TABLA DE CONTENIDO

Resume	n	i	
Agradeo	eimiento	S	ii
Tabla de	e Conter	nidosiii	
Índice d	le Tablas	sviii	
Índice d	le figura	s	х
CAPÍTU	JLO 1.	INTRODUCCIÓN1	
1.1	Mo	tivación1	
1.2	e Obj	etivos2	
	1.2.1	Objetivos generales2	
	1.2.2	Objetivos específicos2	
1.3	Met	todología2	
	1.3.1	Estudio del fenómeno2	
	1.3.2	Proponer Probetas Adecuadas2	
	1.3.3	Señales a considerar3	
	1.3.4	Construcción, instrumentación y ejecución3	
	1.3.5	Estudio de los datos3	
1. 4	, Org	anización del Informe4	
	1.4.1	Capítulo 1: Introducción4	
	1.4.2	Capítulo 2: Marco Teórico y Revisión Bibliográfica4	
	1.4.3	Capítulo 3: Probetas Propuestas4	
	1.4.4	Capítulo 4: Construcción, Montaje y Ensayo4	
	1.4.5	Capítulo 5: Resultados Experimentales4	
	1.4.6	Capítulo 7: Conclusiones4	
1.5	, Not	ación5	
CAPÍTU	JLO 2.	Marco Teórico y Revisión Bibliográfica9	
2.1	Des	cripción9	
	2.1.1	Definición del fenómeno9	
	2.1.2	Consideraciones en la Definición10	
2.2	2 Par	ámetros que Influyen11	
	2.2.1	Periodo fundamental 11	
	2.2.2	Ductilidad12	
	2.2.3	Capacidad al momento13	
	2.2.4	Modos relevantes14	
	2.2.5	Forzante basal15	
	2.2.6	Acople con elementos horizontales15	
	2.2.7	Aberturas en la altura de los muros17	
2.3	3 Esti	udios Experimentales Dinámicos 17	
	2.3.1	Descripción general de los ensayos y de resultados18	

	2.3.2	Consideraciones en el diseño y montaje de las probetas	19
	2.3.3	Forzantes para ensayos	21
	2.3.4	Periodos, amortiguamiento e inercia efectiva	21
	2.3.5	Participación de modos superiores en la respuesta	23
	2.3.6	Amplificación lograda	26
2.4	Con	nclusiones	28
CAPÍTUI	LO 3.	Probetas Propuestas	30
3.1	Pro	totipo (de-escalado) Representado	30
	3.1.1	Consideraciones de diseño	
	3.1.2	Descripción del prototipo	31
	3.1.3	Características del Prototipo	33
3.2	Res	tricciones y Objetivos del Estudio	33
	3.2.1	Resumen descriptivo	33
	3.2.2	Equipamiento disponible	
	3.2.3	Dimensiones del muro y los materiales, escalamiento	35
3.3	Teo	ría de Escalas	35
3.4	For	zante Basal	36
3.5	Para	ametrización de Propuestas de Muros	39
3.6	Car	acterísticas Finales de los Muros	
	3.6.1	Características nominales de los materiales	41
	3.6.2	Descripción de probetas: Generalidades	41
	3.6.3	Descripción de probetas: Refuerzo	
	3.6.4	Resumen de propiedades descriptivas	44
	3.6.5	Características Estructurales de los muros	45
	3.6.6	Estructura de soporte lateral	47
3.7	Con	nparación de prototipo y probetas (modelo)	49
CAPÍTUI	LO 4.	Construcción, Montaje y Ensayo	
4.1	Con	nstrucción	51
	4.1.1	Materiales	51
	4.1.2	Acero de refuerzo	52
	4.1.3	Hormigón	55
4.2	Mo	ntaje	57
4.3	Inst	trumentación	58
4.4	Ens	ayos y Modos de Falla	59
	4.4.1	Generalidades	59
	4.4.2	Comportamiento probeta M1	59
	4.4.3	Comportamiento probeta M2	61
	4.4.4	Comportamiento probeta M3	62
	4.4.5	Comportamiento probeta M4	63

	4.4.6	Comportamiento probeta M5	. 64
	4.4.7	Estado final de probetas	65
CAPÍTULO 5.		Resultados Experimentales	67
5.1	Con	sideraciones de los Resultados	67
	5.1.1	Consideraciones generales	67
	5.1.2	Desplazamiento absoluto y relativo (x $_i$ y Δ_i)	67
	5.1.3	Fuerzas Inerciales (Vb y Mb)	67
	5.1.4	Intensidad de Arias (Ia)	. 68
	5.1.5	Fourier por nivel / Fourier basal	. 68
	5.1.6	Energía en base a Transformada de Fourier	. 69
	5.1.7	Desplazamiento de techo ($\Delta_{max} y \Delta_y$) y ductilidad μ	. 69
	5.1.8	Deformación (ϵ) y curvatura (ϕ)	. 69
	5.1.9	Profundidad linea neutra (c)	. 70
5.2	For	zante Efectiva	70
	5.2.1	Resumen de forzantes aplicadas	. 70
	5.2.2	Registro de baja amplitud: C010	71
	5.2.3	Registros basados en Constitución 2010	72
	5.2.4	Registros Llolleo 1985	73
	5.2.5	Comparación general de forzantes y efectividad de la mesa	74
5.3	Aná Moc	lisis en el Espacio de la Frecuencia: Periodos de Vibrar, Energía dal y EI Efectivo	76
	5.3.1	Periodo aparente medido durante los ensayos	76
	5.3.2	Energía Modal	77
	5.3.3	Criterios de reducción de rigidez	79
	5.3.4	Producto Elasticidad por Inercia Efectivo	81
5.4	Res	puesta del Desplazamiento y Deformación	82
	5.4.1	Desplazamiento de techo y ductilidad	. 82
	5.4.2	Deformación, curvatura y profundidad del eje neutro	. 84
5.5	Mo	mento a Flexión	. 86
	5.5.1	Momento basal máximo	. 86
	5.5.2	Envolvente de momento	. 88
	5.5.3	Comportamiento Histerético	. 88
5.6	Cor	te	. 89
	5.6.1	Corte basal máximo	. 89
	5.6.2	Altura de resultante de fuerzas horizontales	. 90
	5.6.3	Caracterización del corte basal máximo	91
	5.6.4	Envolvente de Corte	. 93
	5.6.5	Comportamiento Histerético	. 93
5.7	Vali	dación del Modelo con C010	93

5.8	Am	plificación del Corte94
	5.8.1	Criterios de amplificación
	5.8.2	Resultados de amplificación96
	5.8.3	Correlación de la amplificación del corte con otros parámetros 99
	5.8.4	Comparación con literatura 100
	5.8.5	Ajuste con valores de Ia105
5.9	Мо	delo No Lineal106
	5.9.1	Parámetros del modelo THNL106
	5.9.2	Resultados del modelo THNL109
CAPÍTUI	LO 6.	Conclusiones111
CAPÍTUI	LO 7.	Bibliografía114
Anexo A		Matriz de Rigidez Ensamblada1
A.1	Ma	triz de Rigidez Flexural Muro en Voladizo1
A.2	Ma Rot	triz de Rigidez Flexural Muro en Voladizo con Resorte acional en la Base
A.3	Par	ámetros Definidos para Matrices del Modelo Lineal4
Anexo B		Escalamiento
Anexo C		Descripción y Ensayo de Materiales11
C.1	Ho	rmigón PRESEC® C-1511
C.2	Sup	perPlastificante Viscocrete® 5100 cl
C.3	Bar	ras Lisas Acero A440-280H 15
C.4	Bar	ras Entalladas AT56-50H15
C.5	Ens	ayos de Cilindros de Hormigón16
C.6	Cili	ndros de Hormigón con Barras Desadheridas18
C.7	Ens	ayo de Barras de Acero AT56-50H19
Anexo D		Características de la Probeta Base 20
D.1	Pro	piedades Nominales 20
D.2	Pro	piedades Reales26
Anexo E		Diseño del Prototipo
Anexo F		Fotografías37
F.1	Cor	nstrucción
F.2	Мо	ntaje Previo Ensayo42
Anexo G		Gráficos de Resultados Experimentales47
G.1	Aná	álisis de Fourier: Aceleración por Nivel / Aceleración Basal47
G.2	Aná	álisis de Fourier: Energía en base a la Aceleración por Nivel49
G.3	Env	volvente de Desplazamiento Relativo50
G.4	Des	splazamiento de Techo vs Curvatura Basal
G.5	His	téresis Momento Basal vs. Desplazamiento de Techo53
G.6	Env	volvente de Momento en la Altura55

G.7	Perfil de Aceleraciones para el Momento Máximo	56
G.8	Momento Basal vs Deformación Unitaria Basal	
G.9	Histéresis Corte Basal vs. Desplazamiento de Techo	
G.10	Envolvente de Corte en la Altura	60
G.11	Perfil de Aceleraciones para el Corte Máximo	61
G.12	Altura de Resultante de Fuerzas	62
G.13	Amplificación del Corte vs Intensidad de Arias	63
G.14	Amplificación del Corte vs. Periodo Fundamental	64
G.15	Amplificación del Corte vs Desplazamiento de Techo	65
Anexo H	Estado de la Base de Probetas Durante Ensayo	66
H.1	M1	66
H.2	Probeta M2	
H.3	Probeta M3	69
H.4	Probeta M4	
	7.1.1 Probeta M5	73
Anexo I	Regresión Modal	
Anexo J	Planos de las Probetas	

Tabla 2-1: Configuraciones dimensionales de ensavos a gran escala
Tabla 2-2: Características de las estructuras para modelarlas. 21
Tabla 2-3: Periodos e Inercia Efectiva CAMUS-1, ruido blanco y periodo aparente
durante ensavo
Tabla 2-4: Periodos e Inercia Efectiva CAMUS-3
Tabla 2-5: Periodos e Inercia Efectiva Panagiotou
Tabla 2-6: Periodos e Inercia Efectiva Ghorbanirenani. 23
Tabla 2-7: Amplificación del corte, y momento y corte máximos de los ensavos en
CAMUS-1
Tabla 2-8: Amplificación del corte, y momento y corte máximos de los ensayos en
CAMUS-3
Tabla 2-9: Amplificación del corte, y momento y corte máximos de los ensavos de
Panagiotou
Tabla 2-10: Factores de amplificación dinámica según diferentes criterios. 27
Tabla 2-11: Amplificación del corte, y momento y corte máximos de los ensavos de
Ghorbanirenani
Tabla 3-1: Características generales del muro base
Tabla 3-2: Factores de amplificación de las leves de Cauchy y Froude (Carvalho.
1998)
Tabla 3-3: Características de las señales a utilizar
Tabla 3-4: Descripción dimensional de los Muros
Tabla 3-5: Razones adimensionales descriptivas para los Muros
Tabla 3-6: Configuraciones Distintivas de cada Muro
Tabla 3-7: Capacidad al Corte de las Probetas
Tabla 3-8: Parámetros Característicos de los Muros. 47
Tabla 3-9: Frecuencias y Periodos de Vibrar de las Probetas Considerando la
Sección Bruta v Reducida
Tabla 3-10: Comparación de Parámetros del Prototipo y la Probeta (Modelo) 50
Tabla 4-1: Valor de f'e para los Cilindros Ensavados
Tabla 4-2: Propiedades de barras ensavadas Ø6 A440-280H
Tabla 4-3: Propiedades de barras ensavadas Ø4 AT56-50H
Tabla 4-4: Fechas de Ensavo y Último Registro Aplicado a Cada Muro
Tabla 4-5: Fechas de Ensavo y Modo de Falla de las Probetas
Tabla 5-1: I_a v PGA Efectivo Aplicado en los Ensavos
Tabla 5-2: Frecuencias y Periodos Aparentes Durante Ensavo
Tabla 5-3: Frecuencias límites para la Integración de Energía
Tabla 5-4: Energía Total v de cada Modo de cada Ensavo
Tabla 5-5: Periodos Medidos durante Ensavo y El efectivo Correspondiente
Tabla 5-6: Desplazamiento Relativo de Techo Máximo, de Fluencia y Ductilidad., 83
Tabla 5-7: Curvatura. Deformación y Largo de Compresión Característicos de los
Ensavos
Tabla 5-8: Momento Basal Máximo v Parámetros Relevantes, v Promedio de
Máximos de cada Ensavo
Tabla 5-9: Corte Basal Máximo y Parámetros Relevantes, y Promedio de Máximos
de cada Ensavo
Tabla 5-10: Participación de Modos y Reducción Respecto a Respuesta Lineal para
Instante de Corte Basal Máxio
Tabla 5-11: Comparación de Resultados Experimentales y Teóricos para C010 93
Tabla 5-12: Resumen Consideraciones para Definir Criterio de Amplificación95

Tabla 5-13: Resultados de Amplificación Dinámica del Corte Basal
Tabla 5-14: Amplificación Experimental y de la Literatura
Tabla 5-15: Parámetros Aplicados en el Cálculo de Amplificación en formulación de
Eibl y Keintzel104
Tabla 5-16: Parámetros Aplicados en el Cálculo de Amplificación en formulación de
Priestley105
Tabla 5-17: Comparación de la respuesta experimental y del modelo NL para el
corte y Δ_{techo} a distintos amortiguamientos108
Tabla 5-18: Comparación de la Respuesta Experimental y del modelo NL del Corte
y Momento Basales, y Desplazamiento de Techo 110
Tabla 7-1: Parámetros para Modelo Lineal4
Tabla 7-2: Frecuencias de Vibrar Obtenidas por Matriz Ensamblada y MIDAS5

Figura 2-1: Respuesta de los dos primeros modos en muros en voladizo
Figura 2-2: Amplificación del corte basal en función de la ductilidad rotacional
[Derecho, et al., 1981]
Kointzol 1988)
Figura 2-4: Análisis de Fourier de alas respuestas tiempo-historia(Ghorbanirenani.
et al. 2012)
Figura 2-5: Corte por nivel normalizado en marcos estándares de cinco pisos
(Chopra, 1995)
Centre d' Ftudes de Saclay Francia (Combescure & Sollogoub 2004) (b) CAMUS-3 en
Centre d'Etudes de Saclay Francia (Combescure & Chaudat 2002) (c) NEFS en IIC San
Diego IISA (Panagiotou et al. 2011) y (d) Ecole Polytechnique of Montreal Canadá
(Ghorbanirenani et al. 2012)
Figura 2-7: Dimensiones y detallamiento de armadura (Ghorbanirenani et al
2012)
Figura 2-8: Esquema de montaje del muro en voladizo (Ghorbanirenani, et al.,
2012)
Figura 2-9: Aceleración en la altura para instantes característicos (Panagiotou, et
al., 2011)
Figura 2-10: Altura normalizada efectiva de fuerzas laterales en función del corte,
para $Mb \ge 0.9 Mb$, max (Panagiotou, et al., 2011)
Figura 2-11: Muro W2 sometido al 100% EQ: (a) Análisis de Fourier de la
respuesta tiempo historia; (b) histéresis del momento y corte basales en función del
desplazamiento de tech0 (Ghorbanirenani, et al., 2012)25
Figura 2-12: Perfil de aceleración por pisos en muros W1 y W2 sometidos al 100%
EQ en los instantes de (a) corte máximo y momento máximo (Ghorbanirenani, et al.,
2012)
Figura 3-1: Factor de reducción efectivo R** para 115 edificios chilenos en Zona 3,
Suelo II (Lagos et al. 2012)
Figura 3-2: Dimensiones y Refuerzo del Prototipo, Vista Frontal y Seccion
(dimensiones en [cm])
Figura 3-3: Diagrama de Interacción y Momento-Curvatura para el Prototipo en el
Eje Principal
Figura 3-4: Esquema de dimensiones de la mesa vibradora
rigura 5-5: PSa (a) y Su (b) de registro sintetico C100, Constitución 2010 escalado
Figure 2 6. Acoloración TH : (a) registro C100 y Constitución 2010 occolado on
tiompo y (b) input I 100 y Lolloo 1095 cin eccela
Figura 3-7: Espectro tri-partito para Llolloo 1985 y sintótico de Constitución 2010
rigura 5-7. Espectro d'i-partito para Lioneo 1705 y sintenco de constitución 2010.
Figura 3-8: Frequencias de vibrar del muro en función de $f_c(a)$ El efectivo (b) n
nisos (c) m_{total} (d) h_w (e) l_w (f) v_{ew} (g)
Figura 3-9: Elevación v Cortes de Sección de las Probetas (dimensiones [mm]). 42
Figura 3-10: Elevación y Cortes de Sección de refuerzo de las Probetas
(dimensiones [mm])
Figura 3-11: Detalle de Estribos de Confinamiento y Armadura de Corte
(dimensiones exteriores [mm])
Figura 3-12: Diagrama de Interacción y Momento-Curvatura Nominal

Figura 3-13: Estructura de Soporte Lateral e Interacción con el Muro (dimensiones
en [mm]]
Figura 3-14: Modelo Estructura de Soporte Lateral (a) sólo perfiles y cargas, y (b)
con cables trabajando a tracción
Figura 4-1: Ensayos a tracción de 3 barras Ø6 lisas de acero A440-280H (MU:
deformación según medida de máquina universal)52
Figura 4-2: Armado de Refuerzo en M253
Figura 4-3: Instalación de Armadura Longitudinal en la Fundación54
Figura 4-4: Disposición de Armadura Longitudinal en M5
Figura 4-5: Estribo para el Confinamiento de Borde
Figura 4-6: Hormigonado de M556
Figura 4-7: Fotografía de M1 Previo al Ensavo
Figura 4-8: Esquema General de la Instrumentación.
Figura 4-9: Estado de la probeta M1: Inicial (a): durante el ensavo L150 (b), estado
final en la base (c) v altura (d)
Figura 4-10 · Estado de la probeta M ² · Inicial (a)· luego de L100 o final (b)· v
durante el ensavo L100 con Λ_{torbe} Norte (g) y Sur (h) 61
Figure A_{-11} : Estado de la probeta M3: Inicial (a): luego de anlicar las forzantes
C_{200} (h) y L 100 (c); final (d); y durante el ensave L 150 con $\Lambda_{c,c}$ Sur (h) y Norte (i) 62
ΔL_{techo} Sur (I) y horte (I), intar (I), y durante el ensayo L150 con ΔL_{techo} Sur (II) y horte (I) 03 Figura 4 12. Estada de la probata M4. Inicial (a), huga de aplicar I 100 (b) y I 150
e final (a), u durante al angevo I 150 (d)
0 IIIai (C); y durante el ensayo L150 (d)
Figura 4-13: Estado de la probeta M5: Inicial (a); luego de aplicar C150 (d) y C200
o final (e); y durante el ensayo C200 (f)
Figura 4-14: Estado Final de las Probetas tras ser Ensayadas
Figura 5-1: Analisis de Fourier de la aceleración de cada nivel para M1C200: (a)
calculada directamente, (b) dividido por el Fourier de la base, y (c) suavizado 30 veces.
Figura 5-2: Intensidad de Arias (a) y PGA (b) Efectivos Aplicados en los Ensayos. 71
Figura 5-3: PSa de C010 Efectivo Aplicado
Figura 5-4: PSa (a) y Sd (b) efectivo Aplicado de C100 a C200. *: Escalado y
Comparable con C10072
Figura 5-5: Sd Efectivo Aplicado de C100 a C200. *: Escalado y Comparable con
C10072
Figura 5-6: PSa Efectivo Aplicado de L100 y L150. *: Escalado y Comparable con
C10073
Figura 5-7: Sd Efectivo Aplicado de L100 y L150. *: Escalado y Comparable con
C10073
Figura 5-8: Espectro tri-partito de las Forzantes Aplicadas
Figura 5-9: PSa de las Forzantes Aplicadas. *: Escalado y Comparable con C10074
Figura 5-10: Sd de las Forzantes Aplicadas. *: Escalado y Comparable con C10075
Figura 5-11: Periodo del 1° (a) y 2° (b) Modo Aparente Durante Ensayo
Figura 5-12: Porcentaje de Energía del 1° (a) v 2° (b) Modo obtenida en los
Ensavos
Figura 5-13: Comparación del 2° modo en M1 de Distintos Criterios de Reducción
de Inercia (a) y Valores de Reducción de Inercia para cada Caso (b)
Figura 5-14: Reducción de la Inercia Bruta de cada Muro en los Ensavos
considerando T1 (a) v T2 (b) 2°
Figura 5-15: Desnlazamiento máximo de techo medido en los ensavos
Figura 5-16. T1 en función de Λ_{max} nara los Ensavos
Figura 5 10. I I chi function de $\Delta \max$ para 105 Elisayos
Duranto Encovos
Durance Enisayus

Figura 5-18: Promedio de Envolventes de Momento en la Altura de los Ensayos. 88 Figura 5-19: Corte Máximo (a) y Promedio de los 10 máximos (b) Medido Durante Figura 5-20: Altura de Resultante de Fuerzas Horizontales vs. Corte basal para M1 en el Entorno al Corte Máximo......91 Figura 5-22: Pseudo espectro de aceleraciones (β =5%): (a) Escalado en tiempo NCh433 (Z3SC) y aplicado en la mesa para el ensayo M1C100; (b) varios registros Figura 5-23: Amplificación del Corte según: (a) ME y máx., (b) ME y 10 máximos, Figura 5-24: Amplificación Dinámica del Corte basal: (a) componente lineal y (b) Figura 5-25: Amplificación dinámica inelástica del Corte vs. Intensidad de Arias (a), Periodo fundamental aparente(b) y Desplazamiento máximo de techo (c) en los Ensayos. Figura 5-26: Amplificación Teórica vs Experimental: (a) $\omega V y$ (b) $\omega V *$103 Figura 5-27: Comparación entre el Ajuste de Amplificación de Ia y el valor Figura 5-28: Características del Modelo MIDAS: Vista Frontal en Elevación (a), División de Fibras de Sección Transversal (b), y Definición de Histéresis para Materiales: Hormigón Confinado (c) y Acero Longitudinal (d).....107 Figura 5-29: Desplazamiento de Techo en M1C100 medido experimentalmente y en MIDAS para distintos amortiguamientos, en filas ξ_1 = 0.005, 0.01, 0.02 y 0.03, columnas $\xi_2 = 0.01, 0.02 \text{ y} 0.03.....108$ Figura 5-30: Resultados TH experimentales y del modelo NL de M1 en ensayos: C100 (a), C200 (b), L100 (c) y L150 (d).....109 Figura 7-1: Esquema de los grados de libertad.75