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We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. 
There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for 
a thermodynamic fluid δPnad , another is for a general matter field δPc,nad, and the last one is valid only 
on superhorizon scales. The first two definitions coincide if c2

s = c2
w where cs is the propagation speed 

of the perturbation, while c2
w = Ṗ/ρ̇ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we 

derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary 
matter field in any theory of gravity, by using only momentum conservation. The relation implies that as 
long as cs �= cw , the uniform density, comoving and the proper-time slicings coincide approximately for 
any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity 
this gives the equivalence between the comoving curvature perturbation Rc and the uniform density 
curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon 
scales in standard slow-roll inflation.
We then consider an example in which cw = cs , where δPnad = δPc,nad = 0 exactly, but the equivalence 
between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case 
both Rc and ζ are not conserved. In particular, as for ζ , we find that it is crucial to take into account 
the next-to-leading order term in ζ ’s spatial gradient expansion to show its non-conservation, even on 
superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not 
always enough to ensure the conservation of Rc or ζ .

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It is a well-known fact that in single-field slow-roll inflation 
[1–3], the comoving curvature perturbation Rc and the uniform 
density curvature perturbation ζ coincide and are conserved. In 
the seminal works [4,5], it was shown that requiring just energy 
conservation is enough to show the superhorizon conservation 
of ζ given that the non-adiabatic pressure δPnad vanishes, un-
der the assumption that gradient terms are negligible. Moreover, 
it was shown in [4] that for adiabatic perturbations, on superhori-
zon scales the comoving slicing coincides with the uniform density 
slicing, as long as ∂V /∂φ �= 0. As a result, ζ and Rc coincide and 
both are conserved on superhorizon scales.

* Corresponding author.
E-mail address: aer@physics.uoc.gr (A.E. Romano).
http://dx.doi.org/10.1016/j.physletb.2016.02.054
0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
Nevertheless, there are cases in which the conservation of ζ

or Rc does not hold even for adiabatic perturbations. This seems 
to contradict the results quoted in the above. In this paper, we 
carefully study the meaning of adiabaticity and clarify how these 
seemingly contradictory statements are reconciled. For this pur-
pose, we first introduce three different definitions of adiabaticity. 
Then we study the energy–momentum conservation laws for ar-
bitrary matter and derive several useful relations among gauge-
invariant variables, independent of the theory of gravity. We find 
a few useful formulas that relate some of the gauge-invariant vari-
ables to each other. Then we specialize to the case of general 
relativity and discuss the meaning of the conservation of ζ and 
Rc in detail. Finally we study so-called ultra slow-roll inflation as 
an interesting non-trivial example in which the superhorizon con-
servation of ζ or Rc does not hold even for an exactly adiabatic 
perturbation, δPnad = δPc,nad = 0.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Throughout this paper the dot denotes the proper-time deriva-
tive ( ˙ = d/dt) and the prime the conformal-time derivative ( ′ =
d/dη), where dt = adη, and the proper-time and conformal-time 
Hubble expansion rates are respectively denoted by H = ȧ/a and 
H = a′/a = ȧ.

2. Adiabaticity: several definitions

Let us consider several definitions of (non-)adiabaticity. Adi-
abaticity is apparently a term from thermodynamics. Therefore 
originally it is meaningful only when the basic matter variables 
such as the energy density and pressure are thermodynamic. As 
can be seen from the perturbed energy and momentum conserva-
tion equations for a perfect fluid with equation of state P = P (ρ), 
adiabatic perturbations move with the speed of sound cw , given 
by

c2
w ≡ P ′

ρ ′ . (1)

For a perfect adiabatic fluid, we therefore have δP = c2
wδρ . Then it 

seems natural to define the non-adiabatic pressure as

δPnad ≡ δP − c2
wδρ, (2)

which is gauge invariant and vanishes for a perfect fluid. This is 
the definition used in [4,5], and in much of the literature.

However, the early universe is for sure not in thermal equilib-
rium, so one can question the above definition based on thermo-
dynamics. In fact, when the universe is dominated by a scalar field, 
it makes more sense to talk about the propagation speed cs of that 
scalar field (the phase speed of sound, see also [6]), defined on co-
moving slices via

c2
s ≡

(
δP

δρ

)
c
. (3)

One is then led to define the non-adiabatic pressure as

δPc,nad ≡ δPc − c2
s δρc . (4)

For a fluid, one has cs = cw and both definitions coincide. How-
ever, this is in general not true. For a minimally coupled scalar 
field one has, for example,

c2
w = −1 + 2ε

3
− η

3
, c2

s = 1, (5)

with ε , η the usual slow-roll parameters. In this sense, the second 
definition is more general: It can apply both to a fluid and to a 
scalar field, hence should be regarded as the proper definition of 
adiabaticity. Therefore we focus on the perturbation which satisfies 
δPc,nad = 0 in this paper. As a consequence, for the first definition 
we then have (in agreement with [7])

δPnad = (c2
s − c2

w)δρc . (6)

The third definition which is commonly used in the inflation-
ary cosmology is about the stage when the so-called growing 
mode of the perturbation dominates. As discussed in the above, 
the adiabatic perturbation would generally satisfy a second-order 
differential equation. Hence when it is Fourier decomposed with 
respect to the spatial comoving wavenumber k, there will be two 
independent solutions for each k-mode. Usually what happens is 
that as the mode goes out of the Hubble horizon during infla-
tion, one of the solutions (the decaying mode) dies out, and the 
other mode (the growing mode) dominates. It turns out that this 
growing mode approaches a constant in the superhorizon limit 
when expressed in terms of the curvature perturbation on comov-
ing slices Rc (or equally of the one on uniform energy density 
slices ζ ). When the universe enters this stage where the growing 
mode dominates, the evolution of the universe thereafter is unique. 
In other words, if we denote the time after which the universe is 
in this growing mode dominated stage by ta , given the state of 
the universe at some later but arbitrary time tb (> ta), one can al-
ways recover the initial condition at t = ta uniquely because the 
decaying mode is completely negligible during the whole stage of 
evolution. It is said that when this is the case the universe has ar-
rived at the adiabatic stage (or the adiabatic limit). In particular, 
when the universe is dominated by a scalar field whose evolu-
tion is well described by the slow-roll approximation, this stage is 
reached as soon as the scale of the perturbation leaves out of the 
horizon.

The above, third definition is different from the previous two 
definitions in that it applies only to the stage when the wavelength 
of the perturbation is much greater than the Hubble horizon. Nev-
ertheless, as long as we are interested in superhorizon scale per-
turbations, the adiabaticity conditions for both of the previous two 
cases will be approximately satisfied if the universe is in the adi-
abatic limit. Namely, both δPnad and δPc,nad will be of O

(
(k/H)2

)
and hence vanish in the superhorizon limit.

3. Formulas for arbitrary matter independent of gravity

Now, let us derive a few useful formulas valid for any grav-
ity theory. Independent of the theory of gravity, the energy–
momentum conservation must hold, which follows from the mat-
ter equations of motion and general covariance.

We set the perturbed metric as

ds2 = a2
[
−(1 + 2A)dη2 + 2∂ j Bdx jdη

+
{
δi j(1 + 2R) + 2∂i∂ j E}dxidx j

}]
, (7)

and the perturbed energy–momentum tensor as

T 0
0 = −(ρ + δρ) , T 0

j = (ρ + P )u0u j = ρ + P

a
u j ,

T i
j = (P + δP )δi

j + 	i
j ; 	k

k ≡ 0 . (8)

For a scalar-type perturbation, u j can be written as a spatial gra-
dient,

u j = −a∂ j(v − B) → T 0
j = −(ρ + P )∂ j(v − B) (9)

	k
j in the form can be written as

	i j = δik	
k

j =
[
∂i∂ j − 1

3
δi j

(3)




]
	, (10)

where 
(3) = δi j∂i∂ j .
In this work, we mainly consider the following gauge-invariant 

variables:

Rc ≡ R−H(v − B) , (11)

ζ ≡ R− H
ρ ′ δρ = R+ δρ

3(ρ + P )
, (12)

V f ≡ (v − B) − R
H

. (13)

Their geometrical meanings are apparent: Rc represents the cur-
vature perturbation on comoving slices (v − B = 0), ζ the curvature 
perturbation on uniform density slices (δρ = 0), and V f the veloc-
ity potential on flat slices (R = 0). They are related to each other 
as
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Rc = −HV f , (14)

ζ ≡ Rud = Rc + δρc

3(ρ + P )
. (15)

There relations will become useful later. Hereafter we use the suf-
fix ‘c’ for quantities on comoving slices, the suffix ‘ud’ for those on 
uniform density slices, and the suffix ‘ f ’ for those on flat slices.

The equation of motion is given by δ(∇μT μ
j) = 0. Explicitly we 

have

(ρ + P )
[
∂ j(v − B)′ +H(1 − 3c2

w)∂ j(v − B)
]

= (ρ + P )∂ j A + ∂k(δT k
j)

= (ρ + P )∂ j A + ∂ jδP + 2

3
∂ j∇2	. (16)

Therefore, we may remove the common partial derivative ∂ j to ob-
tain

(ρ + P )
[
(v − B)′ +H(1 − 3c2

w)(v − B)
]

= (ρ + P )A + δP + 2

3
∇2	. (17)

On comoving slices, v − B = 0 (⇔ T 0
j = 0). Hence

(ρ + P )Ac + δPc + 2

3
∇2	 = 0 . (18)

If the perturbation is adiabatic, by definition 	 = 0. Thus we find

δPc = −(ρ + P )Ac . (19)

Note that this relation between δPc and Ac is completely indepen-
dent of the theory of gravity.

4. Useful relations among gauge-invariant variables independent 
of gravity

Combining Eqs. (3), (6) and (19), we now have

δPnad = (c2
s − c2

w)δρc = c2
w − c2

s

c2
s

(ρ + P )Ac . (20)

The first equality is an identity, while the second comes from the 
conservation of the energy momentum tensor, and is valid for any 
gravity theory. This equation may be regarded as a statement that 
δPnad has the same behavior as δρc and Ac unless c2

w = c2
s . In 

other words, the proper-time slicing (A = 0), comoving slicing (v −
B = 0) and uniform density slicing (δρ = 0) coincide with each 
other (approximately) if c2

w �= c2
s and δPnad = 0 (approximately). 

Namely,

{δPnad ≈ 0, cs �= cw} ⇒ δρc ≈ Ac ≈ 0 . (21)

We can use Eq. (20) to obtain for example a general relation 
between the comoving curvature perturbation Rc and uniform 
density curvature perturbation ζ ,

ζ = Rc − H

ρ̇
δρc = Rc + δPnad

H

ρ̇(c2
w − c2

s )
. (22)

This is in agreement with the well-known coincidence of ζ and Rc

on super-horizon scales for slow roll-models in general relativity, 
since in this case cs �= cw and δPnad ≈ 0 on superhorizon scales. 
Note also that this relation is degenerate in the case of cs = cw . 
As an example of such a case during inflation, later we explicitly 
consider the so-called ultra-slow roll inflation model.
5. Formulas for arbitrary matter in general relativity

Here we focus on the case of general relativity. On comoving 
slices, the G0

0- and G0
i -components of the perturbed Einstein equa-

tions give

(3)


 [Hσc +Rc] = −4πGδρc , (23)

R′
c = HAc , (24)

where σ denotes the scalar shear: σ ≡ B − E ′ . The Gi
j-components 

give, for adiabatic perturbations 	 = 0 and δPc = c2
s δρc ,

2

a2
(H′ −H2)Ac = 8πGc2

s δρc (25)

σ ′
c + 2Hσc + Ac +Rc = 0. (26)

Using the Friedman equation we then derive the equation of mo-
tion for Rc :

R′′
c + z2′

z2
R′

c − c2
s

(3)


 Rc = 0 ; z2 ≡ (ρ + P )a4

c2
s H2

. (27)

Substituting Eq. (24) in Eqs. (20) and (22) now gives

δPnad =
[(

cw

cs

)2

− 1

]
(ρ + P )

Ṙc

H
(28)

ζ = Rc − Ṙc

3c2
s H

. (29)

Thus δPnad = 0 if either c2
w = c2

s or Ṙc = 0. In particular in the 
latter case, Ṙc = 0, we have ζ =Rc . The useful relations we found 
are summarized in Table 1.

5.1. Conserved ζ and adiabaticity

Here we briefly review the common notion [4] that the super-
horizon conservation of ζ follows directly from adiabaticity, inde-
pendent of gravity. Indeed, demanding δ(∇μT μ

0 ) = 0 yields, in the 
uniform density slicing,

ζ ′ = −HδPnad

(ρ + P )
+ 1

3

(3)



(

v − E ′)
ud . (30)

The usual interpretation of the above equation is that for adia-
batic perturbations, ζ is conserved on super-horizon scales, as long 
as the gradient terms can be neglected. However, as we have seen, 
actually adiabaticity in the general sense (as defined in Eq. (4)) 
does not necessarily imply δPnad = 0. Furthermore, neglecting the 
gradient terms may not be justified.

In the remainder of this letter we will consider the case of a 
minimally coupled scalar field in general relativity, as an example 
of the applications of the general relations that we have just de-
rived.

6. Ultra slow-roll inflation

As an interesting non-trivial example in which the equivalence 
between Rc and ζ fails to hold, we consider the ultra slow-roll in-
flation (USR) [8–14]: a minimally coupled single scalar field model 
with constant potential.

When V = V 0, the background scalar field equation becomes 
φ̈ + 3Hφ̇ = 0, and the density and pressure perturbations become 
equal to each other, δP = δρ , in arbitrary gauge. Therefore we have

c2
w = c2

s = 1 , δPnad = δPc,nad = 0 . (31)



A.E. Romano et al. / Physics Letters B 755 (2016) 464–468 467
Table 1
The upper table shows the relation between the fluid-based non-adiabatic pressure perturbations δPnad and 
metric perturbations, and the lower table gives the relation between curvature perturbations on uniform 
density slices ζ and on comoving slices Rc . For both tables the first column corresponds to relations valid 
in any gravity theory, the second column to the case of general relativity, the first row is for a generic matter 
field and the second one is for a minimally coupled scalar field.

Any gravity theory General relativity (Ac = Ṙc/H)

Generic matter δPnad = δρc(c2
s − c2

w ) =
[(

cw
cs

)2 − 1

]
(ρ + P )Ac δPnad =

[(
cw
cs

)2 − 1

]
(ρ + P ) Ṙc

H

M. c. scalar field δPnad = (c2
w − 1)Acφ̇

2 δPnad = (c2
w − 1) Ṙc

H φ̇2

Any gravity theory General relativity

Generic matter ζ = Rc − δPnad
H

ρ̇(c2
s −c2

w )
= Rc + H

ρ̇
ρ+P

c2
s

Ac ζ = Rc + (ρ + P ) Ṙc

c2
s H

H
ρ̇

M. c. scalar field ζ = Rc + Acφ̇
2 H

ρ̇ ζ = Rc + φ̇2 Ṙc
H

H
ρ̇

In other words, the perturbation is adiabatic both in the sense of 
δPnad = 0 and δPc,nad = 0. Solving the background equations, we 
obtain

φ̇ ∝ a−3 . (32)

In particular, this implies H = const. is an extremely good approxi-
mation except possibly for the very beginning of the ultra slow-roll 
phase. This gives

ε ≡ − Ḣ

H2
= φ̇2

2H2
∝ a−6, δ ≡ φ̈

Hφ̇
= 1

2

ε̇

εH
= −3 . (33)

We are now in the position to appreciate the peculiarity of ultra 
slow-roll inflation. Let us reconsider the relations we found in the 
previous section.

First, as we saw in Eq. (28) δPnad = 0 implies Ṙc = 0 if c2
s �= c2

w . 
However, since we have c2

s = c2
w = 1 in ultra slow-roll inflation, we 

are unable to claim anything about the conservation of Rc .
Second, the comoving slicing coincides with the uniform den-

sity slicing (and Rc with ζ ) if Ṙc = 0, see Eq. (29). However, again, 
we are unable to claim anything since we do not know if Rc is 
conserved or not. In fact, we find that Rc is not conserved even on 
superhorizon scales. The same follows from Eq. (22): when c2

s = c2
w

that relation is degenerate, so ζ and Rc do not necessarily coin-
cide.

Third, we concluded from Eq. (30) that ζ is conserved on su-
perhorizon scales if δPnad = 0. However, as noted there, this is true 
only if the gradient terms are negligible. As we shall see below it 
happens that here they are not negligible at all.

6.1. ζ and Rc in ultra slow-roll inflation

From Eq. (29), we have

ζ = Rc − Ṙc

3H
= − a3

3H
∂t

(
Rc

a3

)
. (34)

From Eq. (27), on superhorizon scales, we find that the time 
derivative of the time-dependent solution is given by

Ṙc ∝ 1

az2
= H2

φ̇2a3
∝ a3 . (35)

Since H is almost constant in USR, we conclude that Rc is not 
conserved but grows as a3 on superhorizon scales. Inserting this 
to Eq. (34) implies ζ = 0. Thus it seems that ζ is still conserved 
(corresponding to the conserved solution of Rc ) and the rapidly 
growing solution of Rc does not contribute to ζ at all.

The above conclusion, however, is valid only in the strict large 
scale limit. The finiteness of the wavelength can affect the behav-
ior of the perturbation significantly even if the wavelength is much 
larger than the Hubble horizon size. To see this, one can take into 
account the spatial gradient term of Eq. (27) iteratively. For sim-
plicity, we work in the Fourier space where we replace 
(3) by 
−k2. The superhorizon solution for Rc is then

Rc = c1

(
1 +O(k2)

)
+ c2a3

(
1 + 1

2

k2

H2
+O(k4)

)
. (36)

Inserting this into Eq. (29) gives

ζ = c1

(
1 +O(k2)

)
+ c2a3

3

(
k2

H2
+O(k4)

)
. (37)

Thus we see that the time-dependent solution grows like a even 
on superhorizon scales. More specifically, ζ(t) ≈ ζ(tk)a(t)/a(tk)

where tk is the horizon crossing time a(tk) = kH of the wavenum-
ber.

7. Discussion and conclusions

The seminal works [4,5] have taught us that for any relativis-
tic theory of gravity, adiabaticity implies that ζ and Rc coincide 
and are conserved when gradient terms can be neglected, which 
in general happens on superhorizon scales. In this work, we have 
provided more insight into this claim.

First, we have specified that the above statement holds when 
(non-)adiabaticity is defined in the thermodynamical sense, see 
Eq. (2). We have argued that for a system out of equilibrium, 
like the early universe, one should define (non-)adiabaticity in the 
strict sense, as in Eq. (4). In this work, we have looked at perturba-
tions which are strictly adiabatic in that strict sense (δPc,nad = 0), 
and checked the implications for non-adiabaticity in the thermo-
dynamical sense δPnad . A third definition of non-adiabaticity states 
that the adiabatic limit has been reached as soon as the time-
dependent solution (the non-freezing one) for ζ has become totally 
negligible.

Second, we have rewritten the relation between (thermody-
namical) non-adiabaticity and conserved quantities in such a way 
as to clarify when exactly gradient terms can be neglected, bypass-
ing the need for an explicit computation of these gradient terms. In 
Eq. (20) we have shown that for any gravity theory, δPnad is pro-
portional to the lapse function in comoving slicing, Ac , provided 
that c2

s �= c2
w . In the particular case of general relativity, Ac is pro-

portional to Ṙc so we obtain the proportionality between δPnad
and Ṙc , still under the condition that c2

s �= c2
w . Furthermore, we 

have obtained in Eq. (22) that when δPnad = 0, Rc and ζ coincide, 
again under the condition that c2

s �= c2
w . This result holds indepen-

dently of gravity theory as well.
As an illustration, finally, we have studied the model of ul-

tra slow-roll (USR) inflation, where δPc,nad = δPnad = 0 and cw =
cs = 1. Indeed, for USR inflation all relations above obtained break 
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down: ζ and Rc do not coincide and are both not conserved. This 
is an example of the fact that adiabaticity (in the thermodynamic 
sense) is not always enough to ensure the conservation of Rc or ζ .
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