
Chaos, Solitons and Fractals 87 (2016) 1–11 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Adaptive synchronization of fractional Lorenz systems using a re duce d 

number of control signals and parameters 

Norelys Aguila-Camacho 

a , b , ∗, Manuel A. Duarte-Mermoud 

a , b , Efredy Delgado-Aguilera 

a , b 

a Department of Electrical Engineering, University of Chile, Av. Tupper 2007, Santiago de Chile, Chile 
b Advanced Mining Technology Center, Av. Tupper 2007, Santiago de Chile, Chile 

a r t i c l e i n f o 

Article history: 

Received 4 November 2015 

Revised 27 January 2016 

Accepted 25 February 2016 

Available online 14 March 2016 

Keywords: 

Minimal adaptive synchronization 

Fractional Lorenz system 

Synchronization 

Chaotic systems 

a b s t r a c t 

This paper analyzes the synchronization of two fractional Lorenz systems in two cases: the first one con- 

sidering fractional Lorenz systems with unknown parameters, and the second one considering known 

upper bounds on some of the fractional Lorenz systems parameters. The proposed control strategies use 

a reduced number of control signals and control parameters, employing mild assumptions. The stability 

of the synchronization errors is analytically demonstrated in all cases, and the convergence to zero of the 

synchronization errors is analytically proved in the case when the upper bounds on some system parame- 

ters are assumed to be known. Simulation studies are presented, which allows verifying the effectiveness 

of the proposed control strategies. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The goal of the synchronization of two dynamical systems

volving separately, one called “master” and the other called

slave,” is that those systems will be sharing a common trajectory

rom a certain time onward. The synchronization of chaotic sys-

ems has been widely studied due to its theoretical challenges and

ts applications in important areas such as secure communications,

hemical systems, modeling brain activities [1] , ecological systems

2] , among others. 

The synchronization can be performed under the hypothesis

hat system parameters are known (nonadaptive synchronization,

r simply synchronization) or, if those parameters are unknown

adaptive synchronization) [3] . When the systems to be put in syn-

hrony are described by fractional differential equations, the term

ractional adaptive synchronization is used. 

We can find in literature many works related to adaptive syn-

hronization, whose results can be applied to the adaptive syn-

hronization of fractional Lorenz systems. Different techniques

ave been proposed in these works, such as modified projec-

ive adaptive synchronization [1,4,5] , adaptive full-state linear error

eedback [6–8] , adaptive sliding mode control [9–12] , fuzzy gener-

lized projective synchronization [13] , among others [14] . However,

hese techniques use the maximum possible number of control sig-
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als, which in the case of the fractional Lorenz system analyzed in

his work is three. 

We can find some few works that can be applied to fractional

orenz system, where only one control signal is used to make

daptive stabilization, using sliding mode control [15–17] . Apply-

ng these control techniques it is possible to stabilize a Lorenz sys-

em at the origin, using only one control signal. However, the as-

umption on the system structure for the application of these tech-

iques does not allow their use in synchronization of two frac-

ional Lorenz systems. This is because the definition of the syn-

hronization errors lead to a structure different from the one re-

uired for the application of these techniques. Moreover, even for

aking stabilization of the Lorenz system using these techniques,

ome of the Lorenz system parameters are needed to construct the

ontrol signal, so all the system parameters can not be unknown. 

In this paper we study the synchronization of two fractional

orenz systems with unknown parameters, using a direct approach.

he direct approach consists of directly adjusting the controller pa-

ameters, without identification of the unknown plant parameters.

ince all the parameters of the Lorenz system are considered un-

nown and only one or two control signals are used to achieve

ynchronization, this is a work that, as far as the authors know,

as not been reported in literature. 

Firstly, we analyze the three possible cases where two control

ignals and one adjustable parameter are used. Next we analyze

wo cases where only one control signal and one adjustable pa-

ameter are employed. In the first four cases studied, no assump-

ions on the system states boundedness is made. In the fifth case,
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.02.038&domain=pdf
mailto:naguila@ing.uchile.cl
mailto:mduartem@ing.uchile.cl
mailto:mduartem@ing.uchile.cl
http://dx.doi.org/10.1016/j.chaos.2016.02.038


2 N. Aguila-Camacho et al. / Chaos, Solitons and Fractals 87 (2016) 1–11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
t  

 

 

s  

i  

c  

t  

f  

s

T  

o  

t

C
t  

 

s

 

i  

e  

T

D  

b

T  

[  

f  

t

γ  

C
t  

w  

s

R  

t  

f

 

f  

f  

C
t  

s

 

f

L  

T

 

w  

m

 

c

boundedness on the master state trajectories is assumed. The sta-

bility of the controlled systems are proved in all cases, using the

fractional extension of the Lyapunov direct method, and the main

difficulties in proving the convergence to zero of the synchroniza-

tion errors are exposed. 

An alternative solution for the five cases, where an upper bound

on some of the system parameters is assumed to be known is pre-

sented as well. In these cases, not only the stability of the con-

trolled system is proved, but the convergence to zero of the syn-

chronization errors is proved as well, using the fractional extension

of the Lyapunov direct method. 

The paper is organized as follows. Section 2 presents some basic

concepts of fractional calculus and stability of fractional order sys-

tems, which are used along the paper. Section 3 presents the state-

ment of the adaptive synchronization problem, and the proposed

solutions in the adaptive case. The alternative solutions assuming

a known upper bound on some system parameters are presented

as well. The theoretical stability analysis of the controlled system

in both cases and the convergence of the synchronization errors

when the upper bound on some system parameters are assumed

to be known are also presented in Section 3 . Section 4 presents

the simulation results for the solutions proposed in Section 3 , and

a comparison with another control strategy available in literature.

Finally, Section 5 presents the main conclusions of the work. 

2. Some concepts related to fractional calculus and stability of 

fractional systems 

This section presents some basic concepts of fractional calculus

and stability of fractional order systems. 

2.1. Fractional calculus 

Fractional calculus studies integrals and derivatives of orders

that can be any real or complex numbers [18] . The Riemann–

Liouville fractional integral is one of the main concepts of frac-

tional calculus, and is presented in Definition 1 . 

Definition 1 (Riemann–Liouville fractional integral [18] ) . The

Riemann–Liouville fractional integral of order α ∈ C ( � ( α) > 0 ) is

defined as 

I αa + f ( t ) = 

1 

�( α) 

t ∫ 
a 

f ( τ ) 

( t − τ ) 
1 −α

dτ (1)

where t > a , � ( α) is the real part of α and �( α) corresponds to

the Gamma Function, given by Eq. (2) : 

�( α) = 

∞ ∫ 
0 

t α−1 e −t dt . (2)

There are some alternative definitions regarding fractional

derivatives. Definition 2 corresponds to the fractional derivative ac-

cording to Caputo, which is the one most frequently used in engi-

neering problems and the one used in this paper. 

Definition 2 (Caputo fractional derivative [18] ) . The Caputo frac-

tional derivative of order α ∈ C ( � ( α) > 0 ) is defined as 

 

 0 
D 

α
t x ( t ) = 

1 

�( n − α) 

t ∫ 
a 

f ( n ) ( τ ) 

( t − τ ) 
α−n +1 

dτ (3)

where t > a , n = � ( α) + 1 for α / ∈ N 0 ; n = α for α ∈ N 0 . 

2.2. Stability of fractional order systems 

The known methods for stability analysis of integer order sys-

tems differ from those that have been proposed for fractional order
ystems. The conditions under which fractional order linear time-

nvariant systems are stable were studied in [19] . However, in the

ase of fractional adaptive systems this analysis is not valid, since

hey are time-varying. The following theorem is used in this paper

or the stability analysis of the adaptive fractional synchronization

chemes. 

heorem 1 (Lyapunov stability and uniform stability of fractional

rder systems [20] ) . Let x = 0 be an equilibrium point for the nonau-

onomous fractional-order system (4) . 

 

 0 
D 

α
t x ( t ) = f ( x ( t ) , t ) , α ∈ ( 0 , 1 ) (4)

Let us assume that there exists a continuous function V ( x ( t ), t )

uch that 

• V ( x ( t ), t ) is positive definite. 

• C 
t 0 

D 

β
t V ( x ( t ) , t ) , with β ∈ ( 0 , 1 ] , is negative semidefinite. 

then the origin of system (4) is Lyapunov stable. 

• Furthermore, if V ( x ( t ), t ) is decrescent, 

then the origin of system (4) is Lyapunov uniformly stable. 

Besides the stability and uniform stability, asymptotic stabil-

ty can be proved for fractional order systems using the fractional

xtension of Lyapunov direct method as well, as it is stated in

heorem 2 . 

efinition 3. A continuous function γ : [0, t ) → [0, ∞ ) is said to

elong to class- K if it is strictly increasing and γ ( 0 ) = 0 [21] . 

heorem 2 (Fractional-order extension of Lyapunov direct method

21] ) . Let x = 0 be an equilibrium point for the nonautonomous

ractional-order system (4) . Assume that there exists a Lyapunov func-

ion V ( t, x ( t )) and class-K functions γi ( i = 1 , 2 , 3 ) satisfying 

1 ( ‖ x ‖ ) ≤ V ( t , x ( t ) ) ≤ γ2 ( ‖ x ‖ ) (5)

 

 0 
D 

β
t V ( t , x ( t ) ) ≤ −γ3 ( ‖ x ‖ ) (6)

here β ∈ (0, 1) . Then the origin of the system (4) is asymptotically

table. 

emark 1. Given the relationship between positive definite func-

ions and class- K functions, Theorem 2 can be rewritten as in the

ollowing. 

Let x = 0 be an equilibrium point for the nonautonomous

ractional-order system (4) . Assume that there exists a Lyapunov

unction V ( t, x ( t )) positive definite and decrescent, satisfying that
 

 0 
D 

β
t V ( t , x ( t ) ) is negative definite, β ∈ (0, 1), then the origin of

ystem (4) is asymptotically stable. 

The following lemma will be useful in proving the stability of

ractional synchronization schemes, together with Theorem 1 . 

emma 1 ( [20] ) . Let x ( t ) ∈ R 

n be a vector of differentiable functions.

hen, for any time instant t ≥ t 0 , the following relationship holds 

1 

2 

C 
t 0 

D 

α
(
x T ( t ) P x ( t ) 

)
≤ x T ( t ) P C 

t 0 
D 

αx ( t ) , ∀ α ∈ ( 0 , 1 ] (7)

here P ∈ R 

n ×n is a constant, square, symmetric and positive definite

atrix. 

The case when P = I was treated in [22] , and the specific scalar

ase can also be found in [23] . 
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. Problem statement and solutions 

Let us consider the synchronization of two fractional Lorenz

ystems [ 24 ] formulated in the state space, one called “master sys-

em” and the other called “slave system”, described by the follow-

ng equations: 

aster 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

C 
t 0 

D 

α
t x m 

= σ ( y m 

− x m 

) 

C 
t 0 

D 

α
t y m 

= γ x m 

− x m 

z m 

− y m 

C 
t 0 

D 

α
t z m 

= x m 

y m 

− βz m 

(8) 

here α ∈ (0, 1) and 

la v e 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

C 
t 0 

D 

α
t x s = σ ( y s − x s ) + U 1 

C 
t 0 

D 

α
t y s = γ x s − x s z s − y s + U 2 

C 
t 0 

D 

α
t z s = x s y s − βz s + U 3 

(9) 

here X s = [ x m 

y m 

z m 

] 
T ∈ R 

3 and X s = [ x s y s z s ] 
T ∈ R 

3 are the

tates of the master and slave systems, respectively. U =
 

U 1 U 2 U 3 ] 
T ∈ R 

3 is the control signal applied to the slave system,

esigned to achieve the synchronization of both systems. The goal

s to find that U ( t ) such that the controlled system is stable and 

lim 

→∞ 

‖ X m 

− aX s ‖ = 0 (10)

.e., to synchronize both systems except for a scaling factor a ∈ R

generalized projective synchronization [25] ), which in this study

s a scalar and constant factor. 

It is well known that Lorenz systems [ 24 ] exhibit chaotic be-

avior for the following parameter values: 

= 10 γ = 28 β = 8 / 3 . 

We define the synchronization error as e = [ e 1 e 2 e 3 ] 
T ∈ R 

3 or

 = X m 

− aX s ∈ R 

3 , where a ∈ R 

+ is the scale factor. Then from (8)

nd (9) , the equations describing the synchronization errors evolu-

ion are 

C 
t 0 

D 

α
t e 1 = −σ e 1 + σ e 2 − aU 1 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 − x m 

z m 

+ ax s z s − aU 2 

C 
t 0 

D 

α
t e 3 = −βe 3 + x m 

y m 

− ax s y s − aU 3 

(11) 

When a = 1 , Eq. (11) turns out to be 

C 
t 0 

D 

α
t e 1 = −σ e 1 + σ e 2 − U 1 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 − x s e 3 − z m 

e 1 − U 2 

C 
t 0 

D 

α
t e 3 = −βe 3 + x m 

e 2 + y s e 1 − U 3 . 

(12) 

The question to be answered is how to synchronize both sys-

ems (8) and (9) to achieve and maintain a common regime as

 goes to infinity. Moreover, it is desired to accomplish this task

ithout the knowledge of the parameters σ , γ , β , seeking for

olutions involving a reduced number of control and states sig-

als, as well as with a reduced number of adjustable parameters

nd, hopefully, without any assumption on the boundedness of the

aster system trajectories. 

In this study we will distinguish five different cases. We will

nalyze first the three cases of adaptive synchronization using two

ontrol signals and one adjustable parameter, and later it is ana-

yzed two cases using one control signal and one adjustable pa-

ameter. In the first case, we will also introduce the alternative

olution using upper bounds on some of the system parameters,

ith the corresponding stability and convergence analysis. In the
ther four cases we will only introduce the alternative solution,

ut no stability and convergence analysis will be made for the sake

f space, since the demonstration is pretty similar to the first case.

.1. Fractional synchronization using control signals U 2 and U 3 

This subsection presents the solution to the synchronization

roblem using control signals U 2 and U 3 . The problem is addressed

rst in the adaptive case and later in the nonadaptive case. 

emma 2. (Adaptive fractional synchronization using control signals.

 2 and U 3 and one adjustable parameter θ ). Let us assume that the

arameters σ , γ , β in (8) and (9) are unknown and σ , β > 0 . If the

ollowing control signals are used in (9) 

U 1 = 0 

U 2 = 

1 

a 
( θe 1 − x m 

z m 

+ ax s z s ) 

U 3 = 

1 

a 
( x m 

y m 

− ax s y s ) 

(13) 

here θ is an adjustable parameter with the following adaptive law 

 

 0 
D 

α
t θ = δe 1 e 2 (14) 

here δ corresponds to the adaptive gain that can be used to han-

le the convergence speed, then the controlled system (11) , (13) , (14) is

niformly stable. 

Proof. Using the control signals (13) in (11) , the evolution of

he synchronization errors results 

C 
t 0 

D 

α
t e 1 = −σ e 1 + σ e 2 

C 
t 0 

D 

α
t e 2 = ( γ − θ ) e 1 − e 2 

C 
t 0 

D 

α
t e 3 = −βe 3 

(15) 

Defining the parametric error as φ = γ − θ ∈ R , Eq. (15) can be

xpressed as 

C 
t 0 

D 

α
t e 1 = −σ e 1 + σ e 2 

C 
t 0 

D 

α
t e 2 = φe 1 − e 2 

C 
t 0 

D 

α
t e 3 = −βe 3 

(16) 

In order to prove the stability of the controlled system, let us

se the fractional extension of Lyapunov direct method [20] . We

ropose the following Lyapunov candidate function, which is posi-

ive definite and decrescent 

 = 

1 

2 σ
e 2 1 + 

1 

2 

e 2 2 + 

1 

2 

e 2 3 + 

1 

2 δ
φ2 (17)

ith δ ∈ R , δ > 0 . 

Assuming that e 1 , e 2 , e 3 , φ are differentiable, then applying

emma 1 to (17) and using (16) and (14) it can be written as 

 

 0 
D 

α
t V ≤ −1 

2 

( e 1 − e 2 ) 
2 − 1 

2 

e 2 1 −
1 

2 

e 2 2 − βe 2 3 . (18)

As can be seen from (18) , the fractional derivative of the Lya-

unov function is negative semidefinite, then it can be concluded

rom Theorem 1 that the origin of system (16),(14) is uniformly

table, and therefore e 1 , e 2 , e 3 , φ ∈ L 

∞ , and this concludes the

roof. �

emark 2. In order to prove the convergence of the synchroniza-

ion errors to zero, in the integer order case [26] it is used the

orollary of the Barbalat Lemma [27] . To this extent, besides the

act that the synchronization errors are bounded ( e , e , e ∈ L 

∞ ),
1 2 3 
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[  
it is proved that the integer integral of the squared synchroniza-

tion errors is bounded ( e 1 , e 2 , e 3 , φ ∈ L 

2 ) and that the errors are

uniformly continuous ( ̇ e 1 , ˙ e 2 , ˙ e 3 ∈ L 

∞ ). 

However, in the fractional case it is not possible to prove

that the integer integral of the squared synchronization errors is

bounded, so it is no possible to use the corollary of the Barbalat

Lemma [27] . 

Instead of this, it can be proved that the fractional integral of

the squared synchronization errors is bounded (integrating expres-

sion (18) ), but unfortunately there is not a fractional equivalent

to the corollary of the Barbalat Lemma. That is why the analyti-

cal proof of the convergence to zero of the synchronization errors

is a subject currently under research. Nevertheless, all the simu-

lation studies accomplished during this research have shown that

the synchronization errors converge to zero, as it will be shown in

Section 4 . 

Lemma 3. (Nonadaptive fractional synchronization using control sig-

nals. U 2 and U 3 , assuming a known upper bound on parameter γ ). Let

us assume that the parameters σ , γ , β in (8) and (9) are unknown

and γ , σ , β > 0 . It is also assumed that an upper bound B γ on the

parameter γ is known ( γ < B γ ). If the following control signals are

used in (9) 

U 1 = 0 

U 2 = 

1 

a 

(
−x m 

z m 

+ ax s z s + B γ e 2 
)

U 3 = 

1 

a 
( x m 

y m 

− ax s y s ) 

(19)

then the controlled system (11) , (19) is asymptotically stable. 

Proof. Using the control signals (19) in (11) , the evolution of

the synchronization errors results 

C 
t 0 

D 

α
t e 1 = −σ e 1 + σ e 2 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 − B γ e 2 

C 
t 0 

D 

α
t e 3 = −βe 3 

(20)

In order to analyze the stability of the corresponding controlled

system (20) , let us use the fractional extension of Lyapunov direct

method [21] . We propose the following Lyapunov candidate func-

tion, which is positive definite and decrescent 

 = 

1 

2 σ
e 2 1 + 

1 

2 γ
e 2 2 + 

1 

2 

e 2 3 . (21)

Note that it is the same Lyapunov function that is used in the

adaptive case, except for the term including the parameter error

( 
1 

2 δ
φ2 ), which in this case does not exist since this is a nonadap-

tive solution. 

Assuming that e 1 , e 2 , e 3 are differentiable, applying Lemma 1

and using (20) it can be written as 

C 
t 0 

D 

α
t V ≤ −e 2 1 + 2 e 1 e 2 − 1 

γ
e 2 2 −

1 

γ
B γ e 2 2 − βe 2 3 

≤ −( e 1 − e 2 ) 
2 − 1 

γ
e 2 2 + e 2 2 

(
1 − B γ

γ

)
− βe 2 3 

≤ −( e 1 − e 2 ) 
2 + e 2 2 

(
1 − B γ

γ

)
− βe 2 3 

(22)

Given that γ < B γ and γ , B γ > 0, then 

B γ

γ
> 1 and conse-

quently 

(
1 − B γ

γ

)
< 0 . Using this result in expression (22) , it can
e concluded that the fractional derivative of the Lyapunov func-

ion is negative definite. Then using Theorem 2, it can be con-

luded that the origin of the system (20) is asymptotically stable,

hat is e 1 , e 2 , e 3 ∈ L 

∞ and 

lim 

→∞ 

e 1 ( t ) = lim 

t→∞ 

e 2 ( t ) = lim 

t→∞ 

e 3 ( t ) = 0 (23)

nd this concludes the proof. �
Note that in this nonadaptive case, asymptotic stability can be

roved directly from the fractional extension of Lyapunov direct

ethod, so no additional tools are needed in order to prove that

he synchronization errors converge to zero. This is due to the fact

hat more knowledge on the system is needed to construct the so-

ution than in the adaptive case, since the upper bound B γ must

e known. 

.2. Fractional synchronization using control signals U 1 and U 3 

This subsection presents the solution to the synchronization

roblem using control signals U 1 and U 3 . The problem is addressed

n the adaptive case and in the nonadaptive case. 

emma 4. (Adaptive fractional synchronization using control signals.

 1 and U 3 and one adjustable parameter θ ). Let us assume that the

arameters σ , γ , β in (8) and (9) are unknown, σ , β > 0 and a = 1 .

f the following control signals are used in (9) 

U 1 = −z m 

e 2 + θe 2 

U 2 = 0 

U 3 = x m 

e 2 + y s e 1 − x s e 2 

(24)

here θ is an adjustable parameter with the following adaptive law:

 

 0 
D 

α
t θ = δe 1 e 2 (25)

here δ corresponds to the adaptive gain that can be used to handle

he convergence speed, then the controlled system (12) , (24) , (25) is

niformly stable. 

Proof. Using control signals (24) in (12) , the evolution of the

ynchronization errors turns out to be 

C 
t 0 

D 

α
t e 1 = −σ e 1 + ( σ − θ ) e 2 + z m 

e 2 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 − x s e 3 − z m 

e 1 

C 
t 0 

D 

α
t e 3 = −βe 3 + x s e 2 

(26)

Defining the parametric error as φ = σ + γ − θ, then we can

rite that ( σ − θ ) e 2 = φe 2 − γ e 2 . Therefore, Eq. (26) can be ex-

ressed as 

C 
t 0 

D 

α
t e 1 = −σ e 1 + φe 2 − γ e 2 + z m 

e 2 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 − x s e 3 − z m 

e 1 

C 
t 0 

D 

α
t e 3 = −βe 3 + x s e 2 

(27)

In order to prove the stability of the controlled system, we

ill use the fractional extension of the Lyapunov direct method

20] , proposing the following Lyapunov candidate function, which
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s positive definite and decrescent: 

 = 

1 

2 

e 2 1 + 

1 

2 

e 2 2 + 

1 

2 

e 2 3 + 

1 

2 δ
φ2 (28)

ith δ ∈ R , δ > 0 . 

Assuming that e 1 , e 2 , e 3 , φ are differentiable, then applying

emma 1 and using (27) and (25) results 

 

 0 
D 

α
t V ≤ −σ e 2 1 − e 2 2 − βe 2 3 (29)

As can be seen from (29) , the fractional derivative of the

yapunov function is negative semidefinite, then it can be con-

luded that the origin of system (27),(25) is uniformly stable, and

 1 , e 2 , e 3 , φ ∈ L 

∞ and this concludes the proof. �
Regarding the convergence to zero of the synchronization er-

ors, explanation given in Remark 2 is also valid. 

emma 5. (Nonadaptive fractional synchronization using control sig-

als. U 1 and U 3 , assuming a known upper bound on parameters γ ,

). Let us assume that the parameters σ , γ , β in (8) and (9) are un-

nown, β > 0 and a = 1 . It is also assumed that an upper bound B γ σ

n the sum 

( γ + σ ) 2 

4 is known ( ( 
γ + σ ) 2 

4 < B γ σ ). If the following control

ignals are used in (9) 

U 1 = −z m 

e 2 + B γ σ e 1 

U 2 = 0 

U 3 = x m 

e 2 + y s e 1 − x s e 2 

(30) 

hen the controlled system (12) , (30) is asymptotically stable. 

Proof. Using the control signals (30) in (12) , the evolution of

he synchronization errors results 

C 
t 0 

D 

α
t e 1 = −σ e 1 + σ e 2 + z m 

e 2 − B γ σ e 1 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 − x s e 3 − z m 

e 1 

C 
t 0 

D 

α
t e 3 = −βe 3 + x s e 2 

(31) 

For the sake of space, the stability proof is not explicitly given

n this subsection. The reader can check that using the Lyapunov

unction candidate V = 

1 

2 
e 2 1 + 

1 

2 
e 2 2 + 

1 

2 
e 2 3 and Lemma 1 , the frac-

ional derivative of the Lyapunov function results negative definite

C 
t 0 

D 

α
t V ≤ −

(
( γ + σ ) 

2 

e 1 − e 2 

)2 

− βe 2 3 

+ e 2 1 

(
( γ + σ ) 

2 

4 

− B γ σ

) (32) 

Then using Theorem 2 , it can be easily concluded that the

rigin of system (31) is asymptotically stable, that is lim 

t→∞ 

e 1 ( t ) =
lim 

→∞ 

e 2 ( t ) = lim 

t→∞ 

e 3 ( t ) = 0 . 

.3. Fractional synchronization using control signals U 1 and U 2 

This subsection presents the solution to the synchronization

roblem using control signals U 1 and U 2 . As in the previous sub-

ections, the problem is addressed in the adaptive case and in the

onadaptive case. 
emma 6. (Adaptive fractional synchronization using control signals.

 1 and U 2 and one adjustable parameter θ ). Let us assume that the

arameters σ , γ , β in (8) and (9) are unknown, σ , β > 0 and a = 1 .

f the following control signals are used in (9) 

U 1 = y s e 3 + θe 2 

U 2 = −x s e 3 − z m 

e 1 + x m 

e 3 

U 3 = 0 

(33) 

here θ is an adjustable parameter with the following adaptive law:

 

 0 
D 

α
t θ = δe 1 e 2 (34) 

here δ corresponds to the adaptive gain that can be used to han-

le the convergence speed, then the controlled system (12) , (33) , (34) is

niformly stable. 

Proof. Using the control signals (33) in (12) , the evolution of

he synchronization errors turns out to be 

C 
t 0 

D 

α
t e 1 = −σ e 1 + ( σ − θ ) e 2 − y s e 3 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 − x m 

e 3 

C 
t 0 

D 

α
t e 3 = −βe 3 + x m 

e 2 + y s e 1 

(35) 

Defining the parametric error as φ = σ + γ − θ, we can state

hat ( σ − θ ) e 2 = φe 2 − γ e 2 , and Eq. (35) can be rewritten as 

C 
t 0 

D 

α
t e 1 = −σ e 1 + φe 2 − γ e 2 − y s e 3 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 − x m 

e 3 

C 
t 0 

D 

α
t e 3 = −βe 3 + x m 

e 2 + y s e 1 

(36) 

In order to prove the stability of the controlled scheme, let us

se the fractional extension of Lyapunov direct method [20] , con-

idering the following Lyapunov candidate function, which is posi-

ive definite 

 = 

1 

2 

e 2 1 + 

1 

2 

e 2 2 + 

1 

2 

e 2 3 + 

1 

2 δ
φ2 (37)

ith δ ∈ R , δ > 0 . 

Assuming that e 1 , e 2 , e 3 , φ are differentiable, then applying

emma 1 and using (36) and (34) results 

 

 0 
D 

α
t V ≤ −σ e 2 1 − e 2 2 − βe 2 3 (38)

As can be seen from (38) , the fractional derivative of the Lya-

unov function is negative semidefinite, then it can be concluded

hat the origin of system (36),(34) is uniformly stable, that is

 1 , e 2 , e 3 , φ ∈ L 

∞ , and this concludes the proof. �
Comments made in Remark 2 regarding the convergence to zero

f the synchronization errors are also valid in this case. 

emma 7. (Nonadaptive fractional synchronization using control sig-

als. U 1 and U 2 , assuming a known upper bound on parameters γ ,

). Let us assume that the parameters σ , γ , β in (8) and (9) are un-

nown, β > 0 and a = 1 . It is also assumed that an upper bound B γ σ

n the sum 

( γ + σ ) 2 

4 is known ( ( 
γ + σ ) 2 

4 < B γ σ ). If the following control

ignals are used in (9) 

U 1 = y s e 3 + B γ σ e 1 

U 2 = −x s e 3 − z m 

e 1 + x m 

e 3 

U 3 = 0 

(39) 

hen the controlled system (12) , (39) is asymptotically stable. 
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Proof. Using the control signals (39) in (12) , the evolution of

the synchronization errors results 

C 
t 0 

D 

α
t e 1 = −σ e 1 + σ e 2 − y s e 3 − B γ σ e 1 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 − x m 

e 3 

C 
t 0 

D 

α
t e 3 = −βe 3 + x m 

e 2 + y s e 1 

(40)

As in the previous case, the stability proof is not explicitly given

here. The reader can easily check that using the Lyapunov func-

tion candidate V = 

1 

2 
e 2 1 + 

1 

2 
e 2 2 + 

1 

2 
e 2 3 and Lemma 1 , the fractional

derivative of the Lyapunov function results negative definite: 

C 
t 0 

D 

α
t V ≤ −

(
( γ + σ ) 

2 

e 1 − e 2 

)2 

− βe 2 3 

+ e 2 1 

(
( γ + σ ) 

2 

4 

− B γ σ

) (41)

Then using Theorem 2 , it can be proved that the origin of sys-

tem (40) is asymptotically stable, that is lim 

t→∞ 

e 1 ( t ) = lim 

t→∞ 

e 2 ( t ) =
lim 

→∞ 

e 3 ( t ) = 0 , and this concludes the proof. �

3.4. Fractional synchronization using only control signal U 1 . 

This subsection presents the solution to the synchronization

problem using only control signal U 1 . As in the previous subsec-

tions, the problem is addressed in the adaptive case and in the

nonadaptive case. 

Lemma 8. (Adaptive fractional synchronization using only control

signal. U 1 and one adjustable parameter θ ). Let us assume that the

parameters σ , γ , β in (8) and (9) are unknown, σ , β > 0 and a = 1 .

If the following control signals are used in (9) 

U 1 = θe 2 − y m 

z s + y s z m 

U 2 = 0 

U 3 = 0 

(42)

where θ is an adjustable parameter with the following adaptive law:

 

 0 
D 

α
t θ = δe 1 e 2 (43)

where δ corresponds to the adaptive gain that can be used to han-

dle the convergence speed, then the controlled system (12) , (42) , (43) is

uniformly stable. 

Proof. Using the control signals (42) in (12) , the evolution of

the synchronization errors (12) becomes 

C 
t 0 

D 

α
t e 1 = −σ e 1 + ( σ − θ ) e 2 + y m 

z s − y s z m 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 − x m 

z m 

+ x s z s 

C 
t 0 

D 

α
t e 3 = −βe 3 + x m 

e 2 + y s e 1 

(44)

Defining the parametric error as φ = σ + γ − θ, then Eq. (44)

can be expressed as 

C 
t 0 

D 

α
t e 1 = −σ e 1 + e 2 ( φ − γ ) + y m 

z s − y s z m 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 − x m 

z m 

+ x s z s 

C 
t 0 

D 

α
t e 3 = −βe 3 + x m 

e 2 + y s e 1 

(45)

In order to prove the stability of the controlled system, the

fractional extension of the Lyapunov direct method is used [20] ,
roposing the following Lyapunov candidate function, which is

ositive definite and decrescent: 

 = 

1 

2 

e 2 1 + 

1 

2 

e 2 2 + 

1 

2 

e 2 3 + 

1 

2 δ
φ2 (46)

ith δ ∈ R , δ > 0 . 

Assuming that e 1 , e 2 , e 3 , φ are differentiable, then applying

emma 1 and using (45) and (43) the result turns out to be 

 

 0 
D 

α
t V ≤ −σ e 2 1 − e 2 2 − βe 2 3 (47)

As can be seen from (47) , the fractional derivative of the Lya-

unov function is negative semidefinite, then it can be concluded

hat the origin of system (45),(43) is uniformly stable, that is

 1 , e 2 , e 3 , φ ∈ L 

∞ , and this concludes the proof. �
Regarding the analytical proof for the convergence to zero of

he synchronization errors, the comments made in Remark 2 are

lso valid in this case. 

emma 9. (Nonadaptive fractional synchronization using only control

ignal. U 1 , assuming a known upper bound on parameters γ , σ ). Let

s assume that the parameters σ , γ , β in (8) and (9) are unknown,

> 0 and a = 1 . It is also assumed that an upper bound B γ σ on the

um 

( γ + σ ) 2 

4 is known ( ( 
γ + σ ) 2 

4 < B γ σ ). If the following control signals

re used in (9) 

U 1 = −y m 

z s + y s z m 

+ B γ σ e 1 

U 2 = 0 

U 3 = 0 

(48)

hen the controlled system (12) , (48) is asymptotically stable. 

Proof. Using the control signals (48) in (12) , the evolution of

he synchronization errors results 

C 
t 0 

D 

α
t e 1 = −σ e 1 + σ e 2 + y m 

z s − y s z m 

− B γ σ e 1 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 + x s z s − x m 

z m 

C 
t 0 

D 

α
t e 3 = −βe 3 + x m 

y m 

− x s y s . 

(49)

Again in this case, for the sake of space, the detailed stability

roof is not given. However, the reader can check that using the

yapunov function candidate V = 

1 

2 
e 2 

1 
+ 

1 

2 
e 2 

2 
+ 

1 

2 
e 2 

3 
and Lemma 1 ,

he fractional derivative of the Lyapunov function results negative

efinite 

C 
t 0 

D 

α
t V ≤ −

(
( γ + σ ) 

2 

e 1 − e 2 

)2 

− βe 2 3 

+ e 2 1 

(
( γ + σ ) 

2 

4 

− B γ σ

) (50)

Then using Theorem 2 , it can be proved that the origin of sys-

em (49) is asymptotically stable, that is lim 

t→∞ 

e 1 ( t ) = lim 

t→∞ 

e 2 ( t ) =
lim 

→∞ 

e 3 ( t ) = 0 and this concludes the proof. �

.5. Fractional synchronization using only control signal U 2 

Finally, this subsection presents the solution to the synchroniza-

ion problem using only control signal U 2 for both, adaptive and

onadaptive case. 

emma 10. (Adaptive fractional synchronization using only control

ignal. U 2 and one adjustable parameter θ ). Let us assume that the

arameters σ , γ , β in (8) and (9) are unknown, σ , β > 0, a = 1

nd that the master states trajectories x m 

, y m 

remain bounded. If the
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ollowing control signals are used in (9) 

U 1 = 0 

U 2 = θe 1 − x m 

z m 

+ x s z s 

U 3 = 0 

(51) 

here θ is an adjustable parameter with the following adaptive law 

 

 0 
D 

α
t θ = δe 1 e 2 (52) 

here δ corresponds to the adaptive gain, then the controlled system

12) , (51) , (52) is uniformly stable. 

Proof. Using the control signals (51) in (12) , the evolution of

he synchronization errors becomes 

C 
t 0 

D 

α
t e 1 = −σ e 1 + σ e 2 

C 
t 0 

D 

α
t e 2 = ( γ − θ ) e 1 − e 2 

C 
t 0 

D 

α
t e 3 = −βe 3 + x m 

e 2 + y s e 1 

(53) 

Defining the parametric error as φ = σ − θ, thus Eq. (53) can

e written as 

C 
t 0 

D 

α
t e 1 = −σ e 1 + σ e 2 

C 
t 0 

D 

α
t e 2 = φe 1 − e 2 

C 
t 0 

D 

α
t e 3 = −βe 3 + x m 

e 2 + y s e 1 

(54) 

In order to prove the stability of the controlled system, let us

nalyze first the subsystem 

C 
t 0 

D 

α
t e 1 , 

C 
t 0 

D 

α
t e 2 , 

C 
t 0 

D 

α
t φ, using the frac-

ional extension of the Lyapunov direct method [20] . Let us con-

ider the following Lyapunov candidate function, which is positive

efinite and decrescent 

 = 

1 

2 σ
e 2 1 + 

1 

2 

e 2 2 + 

1 

2 δ
φ2 (55)

ith δ ∈ R , δ > 0 . 

Assuming that e 1 , e 2 , φ are differentiable, then applying Lemma

 and using (54) and (52) the result becomes 

C 
t 0 

D 

α
t V ≤ −e 2 1 + e 1 e 2 − e 2 2 

≤ − 1 
2 ( e 1 − e 2 ) 

2 − 1 
2 

e 2 1 − 1 
2 

e 2 2 . 
(56) 

As can be seen from (56) , C 
t 0 

D 

α
t V is negative semidefinite, then

t can be concluded that the origin of subsystem ( C t 0 
D 

α
t e 1 , 

C 
t 0 

D 

α
t e 2 )

ogether with (52) is uniformly stable. This means that e 1 , e 2 , φ ∈
 

∞ . 

In order to analyze the stability of e 3 , let us analyze the third

quation of (54) , which has the form 

 

 0 
D 

α
t e 3 = −βe 3 + x m 

e 2 + y s e 1 . (57)

Since the master state trajectory y m 

remains bounded, i.e., y m 

∈
 

∞ , then given that e 1 ∈ L 

∞ , it can be concluded that y s ∈ L 

∞ .

ince x m 

∈ L 

∞ as well, then by using the BIBO stability concepts

or fractional systems [28] , it can be concluded from (57) that

 3 ∈ L 

∞ , and this concludes the proof. �

emma 11. (Nonadaptive fractional synchronization using only con-

rol signal. U 2 , assuming a known upper bound on parameter γ .) Let

s assume that the parameters σ , γ , β in (8) and (9) are unknown,

, γ , β > 0 and a = 1 . It is also assumed that an upper bound B γ on

he parameter γ is known ( γ < B γ ) and that the master system tra-

ectories x m 

, y m 

, z m 

remain bounded. If the following control signals
re used in (9) 

U 1 = −y m 

z s + y s z m 

+ B γ σ e 1 

U 2 = 0 

U 3 = 0 

(58) 

hen the controlled system (12) , (58) is asymptotically stable. 

Proof. Using the control signals (58) in (12) , the evolution of

he synchronization errors results 

C 
t 0 

D 

α
t e 1 = −σ e 1 + σ e 2 

C 
t 0 

D 

α
t e 2 = γ e 1 − e 2 − B γ e 2 

C 
t 0 

D 

α
t e 3 = −βe 3 + x m 

e 2 + y s e 1 . 

(59) 

The stability of the subsystem 

C 
t 0 

D 

α
t e 1 , 

C 
t 0 

D 

α
t e 2 can be first an-

lyzed, using the Lyapunov function candidate V = 

1 

2 σ
e 2 1 + 

1 

2 γ
e 2 2 

nd Lemma 1 , obtaining that the fractional derivative of the Lya-

unov function is negative definite: 

 

 0 
D 

α
t V ≤ −( e 1 − e 2 ) 

2 + e 2 2 

(
1 − b 

γ

)
. (60) 

Thus using Theorem 2 , it can be concluded that lim 

t→∞ 

e 1 ( t ) =
lim 

→∞ 

e 2 ( t ) = 0 . 

Since x m 

, y m 

, z m 

∈ L 

∞ , the equation for C 
t 0 

D 

α
t e 3 in (59) can

e analyzed using BIBO stability concepts for fractional sys-

ems [28] , concluding that lim 

t→∞ 

e 3 ( t ) = 0 , and this concludes the

roof. �

emark 3. Solution using only control signal U 3 ( t ) could not be

ound using the methodology proposed in this paper, which is why

his case is not presented in this document. 

As a summary of all the results already presented in Section 3 ,

e present in Tables 1 and 2 the main characteristics of the five

roposed control strategies for the adaptive case and the nonadap-

ive case, respectively. 

emark 4. Although the solutions proposed in this paper are for

orenz systems, the proposed methodology using the fractional ex-

ension of Lyapunov direct method and quadratic Lyapunov func-

ions could be applied to achieve synchronization of other type of

ystems. 

. Numerical results and simulations 

From the approaches presented in Section 3 , it can be con-

luded analytically that fractional adaptive synchronization of

orenz systems can be reached, by handling either one or two con-

rol signals, using one adjustable parameter. It is also possible to

chieve nonadaptive synchronization using one or two control sig-

als, assuming a known upper bound on one or two system pa-

ameters. 

In the adaptive cases, it can be concluded analytically from the

esults presented in Section 3 that the controlled system is uni-

ormly stable, although the convergence to zero of the synchro-

ization errors could not be proved analytically, due to a lack of

ools to accomplish this task. However, simulations studies have

een developed in the context of this research, and they have

hown that the synchronization can be effectively achieved in the

daptive cases as well. 

This section presents some representative simulation results, for

he case when only control signals U , U are used, for both the
2 3 
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Table 1 

Summary of the results about fractional adaptive synchronization presented in Section 3 . 

Section Control signal Adjustable Scale factor Assumptions Stability 

parameter 

3.1 U 2 , U 3 θ a > 0 σ , β > 0 Uniform stability 

3.2 U 1 , U 3 θ a = 1 σ , β > 0 Uniform stability 

3.3 U 1 , U 2 θ a = 1 σ , β > 0 Uniform stability 

3.4 U 1 θ a = 1 σ , β > 0 Uniform stability 

3.5 U 2 θ a = 1 σ , β > 0 Uniform stability 

x m , y m , z m ∈ L ∞ 

Table 2 

Summary of the results about fractional synchronization using upper bounds on some system parame- 

ters presented in Section 3 . 

Section Control signal Bounds on Scale factor Assumptions Stability and 

parameters convergence 

3.1 U 2 , U 3 γ < B γ a > 0 γ , σ , β > 0 Asymptotic stability 

3.2 U 1 , U 3 
( γ + σ ) 

2 

4 
< B γ σ a = 1 β > 0 Asymptotic stability 

3.3 U 1 , U 2 
( γ + σ ) 

2 

4 
< B γ σ a = 1 β > 0 Asymptotic stability 

3.4 U 1 
( γ + σ ) 

2 

4 
< B γ σ a = 1 β > 0 Asymptotic stability 

3.5 U 2 γ < B γ a = 1 γ , σ , β > 0 Asymptotic stability 

x m , y m , z m ∈ L ∞ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Evolution of the norm of the synchronization error in the adaptive case, for 

different values of the derivation order α. 
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adaptive case (see Subsection 3.1 ) and the nonadaptive case (see

Subsection 3.2 ). The results presented here illustrate the effective-

ness of the proposed synchronization schemes. No simulation re-

sults are presented for the rest of the cases for the sake of space,

although the conclusions about stability and convergence that can

be observed in this case are valid for the rest of the cases as well. 

For these simulations, the NInteger Toolbox [29] for Mat-

lab/Simulink was used. The parameter values for the master sys-

tem (8) and slave system (9) , which are assumed to be unknown,

are σ = 10 , γ = 28 and β = 8 / 3 . It was reported in [30] that for

this values, the Lorenz system exhibits a chaotic behavior when

the derivation order lies in the interval 0.99 ≤ α ≤ 1.18, when α
< 0.99 the Lorenz system tends asymptotically to one of the two

attractors and when α > 1.18 the system exhibits and unstable be-

havior. Given that the analytical proofs given in this paper are valid

in the interval α ∈ (0, 1), only simulations for the cases α ∈ [0.99,

1) (chaotic) and α ∈ (0, 0.99) (stable) are presented. 

The initial conditions for master and slave systems were chosen

as [ −8 , −5 , 6 ] 
T and [ 10 , −10 , −10 ] 

T 
, respectively. For this study we

took a scale factor α = 1 as well as α = 2 . In all simulations, the

adaptive gain δ = 1 was chosen in the adaptive case for simplicity,

although the analysis is also valid for any δ > 0. 

Fig. 1 shows the fractional adaptive case for different values of

the derivation order α. The norm of the synchronization error vec-

tor e = [ e 1 e 2 e 3 ] 
T has been plotted in this graphic and a scale

factor a = 1 has been used. 

As can be seen, in the three cases the adaptive synchroniza-

tion is achieved, that is, the norm of the synchronization error

converges to zero. It can be noted that the convergence speed is

greater as the derivation order α gets closer to 1. However, the ini-

tial overshot is lower as the derivation order α gets farther from 1,

as can be noted in the zoomed part of the graph. This last charac-

teristic is directly related to the control effort, that is, the control

effort is lower as the derivation order gets farther from 1. 

Fig. 2 shows the evolution of the master and the slave states

for two different values of the derivation order, in this case using

a scale factor a = 2 . 

As can be seen from Fig. 2 , the synchronization is effectively

achieved in both cases and the use of a scale factor a = 2 is ob-

served as well. Also it can be noted that when using a derivation

order α = 0 . 5 , the systems exhibit an stable behavior, and when
 c  
= 0 . 99 the systems exhibit a chaotic behavior, as it was found in

30] . 

Let us now analyze the results in the nonadaptive case. In this

imulations the same parameter values and initial conditions than

n the adaptive case are used, and the upper bound on the system

arameter used is B γ = 40 . 

Fig. 3 shows the fractional nonadaptive case for different values

f the derivation order α. The norm of the synchronization error

ector e = [ e 1 e 2 e 3 ] 
T has been plotted in this graphic as it was

one in the adaptive case, and a scale factor a = 1 has been used. 

As can be seen from Fig. 3 , the synchronization is achieved

or every derivation order used, as it was expected from the sta-

ility analysis in Section 3 . It is important to note that in this

onadaptive case, the convergence speed does not present impor-

ant differences if we look at the cases α = 0 . 5 and α = 0 . 8 , as it

as in the adaptive case. This is due to the fact that no adapta-

ion process takes place here, so the usual adaptation speed given

y the derivation order of the adaptive law does not affect the

onvergence speed of the errors, as it is in the adaptive case. Of
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Fig. 2. Evolution of master and slave states for different derivation orders α. 

Fig. 3. Evolution of the norm of the synchronization error in the nonadaptive case, 

for different values of the derivation order α. 
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Fig. 4. Evolution of the synchronization errors for three different control strategies. 
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a  
ourse, in this case more knowledge of the system is needed in

rder to construct the control signal than in the adaptive case. 

Regarding the transient response in this case, it can be seen

rom the zoomed part of Fig. 3 that the overshot is higher as the

erivation order gets closer to 1, as it happens in the adaptive case.
.1. Comparison with another control strategy proposed in the 

echnical literature 

The work presented in this paper has advantage over other

echniques, since all the system parameters σ , γ , β are assumed

o be unknown, and a reduced number of control signals and ad-

ustable parameters are used to achieve the synchronization. 

Although there are no similar works reported in the literature

ccomplishing all these conditions, we would like to make some

omparison between the results reported in this paper and another

esult reported in literature for the same system, no matter the in-

ormation needed to implement the control or the number of con-

rol signals used. The idea is to analyze the convergence time and

he transient response of the synchronization errors for each case,

s well as the control effort. 

In what follows, we are going to refer to the control strategy

roposed in this paper using control signals U 2 and U 3 and one

djustable parameter described in Section 3.1 as Control strategy 1.

n the other hand, the control strategy proposed in this paper us-

ng only control signal U 2 and one adjustable parameter described

n Section 3.5 will be referred as Control strategy 2. 

Finally, Control strategy 3 corresponds to the one reported in

6] , which does not need any knowledge of the system parameters,

ut it uses three control signals U 1 , U 2 , U 3 and three adjustable

arameters k 1 , k 2 , k 3 . Basically, Control strategy 3 uses a feedback

ontrol in the form 

U 1 = k 1 ( x s − x m 

) 
U 2 = k 2 ( y s − y m 

) 
U 3 = k 3 ( z s − z m 

) , 
(61) 

here the parameters k 1 , k 2 and k 3 are adaptively adjusted using

he following adaptive laws: 

˙ k 1 = −δe 2 1 
˙ k 2 = −δe 2 2 
˙ k 3 = −δe 2 3 . 

(62) 

The parameter δ corresponds to the adaptive gain. 

Fig. 4 shows the evolution of the synchronization errors using

hese three control strategies, and Fig. 5 shows the corresponding

ontrol signals. In these simulations, the initial conditions for the

aster and slave systems are the same as in previous simulations,

daptive gains are δ = 1 and the initial condition for all the ad-

ustable parameters is 40. The fractional order used is α = 0 . 993

nd the simulation time is 5 seconds. 

As can be observed in Fig. 4 , no big differences can be seen

bout the convergence time of the synchronization errors between
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Fig. 5. Evolution of the control signals for three different control strategies. 
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the three control strategies. In the case of errors e 1 and e 2 , the

difference in the convergence time is about half a second between

Control strategy 3 and Control strategies 1 and 2. 

In the case of e 3 , the difference in the convergence time is

about 1 second between Control strategy 1 and Control strategy

3. In the case of Control strategy 2 the difference is about 2 sec-

onds with respect to Control strategy 3 and 1 second with respect

to Control strategy 1. 

Although no big differences can be seen between the three con-

trol strategies regarding the convergence time of the synchroniza-

tion errors, it can be seen from Fig. 4 that the initial overshoot

of e 1 and e 2 for Control strategy 3 is significantly higher than for

Control strategies 1 and 2. In the case of e 3 , Control strategy 1 does

not present overshoot at all, while for Control strategy 2 the mag-

nitude of the overshoot is lesser than for Control strategy 3. 

Another aspect of great importance can be seen in Fig. 5 , where

it can be observed that the initial control effort is particularly high

for Control strategy 3, compared to Control strategies 1 and 2.

Since Control strategy 2 uses only control signal U 2 and Control

strategy 1 uses only control signals U 2 and U 3 , this behavior repre-

sents a great advantage of using control strategies proposed in this

paper. 

We must point out that Control strategy 1 and 2 use not only

less control signals (2 and 1 respectively) than Control strategy

3, but they also use only one adjustable parameter, compared to

three used in Control strategy 3. 

Of course, the simulations presented here were carried out us-

ing specific values for adaptive gains, initial conditions of the esti-

mated parameters, order of the fractional adaptive laws in the case

of Control strategies 1 and 2, among others. Thus, the results could

be different under different values of all these parameters. An op-

timization procedure could be a great option to find specific pa-

rameters (adaptive gains, fractional orders, initial conditions) that

guarantee desired results. 

5. Conclusions 

In this paper, the analysis of the adaptive synchronization of

two fractional Lorenz systems has been presented, as well as the

analysis of nonadaptive synchronization. The synchronization was

studied based on theoretical results and complemented by simula-

tions, analyzing the behavior of the synchronization errors. 

The study performed in this paper indicates that fractional

adaptive synchronization of Lorenz systems can be achieved with

a reduced number of parameters and signals, under mild assump-

tions. This can be done by using two control signals and one ad-
ustable parameter, or even using one control signal and one ad-

ustable parameter. The study also indicates that nonadaptive syn-

hronization can be achieved under the same mild assumptions,

sing one or two control signals and upper bounds on one or two

f the system unknown parameters. 

In both solutions, adaptive and nonadaptive, the stability of the

esulting schemes was analytically proved, using the fractional ex-

ension of Lyapunov direct method. The convergence to zero of the

ynchronization errors was proved in the nonadaptive case, using

he fractional extension of the Lyapunov direct method as well. In

he adaptive case, however, the convergence to zero of the syn-

hronization errors could not be analytically proved, due to a lack

f available tools to accomplish this task, being this topic currently

nder investigation. Nevertheless, simulation studies indicate that

he synchronization errors do converge to zero in the adaptive case

oo. 
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