Consider the induc-
tive type of length-indexed lists of nat, and the dependently-
typed constructor [bulld_Tis¢
Inductive ilist : Inatl—/Set :=
| Nil :[TisgO
| Cons : V n, [nat|—|[ilist] n|[—[Tist] (S| n).
Fixpoint build_list (n:nat) :[list]n :=
match n with

10]=
||S m =|Cons| _ O] (build_Tist] m)

end.

http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#div
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#:nat scope:x '>' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#div
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#:nat scope:x '<=' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#O
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#O
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#O
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#O

We can cast [build_Tis{ (of type V ninat, [iTist] n) to a func-

tion type that additionally guarantees that the produced list
is not empty.

Definition non_empty_build:
V ninatl {L:[Tist] n[| n[>|O[}| := v? [puild_Tis

Then, as expected:

Eval compute innon_empty_build|2.

= (Cons 1 0 (Cons O O Nil); ...)
: {_ : ilist 2 | 2 > 0}
And:

Eval compute in[non_empty_build|0.

= failed_cast Nil (1 <= 0)
: {_ : ilist 0 | 0 > O}

7.2 Weakening the Domain

Consider a function that expects an argument of a subset type
{a : A | P a}, and whose return type depends on the value
component of the dependent pair. Such a function has type
Vx:{a:A|Pa}, Bx.;. Weakening the domain in this case
means casting this function to the dependent type V a : A, B
a.

Notably, defining such a cast operator leads to an interest-
ing insight regarding casts in a dependently-typed language.
Because hides a lie about a value, when casting the ar-
gument of a dependently-typed function, the lie percolates at
the type level due to the dependency. Consider the intuitive

definition of which simply applies to

the argument:

Definitionfcast_forall_dom|(A: Type) (P: A — Prop)
(B: A — Type) Va,(P a)):
(~Vx:{a:A|Pa},Bx1)— (Na:A Ba):=
funfa=f(7a).

Coq (rightfully) complains that:

The term "f (7 a)" has type "B (7 a).1"
while it is expected to have type "B a".

Indeed, the return type of the casted function can depend
on the argument, yet we are lying about the argument by
claiming that it has the subset type {a : A | P a}. Therefore,
in all honesty, the only thing we know about f (? a) is that
it has type B a only if the cast succeeds—in which case (?
a).1 = a. But the cast may fail, in which case ? a is not a
dependent pair and (? a@).; cannot be reduced: it is a cast
error at the type level.

What can we do about this? We know that cast errors
can occur, but we do not want to pollute all types with that
uncertainty. Following the axiomatic approach to casts, we
can introduce a second axiom, [failed_cast_projl} to hide the
fact that cast errors can occur at the type level. Note that
we do not want to pose the equality (? a).; = @ as an axiom,

34

otherwise we would be relying on the axiom even though the
cast succeeds. The axiom is required only to pretend that the
first projection of a failed cast is actually the casted ValueEt

Axiom failed-_cast_projl :
vV {A:Type} {P: A — Prop} {a: A} (msg:Prop),
(P::P) amsg).a =a.
Using this axiom allows us to define an operator to hide casts
from types, (notation [?]), as followsﬂ
Definition hide_cast_projl (A: Type) (P: A|—|Prop)
(B: A|— Type) (dec: ¥ a, Decidable (P a)) (a:A):
B(?a).1 — Ba.
Proof.
unfold case (dec a); intro p.
- exact (fun b = b).
- exact (fun b = leq_rect _ _ b _
(tailed_cast_proj1|(P a))).

Defined.

Notation ”[?]” := (hide_cast_projl|- - _ _ _).
The equality coming from |failed_cast_projl|is necessary to
transform the term b of type B (failed_cast| - P a msg).1 to
a term of type B a. This is done using the elimination rule
eq-rect of the equality type. Here again, we can see that a
[failed_cast_projl| error will only occur if the property P a
does not hold.

We can now define as expected, by

adding the hiding of the cast in the return type:

Definition cast_forall_.dom (A: Type) (P: A — Prop)
(B: A|— Type) (dec: ¥ a, Decidable (P a)) :
(Vx:{a A||Pa}, Bx.y)—((Va:A,Ba):=

fun fa =M (? a)).
Notation ”?V” := (cast_forall_dom|_ _ _ _).
Example. Recall the length-indexed lists of Sect.[7.1] Con-

sider the following dependently-typed function with a rich
domain type, which specifies that given a strictly positive
nat, it returns an ilist] of that length:
Definition build_pos : Vx: {1t:|nat|] n >0 }[list| (x.1) :=
fun n = [puilld_Tis{ (.1).

We can use 7V to safely hide the requirement that n > 0:

Definition build_pos’ : V n:|nat, [list]n :=[7V][build_pos]

Then, as expected:

Eval compute in[build_pos’2.

= Cons 1 0 (Cons O O Nil)
ilist 2

T The key word in the sentence is pretend: the new axiom does not allow
one to actually project a value out of a failed cast; it only serves to hide the
potential for cast failure from the types.

12 This time, we use tactics to define hide_cast_proj1, instead of giving the
functional term explicitly as we did for cast. The reason is that because of
the dependency, a simple pattern matching does not suffice and extra type
annotations have to be added to match in order to help Coq typecheck the
dependent pattern matching.

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#:nat scope:x '>' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq rect
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq rect
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x '..' x ',' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#:nat scope:x '>' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x '..' x ',' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat

And we can now see |failed_cast_projI|appearing:

Eval compute in[build_pos’0.

= eq_rect
((fix build_list (n : nat) ilist n := ...)
(let (a, _) := failed_cast 0 (1 <= 0) in a))

0 (failed_cast_projl (1 <= 0))
ilist O

8. Extraction

An interesting feature of Coq in terms of bridging certified
programming with practical developments is the possibility
to extract definitions to mainstream languages. The standard
distribution of Coq supports extraction to Ocaml, Haskell,
and Scheme; and there exists several experimental projects
for extracting Coq to other languages like Scala and Erlang.

Coq establishes a strong distinction between programs
(in Type), which have computational content, and proofs
(in Prop), which are devoid of computational meaning and
are therefore erased during extraction. This allows for ex-
tracted programs to be efficient and not carry around the
burden of unnecessary proof terms. However, this erasure
of proofs also means that subset types are extracted to plain
types, without any safeguards. It also means that the use of
admitted properties is simply and unsafely erased!

To address these issues, we can exploit our cast frame-
work. By establishing a bridge between properties and com-
putation, casts are extracted as runtime checks, and cast fail-
ures manifest as runtime exceptions—which is exactly how
standard casts work in mainstream programming languages.
This ensures that the assumptions made by certified compo-
nents extracted to a mainstream language are dynamically
enforced.

Example. Recall from Section [6.2] the function of
type nat| — {n: jnat | n > 0} — nat. To define [divide] the
programmer works under the assumption that the second
argument is strictly positive. However, this guarantee is lost
when extracting the function to a mainstream programming
language, because the extracted function has the plain type
nat—nat—inat:

Definition divide: nat|—|{n:|nat||n > 0} —|nat :=
funa b =diviab.;.
Extraction Language Ocaml.
Extraction[dividel
let divide a b = div a b

The dependent pair corresponding to the subset type has
been erased, and [divide]does not check that the second argu-
ment is positive (we extract nat to OCaml’s int):

divide 1 0;;
- : int =0

If we instead first cast|dividel to the[divide’| function with
plain type nat—nat—nat, and then extract[divide’}
Definition divide’: nat —nat/—nat :=
fun a = 7— (divide]a).
Extraction

let divide’ a =
cast_fun_dom (decidable_le_nat 1) (divide a)

The inserted cast translates to a runtime check in the
extracted code, whose failure results in a runtime cast error:

divide’ 1 0O;;
Exception: Failure "Cast has failed".

Extracting axioms as exceptions. By default, the use of an
axiom translates to a runtime exception in Ocaml. In order
to make the error message more informative, we explicitly
instruct Coq to extract uses of failed_cast as followsﬁ

Extract Constant failed_cast =
"failwith ”’Cast has failed”””.

Appendix which discusses evaluation regimes, in-
cludes discussion about some subtleties that arise when ex-
tracting to an eager language like Scheme or Ocaml.

Finally, note that the second axiom we introduced in Sec-
tion failed_cast_projl, does not need to be extracted at
all: it is used to convert two types that are equal after extrac-
tion (because they only differ in propositional content).

9. Properties

The development of gradual checking of subset types we
have presented is entirely internalized in Coq: we have
neither extended the underlying theory nor modified the
implementation. The only peculiarities are the use of the
[failed_cast|and|failed_cast_projI|axioms. As a consequence,
a number of properties come “for free”.

Canonicity. Coq without axioms enjoys a canonicity prop-
erty, which states that all normal forms correspond to canon-
ical forms. For instance, all normal forms of type bool are
either true or false.

Cast errors. Canonicity is only violated by the use of ax-
ioms. Here, this means that the only non-canonical normal
forms are terms with [failed_cast| (or |fatled_cast_projl)) in-
side. More precisely, a cast failure in Coq is any term ¢ such
that t = F[failed_cast v p|, where v is the casted value
and p is a false property (ditto for failed_cast_proj1). In Coq,
for cast errors that manifest at the value level, the evaluation
context F is determined by the evaluation regime specified
when calling Eval. For cast errors that manifest at the type

13 To be more helpful in the error reporting, we do provide a string represen-
tation of the casted value by using a showable type class, similar to Show
in Haskell (see code in the distribution). However, we cannot provide the
information of the violated property, because there is currently no way to
obtain the string representation of an arbitrary Prop within Coq.

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#:nat scope:x '>' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#div
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat

level, E' follows the reduction strategy for type conversion,
which is coarsely a head normal-form evaluation with opti-
mization for constants.

Soundness via extraction. The canonicity of Coq and the
definition of cast errors, together with the assumption that
program extraction in Coq is correct (and axioms are ex-
tracted as runtime errors), entail the typical type soundness
property for gradually-typed programs, i.e. programs with
safe runtime casts [16} 26]: the only stuck terms at runtime
are cast errors[]

Termination of casts. Because decision procedures are de-
fined within Coq, casts are guaranteed to terminate. This is
in contrast to some approaches, like hybrid type checking
in Sage [15] [17]], in which decision procedures are defined
within a language for which termination is not guaranteed.

Simplification at extraction. Because propositions are
erased at extraction, the |failed_cast_projl| axiom is never
extracted in the target language and thus cannot fail. This

means that in the extracted program, is al-

ways extracted to the identity function, and errors can only

manifest through the axiom.
10. Casting More Dependent Types: Records

Until now, we have developed the axiomatic approach to
gradual verification in Coq with subset types, because they
are the canonical way to attach a property to a value. How-
ever, the approach is not specific to subset types and acco-
modates other dependently-typed structures commonly used
by Coq developers, such as record types. To stress that our
approach is not restricted to subset types, we now illustrate
how to deal with dependent records. We also use this exam-
ple as a case study in customizing the synthesis of correct
decision procedures through the Decidable type class.

Rationals. Consider the prototypical example provided in
the Coq reference manual>} a record type for rational num-
bers, which embeds the property that the divisor is not zero,
and that the fraction is irreducible. The type of rational num-
bers, with their properties, is defined as:

Record Rat : Set := mkRat
{sign : bool;
top :[nat;
bottom : |nat;

Rat_bottom_cond : 0|

Rat_irred_cond : Vx y z,
y[x|x Etop]A z[x]x [=[bottom] —| 1 = x}.

14 Note that if the target language is impure, then it is possible to break the
safety of program extraction altogether (eg. by passing an impure Ocaml
function as input to a Cog-extracted function). This general issue is inde-
pendent of casting and beyond the scope of this work. Ensuring safe in-
teroperability between a purely functional dependently-typed language like
Coq and a language with impure features is a challenging research venue.

Bhttps://coq.inria.fr/refman/Reference-Manual004.html#
sec61

36

Casting rationals. The property [Rat_bottom_cond|is obvi-
ously decidable. It is less clear for the property[Rat_irred_cond]
which uses universal quantification. Indeed, in general, there
is no decision procedure for a universally-quantified de-
cidable property over natural numbers, because the set of
natural numbers is infinite. So it seems we cannot use the
cast framework to create rationals without having to provide
proofs of their associated properties.

Interestingly, it is possible to use casts for rationals de-
spite the fact that[Rat_irred_cond|cannot be directly declared
to be decidable. We review three different approaches in this
section. They all exploit the fact that if we can prove that
a decidable property is equivalent to then
[Rat_irred_cond|is decidable (Section [3).

We define a cast operator for which takes the three
values for and two (implicitly-passed) de-
cision procedures dec_rat_bottom and dec_rat_irred, and
checks the two properties:

Definition cast_Rat (s:bool) (7 b:|nat)
{dec_rat_bottom : Decidable _}
{dec_rat_irred : (0 5)|— Decidable _} :[Rat]:=
match dec _ with
|inll HD> =
match dec (Decidable := dec_rat_irred Hb) _ with
|inl| Hi = |mkRat|s t b Hb Hi
. et 1
end

| - = |failed_cast_Rat|s t b

end.

As before, the definition of the cast operator appeals to an
inconsistent axiom in the case a property is violated. The
failed_cast_Rat] axiom states that any three values are ade-

quate to make up a|Ratj'®

Axiom[failed_cast_Rat]: V (sibool) (¢ b: nat),[Rat}

Note that we use a type dependency in to allow
the decision procedure of dec_rat_irred to use the fact that
[Rat_bottom_cond| holds in the branch where it is used.

A decision procedure based on bounded quantification.
A first approach to establish a decision procedure for irre-
ducibility is to exploit that it is equivalent to the same prop-
erty that quantifies over bounded natural numbers. We first
define the type of bounded naturals (and we introduce an
implicit coercion from [bnat]to|nat):

Definition bnat (n:inat) :=|{im|nat|| m < n}

161t is necessary to define custom axioms and cast operators for each new
record type. This limitation was not apparent with subset types, because
they are a general purpose structure, while records are specific. To limit
the burden of adoption, it would be interesting to define a Coq plugin that
automatically generates the axioms and cast operators (whose definitions
are quite straightforward).

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#bool
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<>' x
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#:nat scope:x '*' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '/x5C' x
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#:nat scope:x '*' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
https://coq.inria.fr/refman/Reference-Manual004.html#sec61
https://coq.inria.fr/refman/Reference-Manual004.html#sec61
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#bool
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<>' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#inl
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#inl
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#bool
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#:nat scope:x '<=' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'

and define a general instance of Decidable, which allows
building a decision procedure for any universally-quantified
property over bounded naturals:

Instance Decidable_forall_bounded k
(P{bnat]k—Prop) (HP : V n, Decidable (P n)) :
Decidable (V n, P n).

We can then establish how to synthesize a decision proce-

dure for[Rat_irred_cond| by establishing that it is equivalent

to a similar property, where the quantification is bounded by
the max of [fop|and

Definition Rat_irred_cond_bounded top bottom ‘(0 #
bottom):
(¥ x y z:[bnat] (max| top bottom),
v X|x=top |\ z X|x = bottom|—1 = x)|
(Vxy zz|nat, y X|x|=top A\ z X|x = bottom|—| 1 = x)!

Note that it is crucial to be able to use the fact that 0 #
holds in the proof of equivalence, as it simply does
not hold when [botiom]= 0.

Then, the Decidable instance for [Rat_irred_cond]is sim-
ply defined by connecting it to the bounded property through
the [Decidable_equivalent|instance:

Instance Rat_irred_cond_dec_bounded top bottom
‘(0 # bottom) : Decidable _ :=

Decidable_equivalent
(Rat_irred_cond_bounded| top bottom H).

Example. 1t is now possible to define a rational number
without having to prove the two side conditions.

Definition Rat_good :=[cast_Raf|true|5 6.
Eval compute in[top|Rat_good

=5
: nat

Exactly in the same way as the first projection of a dependent

pair cannot be recovered if the cast fails, or [bottom|
can not be recovered if [cast_Raf fails.

Definition Rat_bad :=[casi_Railtrue 5 10.
Eval compute in[fop|[Rat_bad]

= let (_, top, bottom, _, _) :=
failed_cast_Rat true 5 1 in top

: nat

Note that the evaluation of takes a significant

amount of time, because the decision procedure involves
checking every possible x y z: 10, which amounts to
checking more than 1000 properties. Indeed, a simple cast
as above takes around 2 seconds on a recent computer.

We now show that we can improve the cast on rational
numbers by using more efficient decision procedures over
equivalent properties.

37

A decision procedure using binary natural numbers. In
the Coq standard library, there is a binary representation of
integers, Z, which is much more efficient but less easy to
reason about. We can exploit this representation by showing

that the property in [Z implies the property

in|nat:

Definition Rat_irred_cond_Z top bottom ‘(0| bottom):
WVxyz (max] top bottom),
Z.mul y x =|top A |Z.mul z x = bottom|—| 1 = x)| <
(V xy z:nat, y X|x=top N\ z X|x = bottom —|1 = x).
Instance Rat_irred_cond_dec top bottom ‘(0 |#£ bottom):
Decidable _ :=

Decidable_equivalent]
(Rat_irred_cond_Z] top bottom H).

In this manner, the time for evaluating the same “bad”
rational number cast as[Rat_bad|decreases by a factor of 10!

A decision procedure based on gcd. We can go even one
step further and avoid doing an exhaustive (even if finite)
check: the property is actually equivalent to
the ged of ftop| and [bottom| being equal to 1:
Definition Rat_irred_cond_gcd top bottom ‘(0 # bot-

tom) :

(Z.gcd (top:nat) bottom = 1)) <>

(Vxyz, y|x|\x=top|\ z X|x=bottom|—|1 |= X).

Instance Rat_irred_cond_gcd_dec fop bottom
(Hbot : 0\ #| bottom) : Decidable _ :=

Decidable_equivalent
(Rat_irred_cond_gcd| top bottom Hbot).

Computing the same bad cast is now instantaneous.

11. Related Work

There is plenty of work on rich types like refinement types [4]
(which roughly correspond to the subset types of
Coq [27]), focusing mostly on how to maintain statically
decidable checking (eg. through SMT solvers) while of-
fering a refinement logic as expressive as possible. Liquid
types [20]], and their subsequent improvements [6} 29], are
one of the most salient example of this line of work. Of
course, to remain statically decidable, the refinement logics
are necessarily less expressive than higher-order logics such
as Coq and Agda. In this work we focus on Coq, giving up
fully automatic verification. This being said, Coq allows a
mix of automatic and manual theorem proving, and we ex-
tend this combination with the possibility to lift proofs of
decidable properties to delayed checks with casts. Notably,
the set (and shape) of decidable properties is not hardwired
in the language, but is derived from an extensible library. We
believe our approach is applicable to Agda as well, since the
main elements (axioms and type classes) are also supported
in Agda. However, the devil is certainly in the details.
Interestingly, Seidel et al. recently developed an approach
called type targeted testing to exploit refinement type anno-

http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<>' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#max
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#:nat scope:x '*' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '/x5C' x
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#:nat scope:x '*' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#:nat scope:x '*' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '/x5C' x
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#:nat scope:x '*' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<>' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#true
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#true
http://coq.inria.fr/stdlib/Coq.Numbers.BinNums.html#Z
http://coq.inria.fr/stdlib/Coq.Numbers.BinNums.html#Z
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<>' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#max
http://coq.inria.fr/stdlib/Coq.ZArith.BinInt.html#Z.mul
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '/x5C' x
http://coq.inria.fr/stdlib/Coq.ZArith.BinInt.html#Z.mul
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#:nat scope:x '*' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '/x5C' x
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#:nat scope:x '*' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<>' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<>' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.ZArith.BinInt.html#Z.gcd
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#:nat scope:x '*' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '/x5C' x
http://coq.inria.fr/stdlib/Coq.Init.Nat.html#:nat scope:x '*' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<>' x

tations not for static checking, but for randomized property-
based testing [23]. This supports a progressive approach
by which programmers can first enjoy some benefits of
(unchecked) refinement type annotations for testing, and
then eventually turn to full static checking when they de-
sire. While the authors informally qualify the methodology
as “gradual”, it is quite different from other gradual checking
work, which focuses on mixing static and dynamic check-
ing [26]. Gradual typing has been extended to a whole range
of rich type disciplines: typestates [12}/30], information flow
typing and security types [8} 9], ownership types [24], an-
notated type systems [28]], and effects [3]], but not to a full-
blown dependently-typed language.

This work is directly related to the work of Ou et al. on
combining dependent types and simple types [18]], as well
as the work on hybrid type checking [[17], as supported in
Sage [[15)]. Ou et al. develop a core language with depen-
dent function types and subset types augmented with three
special commands: simple{e}, to denote that expression e
is simply well-typed, dependent{e}, to denote that the type
checker should statically check all dependent constraints in
e, and assert(e,) to check at runtime that e produces a
value of (possibly-dependent) type 7. The semantics of the
source language is given by translation to an internal lan-
guage, which uses a type coercion judgment that inserts run-
time checks when needed. In hybrid type checking, the lan-
guage includes arbitrary refinements on base types, and the
type system tries to statically decide implications between
predicates using an external theorem prover. If it is not stati-
cally possible to either verify or refute an implication, a cast
is inserted to defer checking to runtime.

In both approaches, refinements are directly expressed in
the base language, as boolean expressions; therefore it suf-
fices to evaluate the refinement expression itself at runtime
to dynamically determine whether the refinement holds. (In
hybrid type checking, refinements are not guaranteed to ter-
minate, while in Ou et al., refinements are drawn from a pure
subset of expressions.) In both cases, arbitrary logical prop-
erties cannot be expressed: the refinements directly corre-
spond to boolean decision procedures, without the possibil-
ity to specify their logical meaning (see also Appendix [A]for
a discussion of boolean reflection). In particular, there are no
ways for programmers to give proof terms explicitly, which
means that it is impossible to marry non-decidable (explic-
itly proven) properties with decidable ones (which may vol-
untarily be proven or deferred).

12. Conclusion

We exposed an approach to support gradual certified pro-
gramming in Coq. When initially engaging in this project,
we anticipated a painful extension to the theory and imple-
mentation of Coq. Much to our surprise, it was possible to
achieve our objectives in a simple and elegant (albeit slightly
heretical) manner, exploiting axioms and type classes. The

38

cast framework is barely over 50 lines of Coq, to which we
have to add the expansion of the Coq/HoTT Decidable li-
brary, which is useful beyond this work, and could be re-
placed by a different decidability framework. A limitation of
the internalized approach is that it does not support blame
assignment [10], because it would be necessary to modify
reduction to track blame labels transparently.

An interesting track to explore is to make the axiomatic
approach to casts less heretical, by requiring the claimed
property to be inhabited (this would rule out direct claims of
False, for instance). The counterpart is that it requires some
additional effort from the programmer—it may be possible
to automatically find witnesses in certain cases. Also, the
monadic version seems perfectly reasonable if extraction is
the main objective, because upon extraction we can elimi-
nate the success case of the error monad, and turn the failure
case into a runtime exception. Additionally, the decidability
constraint could be relaxed by only requiring a sound ap-
proximation of the property to be decidable, not necessarily
the property itself. Finally, we can optimize the cast proce-
dure so that it does not execute the decision procedure if the
property has been statically proven.

Acknowledgments

We thank Jonathan Aldrich, Rémi Douence, Stéphane Glondu,
Ronald Garcia, Francois Pottier, Ilya Sergey and Matthieu
Sozeau for providing helpful feedback on this work and ar-
ticle. Ilya Sergey also integrated the cast framework with
Ssreflect as a decidability framework. We also thank the
anonymous DLS reviewers, and the participants of the Coq
workshop 2015 participants for their feedback, especially
Georges Gonthier and Gabriel Scherer who suggested very
interesting venues for future work.

References

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic
typing in a statically typed language. ACM Transactions on
Programming Languages and Systems, 13(2):237-268, Apr.
1991.

[2] E. Allende, J. Fabry, R. Garcia, and E. Tanter. Confined grad-
ual typing. In Proceedings of the 29th ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA 2014), pages 251-270, Portland,
OR, USA, Oct. 2014. ACM Press.

F. Bafiados, R. Garcia, and E. Tanter. A theory of gradual
effect systems. In Proceedings of the 19th ACM SIGPLAN
Conference on Functional Programming (ICFP 2014), pages
283-295, Gothenburg, Sweden, Sept. 2014. ACM Press.

[4] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and
S. Maffeis. Refinement types for secure implementations.
ACM Transactions on Programming Languages and Systems,

33(2):8:1-8:45, Jan. 2011.

[5] A. Chlipala. Certified Programming with Dependent Types.
MIT Press, 2013.

(3]

[6] R. Chugh, P. M. Rondon, A. Bakst, and R. Jhala. Nested
refinements: a logic for duck typing. In Proceedings of the
39th annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages (POPL 2012), pages 231-
244, Philadelphia, USA, Jan. 2012. ACM Press.

[7]1 M. Dénes, C. Hritcu, L. Lampropoulos, Z. Paraskevopoulou,
and B. C. Pierce. QuickChick: Property-based testing for Coq.
In Cog Workshop, 2014.

[8] T. Disney and C. Flanagan. Gradual information flow typing.
In International Workshop on Scripts to Programs, 2011.

[9] L. Fennell and P. Thiemann. Gradual security typing with
references. In Proceedings of the 26th Computer Security
Foundations Symposium (CSF), pages 224-239, June 2013.

[10] R. B. Findler and M. Felleisen. Contracts for higher-order
functions. In Proceedings of the 7th ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 48-59,
Pittsburgh, PA, USA, 2002. ACM Press.

[11] T. Freeman and F. Pfenning. Refinement types for ML. In
Proceedings of the ACM Conference on Programming Lan-
guage Design and Implementation (PLDI ’91), pages 268—
277. ACM Press, 1991.

[12] R. Garcia, E. Tanter, R. Wolff, and J. Aldrich. Foundations of
typestate-oriented programming. ACM Transactions on Pro-
gramming Languages and Systems, 36(4):12:1-12:44, Oct.
2014.

[13] G. Gonthier and A. Mahbouhi. An introduction to small scale
reflection in Coq. Journal of Formalized Reasoning, 3(2):95—
152, 2010.

[14] G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How
to make ad hoc proof automation less ad hoc.
Functional Programming, 23(4):357-401, 2013.

[15] J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flana-
gan. Sage: Hybrid checking for flexible specifications. In Pro-
ceedings of the Scheme and Functional Programming Work-
shop, pages 93—104, 2006.

[16] A.Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a
minimal core calculus for Java and GJ. ACM Transactions on
Programming Languages and Systems, 23(3):396-450, 2001.

[17] K. Knowles and C. Flanagan. Hybrid type checking. ACM
Transactions on Programming Languages and Systems, 32(2):
Article n.6, Jan. 2010.

[18] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic
typing with dependent types. In Proceedings of the IFIP

International Conference on Theoretical Computer Science,
pages 437-450, 2004.

[19] B. C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002. ISBN 0-262-16209-1.

[20] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types.
In R. Gupta and S. P. Amarasinghe, editors, Proceedings of
the ACM Conference on Programming Language Design and
Implementation (PLDI 2008), pages 159-169. ACM Press,
June 2008.

Journal of

39

[21] A. Saibi. Typing algorithm in type theory with inheritance.
In Proceedings of the 24th ACM Symposium on Principles of
Programming Languages (POPL 97), pages 292-301, Paris,
France, Jan. 1997. ACM Press.

[22] T. Schrijvers and B. C. Oliveira. Monads, zippers and views:
virtualizing the monad stack. In Proceedings of the 16th ACM
SIGPLAN Conference on Functional Programming (ICFP
2011), pages 3244, Tokyo, Japan, Sept. 2011. ACM Press.

[23] E. Seidel, N. Vazou, and R. Jhala. Type targeted testing. In
J. Vitek, editor, Proceedings of the 24th European Symposium
on Programming Languages and Systems (ESOP 2015), vol-
ume 9032 of Lecture Notes in Computer Science, London,
UK, Mar. 2015. Springer-Verlag.

I. Sergey and D. Clarke. Gradual ownership types. In
H. Seidl, editor, Proceedings of the 21st European Symposium
on Programming Languages and Systems (ESOP 2012), vol-
ume 7211 of Lecture Notes in Computer Science, pages 579—
599, Tallinn, Estonia, 2012. Springer-Verlag.

[25] T. Sheard, A. Stump, and S. Weirich. Language-based verifi-
cation will change the world. In Proceedings of the FSE/SDP
Workshop on the Future of Sofware Engineering Research
(FoSER 2010), pages 343-348, 2010.

[26] J. Siek and W. Taha. Gradual typing for functional languages.
In Proceedings of the Scheme and Functional Programming
Workshop, pages 81-92, Sept. 2006.

[27] M. Sozeau. Subset coercions in Coq. In Types for Proofs
and Programs, volume 4502 of Lecture Notes in Computer
Science, pages 237-252. Springer-Verlag, 2007.

(24]

[28] P. Thiemann and L. Fennell. Gradual typing for annotated type
systems. In Z. Shao, editor, Proceedings of the 23rd European
Symposium on Programming Languages and Systems (ESOP
2014), volume 8410 of Lecture Notes in Computer Science,
pages 47-66, Grenoble, France, 2014. Springer-Verlag.

[29] N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement
types. In M. Felleisen and P. Gardner, editors, Proceedings of
the 22nd European Symposium on Programming Languages
and Systems (ESOP 2013), volume 7792 of Lecture Notes in
Computer Science, pages 209-228, Rome, Italy, Mar. 2013.
Springer-Verlag.

[30] R. Wolff, R. Garcia, E. Tanter, and J. Aldrich. Gradual type-
state. In M. Mezini, editor, Proceedings of the 25th Euro-
pean Conference on Object-oriented Programming (ECOOP
2011), volume 6813 of Lecture Notes in Computer Science,
pages 459-483, Lancaster, UK, July 2011. Springer-Verlag.

[31] H. Xi and F. Pfenning. Eliminating array bound checking
through dependent types. In Proceedings of the ACM Confer-
ence on Programming Language Design and Implementation
(PLDI "98), pages 249-257. ACM Press, 1998.

A. A Note on Boolean Reflection

An alternative approach for the definition of decision proce-
dures is to use boolean reflection, i.e. considering that the
decision procedure is the property.

Instance Decidable_bool (b : bool) :
Decidable (if b then True else False).

However, while using boolean reflection can be conve-
nient, there is no “safeguard” that the procedure is correctly
implemented: the implementation is the specification. An-
other limitation is that the information reported to the pro-
grammer is unhelpful: if the cast succeeds, the proof term
is I; if the cast fails, the failed property is False. While the
proof term is arguably irrelevant, the information about the
failed property can be very helpful for debugging.

Both issues can nevertheless been solved by having both
the boolean and the property, and formally establishing the
relation between both, similarly to what is done in the Ss-
reflect [13] library or the reflect inductive in Coq. This
boolean/proposition relation mechanism is also provided in
the DecidableClass library of Coq. To avoid name conflicts
(the class is also named Decidable), we provide the same

class under the name [Decidable_relatet

Class Decidable_relate (P : Prop) := {
Decidable_witness: bool;
Decidable_spec: [Decidable_witness|=true| <> P

}.
Actually the two presentations of decidability are equivalent.
Indeed, the same development has been done in Ssreﬂeclm
using canonical structures [21] instead of type classes to au-
tomatically infer complex decision procedures from simpler
ones [14]. This shows that the decidability mechanism is or-
thogonal to the cast operators we propose. |E|

B. A Note on Evaluation Regimes

Recall that Coq does not impose any fixed reduction strat-
egy. Instead, Eval is parameterized by a reduction strat-
egy, called a conversion tactic, such as cbv (aka. compute),
lazy, hnf, simpl, etc.

In addition to understanding the impact of reduction
strategies on the results of computations with casts, it is
crucial to understand the impact of representing cast fail-
ures through an axiom. Consider a function [g] that expects a
{ninat | n > 0}, but actually never uses its argument:

Definition g (x:|{/:nat|| n>/0}) :=1.

Typically, one would expect that evaluating[g](? 0) with a
lazy reduction would produce 1, while using an eager strat-
egy like compute would reveal the failed cast. However:

17 The Ssreflect implementation was done by Ilya Sergey.

18 The Decidable library is currently much less furnished than the Ssreflect
library using boolean reflection, but its extension with instances similar to
the ones implemented in Ssreflect is straightforward.

40

Eval compute in@(? 0).

=1
: nat

The reason is that a cast error in Coq is not an error per
se (Coq has no such mechanism): it is just a non-canonical
normal form. Therefore, even with an eager strategy,] (? 0)
simply returns 1. The cast is eagerly evaluated, and fails; but
this only means that[g]is called with failed_cast as a fully-
evaluated argument. Because [g does not touch its argument,
the cast failure goes unnoticed.

On the contrary, if we extract the code to Ocaml (recall
Section [g)), the cast violation is reported immediately as an
exception:

Definition client (x:|nat) :=[g](? x).
Extraction Language Ocaml.

Extraction “test.ml” client.

client 1;;
- : int =1
client 0;;
Exception: Failure "Cast has failed".

While, as expected, the error goes unnoticed in Haskell,
because of its lazy evaluation regime.

Extraction Language Haskell.
Extraction “test.hs” client.

*Test> client 1
1
*Test> client O
1

Extraction of axioms in eager languages. There is one
last detail to discuss when considering extraction to eager
languages. As defined, failed_cast and cast are extracted as
follows in Ocaml:

let failed_cast =
failwith "Cast has failed"

let cast dec a =
match dec a with
| Inl _
| Inr _

-> a
-> failed_cast

While these definitions are perfectly fine for a lazy lan-
guage like Haskell, in an eager language like Ocaml or
Scheme they imply that loading the definition of failed_cast
fails directly. The solution is to enforce the inlining of
failed_cast:

Extraction Inline failed_cast.

As a result, failed_cast is not extracted as a separate
definition, and cast uses the Ocaml failwith function di-
rectly.

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#bool
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#True
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#False
http://ssg.ustcsz.edu.cn/~zz/doc/coq/stdlib/Coq.Classes.DecidableClass.html
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#bool
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#true
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '<->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#:nat scope:x '>' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat

	Introduction
	Gradual Certified Programming in Action
	First Examples
	Casting Lists
	A Gradually Certified Compiler

	Casts and Decidability
	Decidable Properties
	Leveraging Type Class Resolution

	Casts and Axioms
	The Monadic Approach
	The Axiomatic Approach
	Heresy!

	Implicit Casts
	Higher-Order Casts, Simply
	Strengthening the Range
	Weakening the Domain

	Higher-Order Casts, Dependently
	Strengthening the Range
	Weakening the Domain

	Extraction
	Properties
	Casting More Dependent Types: Records
	Related Work
	Conclusion
	A Note on Boolean Reflection
	A Note on Evaluation Regimes

