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We report on the numerical and theoretical study of the subcritical bifurcation of parametrically amplified
waves appearing at the interface between two immiscible incompressible fluids when the layer of the lower fluid
is very shallow. As a critical control parameter is surpassed, small amplitude surface waves bifurcate subcritically
toward highly nonlinear ones with twice their amplitude. We relate this hysteresis with the change of shear stress
using a simple stress balance, in agreement with numerical results.
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The Faraday experiment [1] is a paradigmatic example in
pattern-forming systems, due to its simplicity and richness.
Standing waves appear at the interface between two fluids
as they are vibrated vertically with a certain amplitude larger
than a threshold at a given frequency. Extended Faraday waves
have been observed with various types of fluids [2–5] on a wide
range of physical configurations [6–10], displaying numerous
shapes [11–14]. Localized structures have also been observed
in the Faraday experiment in several situations [15–21]. The
description of the nature, origin, and dynamical properties of
Faraday waves has been the focus of a large scientific endeavor
since the seminal work of Faraday. A particular property of
these waves is their ability to display coexistence (bistability)
between different wave states. Several attempts have been
made to describe this feature, either from first principles
[22–25] or phenomenological standpoints (see Ref. [26] and
references therein), although with little or no real connection
to a dynamical or structural change of the wave pattern.

In this paper, we report on the numerical simulation
of hysteretic Faraday waves at the interface between two
immiscible and incompressible fluids, where the lower fluid
layer is very shallow. Two branches of Faraday waves are
observed with different amplitudes and shapes characterized
by the surface deformation and velocity field of both fluids.
We propose that this hysteretic jump is related to a sudden
shift in the localization of the viscous boundary layer, which
moves from the interface to the bottom of the cell. We explain
physically the observed hysteresis by a balance of the stresses
exerted to the lower fluid layer.

We simulate numerically the equations governing the
motion of two incompressible and immiscible fluids, separated
by a sharp interface, using a single fluid formulation,

ρ
Du
Dt

= −∇p + ρG + ∇ · μ(∇u + ∇uT) + F, (1)

where u is the velocity field satisfying ∇ · u = 0, D/Dt =
(∂t + u · ∇) is the material derivative, and p is the pressure.
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The density ρ and dynamic viscosity μ remain constant within
each phase. F and ρG stand for the densities of surface
tension forces located at the interface and of volume forces,
respectively. Here (·)T denotes the transposition operator. In
the frame of reference of the vibrating fluids, G = −[g +
a cos(ωt)]ez, where g is gravity, a the gravity modulation
amplitude, and ω = 2π/T = 2πf its angular frequency. The
vector ez is oriented vertically and points upwards. The
force density F = σK∇I depends on the surface tension
coefficient σ , which remains constant over the interface,
the interface mean curvature K, and an indicator function
I (x,y,z,t) that takes the value 0 in the heavier phase and 1
otherwise.

The problem is treated using a massively parallel numerical
code explained in Refs. [27–30] that can simulate Faraday
waves in big domains [31]. The simulated domain has a height
H = 10 mm. The thickness of the lower fluid layer is h =
1.6 mm. The physical parameters are taken from Ref. [32].
The heavy fluid has density ρ1 = 1346 kg/m3 and dynamic
viscosity μ1 = 7.2 × 10−3 Pa s, while for the lighter fluid ρ2 =
949 kg/m3 and μ2 = 2.0 × 10−2 Pa s. The surface tension is
σ = 35 mN/m. The modulation frequency f is 12 Hz and
its amplitude a is varied. u is subjected to no-slip boundary
conditions at the top and bottom walls of the domain and is
horizontally periodic.

The linear analysis [33] shows that using the above
parameters the critical wavelength is λc = 13.2 mm and the
critical amplitude is ac = 25.8 m/s2. The dimensions of the
box in the system of coordinates (x,y,z) are L × W × H =
39.6 × 3.30 × 10 mm3. The domain contains exactly three
critical wavelengths longitudinally in order to spot eventual
large-scale effects at high a. The y transverse dimension of the
domain is small enough for the flow to remain essentially two-
dimensional in the x-z plane, which we have checked numer-
ically. The numerical resolution used in our simulation runs
is 128 × 8 × 128. We have checked that the same phenomena
are observed with higher resolutions. Numerical stability and
accuracy are assured using a dynamically bounded time step
�t [31]. To simplify our analysis, we restrict ourselves to the
two-dimensional dynamics of surface waves described by the
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FIG. 1. Temporal snapshots of the interface deformation ζ (x,t)
(thick line), velocity field u(x,z,t) (arrows), and stream function
(contour lines) at a = 39.5 m/s2 (lower branch).

interface deformation ζ (x,t) and velocity field u(x,z,t) (as
shown in Figs. 1 and 2) [34].

When a surpasses the critical value a
p
c = 26 m/s2, the

flat surface becomes unstable to infinitesimally small per-
turbations and stationary subharmonic surface gravity waves
appear with a wavelength λc = L/3. Following Ref. [27],
we show the bifurcation diagram of the saturated surface
wave peak-to-peak amplitude �ζ in Fig. 3(a). �ζ shows the
same distinctive features as the Fourier mode amplitude at
λc and is straightforward to measure. Its dependence on a

can be accurately fitted using the reduced control parameter
ε = (a − a

p
c )/ap

c as �ζ ∼ ε1/2 for ε < 0.6. As we increase
a further than 40 m/s2 the dependence of �ζ on ε changes
and a slight curvature toward larger values of �ζ appears
on the bifurcation diagram. As a exceeds au

c = 41.25 m/s2

a secondary instability occurs: �ζ increases by a factor 2
and the shape of ζ (x,t) becomes highly nonlinear, displaying
localized peaks and almost horizontal troughs of constant
length lF � 8 mm. The thickness of these troughs at au

c in
the upper branch of the bifurcation, hF � 0.25 mm, is twice as
small as the one on the lower branch, as depicted in Fig. 3(b).
These variables are defined geometrically in Fig. 3(c). As a
consequence of mass conservation while �ζ becomes larger
hF becomes smaller. In the upper branch ζ (x,t) also becomes
multivalued. To avoid misinterpretations of the bifurcation
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FIG. 2. Same snapshots as described in the caption of Fig. 1 at
a = 39.5 m/s2 (upper branch).

diagram by following �ζ as ζ (x,t) becomes multivalued in the
upper branch, we have also used the angle θ (s) that the local
tangent to the interface makes with the x axis at normalized
arc length s as an order parameter [see Fig. 3(c)]. θ (s) is single
valued for all values of a. We have computed the Fourier
amplitude at λc of θ (s) in arc length s, θ̂ , which displays the
same bifurcation diagram as �ζ [see Fig. 3(a)]. A hysteresis
loop is displayed as this state is sustained decreasing a until
ad

c = 39.25 m/s2 �= au
c [see Fig. 3(a)]. To wit, we show in both

Figs. 1(a) and 1(b) ζ (x,t) and u(x,z,t) for the same value of
a = 39.5 m/s2.

Hysteresis is also reflected in the changes of the velocity
field properties, specifically, how the energy dissipation rate
τ (u) = μ

∑2
i,j=1(∂ui/∂xj )2 evolves as a increases. We first

focus on the mean dissipation rate 〈τ (u)〉. Here 〈·〉 stands
for time average. The amplitude jump and hysteresis loop
observed for �ζ and θ̂ are also observed for the space-averaged
mean dissipation rate 1

V

∫
V
〈τ (u)〉dV as shown in Fig. 4(a). A

roughly linear dependence on a can be observed, with different
slopes for lower and upper branches. A spatial change in
the structure of τ can be also observed by measuring the
dissipation rate of the mean velocity τ (〈u〉). For the lower
branch, the largest values of τ (〈u〉) are localized at the interface
where the shearing of both fluids is the strongest. The profile
of τ (〈u〉) changes in the upper branch: τ (〈u〉) presents maxima

063114-2



HYSTERETIC FARADAY WAVES PHYSICAL REVIEW E 93, 063114 (2016)

a    (m/s2)
25 30 35 40 45 50 55 60

Δ
ζ   

 (
m

m
)

0

2

4

6

θ̂ 
(r

ad
)

0.00

0.25

0.50

0.75

1.00(a)

(c)

hF

λ/2

Δζ θ(s)

{

l  /2F

30 40 50 60
0
2
4
6
8

a (m/s2 )

l F
(m

m
)

0.0
0.4
0.8
1.2
1.6

h F
(m

m
)

l  /2F

(b)

FIG. 3. (a) Bifurcation diagram for �ζ (◦) and θ̂ (+) as a
function of a for the weakly (lower branch) and highly (upper branch)
nonlinear saturated wave. Hysteresis occurs in the shaded region:
ad

c = 39.25 m/s2 (•) and au
c = 41.25 m/s2 (�) are displayed in the

acceleration axis. (b) lF (◦) and hF (�) as a function of a on the lower
(open symbols) and upper (full symbols) branches of the bifurcation
diagram. (c) Surface deformation ζ (x,t) (continuous line) at a = 39.5
m/s2 showing the definition of θ (s) and �ζ for the upper branch of
the bifurcation diagram.

at the interface and also at the bottom of the domain. When
a is further increased, τ (〈u〉) becomes localized at the bottom
of the cell where the viscous boundary layer dissipates the
largest part of the kinetic energy of the flow. The difference in
structure of τ (〈u〉) for a = 39.5 m/s2 is shown in Figs. 4(b) and
4(c). All temporal Fourier components of τ display the same
bifurcation diagram as 〈τ (u)〉 (not plotted here), showing that
the structural change is a global one.

To explain this hysteretic transition and the qualitative
changes reported above at the transition we present a physical
explanation relating the above data. We propose that the
amplitude jump and wave hysteresis can be understood from
a balance between lubrication and hydrostatic stresses [21,35]
that is coupled with a change of the flow regime within the
film.
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FIG. 4. (a) Bifurcation diagram for the space-averaged dissipa-
tion rate of the mean velocity 1

V

∫
V
〈τ (u)〉 as a function of a for the

weakly (◦) and highly (�) nonlinear saturated wave. Hysteresis occurs
in the shaded region: ad

c = 39.25 m/s2 (•) and au
c = 41.25 m/s2 (�)

are displayed in the acceleration axis. Insets: Contour lines of τ (〈u〉)
for a = 39.5 m/s2 in the lower (b) and upper (c) branches. The
brighter the lines, the higher the dissipation. The thick dark line is the
interface.

From the data displayed in Fig. 3(a), the depth of the
layer reduces to hF = h − �ζ/2 � 0.5 mm at au

c on the
lower branch of the bifurcation, occurring roughly over λc/2
(see Figs. 1 and 3(c)). At this point the Reynolds number
Reu = ρ1ωh2

F /μ1 � 4 and a transition occurs as the viscous
stress within the film increases, forcing the hydrostatic stress
to do the same. Then, a new equilibrium state is reached in the
upper branch, with a thinner hF and a larger lF [see Figs. 2
and 3(b)]. In this upper branch, the flow in the thin film is
described by Stokes dynamics ∇p = μ1∇2u, assuming that
∂z 	 ∂x , u 	 w, and p is constant along the z direction, where
u, w, and p stand for the horizontal and vertical components
of the velocity u and the pressure, respectively. Hence

∂zzu = �p

μ1lF
, ∇2w = 0, (2)

where �p is the difference between the pressure in the lower
fluid under the column and inside the film. Assuming zero
velocity at the bottom of the domain z = 0 and a stress-free
interface ∂zu = 0 at z = hF , the solution of Eq. (2) is

u = �p

μ1lF

(
z2

2
− hF z

)
, (3)

which is averaged over the fluid height to evaluate the
viscous stress σs = 3μ1lF ū/h2

F . This stress makes the film
resist detaching when a viscous regime is achieved at Re =
ρ1ωh2

F /μ1 < Red � 1. The critical Reynolds number Red is
calculated for hF at the transition from the upper to the lower
branch in Fig. 3(a) and it sets a critical depth h0 ∼ 0.25 mm.
From dimensional analysis, one expects ū ∼ ωlF , which is
confirmed by our numerical simulations as ū/ωlF � 1/12 in
the upper branch. Hence, σs � μ1l

2
F ω/(4h2

F ) and the force per
unit length arising from this shear stress, Fs � μ1ωl3

F /(12h2
F ),

must compensate the hydrostatic pressure contribution Fh from
both ends of the film at maximum acceleration, to ensure the
film sustainment. The stress balance reads Fs = 2Fh, where
Fh is given at each border of the film by the difference of
hydrostatic pressure between the zone inside the film and
the zone outside the film: Fh � (ρ1 − ρ2)(a∗ + g)�ζ 2, a∗
denoting the maximum acceleration. After the transition, Fs

and Fh are estimated at 300 mN/m in the upper branch,
which is 10 times larger than the stress contribution from
surface tension that is consequently neglected. Using mass
conservation hλc � �ζ (λc − lF ) to relate �ζ, hF , and lF , the
balance reads,

l3
F (λc − lF )2 � 6gh2λ2

cRe

ω2

(
1 + a∗

g

)(
1 − ρ2

ρ1

)
, (4)

where Re < Red , according to our simulation results on the
upper branch (lubrication flow) and ω is given by the dispersion
relation for shallow waves,

ω2 =
(

ρ1 − ρ2

ρ1 + ρ2

)
16π2

λ2
c

gh, (5)

with the forcing frequency ω is twice that of the fluid’s
response. At Re = Red , the stress balance takes the form

l3
F (λc − lF )2 � 3hλ4

c

8π2

(
1 + a∗

g

)(
1 + ρ2

ρ1

)
. (6)
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The left-hand side of this balance reaches its maximum when
lF = 3λc/5 � 7.9 mm, close to the constant value found in
our simulations for lF in the upper branch. Thus, �ζ � 5 mm
and the stress balance is achieved when a∗/g � 3.4. As lF
rests constant in the upper branch, when a > a∗, hF decreases
to compensate the increase in Fh. When a < a∗, hF > h0

(Re > 1), changing the nature of the flow from lubrication
(σs ∼ l2

F /h2
F ) to viscous flow (σs ∼ lF /hF ). With this

functional change Fs cannot sustain Fh, as it is lF /hF ∼ 30
times smaller. We conjecture that this shift in magnitude
for σs as the film changes its thickness is the reason for the
observed amplitude jump.

In summary, using numerical simulations, we have ob-
served the hysteretic bifurcation of Faraday waves in very
shallow layers. The coexistence between weakly and highly
nonlinear Faraday waves, observed experimentally, is now
confirmed numerically and understood as the bifurcation of
a wave pattern presenting hysteresis, which we conjecture is
related to the structural shift of the viscous shear rate. The
loop mechanism can be understood by stress balance between
hydrostatic and shear stresses, which changes as the depth

of the layer becomes shallower than the boundary layer of
the fluid. This simple treatment is a first approach toward
a more profound understanding of patten selection where
dynamic changes in dissipation or structure are present, and
it opens questions related to the nature and origin of the
hysteresis loop in shallow layers of Newtonian and complex
fluids. In that context, the proposition of a phenomenological
model away from the weakly nonlinear limit would be
a natural continuation of this work that can potentially
explain complex bifurcations of highly nonlinear Faraday
waves [36].
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