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Abstract This paper provides operative point-based formulas (only involving the
nominal data, andnot data in a neighborhood) for computingor estimating the calmness
modulus of the optimal set (argmin) mapping in linear optimization under uniqueness
of nominal optimal solutions. Our analysis is developed in two different paramet-
ric settings. First, in the framework of canonical perturbations (i.e., perturbations of
the objective function and the right-hand-side of the constraints), the paper provides
a computationally tractable formula for the calmness modulus, which goes beyond
some preliminary results of the literature. Second, in the framework of full pertur-
bations (perturbations of all coefficients), after characterizing the calmness property
for the optimal set mapping, the paper provides an operative upper bound for the
corresponding calmness modulus, as well as some illustrative examples. We provide
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two applications related to algorithms traced out from the literature: the first one to a
descent method in LP, and the second to a regularization method for linear programs
with complementarity constraints.

Keywords Variational analysis · Calmness · Linear programming · Calmness
modulus · Descent methods · Complementarity

Mathematics Subject Classification 90C31 · 49J53 · 49K40 · 90C05 · 65Y20 ·
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1 Introduction

The present paper is focussed on quantifying the stability of (finite) linear optimization
problems, through the analysis of the calmness property of the optimal set mapping
(also called argmin mapping) and the computation or estimation of the corresponding
calmness modulus. Our linear optimization problem is expressed in the form

P (c, a, b) : minimize c′x
subject to a′

t x ≤ bt , t ∈ T := {1, 2, . . . ,m}, (1)

where x ∈ R
n is the vector of decision variables, and c ∈ R

n, a ≡ (at )t∈T ∈ (Rn)T ,
and b ≡ (bt )t∈T ∈ R

T are the problem’s data. All elements in R
n are regarded as

column-vectors and y′ denotes the transpose of y ∈ R
n .

We consider two parameterized families of linear optimization problems: the first
one,

{
P (c, a, b) : (c, b) ∈ R

n × R
T
}
, corresponds to the framework of canonical

perturbations; i.e., perturbations fall on the objective function coefficient vector,
c, together with the right-hand-side of the constraints, b, while the left hand side,
a ≡ (at )t∈T , is considered to be fixed at its nominal value. The second fam-
ily, which corresponds to the context of perturbations of all data—also called full
perturbations—is of the form {P (c, a, b) : (c, a, b) ∈ R

n × (Rn)T × R
T }. Asso-

ciated with this second family, we consider the corresponding optimal set mapping,
S : R

n × (Rn)T × R
T ⇒ R

n , defined by

S (c, a, b) := {
x ∈ R

n | x is an optimal solution of P (c, a, b)
}
.

Here, the parameter space R
n × (Rn)T × R

T is endowed with the norm

‖(c, a, b)‖ := max {‖c‖∗ , ‖(a, b)‖∞} , (2)

where R
n is equipped with an arbitrary norm, ‖·‖, with dual norm given by ‖u‖∗ =

max‖x‖≤1
∣
∣u′x

∣
∣, and ‖(a, b)‖∞ := maxt∈T

∥
∥
∥
(at
bt

)∥∥
∥, where

∥
∥
∥
∥

(
at
bt

)∥∥
∥
∥ = max {‖at‖∗ , |bt |} .
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Calmness modulus of fully perturbed linear programs 269

When confined to the particular case of canonical perturbations, the associated
optimal set mapping Sa : R

n × R
T ⇒ R

n is given by

Sa (c, b) = S (c, a, b) , for all (c, b) ∈ R
n × R

T ,

with ‖(c, b)‖ := max {‖c‖∗ ,maxt∈T |bt |}.
This paper provides, in Theorem3.1, an operative formula for the calmnessmodulus

of Sa under uniqueness of the nominal optimal solution by combining some results
traced out from [5] and [7]. However, the main difficulties tackled in the paper are
related to the context of perturbations of all data. At this moment we point out that
mapping Sa is always calm at any point of its graph, as a consequence of a classical
result byRobinson [25], since theKarush–Kunh–Tucker conditions allowus to express
the graph of Sa as a finite union of polyhedral sets. This is no longer the case for S
in the framework of perturbations of all data. In this last framework, and under the
assumption of the uniqueness of nominal optimal solution, namely S

(
c, a, b

) = {x},
which will stand throughout the paper, a characterization of the calmness of S at((
c, a, b

)
, x
)
can be traced out from two results by Robinson [24]. Theorem 4.1

points out this characterization and adds a new equivalent condition of geometrical
type, which is stated in terms of the nominal data. Moreover, the paper establishes
in Theorem 4.2, an operative upper bound for the corresponding calmness modulus,
again exclusively in terms of the nominal data.

In the next paragraphs we recall some definitions related to a generic mapping
M : Y ⇒ X between metric spaces (with distances denoted indistinctly by d). M is
said to be calm at (y, x) ∈ gphM (the graph of M) if there exist a constant κ ≥ 0
and neighborhoods U of x and V of y such that

d (x,M (y)) ≤ κd (y, y) (3)

whenever x ∈ M (y) ∩ U and y ∈ V ; where, as usual, d (x,�) is defined as
inf {d (x, z) | z ∈ �} for � ⊂ R

n , and d (x,∅) := + ∞.
It is well-known that the calmness of M at (y, x) is equivalent to the metric sub-

regularity ofM−1 at (x, y) (see, for instance, [9, Theorem 3H.3 and Exercise 3H.4]).
Recall that M−1 (given by y ∈ M−1 (x) ⇔ x ∈ M (y)) is metrically subregular at
(x, y) if there exist a constant κ ≥ 0 and a (possibly smaller) neighborhood U of x
such that

d (x,M (y)) ≤ κd
(
y,M−1 (x)

)
, for all x ∈ U. (4)

The infimum of those κ ≥ 0 for which (3)—or (4)—holds (for some associated
neighborhoods) is called the calmness modulus of M at (y, x) and it is denoted by
clmM (y, x). The case whenM is not calm at (y, x) corresponds to clmM (y, x) =
+∞.

For comparative purposes, recall that M satisfies the Aubin property (also called
pseudo-Lipschitz or Lipschitz-like) at (y, x) when (3)—or (4)—is valid when replac-
ing y with an arbitrary ỹ in some neighborhood V of y. The corresponding infimum
of all κ’s is then called Lipschitz modulus and denoted by lipM (y, x). Obviously,
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270 M. J. Cánovas et al.

clmM (y, x) ≤ lipM (y, x) . (5)

Calmness and Aubin properties play an important role in relation to issues from
optimization (theory and algorithms). Comprehensive studies of these properties can
be traced out from the monographs [9,17,22,27]. One can find in the literature deep
contributions to the analysis of calmness for constraint systems in the context of
canonical perturbations (see, e.g., [10,13,18,19]). The reader is addressed to [1,20]
for the analysis of this property in relation to local error bounds. Subdifferential
approaches to calmness/local error bounds can be found in [1,12,14,20].

The structure of the paper is as follows: Sect. 2 provides the necessary notation and
preliminary results. In Sect. 3, by assembling [5, Proposition 4.1] and [7, Corollary 8],
we obtain for the first time a formula for the calmness modulus of Sa exclusively in
terms of the nominal data c, a, b, and x (see Theorem 3.1). This formula has a clear
geometrical flavor, as Examples 3.1 and 3.2 show. Moreover, a comparative analysis
between calmness and Lipschitz moduli is carried out. Section 4 is concerned with
the framework of full perturbations, and tackles, in a first stage, the characterization
of the calmness property of S at a given point of its graph, again under the assumption
of uniqueness of nominal optimal solution by using some ideas of Robinson [24]. In a
second stage, Sect. 4 provides an upper bound on the calmness modulus of S, as well
as some examples showing that this upper bound may be attained or not. Example
4.1 turns out to be particularly technical. In order to preserve the rhythm of the paper,
a sketch of these technicalities is given as an “Appendix” in Sect. 6. Nevertheless,
these details have their own interest as far as they show some perturbation strategies
underlying the referred upper bound, and may be used in future research to investigate
in which cases the upper bound becomes the exact modulus. Finally, Sect. 5 provides
two applications related to certain algorithms traced out from [18] (Sect. 5.1) and [15]
(Sect. 5.2). The first one concerns a descent method in linear programming, and the
second refers to a regularization method for linear programs with complementarity
constraints.

2 Preliminaries

In this section we introduce some additional notation and preliminary results which
are needed later on. Given X ⊂ R

k, k ∈ N, we denote by convX and coneX the
convex hull and the conical convex hull of X , respectively. It is assumed that coneX
always contains the zero-vector 0k , in particular cone(∅) = {0k}. If X is a subset of any
topological space, intX, clX and bdX stand, respectively, for the interior, the closure,
and the boundary of X .

We begin this section with a proposition which comes straightforwardly from [8,
Theorem 5]. This result allows us to develop Sect. 4 under perturbations of all parame-
ters, using as a starting point some results given in Sect. 3 in the framework of canonical
perturbations. From now on, we denote by Fa and F the feasible set mappings corre-
sponding, respectively, to the settings of canonical perturbations and perturbations of
all data. Formally,

Fa (b) :=F (a, b) , b ∈ R
T ,
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Calmness modulus of fully perturbed linear programs 271

where F : (Rn)T × R
T ⇒ R

n is given by

F (a, b) := {
x ∈ R

n | a′
t x ≤ bt , t ∈ T

}
, (a, b) ∈ (Rn)T × R

T .

Proposition 2.1 (see [8, Theorem 5]) Let (
(
a, b
)
, x) ∈ gphF . Then

clmF(
(
a, b
)
, x) = (‖x‖ + 1) clmFa(b, x).

Remark 2.1 As a consequence of the previous proposition, the involved calmness
moduli are both finite (i.e., both mappings are calm at the corresponding points of
their graphs) due to the finiteness of T , since the calmness modulus in the right-hand-
side is finite according to the above mentioned result by Robinson [25] (because Fa

has a polyhedral graph). Observe that gphF may not be written as a finite union of
polyhedral sets (just consider the case of a single inequality inR), so that the calmness
ofF at (

(
a, b
)
, x) does not follow from the aforementioned result. In summary, at this

moment we know that mappings Fa,F , and Sa are calm at any point of their grahps.
We will see in Sect. 4 that this is not the case for S.

Throughout the paper, we appeal to the set of active indices at x ∈ F (a, b), denoted
by Ta,b (x) and defined as

Ta,b (x) := {
t ∈ T | a′

t x = bt
}
.

The next result follows directly from [5, Proposition 4.1] and constitutes a key tool
in the present paper since it provides a point-based expression (i.e., just involving the
nominal elements, and not elements in a neighborhood) for clmFa(b, x) assuming
F
(
a, b
) = {x}. Such an assumption may seem too restrictive, but it is not so when

applied to mappingsLD defined later. The reader can easily check that the assumption

F
(
a, b
) = {x} entails 0n ∈ int conv

{
at , t ∈ Ta,b (x)

}
, since otherwise the separation

theorem would provide a nonzero feasible direction of F
(
a, b
)
at x .

Proposition 2.2 [5, Proposition 4.1] Let
(
a, b
) ∈ (Rn)T ×R

T and assumeF
(
a, b
) =

{x}. Then
clmFa(b, x) = 1

d∗
(
0n, bd conv

{
at , t ∈ Ta,b (x)

}) ,

where d∗ stands for the distance in R
n associated with ‖·‖∗.

Remark 2.2 More in detail, the previous expression for clmFa(b, x) comes from
[20, Theorem 1] and [5, Theorem 3.1] (which are the basis for the referred [5,
Proposition 4.1]). The first of these results provides a subdifferential approach to
the computation of local error bounds (closely related to calmness moduli) and the
second establishes a key result for deriving a point-based formula; specifically, [5,
Theorem 3.1] states, for any convex finite function f : R

n −→ R at any given
x ∈ R

n ,
bd∂ f (x) = lim sup

x→x, x �=x
∂ f (x) .
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272 M. J. Cánovas et al.

For the sake of simplicity, from now on we abbreviate our nominal parameter as
p; i.e.,

p := (
c, a, b

) ∈ R
n × (Rn)T × R

T .

The next proposition comes directly from [7, Corollary 8] and constitutes our start-
ing point in Sect. 3. In it, associated with a given (p, x) ∈ gphS, we appeal to the
following family of index subsets associated with the Karush–Kuhn–Tucker (KKT)
conditions (hereafter referred to as KKT index sets)

Kp (x) =
{
D ⊂ Ta,b (x)

∣
∣
∣ |D| ≤ n and − c ∈ cone {at , t ∈ D}

}
,

where |D| stands for the cardinality of D and condition |D| ≤ n comes from
Carathéodory’s Theorem. For any D ∈ Kp (x) we consider the mapping LD :
(Rn)T × R

T × (Rn)D × R
D ⇒ R

n given by

LD (a, b, u, d) := {
x ∈ R

n | a′
t x ≤ bt , t ∈ T ; u′

t x ≤ dt , t ∈ D
}
, (6)

and, using the notation aD = (at )t∈D , bD = (bt
)
t∈D , we also define

LD,a,−aD (b, d) :=LD (a, b,−aD, d) for (b, d) ∈ R
T × R

D. (7)

Observe that all preliminary results for feasible set mappings F and Fa may be
specified for LD and LD,a,−aD , respectively, which are nothing else but feasible set
mappings associated with enlarged systems.

Proposition 2.3 [7, Corollary 8] Let p = (c, a, b
) ∈ R

n × (Rn)T × R
T and assume

S (p) = {x}. Then

clmSa(
(
c, b
)
, x) = max

D∈Kp(x)
clmLD,a,−aD

((
b,−bD

)
, x
)
.

Remark 2.3 Observe that LD
(
a, b,−aD,−bD

)
is the set of KKT points of problem

P
(
c, a, b

)
associated with D as the KKT index set. Under our current assumption

S (p) = {x}, we have

LD
(
a, b,−aD,−bD

) = {x} for all D ∈ Kp (x) .

3 Calmness modulus versus Lipschitz modulus under canonical
perturbations

The following theorem provides the announced expression for clmSa , only involving
the nominal point x and the nominal problem’s data

(
c, a, b

)
.
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Calmness modulus of fully perturbed linear programs 273

Theorem 3.1 Let p = (c, a, b
) ∈ R

n × (Rn)T × R
T and assume S (p) = {x}. Then

clmSa
((
c, b
)
, x
) = max

D∈Kp(x)

1

d∗
(
0n, bd conv

{
at , t ∈ Ta,b (x) ;−at , t ∈ D

}) .

Proof The result follows by combining Propositions 2.2 and 2.3, and Remark 2.3. ��
Remark 3.1 For problem (1), given any (p, x) ∈ gphS without requiring S (p) =
{x}, and denoting Sc,a (b) :=Sa (c, b) (which equals S (c, a, b) ) for b ∈ R

T , [7,
Theorem 7] establishes

clmSa
((
c, b
)
, x
) = clmSc,a

(
b, x
) ;

i.e., perturbations of c are negligible when computing the calmness modulus of Sa at((
c, b
)
, x
)
, and, therefore, only perturbations of b are needed.

For comparative purposes, in the following proposition we recall the expression of
lipSa(

(
c, b
)
, x), provided that it is finite, where we use the notation

Tp (x) = {D ∈ Kp (x) ||D| = n and AD is nonsingular
}
,

with AD denoting the matrix whose rows are a′
t , t ∈ D (given in some prefixed order).

Remark 3.2 The assumption S (p) = {x} entails −c ∈ int cone{at , t ∈ Ta,b (x)},
which implies Tp (x) �= ∅. The same assumption also implies that 0n
belongs to int cone{at , t ∈ Ta,b (x) ; c}, which is contained in int cone
{at , t ∈ Ta,b (x) ; − at , t ∈ D} for any D ∈ Kp (x), and, consequently,

0n ∈ int conv
{
at , t ∈ Ta,b (x) ;−at , t ∈ D

}
for all D ∈ Kp (x) .

Accordingly, the denominator appearing in Theorem 3.1 is always positive.

We also appeal to the following concepts:

• The Slater constraint qualification (SCQ) holds at parameter
(
a, b
) ∈ (Rn)T ×R

T

if there exists x̂ ∈ R
n (called Slater point) such that a′

t x̂ < bt for all t ∈ T .
• The Nürnberger condition holds at (

(
c, b
)
, x) ∈ gphSa if the SCQ verifies at(

a, b
)
and

Tp (x) = Kp (x) .

Proposition 3.1 Let
((
c, b
)
, x
) ∈ gphSa. Then Sa satisfies the Aubin property at

(
(
c, b
)
, x), i.e., lipSa(

(
c, b
)
, x) < +∞, if and only if the Nürnberger condition

holds at (
(
c, b
)
, x). In this case,

lipSa(
(
c, b
)
, x) = max

D∈Tp(x)

∥
∥
∥A−1

D

∥
∥
∥ . (8)
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274 M. J. Cánovas et al.

Remark 3.3 Theprevious characterization of theAubin property forSa can be found in
[6, Theorem 16], although the name ‘Nürnberger condition’ appeared for the first time
in [4] (extended to the convex case). It can be easily seen that the Nürnberger condition
at (
(
c, b
)
, x) entails S(p) = {x}. Expression (8) comes from [3, Corollary 2]. For

D ∈ Tp (x), we can identify matrix AD with the ‘endomorphism’ R
n � x �→ ADx ∈

R
D , where R

n is equipped with an arbitrary norm ‖·‖ and R
D is endowed with the

supremum norm ‖·‖∞. For our choice of norms we have

∥
∥
∥A−1

D

∥
∥
∥ := max‖y‖∞≤1

∥
∥
∥A−1

D y
∥
∥
∥ = 1

d∗
(
0n, bd conv

{±at , t ∈ D
}) , (9)

where the last equality is a straightforward consequence of [2, Corollary 3.2] together

with the fact that
∥
∥
∥A−1

D

∥
∥
∥ coincides with the Lipschitz modulus of A−1

D at any point

of its graph. Moreover, with the only assumption that S(p) = {x}, [7, Theorem 13]
shows that

clmSa
((
c, b
)
, x
) ≤ max

D∈Tp(x)

∥
∥
∥A−1

D

∥
∥
∥ (10)

without requiring the Nürnberger condition; i.e., the right-hand-side of (10) is finite
and still constitutes an upper bound on the calmness modulus when the Lipschitz
modulus is infinite.

The next example comes from [7, Example 2] and shows that inequality (10) may
be strict even under the Nürnberger condition. In [7, Example 2], ad hoc arguments
were used to obtain clmSa

((
c, b
)
, x
)
. Now Theorem 3.1 provides a direct way to

compute that modulus, as the subsequent figure (Fig. 1) illustrates.

Example 3.1 Consider the linear optimization problem P
(
c, a, b

)
, in R

2 endowed
with the Euclidean norm,

minimize x1 + 1
3 x2

subject to −x1 ≤ 0, (t = 1)
−x1 − 1

2 x2 ≤ 0, (t = 2)
−x1 − x2 ≤ 0, (t = 3)
−x1 + x2 ≤ 0, (t = 4)

whose unique optimal solution is x = 02, and where

Kp (x) = Tp (x) = {{1, 2} , {1, 3} , {2, 4} , {3, 4}} .

According to Theorem 3.1, the reader can easily check that the corresponding maxi-
mum over D ∈ Kp (x) is attained at both D = {1, 2} and D = {1, 3}, and therefore
clmSa

((
c, b
)
, x
)
coincides, if for instance we choose D = {1, 2}, with

1

d∗
(
02, bd conv

{
±
(−1

0

)
,±
( −1

−1/2

)
,

(−1

−1

)
,

(−1

1

)}) = √
5.
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Calmness modulus of fully perturbed linear programs 275

Fig. 1 Illustration of Example
3.1

The previous figure illustrates this example. We can see that the distance in the
previous denominator is attained at (1/5,−2/5)′ and equals 1/

√
5. In the same figure

we can also check that the distance from the origin to the segments with discontinuous

trace is 1/
√
17, which coincides with

∥
∥
∥A−1

{1,2}
∥
∥
∥

−1
according to (9). Hence,

clmSa
((
c, b
)
, x
) = √

5 < lipSa
((
c, b
)
, x
) = √

17.

The following example can be traced out from [6, Example 6]. In this example
we can see that lipSa

((
c, b
)
, x
) = +∞. Now we are able to compute the calmness

modulus.

Example 3.2 Consider P
(
c, a, b

)
, in R

2 endowed with the Euclidean norm,

minimize x1
subject to −x1 + x2 ≤ 0, (t = 1)

−x1 − x2 ≤ 0, (t = 2)
−x1 ≤ 0, (t = 3)

whose unique optimal solution is x = 02, and where

Kp (x) = {{1, 2} , {1, 3} , {2, 3} , {3}} ,

whereas Tp (x) = Kp (x) \ {{3}}. In this case, the maximum considered in Theorem
3.1 is attained at any element of {{1, 3} , {2, 3} , {3}} , yielding clmSa

((
c, b
)
, x
) =√

5.Alsoobserve that in this casemaxD∈Tp(x)

∥
∥
∥A−1

D

∥
∥
∥=√

5, although lipSa
((
c, b
)
, x
)

= +∞ since the Nürnberger condition fails (see Proposition 3.1).
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276 M. J. Cánovas et al.

4 Calmness under perturbations of all coefficients

Aswe show in this section, devoted to characterize the calmness ofS under the unique-
ness of optimal solution and to provide an upper estimate of clmS (p, x), the case of
perturbations of all data is notably different from the one of canonical perturbations.

To start with, observe that the finiteness of T is no longer a sufficient condition for
the calmness of S. In fact, by combining two results traced out from the seminal paper
by Robinson [24], we derive condition (i i) in the next theorem as a characterization
of the calmness of S at (p, x), provided that S (p) = {x}.
Theorem 4.1 Let p = (

c, a, b
) ∈ R

n × (Rn)T × R
T and assume that S (p) = {x}.

Then the following statements are equivalent:

(i) S is calm at (p, x);
(ii) Either the SCQ holds at

(
a, b
)
or F

(
a, b
) = {x};

(iii) 0n /∈ bd conv
{
at , t ∈ Ta,b (x)

}
.

Proof (i) ⇒ (i i). Reasoning by contradiction, assume that the SCQ fails at
(
a, b
)

and that S (p) � F
(
a, b
)
. Let us consider some sequence {xr }r∈N ⊂ F

(
a, b
)\S (p)

converging to x . Applying [24, Theorem 2], for each r , we can construct a perturbed
problem associated to a parameter (c, ar , br ) such that

∥
∥(c, ar , br

)− (c, a, b
)∥∥ ≤ ∥∥xr − x

∥
∥2 , and xr ∈ S

(
c, ar , br

)

(observe that the objective function remains unchanged). Then,

clmS (p, x) ≥ lim
r→∞

‖xr − x‖
∥
∥(c, ar , br ) − (c, a, b

)∥∥

≥ lim
r→∞

‖xr − x‖
‖xr − x‖2 = +∞.

(i i) ⇒ (i). The case when the SCQ holds at
(
a, b
)
follows from [24, Theorem 1],

taking into account the fact that, under the current uniqueness assumption, calmness
and Robinson’s upper Lipschitz property coincide.

The calmness of S at (p, x) when F
(
a, b
) = {x} follows from the calmness of

F at
((
a, b
)
, x
)
together with the obvious fact that S (c, a, b) ⊂ F (a, b) for every

(c, a, b) ∈ R
n × (Rn)T × R

T .
(i i) ⇔ (i i i) comes from the facts that: the SCQ holds at

(
a, b
)
if and only if

0n /∈ conv
{
at , t ∈ Ta,b (x)

}
(see, e.g., [11, Theorem 6.9(v)]), and F

(
a, b
) = {x} if

and only if 0n ∈ int conv
{
at , t ∈ Ta,b (x)

}
(see the paragraph preceding Proposition

2.2 for the direct implication; the converse is evident). ��
Remark 4.1 The proof of (i) ⇒ (i i) appeals to [24, Theorem 2]. The reader is
addressed to that paper for a precise description of (ar , br ). At this moment, we
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comment that such a construction only requires a single constraint to be perturbed,
while the remaining ones keep unaltered.

The following Lemma isolates a key step for establishing an upper bound on the
calmness modulus of S under the SCQ.

Lemma 4.1 Let (p, x) ∈ gphS, with p = (c, a, b
)
, and assume that the SCQ holds at(

a, b
)
. Consider any sequence {(pr , xr )} ⊂ gphS, with pr = (cr , ar , br ), converging

to (p, x). For each r, let Dr ⊂ Tar ,br (xr ) be such that |Dr | ≤ n and

− cr ∈ cone
{
art , t ∈ Dr} . (11)

Then, there exists a subsequence {(prk , xrk )} of {(pr , xr )} such that the corresponding
{Drk } is constant and, denoting Drk = D̂ for all k, we have

D̂ ∈ Kp (x) .

Proof Consider sequences {(pr , xr )} ⊂ gphS and {Dr } as in the statement of the
lemma. The finiteness of T allows us to consider a constant subsequence {Drk }. Write
Drk = D̂ for all k. Our assumption D̂ ⊂ Tark ,brk (xrk ) clearly implies D̂ ⊂ Ta,b (x)
by letting k → ∞. From (11), we can write, for each k,

− crk =
∑

t∈D̂
λ
rk
t a

rk
t , (12)

for some λ
rk
t ≥ 0, t ∈ D̂. Note that the sequence {γk}, where γk := ∑

t∈D̂ λ
rk
t for

all k, is bounded; since otherwise, dividing both members of (12) by γk (assuming
γk → ∞ without loss of generality) and letting k → ∞, we would obtain

0n ∈ conv
{
at , t ∈ Ta,b (x)

}
,

which represents a contradiction with the SCQ (see, e.g., [11, Theorem 6.9(v)]).
The boundedness of {γk} yields the existence of some subsequence of k’s (denoted

in the same way for simplicity) such that, for each t ∈ D̂, the sequence
{
λ
rk
t
}
k∈N

converges to some λt ≥ 0.Then, from (12) we conclude

−c =
∑

t∈D̂
λt at ∈ cone

{
at , t ∈ D̂

}
.

This implies D̂ ∈ Kp (x). ��
Now we are able to provide an upper bound on the calmness modulus of S under

the uniqueness of nominal optimal solution. We point out the fact that the right-hand-
side of both inequalities in (i) and (i i) below is always finite when S (p) = {x} (see
Remark 3.2 for (i)), although obviously these inequalities are not true when S is not
calm at (p, x).
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Theorem 4.2 Let p = (
c, a, b

) ∈ R
n × (Rn)T × R

T . Assume that S (p) = {x} and
that S is calm at (p, x). The following assertions are true:

(i) If the SCQ holds at
(
a, b
)
, then

clmS (p, x) ≤ max
D∈Kp(x)

‖x‖ + 1

d∗
(
0n, bd conv{at , t ∈ Ta,b (x) ;−at , t ∈ D}

) . (13)

(ii) If F
(
a, b
) = {x}, then

clmS (p, x) ≤ clmF
((
a, b
)
, x
) = ‖x‖ + 1

d∗
(
0n, bd conv{at , t ∈ Ta,b (x)}

) .

Proof (i) First note that the right-hand-side of (13) may be written as

max
D∈Kp(x)

clmLD
((
a, b,−aD,−bD

)
, x
)

as an application of Propositions 2.1 and 2.2. Recall from its definition (6) that LD is
nothing else but the feasible set mapping associated with a certain enlarged system,
whose parameter size is measured by

‖(a, b, u, d)‖ := max

{
max
t∈T

∥
∥
∥
∥

(
at
bt

)∥∥
∥
∥ ,max

t∈D

∥
∥
∥
∥

(
ut
dt

)∥∥
∥
∥

}
.

Set

clmS (p, x) = lim
r→∞

‖xr − x‖
‖pr − p‖ , (14)

for certain sequences of parameters pr = (cr , ar , br ) and points xr ∈ S (pr ) such that
(pr , xr ) → (p, x)with pr �= p. By theKKTconditions (togetherwithCarathéodory’s
Theorem) , for each r there exists Dr ⊂ Tar ,br (xr ) such that |Dr | ≤ n and

−cr ∈ cone
{
art , t ∈ Dr} .

Applying the previous lemma we may assume w.l.o.g. that Dr = D̂ ∈ Kp (x) for all
r .

Since D̂ ⊂ Tar ,br (xr ) and xr ∈ F (ar , br ), we have

xr ∈ LD̂

(
ar , br ,−ar

D̂
,−br

D̂

)
, r = 1, 2, . . .
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Then, since
∥
∥
∥
(
ar , br ,−ar

D̂
,−br

D̂

)
− (a, b,−aD̂,−bD̂

)∥∥
∥ = ∥

∥(ar , br ) − (a, b
)∥∥, we

have (applying the convention 0/0 := 0 if necessary)

clmLD̂

((
a, b,−aD̂,−bD̂

)
, x
) ≥ lim sup

r→∞
‖xr − x‖

∥
∥(ar , br ) − (a, b

)∥∥

≥ lim
r→∞

‖xr − x‖
‖pr − p‖ = clmS (p, x) .

Note that LD̂

(
a, b,−aD̂,−bD̂

) = {x}, which comes from the uniqueness of nominal
optimal solution, has been appealed to in the first inequality of the previous chain.

(i i) It follows from the facts that S (p) = F
(
a, b
) = {x} and S (p) ⊂ F (a, b) for

every p = (c, a, b) ∈ R
n × (Rn)T × R

T . More specifically, if clmS (p, x) is written
as (14), then

clmS (p, x) ≤ lim sup
r→∞

‖xr − x‖
∥
∥(ar , br ) − (a, b

)∥∥ ≤ clmF
((
a, b
)
, x
)
.

Finally, the expression of clmF
((
a, b
)
, x
)
comes directly from Propositions 2.1

and 2.2. ��
Remark 4.2 In case (i) of the previous theorem, and recalling Theorem 3.1, inequality
(13) may be read as

clmS (p, x) ≤ (‖x‖ + 1) clmSa
((
c, b
)
, x
)
, (15)

which in the case x = 0n holds as an equality; i.e.,

clmS (p, 0n) = clmSa
((
c, b
)
, 0n
)

= max
D∈Kp(0n)

1

d∗
(
0n, bd conv{at , t ∈ Ta,b (0n) ;−at , t ∈ D}

)

as a direct consequence of the fact that clmSa(
(
c, b
)
, x) ≤ clmS(p, x), which follows

immediately from the definitions.

The next example shows that the upper bound on clmS (p, x) provided in Theorem
4.2(i) may be strict when x �= 0n (see Remark 4.2). Accordingly, inequality (15) may
be strict for x �= 0n . The technical details are postponed to Sect. 6 in order to avoid
breaking the rhythm of the paper.

Example 4.1 Let us consider, in the context of parameterized linear optimization prob-
lems of the form (1), the nominal problem, in R

2 endowed with the Euclidean norm,

P
(
c, a, b

) : minimize 10x1
subject to −x1 + x2 ≤ −1 (t = 1),

−2x1 − 2x2 ≤ −6 (t = 2),
−x1 ≤ −2 (t = 3),

(16)
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whose unique optimal solution is x = (2, 1)′. Set once more p = (c, a, b
)
. The reader

can check the following:

D ∈ Kp (x) clmLD
((
a, b,−aD,−bD

)
, x
)

{3}, {1, 3} 5 + √
5 ≈ 7.2361

{1, 2} √
10
(
1 + √

5
)

/4 ≈ 2.5583

{2, 3} √
13
(
1 + √

5
)

/2 ≈ 5.8339

Hence, the maximum in the right-hand-side of (13) equals 5 + √
5 ≈ 7.2361 and is

attained at both D = {3} and D = {1, 3}. However, ad hoc arguments (see Sect. 6 for
details) show that

clmS (p, x) ≤ 1

10

√
820

√
5 + 3142 ≈ 7.0538, (17)

and therefore (13) holds as a strict inequality in this example.

The next example shows that the upper bound on clmS (p, x) provided in Theorem
4.2(i) may be attained for x �= 0n . It is basically the same nominal problem as (16),
with the only difference that the objective function coefficient vector c is shorter now.
Observe that in the case of canonical perturbations the size of c has no effect on
clmSa

((
c, b
)
, x
)
(see Theorem 3.1).

Example 4.2 Consider the nominal problem obtained from (16) by just replacing c
therein with (1, 0)′. Then (13) holds as an equality. Just consider the perturbed para-
meter pr = (cr , ar , br ) given by

(
ar1
br1

)
=
(a1 − 1

r
x

‖x‖
b1 + 1

r

)
,

(
ar2
br2

)
=
(
a2
b2

)
,

(
ar3
br3

)
=
(a3 + 1

r
x

‖x‖
b3 − 1

r

)
, cr = −ar3.

(18)

The reader can check that

xr := 1

1 − 4/
(
r
√
5
)

⎛

⎝
2 − 3/

(
r
√
5
)

+ 1/r

1 + 6/
(
r
√
5
)

+ 2/r

⎞

⎠ ∈ S
(
pr
)
, (19)

indeed xr ∈ L{3}
(
ar , br ,−ar{3},−br{3}

)
, and

lim
r→∞

‖xr − x‖
‖pr − p‖ = 5 + √

5.
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The upper bound given in Theorem 4.2(i i) may also not be attained, even with
x = 0n as the following example shows.

Example 4.3 Consider the nominal problem P
(
c, a, b

)
, in R

2 endowed with the
Euclidean norm, given by

minimize x1 + x2
subject to −x1 ≤ 0, (t = 1)

−x2 ≤ 0, (t = 2)
x1 + x2 ≤ 0, (t = 3)

so that F
(
a, b
) = S

(
c, a, b

) = {x} with x = 02. Then, appealing to [8, Theo-
rems 4 and 5], the reader can check that clmF

((
a, b
)
, x
) = √

5. On the other hand,
if S̃ denotes the optimal set mapping obtained by removing the last constraint (t = 3)
from the parameterized problem, and we denote as

(
aT̃ , bT̃

)
the restriction of para-

meter (a, b) to T̃ := {1, 2}, then the reader can easily check that

clmS
((
c, a, b

)
, x
) ≤ clmS̃

((
c, aT̃ , bT̃

)
, x
) = √

2,

where the first inequality comes from the fact that S
(
c, a, b

) = S̃
(
c, aT̃ , bT̃

) = {x}
and S (c, a, b) ⊂ S̃

(
c, aT̃ , bT̃

)
for (c, a, b) close enough to

(
c, a, b

)
, and the last

equality comes straightforwardly from Remark 4.2.

We finish this section with a last example, which shows that the upper bound given
in Theorem 4.2(i i) may be attained and be strictly larger than the right-hand-side of
(13).

Example 4.4 Consider P
(
c, a, b

)
, in R

2 endowed with the Euclidean norm, given
by

minimize x1
subject to −x1 ≤ 0, (t = 1)

−x2 ≤ 0, (t = 2)
x2 ≤ 0, (t = 3)
1
2 x1 ≤ 0. (t = 4)

whose unique feasible solution is x = 02. Then, the reader can check that {1} ∈ Kp (x)
and t = 1 must belong to any other D ∈ Kp (x), entailing that the right-hand-side
of (13) equals

√
2. On the other hand, let us consider, for each r = 1, 2, . . ., the

perturbed problem P (c, ar , br ) given by

minimize x1
subject to −x1 ≤ 0,

−x2 ≤ − 1
r ,− 1

r2
x1 + x2 ≤ − 2

r3
+ 1

r ,
1
2 x1 ≤ 1

r .
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Then we have S (c, ar , br ) = {xr }, with xr := ( 2
r ,

1
r

)′
, and

clmS (p, x) ≥ lim
r→∞

‖xr − x‖
∥
∥(c, ar , br ) − (c, a, b

)∥∥

= lim
r→∞

√
5/r

1/r
= √

5 = clmF
((
a, b
)
, x
)
,

where the last equality comes from [8, Theorems 4 and 5].

5 Applications: calmness modulus and algorithms

It is well known that Lipschitz type properties (as Aubin or calmness properties) for
generic multifunctionsM : Y ⇒ X between Banach spaces have a close relationship
with the behavior of methods for solving the generalized equation

y ∈ M−1 (x) . (20)

The use of generalized equations as a unified framework for several aspects of opti-
mization and variational analysis (such as stationarity or complementarity) goes back
to Robinson (see, e.g., [26]). The reader is addressed to [18] (and references therein)
for the analysis of this interrelation between the calmness and the Aubin propety of
M, assumed to be closed (i.e., its graph is closed), and the linear convergence of
descent methods and approximate projection methods.

This section is devoted to present two specific applications of the previous sections
to the computation of some constants related to the convergence of certain optimization
methods. So, the section is divided into two subsections. The first one is focussed
on a specific procedure described in [18, Sect. 3.1], applied here in the context of
linear programming (LP), and the second deals with a concrete regularization scheme
for mathematical programs with complementarity constraints (MPCCs) introduced in
[15], applied here in the context of linear MPCCs.

5.1 Calmness modulus and a descent method in LP

To begin with, for completeness purposes, we recall a specific version of the algorithm
ALG1 introduced in [18] for solving system (20), which is closely related to the
calmness ofM (see the same paper for its counterpart in relation to the Aubin property
ofM). For the sake of simplicity, in the following paragraphs we refer to this method
as ALG1 (calmness). As said in [18], under the view point of methods, we have some
y0 ∈ Y and y0 ∈ M−1 (·) is the ‘equation’ we want to solve with start at some(
y1, x1

) ∈ gphM.

ALG1 (calmness):

• Suppose that 0 < λ < 1 and initial point
(
y1, x1

) ∈ gphM are given.
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• Choose
(
yk+1, xk+1

) ∈ gphM such that

∥
∥
∥yk+1 − y0

∥
∥
∥−

∥
∥
∥yk − y0

∥
∥
∥ ≤ −λmax

{∥∥
∥xk+1 − xk

∥
∥
∥ ,

∥
∥
∥yk − y0

∥
∥
∥
}

. (21)

Recall from [18] that ALG1 (calmness) is said to be applicable if related(
yk+1, xk+1

)
exist in each step (for some fixed λ > 0).

Remark 5.1 The interpretation of ALG1 (calmness) as a descent method comes from
identifying yk with some element f

(
xk
) ∈ M−1

(
xk
)
and then writing (21) as

∥
∥ f
(
xk+1

)− y0
∥
∥− ∥∥ f (xk)− y0

∥
∥

∥
∥xk+1 − xk

∥
∥ ≤ −λ, if xk+1 �= xk,

together with ∥
∥
∥ f
(
xk+1

)
− y0

∥
∥
∥ ≤ (1 − λ)

∥
∥
∥ f
(
xk
)

− y0
∥
∥
∥ ,

which entails limk→∞
∥
∥ f
(
xk
)− y0

∥
∥ = 0. In this way, ALG1 (calmness) is a descent

method for the function x �→ ∥
∥ f (x) − y0

∥
∥.

The following two results come from applying [18, Theorem 1] to our optimal set
mappings Sa and S; so, they are concerned with ALG1 (calmness) when applied for
solving the respective equations

(
c, b
) ∈ S−1

a (·) and
(
c, a, b

) ∈ S−1 (·) .

In both cases, the algorithm is devoted to find optimal solutions of our LP problem
(1) for given nominal data. Recall that Sa is always calm, while the characterization
of the calmness of S is given in Theorem 4.1.

The original contribution of these results consists of providing an explicit (con-
structive) expression for λ as a consequence of the knowledge about the calmness
modulus of these mappings.

Theorem 5.1 Consider ALG1 (calmness) dealing with Sa. Assume that Sa
(
c, b
) =

{x} and consider any 0 < λ < 1 such that

λ < min
D∈Kp(x)

d∗
(
0n, bd conv

{
at , t ∈ Ta,b (x) ;−at , t ∈ D

})
.

Then:

(i) ALG1 (calmness) is applicable for this λ and all initial points
((
c1, b1

)
, x1
)
near

((c, b), x) (in some neighborhood);
(ii) For given initial points

((
c1, b1

)
, x1
)
near ((c, b), x), the sequence

{((
ck, bk

)
, xk
)}

converges to ((c, b), x).
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Proof (i) comes from the proof of [18, Theorem 1], taking into account the fact
that 1/λ is a calmness constant for Sa , associated with some neighborhood of
((c, b), x), as far as (

λ
)−1

> clmSa((c, b), x),

where we have applied Theorem 3.1.
(ii) comes straightforwardly from [18, Theorem 1].

��
Theorem 5.2 Consider ALG1 (calmness) dealing with S. Assume that the SCQ holds
at (a, b) and S(c, a, b) = {x}. Consider any 0 < λ < 1 such that

λ < (‖x‖ + 1)−1 min
D∈Kp(x)

d∗
(
0n, bd conv

{
at , t ∈ Ta,b (x) ;−at , t ∈ D

})
.

Then:
(i) ALG1 (calmness) is applicable for this λ and all initial points

((
c1, a1, b1

)
, x1
)

near ((c, a, b), x) (in some neighborhood);
(i i) For given initial points

((
c1, a1, b1

)
, x1
)
near ((c, a, b), x), the sequence{((

ck, ak, bk
)
, xk
)}

converges to ((c, a, b), x).

Proof The proof is analogous to the previous one; it comes from [18, Theorem 1],
appealing now to Theorem 4.2. ��

5.2 On the convergence of a regularization method for linear MPCCs

Complementarity constraints naturally appear in numerous applications in economics
and engineering. Generically, solving a MPCC via classical technics of nonlinear pro-
gramming theory presents serious difficulties, as far as its feasible set has a very special
structure and violates most of standard constraint qualifications. See the monograph
[21] (and references therein) for details on theory and applications of MPCCs.

One prominent class of specialized algorithms for solving MPCCs are the regular-
ization (or relaxation) methods, which are devoted to relax the difficult constraints in
different ways. From the first regularization scheme, introduced by Scholtes [28] in
2001, one can find in the literature new procedures as well as different contributions
to the analysis of the convergence of these methods (see, e.g., [16,23]).

This subsection provides an application of previous results on the calmnessmodulus
of the optimal set mapping to the analysis of convergence of a concrete regulariza-
tion scheme introduced by Kadrani et al. [15]. This application is developed in the
framework of linear MPCCs given in the form

π : minimize c′x

subject to

(
a1t
)′
x − b1t ≤ 0, t = 1, . . . ,m;(

a2t
)′
x − b2t ≤ 0,

(
a3t
)′
x − b3t ≤ 0, t = 1, . . . , s;((

a2t
)′
x − b2t

) ((
a3t
)′
x − b3t

)
= 0, t = 1, . . . , s;
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where x ∈ R
n is the vector of decision variables, all the ait belong to R

n and all the bit
belong to R. We shall assume that problem π has a unique solution, denoted by x .

Applied to our problem π , the regularization of Kadrani et al. consists of replacing
the complementarity conditions (last two rows in the description of π ) with

{(
a2t
)′
x − b2t ≤ ε,

(
a3t
)′
x − b3t ≤ ε, t = 1, . . . , s;((

a2t
)′
x − b2t + ε

) ((
a3t
)′
x − b3t + ε

)
≤ 0, t = 1, . . . , s;

for someparameter ε > 0. In thisway, for εr ↓ 0,we consider a sequenceof (nonlinear)
optimization problems {πr }, where for each r ∈ N,

πr : minimize c′x

subject to

(
a1t
)′
x − b1t ≤ 0, t = 1, . . . ,m;(

a2t
)′
x − b2t ≤ εr ,

(
a3t
)′
x − b3t ≤ εr , t = 1, . . . , s;((

a2t
)′
x − b2t + εr

) ((
a3t
)′
x − b3t + εr

)
≤ 0, t = 1, . . . , s.

In order to apply our results on calmness modulus in linear programming to analyze
the converge of optimal solutions of {πr } to the solution of π , for each J ⊂ {1, . . . , s},
whose cardinality is denoted by |J |, we set

P := R
m × R

s × R
s × R

|J | × R
|J | × R

s−|J | × R
s−|J |

and consider the following associated multifunctions:

• The feasible set mapping F J : P ⇒R
n , given by

F J (p) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ∈ R
n

∣
∣
∣
∣
∣
∣
∣
∣
∣

(
a1t
)′
x ≤ p1t , t = 1, . . . ,m;(

a2t
)′
x ≤ p2t ,

(
a3t
)′
x ≤ p3t , t = 1, . . . , s;(

a2t
)′
x ≤ p4t , − (a3t

)′
x ≤ p5t , t ∈ J ;

− (a2t
)′
x ≤ p6t ,

(
a3t
)′
x ≤ p7t , t ∈ {1, . . . , s}\J.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

for p := (
p1, . . . , p7

) ∈ P . Note that in the cases J = ∅ and J = {1, . . . , s} para-
meter p is, respectively, of the form

(
p1, p2, p3, p6, p7

)
and

(
p1, p2, p3, p4, p5

)
.

• The optimal set mapping S J : P ⇒R
n , given by

S J (p) := argmin{c′x | x ∈ F J (p)}, p ∈ P.

(Observe that c remains fixed in our discussion.)

From now on, let us denote by F and Fr the feasible sets of π and πr , respectively,
and by S and Sr the corresponding sets of optimal solutions. Moreover, for the sake
of simplicity, we use the following notation:
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β J :=
(
b1, b2, b3, b2J ,−b3J ,−b2{1,...,s}\J , b3{1,...,s}\J

)′
,

β J
r := (b1, b2 + εr1{1,...,s}, b3 + εr1{1,...,s}, b2J − εr1J ,−b3J + εr1J ,
−b2{1,...,s}\J + εr1{1,...,s}\J , b3{1,...,s}\J − εr1{1,...,s}\J )′, r ∈ N,

where 1X stands for the constant function defined as 1 at every point of set X . Then,
a standard argument yields the following lemma.

Lemma 5.1 With the preceding notation one has, for each r ∈ N:

(i) F = ⋃

J⊂{1,...,s}
F J
(
β J
)
,

(ii) Fr = ⋃

J⊂{1,...,s}
F J
(
β J
r

)
, r ∈ N,

(iii)
⋂

J⊂{1,...,s}
S J
(
β J
) ⊂ S ⊂ ⋃

J⊂{1,...,s}
S J
(
β J
)
,

(iv)
⋂

J⊂{1,...,s}
S J
(
β J
r

) ⊂ Sr ⊂ ⋃

J⊂{1,...,s}
S J
(
β J
r

)
.

The following result relates the calmness modulus of mappings S J with the con-
vergence speed of the regularization method presented in this subsection.

Theorem 5.3 Assume that S = {x}, and let {xr } ⊂ R
n be a sequence converging to

x and such that xr ∈ Sr for all r . Then,

lim supr→∞
‖xr − x‖

εr
≤ max

J⊂{1,...,s} clmS J
(
β J , x

)
.

Proof According to statement (iv) in the previous lemma, for each r there exists

Jr ⊂ {1, . . . , s} such that xr ∈ S Jr
(
β
Jr
r

)
. Due to the finiteness of {1, . . . , s}, we

may assume (by taking a suitable subsequence if necessary) that {Jr } is constant, say
Jr = J for all r .

Let us see that {x} = S J
(
β J
)
. First, let us prove that x ∈ S J

(
β J
)
. By the

closedness of F J , it is clear that

x ∈ F J
(
β J
)

,

since xr ∈ F J
(
β J
r

)
and

{
β J
r

}
converges to β J . Reasoning by contradiction, if x /∈

S J
(
β J
)
, there would exist y ∈ F J

(
β J
)
such that

c′y < c′x .

In this way, by applying statement (i) in the previous lemma, y ∈ F and, then, we
attain the contradiction x /∈ S.

Now, we establish the opposite inclusion S J
(
β J
) ⊂ {x}. Reasoning again by

contradiction, let us assume the existence of z ∈ S J
(
β J
)
, with z �= x; in particular

c′z = c′x . (22)
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Fig. 2 Feasible sets of π and πr

Then, z ∈ F J
(
β J
) ⊂ F (again by Lemma 5.1(i)) and applying (22) we obtain

z ∈ S, which represents a contradiction with the current uniqueness assumption.
Therefore,

lim supr→∞
‖xr − x‖

εr
= lim supr→∞

d
(
xr ,S J

(
β J
))

∥
∥β J

r − β J
∥
∥∞

≤ clmS J
(
β J , x

)
.

��
The next example shows that inequality in Theorem 5.3 may be strict.

Example 5.1 Let us consider the linear MPCC problem in R
2,

π : minimize x1 + x2
subject to −x1 − x2 ≤ 0, (m = 1)

−x1 ≤ 0,−x2 ≤ 0, (s = 1)
x1 x2 = 0.

Consider any {εr } ↓ 0. Then, for each r ∈ N, we have

πr : minimize x1 + x2
subject to −x1 − x2 ≤ 0, (m = 1)

−x1 ≤ εr ,−x2 ≤ εr , (s = 1)
(−x1 + εr ) (−x2 + εr ) ≤ 0.

Figure 2 graphically illustrates the feasible sets of these problems.

In this case, there are two possible choices for J : either ∅ or {1}. So, by considering
multifunctionsS∅ andS{1}, in this example the upper bound on the rate of convergence
provided by the previous theorem is

max
{
clmS∅ (β∅, 02

)
, clmS{1} (β{1}, 02

)}
= √

5, (23)
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with β∅ ≡ β{1} ≡ 05, whereas for any choice of xr ∈ Sr , r ∈ N, one has

lim supr→∞
‖xr − x‖

εr
= √

2,

as we can easily see from Fig. 2.
Let us justify (23) a bit more in detail: We can view S{1} as the argmin mapping

associated with problem

π {1} : minimize x1 + x2
subject to −x1 − x2 ≤ p1,

−x1 ≤ p2,−x2 ≤ p3,
−x1 ≤ p4, x2 ≤ p5,
p = (p1, p2, p3, p4, p5) ∈ R

5,

(24)

whereas S∅ refers to the problem obtained by replacing the last two rows of (24) with

x1 ≤ p6, − x2 ≤ p7,

p =
(
p1, p2, p3, p6, p7

)
.

In both cases perturbations fall just on the right-hand-side of the constraint system,
and accordingly S∅ and S{1} fit in the format Sc,a dealt with in Remark 3.1. Now
Theorem 3.1 (together with Remark 3.1) entails

clmS∅ (β∅, 02
)

= clmS{1} (β{1}, 02
)

= √
5.
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6 Appendix: Geometrical perturbation ideas for improved bounds

The primary goal of this section is to provide a sketch of the technical details ensuring
that inequality (13) is strict in Example 4.1. The underlying idea is that the norm of c is
too large in this example to let the strategy followed in Example 4.2 work in Example
4.1 (see Remark 6.1 below). The question of investigating in general to what extent
the norm of c affects clmS

((
c, a, b

)
, x
)
is left to future research.

Now let us go back to problem (16) and the subsequent table in Example 4.1. Let
us write clmS (p, x) in the form (14) and assume w.l.o.g. that the associated sequence
{Dr }r∈N is constant, say Dr = D̂ ∈ Kp (x) for all r , according to the lines after (14)
in the proof of Theorem 4.2. Next we are going to prove (17).
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Looking at the end of the proof of Theorem 4.2(i), we realize that clmS (p, x) ≤
clmLD̂

((
a, b,−aD̂,−bD̂

)
, x
)
, so that our claim (17) holds automatically if D̂ equals

either {1, 2} or {2, 3} (see the table of Example 4.1).
Let us consider now the case D̂ = {3} and set εr := ‖pr − p‖ for all r , with pr =

(cr , ar , br ). Next, we relax the constraints determining L{3}
(
ar , br ,−ar{3},−br{3}

)

(which contains xr ) around xr in an appropriate way. Specifically, after some calcu-
lations one can check that xr is a solution of the following system:

(at − αr x/ ‖x‖)′ x ≤ bt + αr , for t = 1, 2, 3,

(1 − αr ) x1 − αr (1 + αr )

10
x2 ≤ 2 + αr ,

⎫
⎬

⎭
(25)

with αr := ‖x‖ + βεr

‖x‖ − βεr
εr , for a scalar β > 5 + √

5 arbitrarily chosen, and r being

assumed to be large enough to ensure ‖x‖ − βεr > 0 and ‖xr − x‖ < βεr . The last
inequality of (25) is inspired by the fact that εr ≥ ‖cr − c‖ ≥ d

(
c, Rar3

)
.

The reader can check via a routinary computation that, if x̃r stands for the furthest
solution of (25) with respect to x , then one has

∥
∥x̃r − x

∥
∥ ≈

√
820

√
5 + 3142

10
αr (26)

(i.e., limr→∞ ‖x̃r − x‖ /αr = (1/10)
√
820

√
5 + 3142 ≈ 7.0538), which together

with the obvious fact that ‖xr − x‖ ≤ ‖x̃r − x‖—since xr is a solution of (25)—
yields (17) by taking into account that αr ≈ εr as r → ∞.

The remaining case D̂ = {1, 3} is very similar to D̂ = {3}. Indeed (25) still holds
at x = xr in the subcase ar32 > 0, with ar32 standing for the second coordinate of ar3.
The subcase ar32 ≤ 0 is also very similar, but replacing the fourth inequality of (25)
with (1 − αr ) x1 ≤ 2+αr . In this subcase the corresponding counterpart of (26) reads
as

∥
∥x̃r − x

∥
∥ ≈

√
8
√
5 + 30 αr

with
√
8
√
5 + 30 ≈ 6.9202, leading again to (17).

Remark 6.1 Coming back to example 4.1, if we perturbed there the constraint system
as in (18), then the minimum perturbation of c = (10, 0)′ (yielding a perturbed cr )
making point xr in (19) belong to S (pr ) would satisfy

∥
∥cr − c

∥
∥ = d

(−c, cone{ar1, ar3}
) ≈ 2

√
5/r,

while
∥
∥(ar , br ) − (a, b

)∥∥ = 1/r and, accordingly we would obtain the smaller ratio

‖xr − x‖ / ‖pr − p‖ ≈
(
5 + √

5
)

/
(
2
√
5
)

≈ 1.618.
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