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Abstract Moving average simulation can be summarized as a convolution between
a spatial kernel and a white noise random field. The kernel can be calculated once
the variogram model is known. An inverse approach to moving average simulation is
proposed, where the kernel is determined based on the experimental variogrammap in
a non-parametric way, thus no explicit variogram modeling is required. The omission
of structural modeling in the simulation work-flow may be particularly attractive if
spatial inference is challenging and/or practitioners lack confidence in this task. A
non-linear inverse problem is formulated in order to solve the problem of discrete
kernel weight estimation. The objective function is the squared euclidean distance
between experimental variogram values and the convolution of a stationary random
field with Dirac covariance and the simulated kernel. The isotropic property of the
kernel weights is imposed as a linear constraint in the problem, together with lower
and upper bounds for the weight values. Implementation details and examples are
presented to demonstrate the performance and potential extensions of this method.

Keywords Moving average · Convolution · Gaussian simulation · Variogram ·
Inverse problems

1 Introduction

Geostatistical simulation is useful to quantify uncertainty of a variable in space and
assess its performance to various processes. These processes may be related to flow,
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transport, thresholding, etc., and they require computing multiple numerical realiza-
tions that discretize the geographical space. The generation of multiple realizations
can be cumbersome, since the spatial structure must be inferred and imposed a priori
in the numerical models. Many methods exist for generating the simulations once a
structural model (a variogram) has been determined (Chilès and Delfiner 2012). How-
ever, a constant challenge is to simplify this inference process as much as possible and
minimize the degree of uncertainty involved.

In the context of parametric variogrammodeling, novel attempts to semi-automatize
or fully automatize this process can be found in Cressie (1985), Pardo-Igúzquiza
(1999), Emery (2010), and Desassis and Renard (2013). In these works the variables
to be fitted are parameters from structures defined a priori (spherical, gaussian, expo-
nential and others) minimizing some form of least-squares metric. Even though this
approach is fast and accurate, the predictions might be seriously biased if the true var-
iogram is not closely approximated by any combination of members of the parametric
families.

As an alternative, the non-parametric approach does not require any knowl-
edge of the prior structures, typically paying a higher price in computational cost
and convergence. Wackernagel (1994) uses smoothing in the experimental covari-
ance values and eigenvalue decomposition/correction of the smoothed covariance
matrix. Works of Shapiro and Botha (1991), Rehman (1995), and Yao and Jour-
nel (1998) are based in Bochner’s theorem, described by Bochner (1949), to map
the positive-definite constraints to a spectrum representation using the Fourier trans-
form. In the spectral domain, a long series of density spectrum values must be
fitted to experimental transformed data. A different approach based in moving aver-
ages modeling has been used to provide an alternative to the standard classes of
parametric variogram/covariance functions. Calder and Cressie (2007) give applied
examples of this approach not only in non-parametric variogram modeling, but
also in dimensional reduction (Higdon 1998, 2002), non-stationary and anisotropic
modeling (Higdon 1998; Higdon et al. 1999; Fuentes 2002a, b), and multivariate
spatial modeling (Barry and Ver Hoef 1996; Calder 2008; Majumdar and Gelfand
2007). This approach is particularly attractive because it guarantees a valid non-
negative definite spatial covariance function (Matérn 1986; Thièbaux and Pedder
1987).

The (forward) moving averages, discussed by Oliver (1995) and previously applied
in one dimension by Journel and Huijbregts (1978), can be summarized as a convo-
lution between a spatial kernel of weights and a white noise random field. The kernel
can be calculated once the variogram model is known. As explained in the referenced
articles, the stochastic integral

Y(x) =
∫
U

f (x, x′)Z(x′)dx′ (1)

allows us to obtain correlated random fields Y with covariance matrix C and mean
0, convolving a kernel function f with a stationary random field Z with a Dirac
covariancemeasure. The covarianceC(x, x′) is related to the kernel function f through
the following equation
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C(x, x′) =
∫
U

f (x, x′′) f (x′, x′′)dx′′ (2)

Given a known covariance model C(r) (e.g., exponential, gaussian, spherical, or oth-
ers) with r = |x − x′|, and denoting F the Fourier transform, Eq. (2) can be solved
by considering the inverse Fourier transform of

√F(C(r)) as

f (r) = F−1
(√

F(C(r))
)

Using the moving average non-parametric approach, Barry and Ver Hoef (1996)
proposed a black-box method to kriging where the non-parametric kernels are piece-
wise constant functions of the form

f (r) =
m∑
j=1

a jI
{

( j − 1)R

m
< r ≤ j R

m

}
, (3)

where I denotes the indicator function, m the number of radial bands, and R is the
kernel radius of influence. The values of the constants a j are estimated solving a
derivative-free optimization problem which minimizes the distance to experimental
variogram values. Posteriorly, Ver Hoef et al. (2004) improve the computational effi-
ciency of the kernel fitting using a Fast Fourier Transform (FFT) to compute the
convolutions between the kernel and the random field Z. Gribov et al. (2006) reported
advanced techniques and novel insights implementing a similar approach into geosta-
tistical software.

The approach taken in this work follows ideas from Barry and Ver Hoef (1996),
where the kernel is fully discretized based in the simulation grid resolution. The kernel
values at eachdiscrete location are the variables to be estimated.With this choice, three-
dimensional gaussian simulations can be obtained directly, just convolving the fitted
kernel with a random field of Dirac covariance measure, using the same simulation
grid resolution as before. The problem of estimation of the kernel values at discrete
locations is formulated in terms of a non-linear inverse problemwith linear constraints.
In this problem the cost function is theweighted least-squares (WLS) function between
two vectors of variographic data, one calculated using experimental values, and the
other simulated using the unknown weights of the kernel function. The constraints are
associated to statistical and geometrical properties that must be fulfilled by the values
of f at user-defined neighbor locations. The combined output of this problem is a
distribution of fitted kernels and the associated convoluted simulations, which have a
similar semi-variogram curve as the experimental data. The distribution is generated
using a Monte Carlo method by sampling maximum likelihood a posteriori kernels
using an initial kernel guess as a priori model.

As a starting point, only isotropic kernels are modeled. Its symmetrical properties
allow us to test new concepts and modify the models in a flexible and easy way,
focusing the efforts in studying and analyzing the relation between the variogram
and the kernel weights. However, an anisotropic kernel can also be modeled using
the proposed method by just relaxing some of the linear constraints imposed in the
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optimization problem and extending the definition of the kernel in Eq. (3), as shown
by Barry and Ver Hoef (1996), to two or three radial dimensions.

In the next section, theoretical and numerical aspects of the inverse approach are
explained. A proposed implementation and practical aspects of its usage are presented
in Sect. 3. In Sect. 4, synthetic and real scenarios are addressed, quantifying the effect
of kernel smoothness and sparsity of the available dataset. Finally, conclusions and
future work are included in Sect. 5.

2 Inverse Moving Average Isotropic Kernels

Given a lag vector h, the semi-variogram γ (h) can be estimated from available Nd

data samples, denoted {y(xi )}Nd
i=1, located in a regular three-dimensional lattice using

the formula

γ (h) = 1

2Nh

∑
{(p,q):xq=xp+h}

[y(xp) − y(xq)]2 (4)

Assuming that the Y random field was generated using (1), for some kernel f and
some stationary random field Z with Dirac covariance measure, it holds

γ (h) = 1

2Nh

∑
{(p,q):xq=xp+h}

[y(xp) − y(xq)]2

≈ 1

2Nh

∑
{(p,q):xq=xp+h}

⎡
⎣ R∑
i=−R

R∑
j=−R

R∑
k=−R

wi, j,k(z p(i, j,k) − zq(i, j,k))

⎤
⎦
2

(5)

with R the radius of the kernel’s neighborhood (in this particular discretization, a cube
of side 2R + 1 is considered as neighborhood) and the variables z p(i, j,k) and wi, j,k

defined as

z p(i, j,k) =: z(xp + ibî + jbĵ + kbk̂) (6)

wi, j,k =: f (ibî + jbĵ + kbk̂) (7)

being b the step length of the underlying lattice, i, j, k ∈ {−R, . . . , R}, (î, ĵ, k̂) the
canonical vectors in each dimension and p(i, j, k), q(i, j, k) ∈ {1, . . . , Nh} indices
of the corresponding pair. Concatenating the indices i, j, k ∈ {−R, . . . , R} using a
one-dimensional index r ∈ {1, . . . , Nw}, with Nw = (2R + 1)3, expression (5) can
be written as follows

γ (h) ≈ 1

2Nh

∑
{(p,q):xq=xp+h}

[
Nw∑
r=1

wr (z p(r) − zq(r))

]2

= wT�(h)T�(h)w

= ‖�(h)w‖2 (8)
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with w ∈ R
Nw the kernel weights vector and �(h) ∈ R

Nh×Nw the differences matrix
defined as

�(h) = 1√
2Nh

⎡
⎢⎣

z p1(1) − zq1(1) . . . z p1(Nw)
− zq1(Nw)

...
...

...

z pNh (1) − zqNh (1) . . . z pNh (Nw)
− zqNh (Nw)

⎤
⎥⎦ (9)

being {(p1, q1), . . . , (pNh , qNh )} an enumeration of the set {(p, q) : xq = xp + h}.
According to Eq. (8), the semi-variogram values for each lag distance h = ‖h‖ can

be approximated by a convex quadratic function of the kernel weights w, using the
random field Z to build the differences matrix �(h). In some cases, when large values
of Nh and Nw are being used, it can be computationally expensive to calculate and
store �(h). Instead, its value can be obtained by executing a computer program that
calculates Y according to a discretized version of Eq. (1) (convolving Z and w), and
after that it calculates the semi-variogram values of Y for different lag distances.

3 Numerical Solution

Using Eq. (8) an ordinary least-squares (OLS) type of cost function can be
defined, measuring the squared euclidean distance between a vector of experimental
semi-variogram values at different lag distances h1, . . . ,hn and the simulated semi-
variogram depending on the weight values w. Since the fitting at the origin of the
semi-variogram curve must be emphasized, a WLS type of cost function must be
used. Each term is multiplied by the squared inverse of the observed experimental
semi-variogram values, adding a small positive constant ε > 0 to assure positiveness
of the denominator

costWLS(w) =
n∑

i=1

(‖�(hi )w‖2 − (γ target(hi ) + ε)

γ target(hi ) + ε

)2

(10)

Several constraints can be added to the problem in order to reduce the size of the
search space and get more accurate results. In this work the following constraints have
been considered:

(i) Upper and lower bounds wi ∈ [0, B] for some large constant B > 0. With this
constraint, the convolved values yi will have mean 0 and variance

∑
i w

2
i , with

an upper bound equal to Nw × B2. If the initial kernel is sufficiently close to
local optima and small and controlled perturbations of weights are allowed in
optimization process, the upper bound is never reached in practice. However, it is
included for theoretical reasons (compactness of the feasible set).

(ii) Piecewise radial symmetry the number of variables can be reduced using the
piecewise representation of the kernel presented in Eq. (3). This constraint can
be assessed by imposing wp = wq if ∃rp, rq ≥ 0 and ∃ j ∈ {1, . . . ,m} such that

rp, rq ∈ {r ≥ 0 : ( j−1)R
m < r ≤ j R

m }, wp = f (rp) and wq = f (rq). With this
constraint the total number of variables to be fitted is the number of radial bands
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m, which must be less or equal to n, the number of experimental semi-variogram
observations (number of lags).

The previous constraints are linear, so they can bewritten inmatrix form asAw = b,
allowing an easy feasibility checking. Additional non-linear constraints can be added,
for example imposing a fixed value for the semi-variogram sill, as sill = ∑

i w
2
i .

This constraint is equivalent to C(0) = ∫
U f (r)2dr and can replace the boundedness

condition (i). However, as detailed in Bazaraa et al. (1993), checking the feasibility
of non-linear constraints is not straightforward and can add considerable amount of
computational work. For this reason the authors decided to include only linear con-
straints. Additionally, since the convolved data can be standardized using a normal
score transformation with the same table as the standardized experimental data, the sill
of the non-standardized semi-variogram is not relevant in the proposed framework.

Mathematically, minimizing function (10) subject to the previous constraints corre-
sponds to a 4th-order polynomialminimization (non-linear least-squares onw) linearly
constrained. It can be seen as an ill-posed non-linear inverse problem, in the sense that
it searches for optimal kernels (local optima) which completely model the structural
property of the underlying phenomenon, based only in a few observed measurements.
As explained by Mosegaard and Tarantola (1995) and Tarantola (2004), Monte Carlo
methods are the best alternative to obtain samples of the a posteriori probability dis-
tribution of the model, in this case the kernel weights. This means that the solution
of the inverse problem is not a model but a collection of models that are consistent
with both the data (experimental semi-variogram values) and the a priori information
(initial kernel weights, used as starting point). Even though the non-linearities are
weak and highly efficient techniques can be used to solve the problem, such as the
Gauss-Newton method for non-linear least-squares problems described in Nocedal
and Wright (2006), the probabilistic approach was chosen. This decision is based in
the potentially prohibitive amount of computational resources required to store the
first-order derivatives of the cost function from Eq. (10), which involves the storage
of matrix �(hi ) for each i . Additional techniques, like using a regularization term
as explained by Tikhonov and Arsenin (1977), are also considered in this work. As
shown in several geophysics-based inverse problems, prior information can be intro-
duced in the problem as a penalty term that regularizes the cost function. In this case,
the regularization term is added to the cost function (10) as

costregWLS(w, β) = costWLS(w) + βR(w) (11)

where β ≥ 0 is the regularization parameter and R(w) can be a measure of the
smoothness of the kernel or prior information imposed over the feasible solutions.
Common choices for R(w) are linear combinations of ‖w − wprior‖s , ‖w‖s , ‖∇w‖s
and ‖∇2w‖s with s ∈ {0, 1, 2,∞}. wprior is defined as the prior information vector.
∇w and ∇2w are defined as the discrete first- and second-order three-dimensional
spatial derivatives of the kernel f (r).

The non-linear optimization problem that must be solved to infer the a posteriori
kernel weight values is as follows

123



Math Geosci (2016) 48:559–579 565

minimize
w∈RNw

costregWLS(w, β)

subject to
wi ≤ B, ∀i
wi ≥ 0, ∀i
wi = w j , i, j are piecewise radially symmetric

(12)

4 Implementation

Simulated annealing (Kirkpatrick et al. 1983; Geman andGeman 1984; Deutsch 1992;
Peredo and Ortiz 2011) is used to obtain approximate solutions of problem (12). The
calculation of the current simulated semi-variogram values {‖�(hi )w‖2}ni=1 must be
done with the same parameters used to obtain the target experimental semi-variogram
{γ target(hi )}ni=1. If the convolved values yi are also required to follow the same distri-
bution (histogram), the user must standardize the experimental data before obtaining
the target semi-variogram values, and back transform the convolved values using the
transformation table from experimental data.

Algorithm 1 summarizes the methodology. Important aspects to consider in the
proposed algorithm include the relation between the spacing of the regular lattice and
the semi-variogram spacing parameters, and the feasibility enforcement policy. The
regular lattice �h can be defined in any way with the only requirement that it contains
enough data to reproduce the semi-variogram using all lags defined in the parameters.
For instance, if a variogram uses a lag distance of 2.0 and �h has a step length of 4.0,
the resulting variogramwill have holes in each step non-divisible by 4.0 (assuming that
the lag tolerance is sufficiently small). Feasibility enforcement consists in modifying
each potential new state of the weights vector, denoted w̃k , in order to belong to the
interval [0, B] and satisfy the banded radial-symmetric constraint. Only controlled
perturbations are allowed, defined as

w̃k
i =

{
wk
i (1 ± δ), if f (r∗) = wk

i

wk
i , if not

(13)

with ±δ ∈ (−1, 1) a percentage of increment or decrement and r∗ ∈ [0, R] a random
radial distance. If wk

i (1 ± δ) /∈ [0, B], a new percentage ±δ is generated until the
constraint is fulfilled.

5 Practitioner’s Usage

From a practitioner’s point of view, the main goal is to obtain several realizations of a
randomfieldwhere each one preserves the same spatial structure of the input dataset. In
order to run a conventional geostatistical simulation algorithm, like sequential gaussian
simulation (Alabert 1987; Deutsch 2002; Deutsch and Journel 1998; Isaaks 1990), the
first task is to model the variogram parameters, typically requiring expert knowledge
from the practitioner in order to fit the modeled variogram to the experimental one.
If the practitioner has not enough experience, this task can be cumbersome and error
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Input: Initial kernel weights w0 := f 0(r) and radius R as in Eq. (7). Dataset

values V in a domain � (can be irregular and non-gaussian). Number of lags n,

azimuth ϕ, dip θ and variogram tolerances tol. Initial temperature T0, cooling

scheme λ, number of iterations Niters , convergence tolerance εtol . Regulariza-

tion parameter β ≥ 0.

1: V̂ ← Apply a normal score transformation over (V,�)

2: {γ target (hi )}ni=1 ← Compute semi-variogram over (V̂,�) using (n, ϕ, θ, tol)

3: �h ← Generate a regular lattice �h , with similar dimensions of �

4: Z ← Generate random field with Dirac covariance defined in �h

5: Y0 ← Convolute w0 := f 0(r) and Z in domain �h using formula (1)

6: {‖�(hi )w0‖2}ni=1 ← Compute semi-variogram over (Y0,�h) using

(n, ϕ, θ, tol)

7: cost0 ← Calculate cost function of formula (11) using {‖�(hi )w0‖2}ni=1 and

β ≥ 0

8: k ← 0, T ← T0

9: while costk

cost0
< εtol or k > Niters do

10: w̃k ← Modify wk

11: Force feasibility of w̃k using constraints of problem (12)

12: Ỹk ← Convolute w̃k := f̃ k(r) and Z in domain �h using formula (1)

13: {‖�(hi )w̃k‖2}ni=1 ← Compute semi-variogram over (Ỹk,�h) using

(n, ϕ, θ, tol)

14: c̃ost
k ← Calculate cost function of formula (11) using {‖�(hi )w̃k‖2}ni=1 and

β ≥ 0

15: τ ← 1 if c̃ost
k

< costk; e costk −̃costk

T ·costk otherwise

16: (wk+1, costk+1) ← (w̃k, c̃ost
k
) if rand(0,1) < τ ; (wk, costk) otherwise

17: k ← k + 1

18: Apply cooling scheme λ to the temperature T

19: end while

20: Y∗
back ← Back transform values of best convolved image Y∗

Output: Optimal kernel weights w∗ and best convolved and back transformed

images Y∗ and Y∗
back

Algorithm1:General steps of simulated annealing technique to obtain approximate
solutions of problem (12) with optional regularization term
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prone. The long-term objective of this contribution is to provide a tool for the practi-
tioner to automatically generate one or more realizations of the random field without
requiring a fitted parametric variogram model. A possible work-flow using this tool
can be viewed in Algorithm 2.

1: γ target ← Obtain experimental variogram values.

2: w0 ← Set initial kernel weights.

3: � ← Set a simulation lattice.

4: �min ← Calculate the minimal domain size needed to obtain statistically valid

variogram values.

5: {waposteriori } ← Estimate the a posteriori model distribution by approximately

solving problem (12) with inputs γ target ,w0 and several realizations z1, . . . , zn

with Dirac covariance in �min.

6: y ← Generate one realization of Y convolving a sample from the a posteriori

model distribution and a realization z with Dirac covariance in �.

7: Store y in a file.

8: while More realizations of Y in � are needed do

9: z ← Obtain realization of Z (Dirac covariance) in �.

10: y ← Convolve z with a sample from the a posteriori model distribution in �

(forward moving averages).

11: Store y in a file.

12: end while

Algorithm 2: Practitioner’s work-flow using the proposed method to generate real-
izations without modeling the variogram

6 Examples

Two sets of examples are presented: using synthetic datasets and real datasets. The
synthetic examples are designed to show scenarios where the initial semi-variogram
values are different from the target ones, using well-known analytic kernels.

In all cases, initial and final/best images are presented. Comparisons between the
initial, final and targeted semi-variogram and the kernel weights are also shown. To
draw the a posteriori distribution, 30 runs of the algorithm were executed in order to
collect samples in each case. The average convergence of the algorithm is also provided
via the minimization of the cost function over 6000 iterations using a cooling scheme
T ← 0.5T every 150 iterations (restarting to the initial temperature every 10 cooling
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steps). Initial temperature is set individually in each example, keeping a reasonable
value after some running trials.

6.1 Synthetic Data Examples

In these examples the semi-variogram of the convolved field Y is calculated over
three-dimensional images where each node is located in a regular lattice of step length
1.0. The semi-variogram is calculated using the omni-directional lag vector with lags
of separation h = 1.0 with a small tolerance, using a normal score transformation
to produce the target data. All these examples use random fields Z with dimension(
nx + ⌈ R

h

⌉) × (
ny + ⌈ R

h

⌉) × (
nz + ⌈ R

h

⌉)
, where nx × ny × nz is the original dimen-

sion, and keeping a buffer zone of
⌈ R
2h

⌉
nodes at the boundaries. The regularization

parameter used in these examples is β = 0, letting the semi-variogram residual of Eq.
(11) be the only active term in the cost function.

The first example (Fig. 1) illustrates convergence of the algorithm when it is ini-
tialized with a very smooth semi-variogram, while the targeted semi-variogram is less
continuous. Specifically, it starts with gaussian values for each kernel weight

f (r) =
√

4

a2π
e

−2r2

a2 , a = 9.0 (14)

with the target specified as three-dimensional spherical kernel weights

f (r) =
{ 2

a
√

π
for r ≤ a

2

0 for r > a
2

, a = 9.0 (15)

The a posteriori models, depicted in Fig. 1f, are sampled with the proposed algo-
rithm using a small three-dimensional domain �min with dimension 14 × 14 × 14.
Convolving the initial kernel Eq. (14), target kernel Eq. (15), and one of the sampled a
posteriori kernels with a domain� of size 64×64×1, standardized simulated images
can be obtained as shown in Fig. 1a–c.

In contrast, the second example, depicted in Fig. 2, begins with short range continu-
ity [spherical kernel from Eq. (15)], while the targeted semi-variogram is much more
continuous [gaussian kernel from Eq. (14)]. As for the first example, the a posteriori
models, depicted in Fig. 2f, are sampled with the proposed algorithm using a small
three-dimensional domain �min with dimension 14× 14× 14. Convolving the initial
kernel, target kernel, and one of the sampled a posteriori kernels with a domain � of
size 64 × 64 × 1, standardized simulated images can be obtained as shown in Fig.
2a–c.

In both instances, the final/best image matches the target image remarkably well.
This is further confirmed when the best and target semi-variograms are compared.

These examples can be considered as validity tests, in the sense that the obtained
results are in concordancewith the author’s expectations. The target images correspond
to the standardized convolution Z∗wtarget, with Z a standard normal random field and
wtarget acting as the target weight values (spherical in the first example and gaussian in
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Fig. 1 Example 1: synthetic scenario with 64×64×1 nodes in the simulation domain. a Initial, b best and
c target simulated images, d cost function, e semi-variograms, and f kernel weights distributions. Initial
semi-variogram is generated by a gaussian kernel and the target is generated by a spherical kernel

the second). The a posteriori distribution of models obtained solving the optimization
problem generates semi-variogram curves that matches as much as possible the target
experimental values. Even though the semi-variogram curves fit, the sampled kernels
may not fit exactly with the target kernel weights. As shown in Figs. 1f and 2f, the
shape of the a posteriori samples, wbest, is similar to wtarget, that is wbest ≈ αwtarget

for some α > 0. In the second example, the distribution shows a dissimilarity at the
tip of the kernel’s discontinuity (r = a/2). This phenomenon is mitigated on average
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Fig. 2 Example 2: synthetic scenario with 64×64×1 nodes in the simulation domain. a Initial, b best and c
target images, d cost function, e semi-variograms and f kernel weights distributions. Initial semi-variogram
is generated by a spherical kernel and the target is generated by a gaussian kernel

by all distribution samples, with higher weight values in the first half (r ∈ [0, a/4])
and lower values in the second half (r ∈ [a/4, a/2]) of the non-zero contribution of
the kernel (r < a/2).

The quality of the convolved images depends on the distribution of the initial values
(which depends of winitial) and convergence quality of the optimization solver, so
in order to refine the approximation, new samples can be generated using different
parameters in the optimization algorithm.
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In both examples, initial and target kernels f initial and f target were chosen according
to Eqs. (14) and (15) scaled to fit f initial(0) = f target(0) = 1.0, and a weight upper
bound B = 2.0. These values allow us to visualize in the same scale, f (r) ∈ [0.0, 2.0],
all the a posteriori samples. It is worth to mention that the selection of the upper bound
B controls the convergence rate and defines the size of the feasible set of solutions.
However, the previous scale and upper bound selection fit the author’s purposes, since
theweight perturbations are performed in a smooth and controlled fashion, as explained
in Sect. 4.

6.2 Real Data Examples

Two datasets of copper grades are used as base for real data examples. The first dataset
is composed by 2376 diamond drill hole samples with information of copper grade
composites (Serrano et al. 1996), and the second dataset, also with copper grade
information, is composed by 20893 blast hole samples (Emery and Ortiz 2005). Both
datasets were collected from well-known Chilean porphyry copper deposits.

The semi-variogram of the convolved field Y is calculated over three-dimensional
regular domains with step length 10.0 for each example. Omni-directional vectors
with lag separation h = 20, lag tolerance tollag = 0.2, and bandwidth tolerance
tolband = 200 for the first example, and h = 10, tollag = 0.2 and tollag = 0.001 for
the second example are used as parameters. A normal score transformation is applied
to each base dataset to produce the target data. As in the synthetic case, all these
examples use random fields Z with similar dimension, keeping a buffer zone of

⌈ R
2h

⌉
nodes at the boundaries. Unlike the synthetic examples, no reference or target image
is available, so only initial and best images are included in this section.

In the first example (drill holes), the initial weights are generated using a gaussian
kernel function with a = 100.0, as shown in Eq. (14). The number of lags in the target
semi-variogram is n = 10. The a posteriori models are sampled with the proposed
algorithm using a small three-dimensional domain �min with dimension 21 × 21 ×
21 and step length 10. The corresponding initial semi-variogram curve, depicted in
Fig. 3d, does not match the experimental values, but is sufficiently close to start
the optimization process. After 6000 iterations with no regularization term active
(β = 0), the cost function has been reduced on average to approximately 0.25 % of
its initial value, obtaining the distribution of kernel weights of Fig. 3e. By looking at
the standard deviation bands in this figure, the weight distribution is wider near the
origin and narrow far from it. This behavior was not observed in the both synthetic
examples, where the standard deviation band was narrow for all radial distances. A
slice image generated via convolution of a larger domain � with dimension 128 ×
128 × 128 and a sample a posteriori kernel, is depicted in Fig. 3b. It shows similar
semi-variogram values compared with the experimental ones, and the histogram of
the back transformed values has similar shape to the base dataset (Fig. 4).

In the second example (blast holes), depicted in Fig. 5, the initial image is also
generated using a gaussian kernel with a = 100.0. The number of lags in the target
semi-variogram is n = 15. The a posteriori models are sampled with the proposed
algorithm using a small three-dimensional domain �min with dimension 21×21×21
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Fig. 3 Example 3: Three-dimensional dataset of 2376 drill hole copper grade composites and a simulation
domain of 128×128×128 nodes. a Initial and b best images of slice 1; c cost function, d semi-variograms
and e kernel weights distributions

Fig. 4 Example 3: a best back transformed and b target original data histogram values (drill hole dataset)
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Fig. 5 Example 4: Three-dimensional dataset of 20893 blast hole samples of copper grade composites and
a simulation domain of 128 × 128 × 128 nodes. a Initial and b best images of slice 1; c cost function, d
semi-variograms and e kernel weights distributions

and step length 10. After the optimization ends, without using regularization terms
(β = 0), the cost function has been reduced on average to 0.1 % of its initial value,
according to Fig. 5c. The a posteriori kernel distribution can be viewed in Fig. 5e. As
in the previous example, the weight distribution is wider near the origin and narrow far
from it. A slice image generated via convolution of a larger domain � with dimension
128×128×128 and a sample a posteriori kernel, is depicted in Fig. 5b. It shows similar
semi-variogram values compared with the experimental ones, and the histogram of
the back transformed values has similar shape to the base dataset (Fig. 6).

Comparedwith the previous example, in this case the a posteriori kernel distribution
shows a smoother behavior as a function of the radial distance to the origin. This
behavior is due to the granularity used by the semi-variogram parameters, where the
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Fig. 6 Example 4: a best back transformed and b target original data histogram values (blast hole dataset)
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Fig. 7 Regularization term effect in real data examples. a Drill holes and c blast holes data term values. b
Drill holes and d blast holes regularization term values

first example uses 10 lags with a high tolerance (in lag separation and bandwidth), and
the second uses 15 lags with relatively smaller tolerance values.

Both examples show the application of the algorithm generating the desired distri-
bution of kernels, and their corresponding usage to generate a simulation convolving a
sample kernel with a larger domain. The structural properties of the convolved images
retain the original variogram and histogram shapes calculated in the base dataset.
No regularization term was used in the presented examples; however, it is insightful
to show the effect of a regularization term in the cost function. In Fig. 7 it can be
observed the relative values of the data and regularization terms from cost function
(11), costWLS(w), and R(w), respectively. The function R(·)was chosen to control the
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Fig. 8 Examples of a, c non-regularized and b, d regularized with β = 1.6 and R(w) = ‖∇2w‖2 in each
real data example

smoothness of the kernel as a function of the radial distance, that is R(w) = ‖∇2w‖2.
As mentioned in Sect. 3, ∇2w is the discrete second- order spatial derivative of the
kernel function. Data and regularization term values associated to the first example
(drill holes) are depicted in Fig. 7a, b, and associated to the second example (blast
holes) are depicted in Fig. 7c, d. In those figures, it is plotted the average value of

the data residual term, defined as costWLS(wbest)

costWLS(winitial)
, and the average value of the regu-

larization residual term, defined as R(wbest)

R(winitial)
. In both examples the data residual term

increases steadily as the regularization parameter β increases from 0.0 to 3.2 in step
of size 0.4. On the contrary, the regularization residual term decreases steadily as β

increases. In the drill holes example, the increase/decrease in the data/regularization
term starts a slowdown since the value β = 1.6. No slowdown can be observed in
the blast holes example. Independently of the slowdown in the increase/decrease of
each term, it can be observed that the standard deviation of the regularization term
increases with larger values of β. Examples of non-regularized and regularized kernel
distributions are shown in Fig. 8a–d, respectively.

Another important aspect of the algorithm is the number of available data used to
infer the kernel distribution. The blast holes dataset, with 20893 samples, will be used
as test to obtain a measure of accuracy if less samples are available to infer the kernels
keeping the same semi-variogram parameters. In Fig. 9 are shown the results using
25 % (5225 samples) and 6 % (1260 samples) selected uniformly at random. As in
the blast holes original example, the a posteriori models are sampled using a small
three-dimensional domain �min of 21 × 21 × 21 nodes and step length 10. Although
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Fig. 9 Effect of uniform sub-sampling the blast hole dataset (20893 samples). a, d Semi-variograms, b, e
kernel weights distributions and a simulation with 128 × 128 × 128 nodes, using c 25 % and f 6 % of the
dataset

the level of convergence of the cost function in these tests is not as good as using
100 % of the dataset (avg. cost reduction is 14 and 27 %, respectively, and using
100 % the avg. cost reduction is 2 %), the semi-variogram curves are fitted resembling
the original scenario with 100 % of the dataset. Two sample standardized simulations
using a larger domain � of 128× 128× 128 nodes are depicted in Fig. 9c, f, each one
generated with kernel weights obtained using 25 and 6 % of the dataset, respectively.
Both images look similar, but further analysis shows slight differences. In Fig. 10
are depicted the residual error histograms between both standardized images and a
standardized simulation of the same size using a kernel weight inferred with 100 % of
the blast hole dataset. The three simulations use the same random seed to generate the
underlying random field Z which is convolved with the kernel weights. Both residual
errors have mean equal to zero. Using 25 % of the dataset, the standard deviation of
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Fig. 10 Residual error histograms between standardized simulations of size 128 × 128 × 128 nodes. a
Using kernel weights inferred with 100 % of the blast hole dataset versus 25 % of it and b 100 % versus
6 % of it

the residual error is σ = 0.528, while using 6 % its value is σ = 1.031. It can be
observed that the results remain remarkably similar using 25 % of the dataset, on the
contrary, using 6 % of the dataset the deviation of the error is considerably larger. This
difference in the residual errors can be consequence of the number of sample pairs
used to compute γ target(hi ). While the average number of pairs using 100 and 25 %
of the dataset is 656 and 140, respectively, this number is reduced to 33 using 6 % of
the dataset, which is at the limit of a practical value. As Journel and Huijbregts (1978)
suggests the number of sample pairs must be greater than 30–50 in order to be useful
for an experimental semi-variogram.

7 Conclusions

A novel approach to non-parametric Gaussian simulation that does not require explicit
variogram modeling by the practitioner is presented. The method is based on a non-
linear inversemoving average simulation, where kernel estimations from experimental
semi-variogram values are sampled solving a constrained optimization problem. Sim-
ulated annealing is used to sample approximate solutions.

As mentioned in Sect. 5, once the posterior distribution of kernels is obtained,
several simulations can be generated convolving kernel samples with different random
images (Dirac covariance). The method ensures that all those simulations will have a
semi-variogram curve that matches as much as possible the experimental curve, and
the histograms will follow the same distribution as the target original data.

Early application of this methodology to synthetic and real data examples shows
reasonable convergence and kernel weight values. The usage of smoothing regular-
ization terms in the cost function allows the user to shape the profile of the kernel
distribution, with the trade-off of losing data residual accuracy. The real data exam-
ples presented in this work confirm in part that the effect of the regularization is not
negligible and must be studied using more complex datasets. Additionally, the num-
ber of available samples in the dataset must guarantee, together with the variogram
tolerance parameters, that the number of sample pairs must be greater than a practical
lower bound.

123



578 Math Geosci (2016) 48:559–579

These results are encouraging; however, much remains to be done in the devel-
opment of this method. Future tasks include anisotropy availability, hard data
conditioning, and acceleration of the current implementation. Allowing anisotropy
in the kernel weights can be modeled by expanding the definition of the piecewise-
linear representation of the kernel. As mentioned by Barry and Ver Hoef (1996), the
radial bands can be extended to two or three dimensions in a simple way. Conditioning
of simulated results could be incorporated a posteriori into the convoluted image. A
possible strategy is to use kriging with the modeled semi-variogram values in order to
impose the variographic structure definedby the algorithm.Asimple codemodification
of covariance calculation using these values can be implemented. Regarding the com-
putational efficiency, the current implementation was designed to support small scale
isotropic scenarios. Even though the usage of a small test domain �min accelerates
the sampling of the posterior distribution of kernels, complex variogram shapes and
future anisotropic features make the current implementation unpractical. Using high
performance techniques and programming models, like OpenMP (OpenMP Architec-
ture ReviewBoard 2011) and CUDA (NVIDIACorporation 2010), the current version
of this application can be accelerated, making it usable in large-scale real scenarios.
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