TABLA DE CONTENIDO

1		1
	1.1 FORMULACIÓN DEL ESTUDIO PROPUESTO	1
	1.2 OBJETIVOS	3
	1.2.1 Objetivo General	3
	1.2.2 Objetivos Específicos	3
	1.3 HIPÓTÉSIS DE TRABAJO	4
	1.4 METODOLOGÍA Y ACTIVIDADES	4
	1.5 PLAN DE TRABAJO	6

2 MARCO TEÓRICO	7
2.1 ANTECEDENTES HISTÓRICOS	7
2.1.1 Fotogrametría Analógica	
2.1.2 Fotogrametría Analítica	
2.1.3 Fotogrametría Digital	
2.2 STRUCTURE FROM MOTION (SFM)	11
2.2.1 Primera Aproximación al análisis de imágenes	
2.2.2 Modelos Lineales	
2.2.3 Modelos No Lineales	
2.3 GEORREFERENCIACIÓN	19
2.4 RESOLUCIÓN EN TERRENO	22
2.5 OCLUSIÓN	23
2.6 DISTANCIA A LA FRENTE	24

3 ASPECTOS METODOLÓGICOS	25
3.1 ELECCIÓN DE LUGARES A ESTUDIAR	
3.1.1 Muestra de laboratorio	
3.1.2 Deformación Frágil	
3.1.3 Deformación Compleja	
3.2 EQUIPO Y TOMA DE FOTOGRAFÍAS	
3.3 PROCESAMIENTO DE FOTOGRAFÍAS:	RECONSTRUCCIÓN
TRIDIMENSIONAL	
3.4 GEORREFERENCIACIÓN	
3.5 MAPEO ESTRUCTURAL DIGITAL	
3.6 CONSTRUCCIÓN DE PLANOS	

4	MUES		. 34
	4.1 LE\	/ANTAMIENTO DE DATOS	34
	4.1.1	Descripción de la muestra	34
	4.1.2	Toma de fotografías	35
	4.1.3	Construcción del modelo digital	36
	4.1.4	Georreferenciación y factor de escala	36
	4.1.5	Mapeo de discontinuidades	37
	4.2 RE	SULTADOS	38

5.2 MARCO GEOLÓGICO	40 40
	40
5.2.1 Formación Abanico (Aguirre, 1960)	40
5.2.2 Unidad Chicureo-Recoleta	40
5.2.3 Tobas Soldadas San Cristóbal	41
5.3 LEVANTAMIENTO DE DATOS	43
5.3.1 Descripción del afloramiento	43
5.3.2 Mapeo de discontinuidades de forma tradicional	43
5.3.3 Toma de fotografías	44
5.3.4 Georreferenciación	44
5.3.5 Construcción del modelo digital	45
5.3.6 Mapeo de discontinuidades en modelo digital 3-D	46
5.4 RESULTADOS	. 46
5.4.1 Datos obtenidos mediante técnicas tradicionales	47
5.4.2 Datos obtenidos mediante fotogrametría digital	49
5.4.3 Agrupación de datos	50

6.1 ZO	NA DE ESTUDIO	52
6.2 MA	RCO GEOLÓGICO	53
6.2.1	Formación Hornitos (Segerstrom, 1959)	53
6.2.2	Unidad 7	54
6.2.3	Unidad 9	55
6.3 ZOI	NA 1, PIQUE MINERO	56
6.3.1	Levantamiento de datos	56
6.3.1	L.1 Descripción del afloramiento	56
6.3.1	1.2 Toma de fotografías	57
6.3.1	1.3 Construcción del modelo digital	58

6.3.1.4 modelo d	Mapeo de discontinuidades y construcción de planos ligital 3-D	en 59
6.3.2 Rest 6.3.2.1	<i>ultados Modelo de deformación Compleja, Zona1</i> Datos Estructurales	61 63
6.4 ZONA 2, 6.4.1 Leva 6.4.1.1	, LABOR TIPO TRINCHERA antamiento de datos Descripción del afloramiento	64 <i>64</i> 64
6.4.1.2	Toma de fotografías	66
6.4.1.3	Construcción del modelo digital	66
6.4.1.4 modelo d	Mapeo de discontinuidades y construcción de planos ligital 3-D	en 68
6.4.2 RES	ULTADOS	71
6.4.2.1	Error de reconstrucción	71
6.4.2.2	Modelo tridimensional de deformación compleja	72

7	DI	SCUSIÓN	
	7.1 7.2 7.3 7.4 7.5 SALI 7.6	MUESTRA DE LABORATORIO MODELO DE DEFORMACIÓN FRÁGIL Y GEORREFERENCIACIÓN MODELO DE DEFORMACIÓN COMPLEJA, ZONA 1 MODELO DE DEFORMACIÓN COMPLEJA, ZONA 2 PESO DE INFORMACIÓN DE ENTRADA, TIEMPO Y ARCHIVOS IDA ALGORITMO MATEMÁTICO Y APLICACIÓN EN ESTUDIO DE SONDAJ	73 78 80 82 DE 84 IES
	7.7 <i>7.7</i> 7.7 7.8	ANÁLIS FUTUROS ANÁLIS FUTUROS 7.1 Posibilidad de Re-Estudio geomorfológico en el pasado reciente 7.2 Reconstrucción digital en modelos análogos. ANÁLSIS F.O.D.A.	88 <i>88</i> 91 92

8 CONCLUSIONES	. 97
----------------	------

9	BIBLIOGRAFÍA	9	9
---	--------------	---	---

N	EXOS1	
1	ANEXO A, MODELO DE MUESTRA DE ESQUISTO	1
2	ANEXO B, MODELO DE MUESTRA FÓSIL	2
3	ANEXO C, MODELO DE AFLORAMIENTO, BASALTOS COLUMNARES, CERRO SANTA	A
ÍA	3	
4	ANEXO D, MODELO DE MUESTRA DE SERIE SEDIMENTARIA	1
5	ANEXO E, MODELO DE TESTIGO DE ROCA	5
6	ANEXO F, MODELO DE LA CORDILLERA DE LA SAL, 1961	5
	N I 2 3 1 4 5 6	NEXOS 1 1 ANEXO A, MODELO DE MUESTRA DE ESQUISTO 1 2 ANEXO B, MODELO DE MUESTRA FÓSIL 2 3 ANEXO C, MODELO DE AFLORAMIENTO, BASALTOS COLUMNARES, CERRO SANTA 1 3 4 ANEXO D, MODELO DE MUESTRA DE SERIE SEDIMENTARIA 2 5 ANEXO E, MODELO DE TESTIGO DE ROCA 5 6 ANEXO F, MODELO DE LA CORDILLERA DE LA SAL, 1961 6

ÍNDICE DE TABLAS

Tabla 1: Plan de Trabajo6
Tabla 2: Datos estructurales de los 94 planos medidos de manera tradicional
sobre talud de Cerro Blanco47
Tabla 3: Resumen de datos de dip y dipdirection de los diferentes sets
estructurales generados a partir de mediciones tradicionales sobre el talud
de roca y mediante medición sobre reconstrucciones digitales
Tabla 4: Resumen de variaciones en Dip y Dipdirection entre los sets
estructurales construidos a partir de datos tomados mediante métodos
tradicionales y mediante fotogrametría digital
Tabla 5: Resumen de los datos de rendimiento de los diferentes objetos
reconstruidos. CB: Cerro Blanco, DCZ1: Deformación compleja Zona 1,
DCZ2 371: Deformación compleja Zona 2 a partir de 371 fotografías, DCZ2
572: Deformación compleja Zona 2 a partir de 371 fotografías, M de M:
muestra de mano, AA: Anexo A-Esquisto, AB: Anexo B-Muestra fósil, AC:
Anexo C-basaltos columnares, AD: Anexo D-Muestra serie sedimentaria y
AE: Anexo E-Muestra testigo de roca84

ÍNDICE DE ILUSTRACIONES

Figura 1: Esquema resumen de la evolución histórica de la teoría de
fotogrametría y estereoscopia, de izquierda a derecha se aprecia los
bosquejos del artista renacentista Leonardo da Vinci, bosquejo de las
primeras ecuaciones matemáticas relacionadas a perspectiva descritas por
Johan Heinrich Lambert en su obra Freye Perspective, primera fotografía
de la historia tomada por Joseph Nicéphore Niépce en la ciudad de Le Gras
y, por último, fotografía de Charles Wheatstone, primer hombre en
describir el fenomeno de la estereoscopia
Figura 2: Ilustraciones de los personajes, inventos e inventores mas
relevantes en los campos de fotogrametria analogica, analítica y digital a lo
largo de la historia del sigio XX
Figura 3: Esquema illustrativo del nivel de solapamiento entre lotografias
para para con ellas obtener una correcta vision estereoscopica, este debe
Figura 4: Esquema del uso de SEM La provección del punto Pi
nerteneciente al espacio 3D sobre la imagen de la cámara en el tiempo y
espacio k resulta en el punto 2D llamado Pi k Modificado de Kurz
Thormählen v Siedel (2011)
Figura 5: Esquema ilustrativo de provección en perspectiva
Figura 6: Esquema ilustrativo en caso de geometría epipolar
Figura 7: Esquema ilustrativo en caso de geometría trifocal
Figura 8: Esquema ilustrativo en caso de proyección ortográfica
Figura 9: Arreglo para diferentes métodos de georreferenciación. Los
cuadrados representan la posición de la cámara y las estrellas la de los
puntos de control. Si estas figuras o líneas se encuentran en rojo indican
que la medicación es local. Obtenido de Sturzenegger y Stead (2009b). 21
Figura 10: Ilustración de la oclusión y el sesgo por orientación vertical.
Cuando la línea de visión vertical de la cámara es paralela a una
discontinuidad, existe la posibilidad de sesgo por orientación. Si la línea de
vision vertical de la camara se dirige hacia arriba en un angulo mas
pronunciado que una discontinuidad, la oclusion en una zona de sombra.
Modificado de Sturzenegger y Stead (2009b)
Figura 11: Distancia propuesta entre par de lotogranas para su uso en
una distancia D debe existir una relación de distancia lateral (baseline)
entre el par de estaciones de toma de fotografías de entre 1/8 a 1/5 de la
distancia D dada (Gaich v Pötsch 2012) 24
Figura 12: Entografía de cámara Canon PowerShot D30 utilizada en este
trabaio, su distancia focal varía entre 5-25mm
Figura 13: Imagen la cual muestra la distribución de la toma de fotografías
del talud estudiado en el caso de deformación frágil sobre el modelo

Figura 14: Esquema ilustrativo del proceso de reconstrucción tridimensional Figura 15: Esquema del sistema de georreferenciación propuesto en este trabajo. La X marca el punto medido con GPS, mientras que los puntos muestran los puntos de control tomados mediante la medición manual de Figura 17: Imagen la cual muestra la distribución de la toma de fotografías Figura 18: Imagen cual muestra la exageración en 100 veces de las Figura 19: Imagen la cual muestra la distribución de las estructuras mapeadas sobre el modelo digital texturizado, en rojo se observan las fallas inversas y normales mapeadas indistintamente, mientras que en azul **Figura 20:** Visualización en frontal de los planos de fallas y planos de niveles quías construidos a partir del modelo de muestra de mano. Sobre Figura 21: Mapa de la zona de estudio correspondiente a Cerro Blanco, comuna de Recoleta, Región Metropolitana, Chile. En azul se muestran las calles principales circundantes al área y en naranjo la posición exacta del Figura 22: Columna estratigráfica tipo de la Formación Abanico. Modificado de Sellés, 1999. 41 Figura 23: Mapa geológico del cordón del Cerro San Cristóbal. Obtenido de Figura 24: La Figura 24a muestra parte del talud modelado correspondiente a Cerro Blanco, mientras que en la Figura 24b se muestra un zoom de esta señalándose los puntos en donde se realizó mediciones de rumbo y manteo Figura 25: La fotografía muestra parte del talud modelado, en ella se señala la posición de los puntos de control para georreferenciación utilizados en el Figura 26: Modelo tridimensional del talud de Cerro Blanco, resultado de la reconstrucción por medio de fotogrametría digital. En rojo se observan los puntos de obtención de datos de rumbo y manteo mediante reconstrucción Figura 27: Distribución de la proyección de los polos correspondientes a los 94 planos de fracturas medidos de manera tradicional sobre talud de Cerro Figura 28: Distribución de densidad de los polos correspondientes a los 94 planos de fracturas medidos de manera tradicional sobre talud de Cerro

Figura 30: Distribución de densidad de los polos correspondientes a los 133 planos de fracturas medidos mediante reconstrucción digital del talud de Cerro Blanco. 49

Figura 31: La Figura 31a muestra la agrupación en 4 sets estructurales a partir de los 94 planos de fracturas medidos de manera tradicional sobre talud de Cerro Blanco, mientras que en la Figura 31b se observan estos mismos polos y sets a los que se le aplica la corrección de Terzaghi...... 50

Figura 51: Modelos tridimensionales de labor minera. Figura 51a modelo digital confeccionado a partir de fotografías tomadas entre las 11:31 y las 12:20. Figura 51b modelo digital confeccionado a partir de fotografías tomadas entre las 13:00 y las 13:40. Figura 51c error en reconstrucción digital al intentar utilizar ambas fuentes de datos simultáneamente. 71

Figura 52: Visualización en perspectiva de los planos de fallas (en azul) y planos de fractura (en rojo) generados a partir del mapeo de discontinuidades sobre el modelo de deformación compleja zona 2....... 72

Figura 54: Primer paso en la reconstrucción digital de la muestra de mano.74

Figura 56: Paso desde Etapa 2 a Etapa 3. Movimiento de falla inversa 5 en -
0,02[m], escala exagerada 100 veces
Figura 57: Paso desde Etapa 3 a Etapa 4. Movimiento de falla inversa 4 en - 0,07[m] para Nivel Guía 4 y en - 0,15[m] para Nivel Guía 3, escala
exagerada 100 veces
Figura 58: Paso desde Etapa 4 a Etapa 5. Movimiento de falla inversa 8 en -
0.02[m] escala exagerada 100 veces 76
Figura 59 : Etana final de reconstrucción digital en muestra de mano 77
Figura 60: En verde fotogrametría digital 860/1920 y en rojo tradicional
5/°/500°
Figura 61: Se observan los planos que conforman las fallas que forman el
sistema duplex. En azul se observan las fallas de orientación sur este,
mientras que en verde se observan las fallas de orientación noreste 82
Figura 62: Gráfico de MB totales ingresados para la generación de modelos
digitales versus tiempo total de reconstrucción
Figura 63: Gráfico de MB totales ingresados para la generación de modelos
digitales versus peso del modelo digital reconstruido
Figura 64: Esquema de captura de fotografías en caso de testigos de roca
para su posterior reconstrucción digital
Figura 65: Fotografías tomadas en 1961 por International Aereo Service
Copr. Mediante una cámara Zeiss, distancia focal 152:8mm en la zona del
Salar de Atacama, Chile
Figura 66: Figura 66a: Modelo de elevación digital obtenido a partir de
imágenes tomadas en 1961, centrado a los 552299.51 m E v 7425711.31
m S Figura 66b. Imagen satelital actual de la zona obtenida mediante
Google Farth
Figura 67: Figura 67a, Figura 67b y Figura 67c corresponden a fotografías
tomadas por medio de vuelos Hycon durante el año 1956 en el flanco oeste
del Volcán Tunungatito, Figura 67d: Modelo digital de la zona del Volcán
Tupungatita, a partir de fetegrafías temadas en 1056
Figure CO . Figure CO. Viete on nerenetive of models and loss files and a
Figura 68: Figura 68a: Vista en perspectiva al modelo analogo presentado
por Bustamante (2016), sobre el cual se na realizado el mapeo de
estructuras. Figura 68b: Vista en perspectiva del deposito Syn-"tectonico"
del modelo análogo estudiado, se calcula de manera preliminar un volumen
de 294,895cm ³
Figura 69: Análisis de fortalezas, oportunidades, debilidades y amenazas
(F.O.D.A.) del uso de la técnica de fotogrametría digital en el contexto de
este trabajo y en las ideas planteadas en el mismo
Figura 70: Anexo A. Figura 69a: Fotografía de muestra de mano Esquisto,
tomada en el Laboratorio de Tectónica y Paleomagnetismo de la
Universidad de Chile, Figura 69b; Dos vistas en perspectiva de modelo
digital de muestra de mano esquisto. Anexo $+ 1$
Figura 71: Anexo B. Fotografía de muestra fósil, tomada en el Laboratorio
de Tectónica y Paleomagnetismo de la Universidad de Chile $\Lambda_{Devo} \pm 2$
ac reconned y raiconnagnedismo ac la oniversidad de enire Allexo 1 z