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1. Introduction and table of lower bounds

Remak had the idea that big regulators and big discriminants should go together 
[Re, pp. 245–246]. In support of this he referred to Landau’s inequality [Re, footnote 2]
Rk < C1

√
|Dk|(log |Dk|)n−1, and showed |Dk| < C2 exp(C3Rk). Here k is a number field 

of degree n, discriminant Dk, regulator Rk, and the Ci are explicit constants depending 
only on n.1 It followed that there was a minimal regulator for each signature (r1, r2), 
where r1 and r2 denote the number of real and complex places of k, respectively.

Few of these minimal regulators seem to have been explicitly calculated. The real 
quadratic case is an easy exercise. Pohst [Po2, p. 491] found the minimal regulator 
among all totally real cubic fields. Zimmert [Zi], relying on work of Pohst [Po2] and a 
new analytic method, showed that log

(
(1 +

√
5)/2

)
is the minimal regulator among all 

totally real fields. Friedman [Fr1, p. 599] found the minimal regulator for totally complex 
sextic fields and showed that it was the smallest regulator among all number fields.

To find minimal regulators for a given signature, one needs general lower bounds for 
Rk in terms of |Dk|, and lists of all fields up to a certain discriminant. Rigorous lists 
of initial number fields, ordered by discriminant, are known for all signatures in degree 
n ≤ 7. We find the smallest regulator for all but one of these signatures, as shown in 
Table 1 below. In signature (r1, r2) = (5, 1) we are only able to prove Rk > 2.11.2 This 
failure is shown in Table 1 with a “?!”.

In degree 8 initial discriminants are presently known only if r2 = 0 or r1 = 0, so we 
have no hope of finding the smallest regulator in the remaining three octic signatures.3
These are shown in Table 1 with a question mark. A rigorous list of small discriminants 

1 Remak made the necessary exception for CM fields, and proved that their unit index is 1 or 2 [Re, 
p. 250], [Wa, Th. 4.12], well before Hasse. A CM field k has a proper subfield with the same unit rank as k, 
and is therefore a totally complex quadratic extension of a totally real number field.
2 The sharp lower bound is likely to be Rk ≥ 2.8846..., corresponding to the regulator of the field of 

discriminant −2 306 599, the first for this signature.
3 For totally complex octic fields, the 15 fields of smallest discriminant are described in [Di3], but no 

equations or regulators are given. We give equations and regulators in §7, apparently for the first time in 
print.
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Table 1
Sharp regulator lower bound for degree n and unit-rank r.
n r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7
2 0.481211
3 0.281199 0.525454
4 0.337377 0.369184 0.825068
5 0.268355 0.628579 1.635694
6 0.205216 0.478924 1.262710 3.277562
7 0.380447 1.004348 ?! 14.446932
8 0.313539 ? ? ? 22.446870

is also known for totally real fields of degree 9 [Ta,Vo]. In this case we are only able to 
prove Rk > 37.2.4

Our lower bounds are actually more detailed than Table 1. A typical result reads as 
follows.

Theorem. (Octics)

• With three exceptions, all totally real octic fields have regulator greater than 28.43. 
The exceptions are the unique totally real octic fields of discriminant 282 300 416, 
309 593 125 and 324 000 000, with respective regulators 22.446870..., 23.696789... and 
24.388406... .

• With four exceptions, all totally complex octic fields have regulator greater than 0.345. 
The exceptions are the unique totally complex octic fields of discriminant 1 282 789, 
1 361 513, 1 385 533 and 1 424 293, with respective regulators 0.313539..., 0.326412..., 
0.331112... and 0.336709... .

We prove our bounds along the lines of [Fr1], using geometric and analytic techniques. 
For degrees n > 6, however, we need geometric refinements by Pohst for totally real fields 
[Po2,Po4], and we need to improve some analytic and geometric estimates used in [Fr1]
(see Lemmas 3 and 5 below). The signatures (5, 1) and (9, 0), where we fail to obtain a 
sharp lower bound for the regulator, are a sign that our techniques are still too coarse 
to handle high unit-ranks.

A recent application of lower bounds for regulators of totally real fields is given by 
Katok, Katok and Rodriguez Hetz [KKR], who conjecture that the Fried average entropy 
attached to certain dynamical systems in dimension n −1 is bounded below by 0.3301... , 
independently of n. They show that the Fried average entropy is bounded below by 
2n−1Rk/

(2n−2
n−1

)
, where k is some totally real number field of degree n and 

(2n−2
n−1

)
is 

a binomial coefficient. Using lower bounds for regulators they are able to prove their 
conjecture, except when 8 ≤ n ≤ 16 [KKR]. Our results in degree 8 (i.e. Rk > 22.44) 
and 9 (i.e. Rk > 37.2) narrow the gap to 10 ≤ n ≤ 16.

4 The sharp bound is probably Rk ≥ 62.3871..., corresponding to the field of discriminant 9 685 993 193, 
again minimal for its signature.
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2. Geometric methods

To obtain a lower bound for the regulator Rk in terms of the discriminant Dk, we 
will follow Remak for the general case [Re], and Pohst–Bertin for the totally real case 
[Po2,Po4,Be]. For a unit ε ∈ k, we will use the Euclidean length mk(ε) in the logarithmic 
embedding

mk(ε)2 :=
∑

ω∈∞k

(
log ‖ε‖ω

)2
. (1)

Here ∞k denotes the set of archimedean places of k and ‖ ‖ω the absolute value corre-
sponding to ω ∈ ∞k, normalized so 

∣∣Normk/Q(a)
∣∣ =

∏
ω∈∞k

‖a‖ω for all a ∈ k.

Lemma 1. (Remak, Pohst, Bertin) Suppose H = L(ε) is a number field generated over 
L by a unit ε of H. Then the discriminant DH of H satisfies

log |DH | ≤ [H : L] log |DL| + [H : Q] log([H : L]) + mH(ε)A(H/L), (2)

where

A(H/L) :=
√

1
3

∑
v∈∞L

(
[H : L]3 − [H : L] − 4r2(v)3 − 2r2(v)

)
, (3)

and r2(v) = 0 unless v is real, in which case r2(v) is the number of complex places of H
lying above v.

Suppose now that H = Q(ε) is a totally real number field generated over Q by a unit 
ε ∈ H. Then

log |DH | ≤ [n/2] log(4) + mH(ε)
√

(n3 − n)/3, (4)

where n is the degree of H/Q and [n/2] := n/2 if n is even, [n/2] := (n − 1)/2 if n is 
odd.

Proof. The first part of the lemma is proved in [Fr1, Lemma 3.4], drawing on the case 
L = Q due to Remak [Re]. The second part is proved by combining an inequality due to 
Pohst and Bertin with one of Remak’s. Namely, order the n conjugates ε(i) (1 ≤ i ≤ n)
of ε so 

∣∣ε(1)
∣∣ ≥ ∣∣ε(2)

∣∣ ≥ ... ≥
∣∣ε(n)

∣∣. Then the discriminant D(ε) of the order Z[ε] ⊂ H

satisfies

|DH | ≤ |D(ε)| =
n−1∏ ∣∣ε(i)∣∣2(n−i) ∏ (

1 −
∣∣ε(j)

∣∣∣∣ε(i)
∣∣
)2

.

i=1 1≤i<j≤n
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The logarithm of the first product was bounded by Remak [Re, §6] from above by 
mH(ε)

√
(n3 − n)/3.5 As regards the second product, for n ≤ 11 Pohst [Po2, Satz IV]

improved Schur’s old upper bound (namely nn, reproved in [Be]) to 4[n/2]. A different 
proof was later found by Bertin [Be], who was able to allow any n. �

Let 0 < μ1 ≤ μ2 ≤ . . . ≤ μr be the successive minima of mk on the unit lattice, 
attained at the independent units εi (1 ≤ i ≤ r), so μi := mk(εi) and r = r1 + r2 − 1. 
Minkowski’s theorem on successive minima [Ca, pp. 120, 205, 332] yields

μr
1 ≤

r∏
i=1

μi ≤
√
r + 1Rkγ

r/2
r , (μi := mk(εi), γr := Hermite’s constant). (5)

We shall use the known values [Ca, p. 332]

γ1 = 1, γ2 = 2√
3
, γ3 = 3

√
2, γ4 =

√
2, γ5 = 5

√
8, γ6 = 2

6
√

3
, γ7 = 7

√
64, γ8 = 2. (6)

Lemma 1 will presently lead us to bounds of the form log |Dk| ≤ A0 +
∑T

i=1 Aiμi, 
where T ≤ r and the Ai ≥ 0 will depend on the subfields generated by the εi. To bound 
such sums we will need the following maximization result.

Lemma 2. If r ∈ N, δ > 0 and Δ ≥ δr, let

B = B(r, δ,Δ) :=
{
κ = (κ1, ..., κr) ∈ Rr

∣∣ δ ≤ κ1 ≤ κ2 ≤ ... ≤ κr and
r∏

j=1
κj ≤ Δ

}
,

let Aj ≥ 0 be given for 1 ≤ j ≤ r and suppose that not all the Aj vanish. Then 
F (κ) :=

∑r
�=1 A�κ� assumes its maximum value M on B at one (or more) of the r

points ν(0), ν(1), ..., ν(r−1) defined by

ν
(t)
� :=

{
δ if 1 ≤ � ≤ t,(
Δ/δt

)1/(r−t) if t < � ≤ r.

If κ ∈ B and κ 	= ν(0), κ 	= ν(1), ..., κ 	= ν(r−1), then F (κ) < M .

Proof. We first dispose of an extreme case. If Aj = 0 for all j ≥ 2, so A1 > 0, then ∑r
�=1 A�κ� = A1κ1 assumes its maximum value if and only if κ1 is maximal over all 

κ ∈ B(r, δ, Δ). This implies κj = Δ1/r for 1 ≤ j ≤ r, i.e. κ = ν(0). Hence we may assume 
that Aj > 0 for some j ≥ 2.

We proceed by induction on r. For r = 1 the lemma reduces to the extreme case treated 
above. So assume the lemma applies to r and any B(r, δ′, Δ′) with 0 < δ′ ≤ (Δ′)1/r. 

5 Remak’s proof is also found in [Fr1]. Namely, take L = Q in equations (3.6) to (3.11) in [Fr1].
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Any κ ∈ B(r + 1, δ, Δ) can be written as κ = (κ1, κ′) where κ′ ∈ B(r, κ1, Δ/κ1) and 
κ′
� := κ�+1 (1 ≤ � ≤ r). Hence

M : = max
κ∈B(r+1,δ,Δ)

{ r+1∑
�=1

A�κ�

}
= max

κ1∈[δ,Δ1/(r+1)]

{
max

κ′∈B(r,κ1,Δ/κ1)

{
A1κ1 +

r∑
�=1

A�+1κ
′
�

}}

= max
κ1∈[δ,Δ1/(r+1)]

{
A1κ1 + max

κ′∈B(r,κ1,Δ/κ1)

{ r∑
�=1

A�+1κ
′
�

}}

= max
κ1∈[δ,Δ1/(r+1)]

{
A1κ1 + H(κ1)

}
,

where

H(κ1) := max
κ′∈B(r,κ1,Δ/κ1)

{ r∑
�=1

A�+1κ
′
�

}
.

Moreover, F assumes its maximum at ν = (ν1, ν′) ∈ B(r + 1, δ, Δ) if and only if x →
A1x +H(x) assumes its maximum for x ∈ [δ, Δ1/(r+1)] at x = ν1 and κ′ →

∑r
�=1 A�+1κ

′
�

assumes its maximum on B(r, ν1, Δ/ν1) at κ′ = ν′. Note that H is not identically 0 since 
Aj > 0 for some j ≥ 2.

By induction, for a fixed κ1 ∈ [δ, Δ1/(r+1)] we know that 
∑r

�=1 A�+1κ
′
� assumes its 

maximum on B(r, κ1, Δ/κ1) only at some κ′ whose first t coordinates are equal to κ1

and the remaining r − t coordinates are equal to 
(
(Δ/κ1)/κt

1
)1/(r−t) (0 ≤ t < r). Thus

A1κ1 + H(κ1) = Aκ1 + Bκ−γ
1 ,

where

A :=
t+1∑
�=1

A� ≥ 0, B := Δ1/(r−t)
r+1∑

�=t+2

A� ≥ 0, γ := t + 1
r − t

> 0.

But the function (of one real variable) κ1 → Aκ1+Bκ−γ
1 has a positive second derivative 

if B > 0, and so assumes no interior maximum. If B = 0, then A > 0, and again there is 
no interior maximum. Thus, the maximum for κ1 ∈ [δ, Δ1/(r+1)] occurs only at κ1 = δ

or at κ1 = Δ1/(r+1).
Suppose first that the maximum occurs at κ1 = δ. By induction we know that ∑r
�=1 A�+1κ

′
� assumes its maximum for κ′ ∈ B(r, δ, Δ/δ) only at one (or more) of the r

points, parameterized by t = 0, 1, ..., r− 1, where κ′
� = δ for 1 ≤ � ≤ t, and for r ≥ � > t

κ′
� =

(
(Δ/δ)/δt

)1/(r−t) =
(
Δ/δt+1)1/(r+1−(t+1))

.

This means that F (κ) :=
∑r+1

�=1 A�κ� assumes its maximum at ν(t+1) ∈ B(r + 1, δ, Δ).
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If the maximum of Aκ1 + Bκ−γ
1 is assumed at κ1 = Δ1/(r+1), then B(r, κ1, Δ/κ1) =

B(r, Δ1/(r+1), Δr/(r+1)) reduces to the single point where all coordinates are equal to 
Δ1/(r+1), i.e. F assumes its maximum only at ν(0) ∈ B(r + 1, δ, Δ). �

The next result improves on [Fr1, Lemma 3.6].

Lemma 3. Let k be a number field and let μ1 ≤ μ2 ≤ ... ≤ μr be the successive minima 
of mk on the units of k, as in (5). Suppose we are given R0 > 0, δ > 0 and Aj ≥ 0
(0 ≤ j ≤ r) such that

Rk ≤ R0, μ1 ≥ δ, and log |Dk| ≤ A0 +
r∑

j=1
Ajμj . (7)

Then, log |Dk| ≤ A0 + max
0≤t≤r−1

{
Mt

}
, where for 0 ≤ t ≤ r − 1, t ∈ Z,

Mt := δ

t∑
�=1

A� +
(Δ
δt

) 1
r−t

r∑
�=t+1

A�, Δ :=
√
r + 1R0γ

r/2
r . (8)

Proof. We may assume Aj > 0 for some 1 ≤ j ≤ r, for otherwise the lemma holds 
trivially. Since 0 < δ ≤ μ1 ≤ μ2 ≤ ... ≤ μr, and we have from Minkowski’s inequality ∏r

j=1 μj ≤ Δ (see (5)), it follows that δr ≤ Δ. Hence, (μ1, ..., μr) ∈ B(r, δ, Δ), in the 
notation of Lemma 2. Now,

log |Dk| ≤ A0 +
r∑

j=1
Ajμj ≤ A0 + max

κ∈B(r,δ,Δ)

{∑r
j=1 Ajκj

}
= A0 + max

0≤t≤r−1

{
Mt

}
,

by Lemma 2. �
When the first minimum μ1 = mk(ε) occurs at a unit ε contained in a proper subfield 

L � k, we will need a lower bound for μ1 in order to apply Lemma 3. This amounts to 
finding a lower bound for mL(ε) valid for all units ε ∈ L (excepting roots of unity, of 
course). We note the following lower bounds.

• For totally real fields L, Pohst [Po4, p. 98] proved the optimal lower bound

mL(ε) ≥
√

[L : Q] log
(
(1 +

√
5)/2

)
(L totally real, ε ∈ L). (9)

• For fields L of unit-rank one, the regulator gives the sharp lower bound

mL(ε) ≥
√

2RL (L = Q(ε) of unit-rank 1). (10)
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• Boyd’s lower bounds on the height [Bo] give [Fr1, (3.18) with k = L]

mL(ε) ≥
√

3/2 · 0.28 > 0.3429 (L of unit-rank 2, ε ∈ L, [L : Q] ≤ 4). (11)

• There is an elementary lower bound [Fr1, p. 613]

mk(ε) ≥
√

[k : L]mL(ε) (ε ∈ L ⊂ k). (12)

3. Analytic methods

3.1. Regulator inequalities

Our main analytic tool will be the absolutely convergent series [Fr1, p. 599]

Rk

wk
=

∑
a

g
(
Norm(a2)/|Dk|

)
+
∑
b

g
(
Norm(b2)/|Dk|

)
. (13)

Here Rk is the regulator of the number field k with discriminant Dk, wk is the number of 
roots of unity in k, a runs over the principal integral ideals in k, b runs over the integrals 
ideals in the ideal class dk of the different of k, and g : (0, ∞) �→ R is defined by

g(x) = gr1,r2(x) := 1
2r14πi

2+i∞∫
2−i∞

(πn4r2x)−s/2(2s− 1)Γ(s/2)r1Γ(s)r2 ds, (14)

where r1 = r1(k) and r2 = r2(k) are the number of real and complex places of k, 
respectively.

Note that the right-hand side of (13) always contains the term g(1/|Dk|), and more 
generally, the terms g(j2[k:Q]/|Dk|) for all j ∈ N. These terms come from the principal 
ideals generated by j ∈ N. The other terms are of the form g(m2/|Dk|) for various 
integers m ≥ 2 over which we have no control in general. To turn the formula into an 
inequality we will therefore need to drop all unknown terms, after insuring that they are 
positive.

Using the theory of total positivity, in [Fr2] it was shown that g has a unique zero 
t0 ∈ (0, ∞), is negative for 0 < t < t0, positive for t > t0, has a unique critical point 
t1 ∈ (0, ∞), is monotone increasing for 0 < t < t1 and monotone decreasing for t > t1. 
In particular, g has no minimum in any open interval (a, b), and so

g(t) ≥ min
(
g(a), g(b)

)
(a ≤ t ≤ b). (15)

The next lemma gives a version of the inequality Rk/wk ≥ g(1/|Dk|) [Fr2] suited to 
a range of discriminants.
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Lemma 4. If 0 < d1 ≤ |Dk| ≤ d2 and g = gr1,r2 is as in (14), then

Rk

wk
≥ g(1/|Dk|) ≥ min

(
g(1/d1), g(1/d2)

)
. (16)

If the ideal class dk of the different of k is trivial, then

Rk

wk
≥ 2g(1/|Dk|) ≥ 2 min

(
g(1/d1), g(1/d2)

)
. (17)

Proof. The right-most inequalities are just (15). The inequality Rk/wk ≥ g(1/|Dk|) is 
trivial if g(1/|Dk|) ≤ 0, so we may assume g(1/|Dk|) > 0. Then g(m2/|Dk|) > 0 for all 
m ≥ 1. Hence, we obtain (16) by dropping all terms in (13), except the one coming from 
the unit ideal. When dk is trivial, the two sums in (13) coincide. Hence we double our 
estimate. �

Since wk ≥ 2, we have in general

Rk ≥ 2 min
(
g(1/d1), g(1/d2)

)
if 0 < d1 ≤ |Dk| ≤ d2, (18)

and

Rk ≥ 4 min
(
g(1/d1), g(1/d2)

)
if dk is trivial and 0 < d1 ≤ |Dk| ≤ d2. (19)

In a few signatures the contribution from the unit ideal will not suffice for our purposes. 
The next lemma incorporates N ideals.

Lemma 5. Let 0 < d1 ≤ |Dk| ≤ d2 ≤ d3, let N ∈ N, and assume gr1,r2(4/d3) ≥ 0. Then 
Rk/wk ≥ G(d1, d2, N), where G = Gr1,r2 is defined by

G(d1, d2, N) :=
N∑
j=1

min
(
g(j2n/d1), g(j2n/d2)

)
(g := gr1,r2 , n := r1 + 2r2).

Proof. Except for the term coming from the unit ideal, all terms in formula (13) are 
of the form g(m2/|Dk|), where m ≥ 2. From [Fr2] we know that g has a unique zero 
t0 ∈ (0, ∞). Furthermore, g(t) < 0 for t < t0, while g(t) > 0 for t > t0. Since by 
assumption |Dk| ≤ d3 and g(4/d3) > 0, we have t0 ≤ 4/d3 ≤ m2/|Dk| for m ≥ 2. Hence 
g(m2/|Dk|) > 0 for m ≥ 2. We therefore obtain a lower bound on Rk/wk by dropping all 
terms from the series (13), except those coming from the principal ideals (j) generated 
by rational integers j satisfying 1 ≤ j ≤ N . Thus,

Rk

wk
≥

N∑
j=1

g(j2n/|Dk|) ≥
N∑
j=1

min
(
g(j2n/d1), g(j2n/d2)

)
,

where we used j2n/d2 ≤ j2n/|Dk| ≤ j2n/d1 and (15). �
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Table 2
Lower bounds for |Dk|1/n for n = [k : Q], assuming hk ≥ 3.

n r1 |D|1/n > γ

2 2 7.941 1.2
3 1 7.558 1.1
3 3 11.823 0.92
4 0 7.412 1.02
4 2 10.468 0.88
4 4 15.121 0.78
5 1 9.747 0.85
5 3 13.136 0.76
5 5 17.919 0.7
6 0 9.305 0.82

n r1 |D|1/n > γ

6 2 11.968 0.74
6 4 15.536 0.68
6 6 20.314 0.64
7 1 11.204 0.73
7 3 14.036 0.67
7 5 17.686 0.62893
7 7 22.389 0.59
8 0 10.668 0.71
8 8 24.206 0.558
9 9 25.811 0.53

3.2. The class of the different

The analytic regulator inequalities (19) and (18) differ by a factor of 2, which we can-
not afford to lose for discriminants near the minimum for a given signature. Fortunately, 
Odlyzko’s discriminant bounds [Poi] (surveyed in [Od]) imply that |Dk| cannot be small 
if the class dk of the different is not trivial. Indeed, Hecke showed that dk is the square 
of an ideal class [He, p. 234], [We, p. 291]. Therefore, if dk is not trivial, it follows that 
the class number hk ≥ 3. By classfield theory, k possesses an unramified extension K/k

of degree at least 3. As in any unramified extension K/k, we have

log |DK |
[K : Q] = log |Dk|

[k : Q] ,
r1(K)
[K : Q] = r1(k)

[k : Q] .

Odlyzko’s lower bounds [Poi] for the root discriminant are monotone increasing in the 
degree n, for a fixed ratio r1/n. Hence, if dk is not trivial, we can bound log |Dk|/[k : Q]
by the corresponding bound in degree 3[k : Q]. We do this in Table 2 above.6

3.3. Unconditional computation of regulators

All our regulator calculations rely on PARI [GP], which would seem to make their 
correctness conditional on the Generalized Riemann Hypothesis [Co, p. 353]. Fortunately, 
when PARI returns a (GRH-assuming) regulator R̃k for the number field k, it means 
unconditionally that it has found a system of independent units and that R̃k = mRk, 
where m ∈ N and Rk is the true regulator. GRH is only needed to ensure m = 1.

6 In Table 2, D is the discriminant of the number field k of degree n, r1 is the number of real places of k
and we assume that the class number hk ≥ 3. The bound was obtained using the parameter γ in Table 2, 
which defines the auxiliary function f(x) := T (xγ), where

T (x) :=
(
3(sin(x) − x cos(x))/x3)2

is the Tartar function. The function f(x) = T (xγ) is inserted in (13) of [Poi] to obtain a lower bound for 
1
n log |D| corresponding to degree 3[k : Q].
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All numerical values of regulators we will use will correspond to fields for which the 
ideal class of the different dk is unconditionally known to be trivial. Then the analytic 
lower bound (17) gives

m = R̃k/wk

Rk/wk
≤ R̃k/wk

2g(1/|Dk|)
,

provided g(1/|Dk|) > 0. Since R̃k, wk and 2g(1/|Dk|) can be computed without GRH, 
we show m = 1 unconditionally by verifying that 0 < R̃k/

(
2wkg(1/|Dk|)

)
< 2. We check 

this below every time we use a numerical approximation of the regulator.

4. Prime degrees

All proofs in this section proceed along the following lines. We fix a signature and 
begin by assuming Rk ≤ R0, where R0 is the regulator lower bound that we seek to 
establish for that signature. We apply Lemma 1, and the fact that k = Q(ε1) if [k : Q]
is prime, to find an upper bound |Dk| ≤ d2. Here and below ε1 is always a unit of k at 
which the minimum μ1 of mk is attained (see (1) and (5)).

Our first aim is to show that the ideal class dk of the different is trivial. If dk is not 
trivial, Table 2 gives a lower bound |Dk| ≥ d1. If d1 > d2 we conclude that dk is trivial. 
If d1 ≤ d2, we verify that 2g(1/d2) > R0 and 2g(1/d1) > R0. The analytic lower bound 
(18) then contradicts Rk ≤ R0.

Having thus shown that dk is trivial, we find a (small) d′1 < d2 such that 4g(1/d′1) >
R0. This implies |Dk| < d′1, because of (19) and the previously verified 2g(1/d2) > R0. 
Lastly, we resort to tables to inspect all fields in the discriminant range |Dk| < d′1. We 
find the (usually three or four) exceptions to Rk > R0 amongst these. While we give 
references to the published tables in each case, the reader can save time by downloading 
number field tables for all signatures up to degree 7 in http://pari.math.u-bordeaux1.fr/
pub/pari/packages/nftables/, which includes regulators.

4.1. Degree 2

Although this case is very easy, we include it for later reference and as an outline of 
the general proof. We deliberately do not exploit special facts about quadratic fields, 
such as the triviality of dk.

Theorem 6. (Quadratics) With three exceptions, all real quadratic fields k satisfy Rk >

1.31. The exceptions are the real quadratic fields of discriminant 5, 8 and 13, with re-
spective regulators 0.481211..., 0.881373... and 1.194763... .

http://pari.math.u-bordeaux1.fr/pub/pari/packages/nftables/
http://pari.math.u-bordeaux1.fr/pub/pari/packages/nftables/
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Proof. Assume Rk ≤ 1.31 and let μ1 = mk(ε1) be the minimum of the quadratic form 
mk on the unit lattice. Then (5), (4) and k = Q(ε1) show that |Dk| < 54.95.7

Table 2 shows that dk is trivial, for otherwise |Dk| > 63. Since 4g2,0(1/20.2) = 1.3108...
and 4g2,0(1/54) = 1.6183..., the analytic bounds (19) show that |Dk| ≤ 20. Inspecting 
the five real quadratic fields with |Dk| ≤ 20 we find the three fields in the theorem. �

Of course, we could go on with a much longer ordered list of regulators. We will discuss 
this in §6 below.

4.2. Degree 3

Regulator lower bounds for cubic fields are not new. The totally real case is explicitly 
proved by Pohst [Po4, p. 491], and the complex case is nearly as easy as the quadratic 
case given Remak’s inequality (2) and the old lists by Delone and Faddeev [DF] of cubic 
fields of small discriminant.

Theorem 7. (Cubics)

• With three exceptions, all totally real cubic fields k satisfy Rk > 1.66. The exceptions 
are the unique cubic fields of discriminant 49, 81 and 169, with respective regulators 
0.525454..., 0.849287... and 1.365049... .

• With three exceptions, all complex cubic fields k satisfy Rk > 0.79. The exceptions are 
the unique cubic fields of discriminant −23, −31 and −44, with respective regulators 
0.281199..., 0.382245... and 0.609377... .

Proof. Suppose k is a totally real cubic field, assume Rk ≤ 1.66, and let μ1 = mk(ε1)
as in (5). Since k = Q(ε1), Pohst’s bound (4) and (5) yield |Dk| < 692.25. Table 2
shows that dk is trivial, for otherwise |Dk| > 1 652. Since 4g3,0(1/332) = 1.661... and 
4g3,0(1/692) = 2.144..., the analytic bounds (19) show that |Dk| ≤ 331. Inspecting the 
eight cubic fields in the range 0 < Dk ≤ 331, we find the three fields in the theorem.8

Suppose now that k is a complex cubic field and assume Rk ≤ 0.79. Remak’s bound 
(2) and (5) give |Dk| < 416.74. Table 2 shows that dk is trivial, for otherwise |Dk| > 431. 
Since 4g1,1(1/121) = 0.791... and 4g1,1(1/416) = 1.077..., we find |Dk| ≤ 120. Inspecting 
the 11 cubic fields with −120 ≤ Dk < 0, we arrive at the three fields in the theorem. �
7 We nearly always write |Dk| even if the sign of Dk is obvious.
8 The cubic fields of discriminant 49 and 81 are the first two by discriminant, but that of discriminant 169 

is the fourth. The third one, of discriminant 148, has regulator 1.662... . Except in the totally complex case, 
it will turn out that the field of smallest discriminant has the smallest regulator in all signatures that we 
examine. However the second and third regulator occasionally do not correspond to the second and third 
discriminant. In the totally complex case, the discriminant and regulator order are quite different, as the 
reader can see for octic fields in Table 4 below. To order the totally complex case nicely, we should replace 
Rk by Rk/wk, the regulator divided by the number of roots of unity.
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4.3. Degree 5

Minimal quintic discriminants were found by Hunter [Hu]. Lists of initial discriminants 
can be found in [Po1,Ri,Di5,Vo,SPD].

Theorem 8. (Quintics)

• With three exceptions, all totally real quintic fields k satisfy Rk > 3.55. The ex-
ceptions are the unique totally real quintic fields of discriminant 14 641, 24 217 and 
38 569, with respective regulators 1.635694..., 2.399421... and 3.155437... .

• With three exceptions, all fields k of signature (r1, r2) = (3, 1) satisfy Rk > 0.75. The 
exceptions are the unique fields of signature (3, 1) with discriminant −4 511, −4 903
and −5 519, with respective regulators 0.628579..., 0.668925... and 0.732128... .

• With three exceptions, all fields k of signature (1, 2) satisfy Rk > 0.34. The exceptions 
are the unique fields of signature (1, 2) with discriminant 1 609, 1 649 and 1 777, with 
respective regulators 0.268355..., 0.273599... and 0.290415... .

Proof. Suppose k is a totally real quintic field with Rk ≤ 3.55. Pohst’s bound (4) and 
(5) give |Dk| < 4 862 856.55. If dk is not trivial, Table 2 gives |Dk| > 1 847 433.6. 
However, 2g5,0(1/1 847 434) = 6.509..., 2g5,0(1/4 862 856) = 8.315..., and (18) yield 
Rk > 6.509, contradicting our assumption that Rk ≤ 3.55. Hence dk is trivial. But 
then 4g5,0(1/60 470) = 3.5501..., 4g5,0(1/4 862 856) = 16.63... and (19) show that 
|Dk| < 60 470. Checking the four totally real quintic fields in this discriminant range 
we arrive at the three fields in the theorem.

Suppose now that k has signature (3, 1) and Rk ≤ 0.75. Remak’s bound (2) and (5)
yield |Dk| < 8 604 833.12. If dk is not trivial, Table 2 shows |Dk| > 391 125.11. As before, 
2g3,1(1/391 126) = 2.1588... and 2g3,1(1/8 604 833) = 3.4264... lead to Rk > 2.1588, so dk
must be trivial. Now 4g3,1(1/6 055) = 0.75007... shows |Dk| < 6 055. Inspecting the four 
fields of signature (3, 1) with |Dk| < 6 055, we arrive at the three fields in the theorem.

Lastly, suppose k has signature (1, 2) and Rk ≤ 0.34. As before, we obtain |Dk| <
245 407.26. Table 2 gives |Dk| > 87 974.09 if dk is not trivial. But 2g1,2(1/87 975) =
0.751... and 2g1,2(1/245 407) = 0.902... show that dk is trivial. Since 4g1,2(1/2 352) =
0.3401..., checking the five fields in signature (1, 2) with |Dk| < 2 352, we arrive at the 
three fields in the theorem. �
4.4. Degree 7

In degree 7 we encounter our first difficulties. Signatures (7, 0) and (1, 3) are easy 
sailing. In signature (3, 2) we manage to prove a sharp lower bound using Lemma 5. In 
signature (5, 1) the regulator of the first field (by discriminant) is 2.8846..., but we fail to 
prove Rk > 2.88. The best we can do is to prove Rk > 2.11. Tables of small discriminants 
in degree 7 can be found in [Po3,Di1,Di2,Di4,Let,Vo].
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Theorem 9. (Heptics)

• With three exceptions, all totally real fields k of degree 7 satisfy Rk > 19.19. The 
exceptions are the unique totally real fields in degree 7 of discriminant 20 134 393, 
25 367 689 and 28 118 369, with respective regulators 14.446932..., 16.005863... and 
18.127843... .

• All fields k of signature (r1, r2) = (5, 1) satisfy Rk > 2.11.
• With four exceptions, all fields k of signature (r1, r2) = (3, 2) satisfy Rk > 1.055. 

The exceptions are the unique fields of signature (3, 2) with discriminant 612 233, 
612 569, 640 681 and 649 177, with regulators 1.004348..., 1.004731, 1.035721... and 
1.044578..., respectively.

• With four exceptions, all fields k of signature (1, 3) satisfy Rk > 0.4. The excep-
tions are the unique fields of signature (1, 3) with discriminant −184 607, −193 327, 
−193 607 and −196 127, with regulators 0.380447..., 0.393017..., 0.393408... and 
0.396915..., respectively.

Proof. Suppose k is a totally real field of degree 7 with Rk ≤ 19.19. Applying (4) to 
k = Q(ε1), we get |Dk| < e30.44. Table 2 tells us that |Dk| > e21.75 if dk is not trivial. But 
(18), 2g7,0(e−21.75) = 45.01..., and 2g7,0(e−30.44) = 191.81... give Rk > 45.01. Hence dk is 
trivial. Calculating 4g7,0(1/49 890 000) = 19.191..., by (19) we see that |Dk| < 49 890 000. 
On calculating the regulators of the 20 totally real fields of degree 7 in this discriminant 
range [Vo], we arrive at the three fields in the theorem. This concludes the proof in the 
totally real case.

Leaving signature (5, 1) for the end of the proof, we now assume that k has signature 
(3, 2) and Rk ≤ 1.055. Then |Dk| < e28.3595, by (2). Table 2 shows that dk is trivial if 
|Dk| < e18.49. We compute

2g3,2(e−18.49) = 4.2823..., 2g3,2(e−27.6) = 1.3283...,

and conclude from (18) that e18.49 ≤ |Dk| ≤ e27.6 is impossible. We consider first the 
case |Dk| < e18.49, so that dk is trivial. Then (19) and 4g3,2(1/701 100) = 1.055026...
show that |Dk| < 701 100. Inspection of the 8 fields in this signature and discriminant 
range leads to the four fields in the theorem.

The remaining possibility in signature (3, 2) is e27.6 ≤ |Dk| ≤ e28.3595. Since 
g3,2(4e−28.3595) = 2.255... > 0, Lemma 5 applies in any range 0 < d1 ≤ |Dk| ≤ d2
for d2 ≤ e28.3595. Subdividing [e27.6, e28.3595] into a succession of short intervals, and 
letting G := G3,2 be as defined in Lemma 5, we compute

2G(e28.355, e28.3595, 5) = 1.05638..., 2G(e28.35, e28.355, 5) = 1.08413...,

2G(e28.34, e28.35, 5) = 1.10820..., 2G(e28.32, e28.34, 5) = 1.15621...,

2G(e28.2, e28.32, 5) = 1.13342..., 2G(e27.6, e28.2, 5) = 1.21149... .



246 S. Astudillo et al. / Journal of Number Theory 167 (2016) 232–258
Lemma 5 now shows Rk > 1.056 if e27.6 ≤ |Dk| ≤ e28.3595, concluding the proof for 
signature (3, 2).

Suppose now that k has signature (1, 3) and Rk ≤ 0.4. Then |Dk| < e22.59, as follows 
from (2). From Table 2 we have |Dk| > e16.91 if dk is not trivial. But (18), 2g1,3(e−16.91) =
1.373..., and 2g1,3(e−22.59) = 2.205... give Rk > 1.373. Hence we may assume that dk
is trivial. Then (18) and 4g1,3(1/211 000) = 0.4003... show that |Dk| < 211 000. On 
examining the nine fields with |Dk| < 211 000 and signature (1, 3) we find the four fields 
in the theorem. This concludes the proof in signature (1, 3).

Lastly, assume k has signature (5, 1) and Rk ≤ 2.11. We proceed as in signature (3, 2). 
Remak’s inequality (2) gives |Dk| < e31.5554. Table 2 gives |Dk| > e20.1 if dk is not trivial. 
From

2g5,1(e−20.1) = 13.705..., 2g5,1(e−30.7) = 3.656...,

and (18), we conclude that e20.1 ≤ |Dk| ≤ e30.7 is not possible. If |Dk| ≤ e20.1, then dk
is trivial. Odlyzko’s lower bounds yield |Dk| ≥ 1 702 492 in signature (5, 1) (use γ = 1.16
in Tartar’s function, as explained in the proof of Table 2). Since 4g5,1(1/1 702 492) =
2.3409..., we see that the range |Dk| ≤ exp(20.1) is ruled out. To handle the remaining 
case, i.e. e30.7 ≤ |Dk| < e31.5554, we check g5,1(4e−31.5554) = 7.9293... > 0 and conclude 
by applying Lemma 5 to subintervals. The computations

2G5,1(e31.5, e31.5554, 5) = 2.1737..., 2G5,1(e31.3, e31.5, 5) = 2.8234...,

2G5,1(e30.7, e31.3, 5) = 5.9206...,

showing Rk > 2.17 for e30.7 ≤ |Dk| < e31.5554, rule out this final possibility. �
5. Composite degrees

In composite degree, k 	= Q(ε1) is possible, so we may need several independent units 
to generate k. This forces us to find a lower bound for mk(ε1) in order to apply Lemma 3.

In the totally complex case, we will have to give CM fields separate consideration. If 
k is a CM field with maximal totally real subfield k+, then [Re, p. 250], [Wa, p. 39]

Rk = 2[k+:Q]−1Rk+/Q ≥ 2[k+:Q]−2Rk+ , (20)

where Q = 1 or 2 is the unit index of k. Fortunately, the regulator lower bounds already 
proved for totally real fields will easily suffice to dispose of the CM case.

5.1. Degree 4

The original lists of quartics were found by Delone and Faddeev [DF] and Godwin 
[Go1,Go2,Go3]. Long lists can be found in [BF,Fo,BFP].
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Theorem 10. (Quartics)

• With three exceptions, all totally real quartic fields k satisfy Rk > 1.85. The excep-
tions are the unique totally real quartic fields of discriminant 725, 1 125 and 1 600, 
with respective regulators 0.825068..., 1.165455... and 1.542505... .

• With three exceptions, all fields k of signature (r1, r2) = (2, 1) satisfy Rk > 0.51. The 
exceptions are the unique fields of signature (2, 1) with discriminant −275, −283 and 
−331, with respective regulators 0.369184..., 0.378199... and 0.432203... .

• With three exceptions, all totally complex quartic fields k satisfy Rk > 0.61. The 
exceptions are the unique totally complex quartic fields with discriminant 229, 257
and 117, with respective regulators 0.337377..., 0.442137... and 0.543535... .

Proof. We leave the CM case for the end of the proof. If k is a non-CM quartic field, 
then either k = L := Q(ε1), or L is a real quadratic field and k = L(ε2). In the latter 
case, (4) and (12) imply

log |DL| ≤ log 4 +
√

2mL(ε1) ≤ log 4 + mk(ε1) = log 4 + μ1. (21)

By Lemma 1 and (21),

log |Dk| ≤ 2 log |DL| + 4 log 2 + A(k/L)mk(ε2) ≤ 4 log 4 + 2μ1 + A(k/L)μ2

=
{

4 log 4 + 2μ1 + 2μ2 if
(
r1(k), r2(k)

)
= (4, 0),

4 log 4 + 2μ1 +
√

2μ2 if
(
r1(k), r2(k)

)
= (2, 1).

(22)

Note that the case 
(
r1(k), r2(k)

)
= (0, 2) and k 	= L is the (for now) excluded CM 

case. If k 	= L, then mL(ε1) ≥
√

2RL ≥
√

2 log
(
(1 +

√
5)/2

)
, by (10) and Theorem 6. 

Since μ1 := mk(ε1) ≥
√

2mL(ε1), we find μ1 > 0.962. We now examine each signature 
separately.

Suppose k is a totally real quartic with Rk ≤ 1.85. If k = L, then (4) gives |Dk| ≤
37 670. If k 	= L, then (22) and Lemma 3, with δ = 0.962 and R0 = 1.85, yield |Dk| <
265 544.46. In either case, |Dk| ≤ 265 544. If the ideal class of the different dk is not trivial, 
Table 2 gives |Dk| > 52 278. Since 2g4,0(1/265 544) = 3.68..., and 2g4,0(1/52 279) =
2.74..., we conclude that dk is trivial. We obtain |Dk| < 2 775 from 4g4,0(1/2 775) =
1.851.... There are ten such totally real quartic fields, of which only the three in the 
theorem satisfy Rk ≤ 1.85.

Suppose now that 
(
r1(k), r2(k)

)
= (2, 1) and Rk ≤ 0.51. If k = L, then (2) gives |Dk| <

18 583.6. If k 	= L, (22) and Lemma 3 yield |Dk| < 8 049.5. In both cases we have |Dk| ≤
18 583. Table 2 gives |Dk| > 12 007.56 if dk is not trivial. Since 2g2,1(1/18 583) = 1.065..., 
and 2g2,1(1/12 008) = 0.983.., we again find that dk is trivial. From 4g2,1(1/443) =
0.511..., we obtain |Dk| < 443, leading to four number fields, of which only the three in 
the theorem satisfy Rk ≤ 0.51.
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Lastly, assume that k is a totally complex quartic field with Rk ≤ 0.61. If k = L, then 
(2) gives |Dk| < 2937.1. We note that this is true even if k is CM. We must have that dk
is trivial, since otherwise Table 2 gives |Dk| > 3 018.15. From 4g0,2(1/2937) = 0.759..., 
and 4g2,1(1/1 177) = 0.611.., we find |Dk| < 1 177. There are 46 totally complex quartic 
fields with discriminants in this range. Only the three in the theorem satisfy Rk ≤ 0.61.

If k 	= L, then k is necessarily a CM field and L is its maximal totally real subfield. 
From (20) we have Rk ≥ 2RL/Q, where Q is the unit index of k. If Q = 1, Theorem 6
shows Rk > 0.96, a contradiction. As k has unit-rank 1, it is clear that if Q = 2, then a 
shortest unit ε1 /∈ L, again a contradiction. �
5.2. Degree 6

Tables for sextic fields can be found in [Po1,Po5,BMO,Ol1,Ol2,Vo].

Theorem 11. (Sextics)

• With three exceptions, all totally real sextic fields k satisfy Rk > 4.39. The exceptions 
are the unique totally real sextic fields of discriminant 300 125, 371 293 and 434 581, 
with respective regulators 3.277562..., 3.774500... and 4.187943... .

• With three exceptions, all fields k of signature (r1, r2) = (4, 1) satisfy Rk > 1.37. The 
exceptions are the unique fields of signature (4, 1) with discriminant −92 779, −94 363
and −103 243, with respective regulators 1.262710..., 1.277066... and 1.359897... .

• With three exceptions, all fields k of signature (r1, r2) = (2, 2) satisfy Rk > 0.50. The 
exceptions are the unique fields of signature (2, 2) with discriminant 28 037, 29 077
and 29 189, with respective regulators 0.478924..., 0.491602... and 0.492916... .

• With three exceptions, all totally complex sextic fields k satisfy Rk > 0.27. The ex-
ceptions are the unique totally complex sextic fields of discriminant −10 051, −10 571
and −12 167, with respective regulators 0.205216..., 0.213209... and 0.237219... .

Proof. Let k be a sextic field of signature (r1, r2) with

Rk ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4.39 if (r1, r2) = (6, 0),
1.37 if (r1, r2) = (4, 1),
0.5 if (r1, r2) = (2, 2),
0.27 if (r1, r2) = (0, 3).

(23)

The CM case is easily dismissed, since (20) and Theorem 7 yield

Rk ≥ 2Rk+ ≥ 2 · 0.525 > 0.27.
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We will obtain upper bounds for |Dk| according to the different possibilities for L :=
Q(ε1) ⊂ k. Suppose first that k = L. Then from (2), or from (4) in the totally real case, 
we find

|Dk| <

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp(20.723) if (r1, r2) = (6, 0),
exp(23.73) if (r1, r2) = (4, 1),
exp(19.3) if (r1, r2) = (2, 2),
exp(14.91) if (r1, r2) = (0, 3).

(
k = Q(ε1)

)

Next we assume that L is a real quadratic field. Then k cannot be totally complex. 
As in (21) and (22), we find

log |DL| ≤ log 4 +
√

2mL(ε1) ≤ log 4 +
√

2/3mk(ε1) = log 4 +
√

2/3μ1.

Therefore, from (2) in Lemma 1,

log |Dk| ≤

⎧⎪⎪⎨
⎪⎪⎩

3 log 4 + 6 log 3 +
√

6μ1 + 4μ2 if (r1, r2) = (6, 0),
3 log 4 + 6 log 3 +

√
6μ1 +

√
14μ2 if (r1, r2) = (4, 1),

3 log 4 + 6 log 3 +
√

6μ1 + 2
√

3μ2 if (r1, r2) = (2, 2).

By (9) and (12), we have mk(ε1) ≥
√

6 log
(
(1 +

√
5)/2

)
> 1.178. From this, (5) and 

Lemma 3, we obtain

|Dk| <

⎧⎪⎪⎨
⎪⎪⎩

exp(23.52) if (r1, r2) = (6, 0),
exp(20.5) if (r1, r2) = (4, 1),
exp(17.72) if (r1, r2) = (2, 2).

(
Q(ε1) real quadratic

)

Now assume that L is a complex cubic field. Then k must have signature (2, 2) or 
(0, 3). From (2) and (12) we get

log |DL| ≤ 3 log 3 +
√

6mL(ε1) ≤ 3 log 3 +
√

3μ1.

Hence,

log |Dk| ≤
{

6 log 3 + 6 log 2 + 2
√

3μ1 + 2μ2 if (r1, r2) = (2, 2),
6 log 3 + 6 log 2 + 2

√
3μ1 +

√
2μ2 if (r1, r2) = (0, 3).

From (10) and Theorem 7, mL(ε1) ≥
√

2 · 0.281, whence μ1 := mk(ε1) ≥ 2 · 0.281. 
Lemma 3 now gives

|Dk| <
{

exp(16.89) if (r1, r2) = (2, 2),
exp(14.34) if (r , r ) = (0, 3).

(
Q(ε1) complex cubic

)

1 2
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Lastly, suppose L is a totally real cubic field. In this case k = L(εj), where j = 2 or 3. 
Since we have already ruled out the CM case, k cannot be totally complex. From (4) we 
have

log |DL| ≤ log 4 +
√

8mL(ε1) ≤ log 4 + 2mk(ε1) = log 4 + 2μ1.

Hence, for j = 2 or 3 and μj := mk(εj),

log |Dk| ≤

⎧⎪⎪⎨
⎪⎪⎩

2 log 4 + 6 log 2 + 4μ1 +
√

6μj if (r1, r2) = (6, 0),
2 log 4 + 6 log 2 + 4μ1 + 2μj if (r1, r2) = (4, 1),
2 log 4 + 6 log 2 + 4μ1 +

√
2μj if (r1, r2) = (2, 2).

By (12) and (9),

μ1 := mk(ε1) ≥
√

2mL(ε1) ≥
√

6 log
(
(1 +

√
5)/2

)
> 1.178,

so Lemma 3 yields, for j = 2 or 3,

|Dk| <

⎧⎪⎪⎨
⎪⎪⎩

exp(19.71) if (r1, r2) = (6, 0),
exp(16.38) if (r1, r2) = (4, 1),
exp(13.31) if (r1, r2) = (2, 2).

(
Q(ε1) totally real cubic

)

In all cases we have

|Dk| <

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp(23.52) if (r1, r2) = (6, 0),
exp(23.73) if (r1, r2) = (4, 1),
exp(19.3) if (r1, r2) = (2, 2),
exp(14.91) if (r1, r2) = (0, 3).

(24)

If dk is not trivial, Table 2 yields

|Dk| >

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp(18.06) if (r1, r2) = (6, 0),
exp(16.45) if (r1, r2) = (4, 1),
exp(14.89) if (r1, r2) = (2, 2),
exp(13.38) if (r1, r2) = (0, 3).

(25)

From (23), (18) and

2g6,0
(
1/ exp(18.06)

)
= 16.66..., 2g6,0

(
1/ exp(23.52)

)
= 47.36...,

2g4,1
(
1/ exp(16.45)

)
= 5.25..., 2g4,1

(
1/ exp(23.73)

)
= 8.81...,

2g2,2
(
1/ exp(14.89)

)
= 1.71..., 2g2,2

(
1/ exp(19.3)

)
= 2.90...,

2g0,3
(
1/ exp(13.38)

)
= 0.58..., 2g0,3

(
1/ exp(14.91)

)
= 0.76...,
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we conclude that dk is trivial. From (23), (19) and

4g6,0(1/517 500) = 4.3904..., 4g4,1(1/110 200) = 1.3704...,

4g2,2(1/30 890) = 0.5001..., 4g0,3(1/16 420) = 0.2701...,

we find

|Dk| <

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

517 500 if (r1, r2) = (6, 0) (5 fields in this range),
110 200 if (r1, r2) = (4, 1) (5 fields in this range),
30 890 if (r1, r2) = (2, 2) (4 fields in this range),
16 420 if (r1, r2) = (0, 3) (8 fields in this range).

Inspection of tables results in the lists of regulators in the theorem. �
5.3. Degree 8 totally real and totally complex fields

Tables for totally real octic fields can be fount in [PMD,Vo]. For totally complex octic 
fields see §7.

Theorem 12. (Octics)

• With three exceptions, all totally real octic fields have regulator greater than 28.43. 
The exceptions are the unique totally real octic fields of discriminant 282 300 416, 
309 593 125 and 324 000 000, with respective regulators 22.446870..., 23.696789... and 
24.388406... .

• With four exceptions, all totally complex octic fields have regulator greater than 0.345. 
The exceptions are the unique totally complex octic fields of discriminant 1 282 789, 
1 361 513, 1 385 533 and 1 424 293, with respective regulators 0.313539..., 0.326412..., 
0.331112... and 0.336709... .

Proof. We assume first that k is a totally real octic field with regulator Rk ≤ 28.43. As 
in degree 6, we consider the various possibilities for L := Q(ε1). If [L : Q] = 8, so k = L, 
Pohst’s bound (4) and (5) give log |Dk| < 38.2. We shall show that log |Dk| < 38.2 for 
the remaining values of [L : Q].

If [L : Q] = 4, (4) gives

log |DL| ≤ 2 log 4 + mL(ε1)
√

20 = 2 log 4 +
√

10μ1. (26)

Since the unit rank of L is three, we must have k = L(εj), where j = 2, 3 or 4. Lemma 1
and (26) yield

log |Dk| ≤ 2 log |DL| + 8 log(2) +
√

8μj ≤ 8 log(4) + 2
√

10μ1 +
√

8μj .
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Table 3
All totally real octic fields k with discriminant Dk < 582 918 125.
Dk Polynomial Rk

282 300 416 x8 − 4x7 + 14x5 − 8x4 − 12x3 + 7x2 + 2x − 1 22.446870
309 593 125 x8 − 4x7 − x6 + 17x5 − 5x4 − 23x3 + 6x2 + 9x − 1 23.696789
324 000 000 x8 − 7x6 + 14x4 − 8x2 + 1 24.388406
410 338 673 x8 − x7 − 7x6 + 6x5 + 15x4 − 10x3 − 10x2 + 4x + 1 28.437595
432 640 000 x8 − 2x7 − 7x6 + 16x5 + 4x4 − 18x3 + 2x2 + 4x − 1 28.989022
442 050 625 x8 − 2x7 − 12x6 + 26x5 + 17x4 − 36x3 − 5x2 + 11x − 1 29.638515
456 768 125 x8 − 2x7 − 7x6 + 11x5 + 14x4 − 18x3 − 8x2 + 9x − 1 30.339822
483 345 053 x8 − x7 − 7x6 + 4x5 + 15x4 − 3x3 − 9x2 + 1 31.405649
494 613 125 x8 − x7 − 7x6 + 4x5 + 13x4 − 4x3 − 7x2 + x + 1 31.437552

Pohst’s inequality (9) and Lemma 3 give log |Dk| < 34.15 for each of the three possible 
values of j.

If [L : Q] = 2, from (5) we find mk(ε1) < 2.52. Hence mL(ε1) = mk(ε1)/2 < 1.26. 
But mL(ε1) =

√
2RL. Hence RL < 1.26/

√
2 < 0.9. Theorem 6 shows that L = Q(

√
5) or 

L = Q(
√

2), showing that μ1 = mk(ε1) =
√

8 log
(
(1 +

√
5)/2

)
or μ1 =

√
8 log(1 +

√
2).

We now consider L2 := L(ε2) = Q(
√

5, ε2) (resp., L2 = Q(
√

2, ε2)). Since L2 contains 
at least two independent units, we have [L2 : Q] = 4 or 8. We consider first the case 
[L2 : Q] = 8, i.e. L2 = k. Lemma 1 shows

log |Dk| ≤ 4 log |DL| + 8 log(4) + 2
√

10μ2.

We now take |DL| = 5 and δ =
√

8 log
(
(1 +

√
5)/2

)
(resp., |DL| = 8, δ =

√
8 log(1 +

√
2)) 

and apply Lemma 3 with Aj = 0 except for A0 = 4 log |DL| + 8 log(4), A2 = 2
√

10. The 
result is log |Dk| < 35.18 (resp., log |Dk| < 35.37).

The remaining case is [L2 : Q] = 4. In this case Lemma 1 yields

log |DL2 | ≤ 2 log |DL| + 4 log(2) + 2mL2(ε2) = 2 log |DL| + 4 log(2) +
√

2μ2.

Since the unit rank of L2 is three, we must have k = L2(εj) for j = 3 or 4. Again by 
Lemma 1 and the above bound we obtain

log |Dk| ≤ 2 log |DL2 | + 8 log(2) +
√

8μj ≤ 4 log |DL| + 8 log(4) +
√

8μ2 +
√

8μj .

As above, Lemma 3 gives log |Dk| < 33.32 (resp., log |Dk| < 33.69) for j = 3 or 4.
We have in all cases log |Dk| < 38.2. From Table 2 we see that if the class dk of 

the different ideal is not trivial, then log |Dk| > 25.49. Since 2g8,0
(
1/ exp(25.49)

)
=

126.5... and 2g8,0
(
1/ exp(38.2)

)
= 425.9..., (18) shows that dk is trivial. By (19) we have 

|Dk| < 518 000 000, since 4g8,0(1/518 000 000) = 28.434. From [PMD,Vo] we get a list of 
polynomials corresponding to the nine totally real octic fields with discriminant below 
518 000 000. We calculate their regulators Rk (see Table 3 above) and arrive at the three 
totally real fields in the theorem, concluding the proof in this case.

Suppose now that k is a totally complex octic field with Rk ≤ 0.345. The CM case is 
impossible since (20) and Theorem 10 yield Rk ≥ 4Rk+ ≥ 4 · 0.824 > 0.345. We again 
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consider the possibilities for L := Q(ε1). If L = k, we find log |Dk| < 25.51. We shall 
show that this is the largest possible value of log |Dk|.

If [L : Q] = 4, (2) and (12) give

log |DL| ≤
{

4 log 4 +
√

8mL(ε1) = 4 log 4 + 2μ1 if r2(L) = 2,
4 log 4 +

√
18mL(ε1) ≤ 4 log 4 + 3μ1 if r2(L) = 1.

Since, k = L(εj), where j = 2 if r2(L) = 2 and j = 2 or 3 if r2(L) = 1, Lemma 1 yields

log |Dk| ≤
{

12 log 4 + 4μ1 + 2μ2 if r2(L) = 2,
12 log 4 + 6μ1 +

√
2μj if r2(L) = 1.

If r2(L) = 2, then μ1 := mk(ε1) =
√

2mL(ε1) = 2RL > 0.674, by Theorem 10. Lemma 3
then gives log |Dk| < 22.59. If r2(L) = 1, then (11) and (12) give μ1 := mk(ε1) ≥√

2mL(ε1) >
√

2 · 0.3429. Now Lemma 3 yields log |Dk| < 25.42.
We actually cannot have [L : Q] = 2 since (5) gives mk(ε1) < 0.992. If ε1 were real 

quadratic, we would have mk(ε1) =
√

8mL(ε1), as k is totally complex. But 
√

8mL(ε1) =
4RL > 4 · 0.48 > 0.992. Hence in all cases log |Dk| < 25.51.

Table 2 gives log |Dk| > 18.93 if dk is not trivial. From (18) and

2g0,4(e−18.93) = 1.1..., 2g0,4(e−25.51) = 1.6...,

we see that dk is trivial. From 4g0,4(1/1 652 000) = 0.34506... and (19) we conclude 
|Dk| < 1 652 000. Inspecting Table 4 in §7, we arrive at the four totally complex fields in 
the theorem. �
5.4. Degree 9 totally real fields

Tables of totally real fields of degree 9 can be found in [Ta,Vo].

Theorem 13. All totally real fields of degree 9 have regulator greater than 37.2.

Proof. Assume k is a totally real field of degree 9 with regulator Rk ≤ 37.2. If L :=
Q(ε1) = k, then Pohst’s bound (4) gives log |Dk| < 45.044.

If L is a cubic extension of Q, (4) yields

log |DL| ≤ log 4 +
√

8mL(ε1) = log 4 +
√

8/3μ1. (27)

As L has unit rank 2, we have k = L(εj) for j = 2 or 3. Lemma 1 and (27) give

log |Dk| ≤ 3 log |DL| + 9 log(3) +
√

24μj ≤ 3 log(4) + 9 log(3) + μ1
√

24 + μj

√
24.

By (9), mk(ε1) ≥ 3 log
(
(1 +

√
5)/2

)
. Lemma 3 gives log |Dk| < 39.03.
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In any case we have log |Dk| < 45.044. Also, |Dk| ≥ 9 685 993 193, the minimal dis-
criminant [Ta,Vo]. Since 2g9,0(e−29.257) = 365.26... and 2g9,0(e−44.6) = 51.95..., from 
(18) we conclude that either log |Dk| ≤ 29.256 or 44.6 ≤ log |Dk| ≤ 45.044. In the 
first case, Table 2 shows that dk is trivial. If 9 685 993 193 ≤ |Dk| ≤ e29.256, we note 
4g9,0(1/9 685 993 193) = 56.55... . Hence, by (19), this range of discriminant is impossi-
ble.

We now rule out the one case left, i.e. exp(44.6) ≤ log |Dk| ≤ 45.044. Since 
g9,0

(
4/ exp(45.044)

)
= 847.136 > 0, and

2G9,0(e−45.04, e−45.044, 6) = 43.5796..., 2G9,0(e−45.02, e−45.04, 6) = 48.3153...,

2G9,0(e−45.02, e−44.92, 6) = 72.0797..., 2G9,0(e−44.6, e−44.92, 6) = 239.1207...,

Lemma 5 allows us to conclude Rk > 43.57, contradicting our assumption that Rk ≤
37.2. �
6. Numerical limits of current methods

The reader will have observed that our choice of giving only the first three or four 
regulators for a signature is usually just to keep the list short. For example, for non-CM 
totally complex quartics, the geometric method could list all k with Rk ≤ 2.6 using the 
known list [CDO] of all k with |Dk| < e15.95 ≈ 8.45 · 106. On the other hand, already 
Rk ≤ 0.62 is unattainable by the analytic method. Indeed, if Rk = 0.62, Remak’s bound 
(3) gives |Dk| ≤ 3056, but Table 2 shows that the ideal class dk of the different is 
guaranteed to be trivial only up to |Dk| ≤ 3018. The loss of the factor of 2 that this 
entails kills the analytic approach.

For totally real quartics k, the analytic method can handle listing Rk ≤ 2.8, but not 
Rk ≤ 2.9. The limitation is again imposed by Table 2 and the possible non-triviality of 
dk. The geometric method could list all k with Rk ≤ 9.3, needing just the list of all k
with |Dk| < 9.6 · 106 [CDO].9

For quintics of signature (1, 2), the analytic method can easily handle listing Rk ≤
0.75. Equipped with the list of k with |Dk| ≤ 510 000, the analytic method could handle 
up to Rk ≤ 1.02, failing at Rk ≤ 1.03. The upper limit of 1.02 comes from Lemma 5, 
and the need for such a long table of fields comes from the possibly nontrivial dk. On 
the other hand, Remak’s inequality (2) shows that a list of all fields in this signature 
with |Dk| < 3 · 107 would suffice to list all Rk ≤ 1.5. We do not know of such a list of 
quintics, but it seems to us that it could be constructed.

For totally real quintics the geometric method still fares well. Using nearly all quintics 
in Malle’s list [Ma] of totally real primitive fields with |Dk| < 109, the geometric method 
yields all totally real quintics k with Rk ≤ 14.5. The analytic method easily lists all 

9 Admittedly, computing regulators in this range without GRH would need a bit of care, but is feasible.
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Rk ≤ 6.6, needing only a list of k with |Dk| < 240 000. Using the list of |Dk| < 4.5 · 108, 
less than half of Malle’s list, the analytic method could list all totally real quintics k
with Rk ≤ 17.8. The long list of fields is needed because of the possible non-triviality of 
dk. The analytic method could not get to Rk ≤ 17.9 because Lemma 5 fails to help at 
that point.

In short, for degrees [k : Q] ≤ 5 extensive use of existing or feasible tables would allow 
us to go far beyond our lists of small regulators, in most signatures even without using 
analytic methods.

Totally complex sextics can still be treated geometrically, although extensive lists are 
required. To equal our list of Rk ≤ 0.27 (Theorem 11) by geometric methods, we would 
need a list of k with |Dk| < 3 · 106. On the other hand, the analytic method works easily 
up to listing Rk ≤ 0.58, for which the existing list of k with |Dk| < 77 000 suffices. It 
even works up to Rk ≤ 0.76, but then requires a list of k with |Dk| < 2.7 · 106. To list 
Rk ≤ 0.76, the geometric approach would need a list of k with |Dk| < 5 · 107.

Totally real sextics seem just at the limit of the geometric method. A list of k with 
Rk ≤ 4.39, as given in Theorem 11, by purely geometric techniques requires almost all of 
Malle’s list of primitive k with |Dk| < 109, and a (probably feasible) list of imprimitive 
totally real sextics with |Dk| < 109. By analytic techniques one can list all k with Rk ≤
13.3 (but not Rk ≤ 13.4) using the existing list [Vo] of all k satisfying |Dk| < 5.3 ·106. The 
limit of the analytic method (Lemma 5) is Rk ≤ 31.6, but this would require completing 
Malle’s list to include imprimitive sextics of discriminant up to 7.5 · 108.

Degree 7 is out of reach of current geometric methods. If we wanted all totally real 
fields k of degree 7 with Rk ≤ 14.45 (the minimum is 14.44...), Pohst’s inequality (4)
would require a list of all k with |Dk| < 4.927 · 1012, which is probably unfeasible. Using 
Lemma 5, for totally real fields of degree 7 we could find all fields k with Rk ≤ 44.8 using 
the existing list [Ma] of all fields with |Dk| < 3.8 · 108. However, Rk ≤ 44.9 is beyond 
our methods, as Lemma 5 is useless.

In signature (1, 3) the geometric method needs all k with |Dk| < 6.44 · 109 to equal 
our list of Rk ≤ 0.4. Using Lemma 5 we could list all k with Rk ≤ 0.79 using a list 
of k with |Dk| < 762 000, but Rk ≤ 0.8 is beyond the analytic method. The geometric 
method alone would need all |Dk| < 6.308 · 1010 to list all Rk ≤ 0.79.

In signatures (5, 1) and (3, 2), we cannot go beyond Theorem 9. We showed Rk > 2.11
for signature (5, 1), but cannot prove Rk > 2.12. In signature (3, 2) we found all Rk ≤
1.055, but would fail with Rk ≤ 1.056. Both of these signatures are well beyond present 
geometric methods.

Octics are also currently far beyond the reach of geometric methods. For totally real 
octics, the limit of the analytic method is listing all Rk ≤ 39.8, for which the current list 
[Vo] of discriminants is amply sufficient. For totally complex octics, we can hardly go 
beyond Theorem 12 with the current table of discriminants, but a table listing all k with 
|Dk| < 4.1 · 106 would allow us to list all Rk ≤ 0.55, which is the limit of the analytic 
method.
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Table 4
All totally complex octic fields k with discriminant Dk < 1 656 110.
Dk Polynomial Rk Rk/wk

1 257 728 x8 − 2x7 + 4x5 − 4x4 + 3x2 − 2x + 1 0.618886 0.15472
1 265 625 x8 − x7 + x5 − x4 + x3 − x + 1 4.661820 0.15539
1 282 789 x8 − x7 + 2x6 − 3x5 + 3x4 − 3x3 + 3x2 − 2x + 1 0.313539 0.15676
1 327 833 x8 − x7 + x6 − 2x5 + 3x4 − 4x3 + 4x2 − 2x + 1 0.963083 0.16051
1 342 413 x8 − x7 + x6 + x4 − 2x3 + 3x2 − 3x + 1 0.970727 0.16178
1 361 513 x8 − x7 + 2x6 − 3x5 + 3x4 − 3x3 + 2x2 − x + 1 0.326412 0.16320
1 385 533 x8 − 2x7 + 3x6 − 3x5 + x4 + 1 0.331112 0.16555
1 424 293 x8 − 2x7 + 2x6 − x5 + x4 − x3 + 2x2 − 2x + 1 0.336709 0.16835
1 474 013 x8 − x7 + x6 − x4 + x3 − x2 + 1 0.345105 0.17255
1 492 101 x8 − x7 + x6 − 3x5 + x4 − 2x3 + 3x2 + 1 1.043255 0.17387
1 513 728 x8 − 2x7 + x6 + 2x5 − 3x4 − 2x3 + x2 + 2x + 1 2.106944 0.17557
1 520 789 x8 − x7 − x6 + x4 − x2 + x + 1 0.353845 0.17692
1 578 125 x8 − 2x7 + 3x5 − x4 − 3x3 + 2x + 1 1.811959 0.18119
1 590 773 x8 − x7 + 2x5 − 2x4 + x3 + x2 − 2x + 1 0.363609 0.18180
1 601 613 x8 − 2x6 − 3x5 + 3x4 + 3x3 − 2x2 + 1 1.100958 0.18349

7. Equations and regulators for totally complex octic fields

In [Di3] it was shown that there are 15 totally complex octic fields k with discriminant 
Dk < 1 656 110, corresponding to 15 distinct discriminants. Unfortunately, no equations 
were given, and they were subsequently lost. We reconstruct them here from their des-
cription as class fields [Di3,Le]. As we have checked that the 15 polynomials in Table 4
above are irreducible, have no real roots, and have field discriminant as tabulated, it 
follows that we have a rigorous list of all totally complex octic fields k with discriminant 
Dk < 1 656 110.

The first column of Table 4 gives the discriminant of the totally complex octic number 
field k, the second one gives a polynomial p(x) such that k = Q(α) and p(α) = 0, the 
third column gives the (first six decimal digits of the) regulator Rk, and the last column 
gives Rk/wk, where wk is the number of roots of unity in k. All of these were calculated 
with PARI [GP].
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