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a b s t r a c t

Satisfying spin-assignments of triangulations of a surface are states of minimum energy
of the antiferromagnetic Ising model on triangulations which correspond (via geometric
duality) to perfect matchings in cubic bridgeless graphs. In this work we show that it is
NP-complete to decide whether or not a triangulation of a surface admits a satisfying spin-
assignment, and that it is #P-complete to determine the number of such assignments.
Our results imply that the determination of even the entropy of the Ising model on
triangulations at the thermodynamical limit is already #P-hard.

The aforementioned claims are derived via elaborate (and atypical) reductions that
map a Boolean formula in conjunctive normal form into triangulations of orientable closed
surfaces. Moreover, the novel reduction technique enables us to prove that even very
constrained versions of #MaxCut are already #P-hard.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Ising model is one of the most studied models in statistical physics. Characterizing its behavior on a system (graph)
helps to understand physical phenomena associated to its thermodynamic properties [16]. The Ising model has been widely
studied in lattices and regular structures (see for example [2,12] and references therein). In contrast, irregular systems have
receivedmuch less attention, probably due to the difficulty of derivingmeaningful analytic results. Ourwork in part justifies
why this should be so, by showing how some quite restricted problems of interest concerning irregular systems are special
cases of a class of problems which are, in a well defined sense, regarded as the most intractable enumeration problems that
can be sensibly posed.

The number of distinct groundstates of the antiferromagnetic (negative coupling constant) Ising model of a system is
called groundstate degeneracy and is typically exponentially large as a function of a parameter that measures the system’s
size (the number of nodes of the underlying graph). The latter translates to nonzero entropy1 at zero temperature when
the system size goes to infinity, which in physical terms means that in the thermodynamical limit the spin arrangements
of particles in the system is disordered. This partly explains the considerable attention physicists have given to developing
techniques for approximating the groundstate degeneracy of a system.

One research line has focused on developing tools, for example the TransferMatrixMethod [11, Section 6.6], for bounding
the groundstate degeneracy of a system.
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1 Here, the entropy at the thermodynamical limit is proportional to the logarithm of the number of groundstates divided by the system’s size.
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Fig. 1. A triangulation of the torus with no satisfying spin-assignment.

Another significant line of research tackles the computational complexity of problems arising from statistical physics
models (see [8,18]). A great variety of these problems are computationally hard (see for example [1,3,8]). This work is part
of the latter researchdirection. Informally speaking,we first focus on the following twoassociated computational complexity
problems; (1) hardness of decidingwhether or not a given system admits a satisfying state, and (2) hardness of enumerating
a system’s satisfying states (equivalently, computing the groundstate degeneracy of systems that admit satisfying states).
We show that the former problem is NP-complete and the latter is #P-complete. But in fact, we do more. We develop
a novel and atypical reduction technique that maps Boolean formulas in conjunctive normal form to triangulations of
orientable closed surfaces. We illustrate the usefulness of our reduction technique and address the following additional
computational complexity problems; (3) hardness of determining the entropy of the antiferromagnetic Ising model in the
thermodynamical limit (when temperature goes to zero),2 and (4) hardness of enumerating the number of maximum size
edge cuts of triangulations of surfaces.3

1.1. Background

We now make precise the notions discussed above and then, in the following section, formally state our main results.
First, we describe the antiferromagnetic Ising model. We say that an embedding of a graph in an orientable closed surface is
a surface triangulation if each face is bounded by a cycle of length 3 (in particular there is no loop)—multiple edges allowed.
Given a triangulation T , let V (T ) and E(T ) denote the node and edge set of T . Amapping s : V (T )→ {−1,+1 }will be called
a spin-assignment (state) to T . We refer to −1 and +1 as spins. The energy of a spin-assignment s of the antiferromagnetic
Ising model is defined as

ET (σ ) =


uv∈E(T )

σ(u) · σ(v). (1)

A groundstate is a spin-assignment of minimum energy. The number of distinct groundstates that a triangulation T admits is
often referred to as the groundstate degeneracy of T . Clearly, under any spin-assignment to T the ends of at least one edge of
each face of a surface triangulation T are both assigned either−1 or+1.Moreover, a spin-assignment is a groundstate if it has
the smallest possible number of edges with both its ends being assigned the same spin. A face△ of a surface triangulation T
is said to be frustrated under assignment s, if s restricted to V (△) is not identically−1 or+1. A spin-assignment s to T is said
to be satisfying (or feasible) if every face of T is frustrated under s. Obviously a satisfying spin-assignment is a groundstate.
The converse is true for triangulations that can be embedded in the plane [10]. Nevertheless, the equivalence does not hold
in general (the reader can verify that the toroidal triangulation depicted in Fig. 1 does not have satisfying spin-assignments).
However, note that when satisfying spin-assignments exist, then a groundstate is necessarily a satisfying spin-assignment.

In [10] a relation was established between the groundstate degeneracy of the antiferromagnetic Ising model and the
number of perfect matchings in cubic bridgeless graphs. Specifically, let T be triangulation of a orientable closed surface
and T ∗ its geometric dual. In [10], it is shown that the set of edges whose ends are assigned the same spin under a given
satisfying spin-assignment to T correspond to a perfect matching of the cubic bridgeless graph T ∗. Moreover, it is shown
that if T admits a satisfying spin-assignment, then the groundstate degeneracy of T is at most twice the number of perfect
matchings of T ∗. Thus, lower bounds on the groundstate degeneracy of T provide lower bounds on the number of distinct
perfectmatchings of the cubic bridgeless graph T ∗. An old and famous conjecture of Lovász and Plummer, recently positively

2 We remark that this is a restricted instance of a known #P-hard problem. Indeed, computing the so called Ising Partition Function of a graph is #P-hard
since it corresponds to evaluating the so called Tutte polynomial of G at a particular (non-trivial) point of the complex plane [18, Theorem 2].
3 It is known that over general graphs #MaxCut is #P-hard [9, Lemma 13].
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settled [6], claimed that the number of distinct perfectmatchings of T ∗ is exponential in the size (number of nodes) of T ∗. The
relation between the number of satisfying spin-assignments of a surface triangulation and the number of perfect matchings
of bridgeless cubic graphs is another one of our motivations for considering the problem of computing the groundstate
degeneracy of surface triangulations.

To formally state this work’s main results we need to introduce one additional concept. For a surface triangulation T
and v in V (T ), let δ(v) denote the set of edges incident to v. The map πv : δ(v) → δ(v) is called cyclic permutation of
the edges incident to v if for every e incident to v the edge πv(e) is the successor of e in the clockwise ordering around v
defined by the surface embedding of T . The tuple π = (πv : v ∈ V (T )) is called the rotation system of T . A direct conse-
quence of the Heffter–Edmonds–Ringel rotation principle, is that every surface triangulation is uniquely determined, up to
homeomorphism, by its rotation system [13, Section 3.2].

1.2. Contributions

We start by considering the computational complexity problem of deciding membership in SatAssign—the collection
of (encodings of) rotation systems of surface triangulations that admit a satisfying spin-assignment. We then study
the computational hardness of calculating #SatAssign—the function mapping (encodings of) rotation systems of surface
triangulations to its number of satisfying spin-assignments.

To see that SatAssign is in NP, first recall that in order to check that π = (πv : v ∈ V (T )) is an instance of SatAssign
we need not start with a surface. Indeed, it suffices to check for every v ∈ V (T ) that πv is a cyclic permutation of δ(v) =
{uv : uv is in πu’s domain}, a task that can be performed in time quadratic in |V (T )| time in the Random Access Model.
Then, observe that a certificate of membership in SatAssign of a rotation system of a surface triangulation T is simply a
spin-assignment s : V (T ) → {−1,+1 } and that verifying that such an assignment is satisfying amounts to checking that
each face ∆ of the surface triangulation T is frustrated under s (which can be checked in O(1) time per face in the Random
Access Model).

In this work we show that the problem of deciding if a triangulation admits a satisfying spin-assignment is NP-
complete. We also establish that computing the groundstate degeneracy of surface triangulations that admit satisfying
spin-assignments is #P-complete. Formally, we establish the following results.

Theorem 1. SatAssign is NP-complete.

Theorem 2. #SatAssign is #P-complete.

Both of the stated results follow from an elaborate weakly parsimonious reduction [5, Definition 2.27] that maps a
Boolean function in 3-conjunctive normal form to a rotation system of a triangulation (equivalently, to a triangulation em-
bedded on a surface). As far as we are aware, this seems to be an atypical reduction, whose underlying ideas (specifically,
gadgets) might be of independent interest due to their potential usefulness in the study of the computational hardness of
other related spin glass problems. To illustrate this last claim, we adapt our reduction technique and consider the compu-
tational complexity problem involved in calculating:

• #GroundSt—the function mapping (encodings of) rotation systems of triangulations to its number of groundstates (in
other words, to its groundstate degeneracy), and
• #TriangMaxCut—the function mapping (encodings of) rotation systems of triangulations to its number of maximum size

edge cuts.

In particular, we derive the following two results.

Theorem 3. #GroundSt is #P-hard.

Corollary 4. #TriangMaxCut is #P-hard.

We remark that the arbitrariness (specifically, unbounded genus) of the surface where the triangulations generated by
ourmany-to-one reductions are embedded plays an essential role in establishing the last stated result. Indeed, it is known [7]
that computing the number of maximum size edge-cuts of graphs of a given fixed genus g can be done in polynomial time.

1.3. Organization

In Section 2, we give an overview of a mapping (reduction) from Boolean formulas in 3-conjunctive normal form to
(rotation systems of) triangulations. Specifically, we describe all gadgets on which the reduction relies as well as establish
several properties that the gadgets satisfy. In Section 3, we delineate and analyze the reduction through which we establish
Theorems 1 and 2. In Section 4, we provide an alternative to one of the gadgets we introduce in Section 2 and come up
with a variant of the reduction of Section 3 which establishes Theorem 3, from which we then derive Corollary 4. Finally, in
Section 5, we discuss some open questions and future research directions.
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Fig. 2. Pos-NAE-3SAT.

Fig. 3. #Pos-NAE-3SAT.

2. Main reduction idea and gadgets

The two main results of this work follow from reductions from a well known variant of the standard not-all-equal 3-
satisfiability (NAE-3SAT for short) problemwhich is known to be NP-complete even in the absence of negated variables [15],
a variant we denote Pos-NAE-3SAT. For completeness sake, we recall in Fig. 2 the precise definition of Pos-NAE-3SAT. More-
over, the counting version of Pos-NAE-3SAT, namely #Pos-NAE-3SAT, is #P-complete [4]. See Fig. 3 for the precise definition
of #Pos-NAE-3SAT.

The overall strategy we follow in proving Theorems 1 and 2 is fairly standard, i.e. we design gadgets where truth values
of variables are set (choice gadgets) and gadgets where the truth value of clauses are evaluated (clause gadgets). We need to
‘‘carry’’ truth values from choice gadgets to clause gadgets, and make as many copies of the truth values taken by a literal as
times they appear in all clauses. To achieve this task we build the so called replicator gadgets. However, the construction of
the aforementioned gadgets is quite delicate and non-obvious. In general, the main aspects we take care of in the construc-
tion of each gadget are existence and uniqueness of satisfying spin-assignments. However, there are subtle issues that need
to be properly handled when building and piecing together the different gadgets. Below, we describe in separate sections
each of the gadgets we will require for the reduction and establish that they satisfy certain properties. First, we introduce
some additional terminology and conventions we use throughout the remaining part of this work.

2.1. Preliminaries

Note that given a triangulation T , a spin-assignment s to T is satisfying if and only if−s is also a satisfying spin-assignment
to T .We shall refer to this fact as duality.We repeatedly use it in order to reduce the number of cases that need to be analyzed
in order to establish some of the claims we make. If T admits exactly two satisfying spin-assignments s and−s, we say that
s (−s respectively) is unique up to duality.

A 3-cycle in a triangulation will be called positive for a spin-assignment if at least two of its vertices are assigned spin+1.
Otherwise, it will be called negative. This concept will be referred to as the sign of a 3-cycle.

Henceforth, if s assigns the same spin to all nodes of a subgraph H of T (respectively all elements of S ⊆ V (T )), we say
that H (respectively a subset S) is monochromatic under s. Similarly, we say that an edge is monochromatic (respectively
non-monochromatic) under s if s assigns the same (respectively distinct) spins to both ends of the edge. Monochromatic
and non-monochromatic faces are defined analogously depending on whether or not its circumscribing cycle is either
monochromatic or non-monochromatic. An edge e in E(T ) will be called serious if and only if e is monochromatic under
every satisfying spin-assignment to T .

The gadgets we build in this work are embedded graphs in orientable closed surfaces with some removed disks (with
holes) so that each face is bounded by a 3-cycle and each hole is circumscribed by a 3-cycle. In other words, every gadget
may be obtained from a triangulation by cutting along the boundary of some of its faces (triangles). Thence, every term
defined for surface triangulations is naturally adapted to gadgets so they will be reformulated only in case it is needed.

Throughout this work, serious edges are depicted as thicker lines and surface holes are depicted as gray areas.

2.2. Choice gadget

In this section we describe a gadget (a triangulation of a surface) that we associate to Boolean variables in such a way
that satisfying spin-assignments can be unambiguously interpreted as truth assignments to the Boolean variables. A choice
gadget is a triangulation as depicted in Fig. 4 embedded in a toroidal surface with one hole. The cycle with node set {u, v, w}
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Fig. 4. Choice gadget (region in gray depicts a surface hole).

circumscribing the removed triangle of the choice gadget L, henceforth denoted byCL, will be referred to as the variable cycle
of L and the edge uw will be called the fundamental edge of L (see Fig. 4).

Our reduction will associate to each variable xi a choice gadget Li. A satisfying spin-assignment will be interpreted as
setting xi to True if CLi ends up being monochromatic, and False otherwise. The key functionality that we show a choice
gadget provides is that it has a unique up to duality satisfying spin-assignment where the variable cycle is monochromatic
(respectively, non-monochromatic). Furthermore, choice gadgets will also be used as auxiliary building blocks in the
construction of another type of gadget we will soon encounter.

The following result encapsulates the most relevant properties of choice gadgets.

Proposition 5. Let L be a choice gadget. The fundamental edge of the choice gadget is serious. Moreover, there exists a unique up
to duality feasible spin-assignment to L where the variable cycle CL of L is monochromatic (respectively, non-monochromatic).

Proof. To prove the first statement, by duality, it suffices to show that there is no feasible spin-assignment extension to L
when node v (node labels as in Fig. 4) is assigned spin +1 and the fundamental edge uw is assigned spins +− or −+. In
Fig. 5(a) we work out the case where uw is assigned spins+−; a subindex i accompanying a+ or− sign indicates that the
spin is forced by the spin-assignments with smaller indices in order for the assignment to be satisfiable—if spins assigned
to the vertices of a triangle are forced to be all of the same sign, then no satisfying assignment can exist under the given
initial conditions. The case when uw is assigned spins −+ is dealt with in the same way and worked out in Fig. 5(b). This
establishes that the fundamental edge of L is serious.

We now establish the claimed existence and uniqueness. Since the fundamental edge of L is serious, if s is a satisfying
spin-assignment to L, then L’s fundamental edge is monochromatic under s. Therefore, again by duality, it is enough to prove
that in the following two cases there exist exactly one feasible spin-assignment extension: (a) when the variable cycle CL
(i.e. uwv) of L is assigned spin+++ (themonochromatic case), and (b) when it is assigned++− (the non-monochromatic
case). In Fig. 6(a), the unique satisfying spin-assignment to Lwhen nodes of its variable cycle are assigned+1 is exhibited.

For the non-monochromatic case, by duality and since L’s fundamental edge is serious, it suffices to consider the situation
where L’s fundamental edge is assigned spins++. Two subcases arise, depending on whether or not the spin+1 is assigned
to node u′ (node labels as in Fig. 4)—each subcase is worked out separately in Fig. 6(b) and (c). �

2.3. Replicator gadget

A variable may appear several times in different clauses (or evenmultiple times in the same clause) of a Boolean formula
in three conjunctive normal form. Given that the truth value a variable, say xi, will be unambiguously set by the values taken
by a satisfying spin-assignment at the associated choice gadget, say Li, we require a way of ‘‘replicating’’ the encoding of the
truth value of xi as many times as xi appears in the collection of formula clauses. To achieve this goal, to every choice gadget
we connect a special gadget, namely a k-replicator gadget. When the value k is clear from context or is not relevant, we just
write replicator gadget instead of k-replicator gadget. For each k > 0, a k-replicator gadget will be a triangulation embedded
in a surface of large genus (depending on k) with 2k

+ 1 holes. The purpose of a k-replicator gadget is to generate 2k copies
of the truth value encoded by a satisfying spin-assignment to the choice gadget to which the replicator gadget is connected.

To construct a k-replicator gadget we glue together (in a particular way soon to be discussed) 2k
− 1 so called block-

replicator gadgets. A block-replicator gadget is a triangulation R of an orientable closed surface of genus 4 with three holes.
A block-replicator gadget is built by gluing together three choice gadgets and the surface triangulation of the torus with six
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(a) Assignment forced by fixing uw to+−. Forced
monochromatic triangular faces are labeled by
→←.

(b) Assignment forced by fixing uw to−+. Forced
monochromatic triangular faces are labeled by
→←.

Fig. 5. Cases considered to establish that the fundamental edge of the choice gadget is serious.

(a) Unique satisfying spin-assignment
forced by the spin-assignment+++ to the
variable cycle of L.

(b) Unique satisfying spin-assignment to L,
up to duality, when L’s variable cycle is
non-monochromatic.

(c) Spin assignments forced by the
assignment of spin+1 to u′ (forced
monochromatic faces are labeled by→←).

Fig. 6. Cases considered to establish the existence and uniqueness (up to duality) of feasible monochromatic and non-monochromatic spin-assignments
to the variable cycle of choice gadgets.

removed triangles depicted in Fig. 7.4 Specifically, the construction takes three choice gadgets, say L̂, L̄ and L̃ (see Fig. 4), and
identifies the variable cycleCL̂ (respectively,CL̄ andCL̃) of the choice gadget L̂ (respectively, L̄ and L̃) with the cycle Ĉ = u′xu
(respectively, C̄ = xyw and C̃ = zw′v) of the block-replicator gadget R as depicted in Fig. 7. The identification is done in
such a way that edge u′x (respectively, xy and zw′) of the cycle Ĉ (respectively, C̄ and C̃) coincides with the fundamental
edge of the choice gadget L̂ (respectively, L̄ and L̃). Clearly, under this construction, each block-replicator gadget has exactly
three holes, because after gluing the choice gadgets to the surface triangulation depicted in Fig. 7, the holes circumscribed
by the cycles Ĉ, C̄ and C̃ disappear. The length 3 cycle uvw circumscribing one of R’s hole is referred to as the incoming
cycle (node labels as in Fig. 7). The length 3 cycles circumscribing the other two holes of Rwill be called the outgoing cycles.
Moreover, edges vw, v′u′ and xywill be referred to as fundamental edges of R (see again Fig. 7 for node labeling scheme).

The attentive reader might wonder whether the described block-replicator gadget is indeed a surface triangulation.
Specifically, whether indeed every ‘‘surface’’ point has an open neighborhood homeomorphic to some open subset of the
Euclidean plane. This is indeed the case. Moreover, a block-replicator gadget has the following key property, henceforth
referred to as intersection property: the incoming and outgoing cycles of a block-replicator gadget do not share vertices. The
intersection property implies that the surface on which the block-replicator gadget is embedded can be smoothly deformed
into the one depicted in Fig. 8.

The key purpose of each block-replicator gadget is to enforce that whenever the incoming cycle is monochromatic
(respectively, non-monochromatic), both outgoing cycles are monochromatic (respectively, non-monochromatic). In fact,
we will show that the block-replicator gadget inverts the sign of the incoming cycle, namely if the incoming cycle is positive

4 Here, choice gadgets are used as auxiliary gadgets. This auxiliary gadgets will not be associated to Boolean variables. The reason why we rely on this
auxiliary choice gadgets is solely because of one of the properties we have shown they exhibit. Specifically, the fact that fundamental edges of choice
gadgets are serious.
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Fig. 7. Block-replicator gadget.

Fig. 8. Block-replicator gadget sketch.

(respectively, negative) the outgoing cycles are negative (respectively, positive). Actually, much more is true. Formally, we
have the following results concerning block-replicator gadgets.

Proposition 6. Let R be a block replicator gadget. Fundamental edges of R are serious.

Proof. Given that xy is the fundamental edge of the variable cycle CL̄ = xyw of the choice gadget L̄, by Proposition 5, we
have that xy is serious. To prove that vw is serious, by duality, it suffices to show that when vw is assigned +− and u is
assigned+ and−, there is no feasible spin-assignment extension to R. These two situations are worked out in Fig. 9.

We proceed as above to prove now that u′v′ is serious. In Fig. 10, we show that in the cases where u′v′ is assigned −+
and w′ is assigned+ and− there is no feasible spin-assignment extension to R. �

Proposition 7. Let R be a block-replicator gadget. Then, there exists a unique up to duality satisfying spin-assignment to R for
which the incoming cycle is monochromatic (respectively, non-monochromatic). Moreover, if s is a satisfying spin-assignment to
R, one of the two following statements hold:

1. the incoming and outgoing cycles are all monochromatic with the incoming cycle positive (respectively, negative) and both
outgoing cycles negative (respectively, positive), or

2. the incoming and outgoing cycles are all non-monochromatic with the incoming cycle positive (respectively, negative) and
both outgoing cycles negative (respectively, positive).

Proof. To prove existence and uniqueness of the satisfying spin-assignment when the incoming cycle is monochromatic,
by duality, it is enough to prove that if all nodes in the incoming cycle uvw are assigned +1, then there exists a unique
feasible spin-assignment extension to R (node labels as in Fig. 7). This situation is worked out in Fig. 11(a). On the
other hand, by Proposition 6, if s is a satisfying spin-assignment to R, the edge vw belonging to the incoming cycle is
monochromatic (because it is serious). Thus, by duality, we can assume that s assigns to the incoming cycle uvw spins
+ + + or − + +. Therefore, to establish existence and uniqueness of the satisfying spin-assignment when the incoming
cycle is non-monochromatic, it will suffice to show that there exists unique satisfying spin-assignment extension to Rwhen
the incoming cycle uvw is assigned spin − + +. This case is studied in Fig. 11(b). We need to check that each of the spin-
assignments depicted in Fig. 11(a) and (b) has a unique extension to the block-replicator gadget, even when the auxiliary
choice gadgets are glued to the block-replicator gadget via proper identification of Ĉ, C̄, C̃ (see labels in Fig. 8) and the
variable cycles of the auxiliary choice gadgets. Proposition 5 and the fact that the spin-assignments depicted in Fig. 11(a)
and (b) completely determine the spins of the nodes of Ĉ, C̄, C̃ imply that the spin-assignment extensions to the whole
block-replicator gadget are indeed feasible and unique.

The remaining part of the claimed result can be ascertained by inspecting in Fig. 11(a) and (b) the satisfying spin-
assignments forced by the (non) monochromaticity of the incoming cycles. �
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Fig. 9. In (a), satisfying spin-assignment forced by fixing the outgoing cycle uvw to + + − and in (b) to − + −. Serious edges are shown as thick lines.
Note that fixing the spin of an end of a serious edge immediately forces the spin of its other end.

Fig. 10. In (a), satisfying spin-assignment forced by fixing the outgoing cycle u′v′w′ to−++ and in (b) to−+−. Serious edges are shown as thick lines.
Note that fixing the spin of an end of a serious edge immediately forces the spin of its other end.

(a) Case where the incoming cycle is positive and
monochromatic. Note that the outgoing cycles are forced
to be negative and monochromatic.

(b) Case where the incoming cycle is positive and
non-monochromatic. Note that outgoing cycles are forced
to be negative and non-monochromatic.

Fig. 11. Cases considered to establish the existence and uniqueness (up to duality) of satisfying spin-assignments to the block replicator gadget which
extend monochromatic and non-monochromatic spin-assignments of the incoming cycle.
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Fig. 12. A cap.

We are now ready to describe the construction of a k-replicator gadget. Take 2k
− 1 block-replicator gadgets R1, R2,

R3, . . . , R2k−1. Identify the outgoing cycles of R1 with the incoming cycles of the block replicator gadgets R2 and R3 so that the
fundamental edges of R1 that belong to the outgoing cycles and the fundamental edges of R2 and R3 that belong to the
incoming cycles coincide. Continue in this way piecing together new block replicator gadgets and identifying fundamental
edges, and construct a ‘‘rooted binary tree of depth k’’ type structure of block-replicator gadgets. Let R1 denote the block-
replicator gadget at the ‘‘root’’ of the tree, and letR2k−1 , R2k−1+1, . . . , R2k−1 denote the block-replicator gadgets at the ‘‘leaves’’
of the tree. The incoming cycle of R1 will be referred to as the starting cycle of the k-replicator gadget Rk and the outgoing
cycles of the block replicator gadgets R2k−1 , R2k−1+1, . . . , R2k−1 will be called end cycles of Rk. Moreover, fundamental edges
of the block-replicator gadget belonging to the incoming cycle of R1 and to the outgoing cycles of R2k−1 , R2k−1+1, . . . , R2k−1
will be referred to as fundamental edges of the k-replicator gadget.

Note that each k-replicator gadget is a triangulation of an orientable closed surface of genus 4 · (2k
− 1) with 2k

+ 1
holes. Furthermore, the intersection property of the block-replicator gadgets is trivially transferred to k-replicator gadgets;
namely, the starting and end cycles of a k-replicator gadget do not share vertices.

In our reduction, the starting cycle of each k-replicator gadget Rk will be identified with the variable cycle of a choice
gadget, say L. By Proposition 7, this guarantees that the end cycles of Rk will be monochromatic if and only if the variable
cycle of L is monochromatic. It is somewhat unfortunate that the block-replicator gadgets generate, at its outgoing cycles,
encodings of opposite signs as the one of its incoming cycle. By taking k even, we can guarantee that each of the end cycles
of Rk will have the same chromaticity (monochromatic or non-monochromatic) and sign as the variable cycle of the choice
gadget L. The following result captures all relevant propertieswewill need that are satisfied by replicator gadgets. The reader
can easily check that the claimed properties are immediately inherited from those satisfied by block-replicator gadgets.

Corollary 8. Let k be an even positive integer and let Rk be a k-replicator gadget. The following statements hold:

1. Fundamental edges of Rk are serious.
2. For any satisfying spin-assignment to Rk, the starting cycle and the end cycles have the same sign.
3. For any satisfying spin-assignment to Rk, the starting cycle and the end cycles are all either monochromatic or non-

monochromatic.
4. There is a unique up duality satisfying spin-assignment to Rk so that the starting cycle and the end cycles are all monochromatic

(respectively, non-monochromatic).

As we have already mentioned, the starting cycle of a replicator gadget, say R, will be identified with a variable cycle
of a choice gadget, say L. Assuming that L is in turn associated to a formula variable, say x, it follows that in any satisfying
spin-assignment all end cycles of R encode the same truth value of x encoded by the variable cycle of L. Eventually, some end
cycles of R will be identified with cycles of the (next to be described) clause gadgets associated to formula clauses where
x appears. If the total number of appearances of x in formula clauses is t , then R will be a k-replicator gadget where k is
the smallest positive even integer greater or equal than log2 t . Thus, after identifying end cycles of R with cycles in clause
gadgets, we might end up with non-identified end cycles (a situation that occurs whenever log2 t is not a positive even
integer). The holes circumscribed by such end cycles will need to be ‘‘capped’’ in order so at the end of our reduction we do
indeed generate a surface triangulation. Moreover, holes will need to be ‘‘capped’’ in such a way that the properties satisfied
by replicator gadgets are preserved. To achieve this goal, when necessary, we identify an end cycle with the edges of the
outer face of the complete graph on 4 nodes embedded in the plane, henceforth referred to as cap gadget (depicted in Fig. 12).

The following statement is trivial.

Proposition 9. For any spin-assignment to the outer cycle of a cap gadget, there exists a unique satisfying spin-assignment
extension to the whole cap.

Before we proceed, it is worthmentioning that the described replicator gadget regular binary tree like structure is some-
what wasteful. We could instead have relied on alternative non-regular binary tree like structures as long as they generate
the appropriate number of end cycles. However, this yields at most a factor of 2 saving in the time and space needed to
generate and store a description of a replicator gadget. For this reason, and simplicity of exposition, we only work with
replicator gadgets that have a regular binary tree like structure.
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Fig. 13. Clause gadget.

2.4. Clause gadget

A clause gadget is a toroidal triangulation with three holes as depicted in Fig. 13. The cycles circumscribing the holes of
the clause gadget will be called literal cycles. Moreover, edges uw, v′w and v′uwill be referred to as fundamental edges of the
clause gadget (depicted as thicker lines in Fig. 13).

As already mentioned in the preceding section, we will eventually identify end cycles of replicator gadgets with literal
cycles in such away that fundamental edges of the replicator and clause gadgets coincide. In our reduction, replicator gadgets
will ‘‘carry’’ from choice gadgets towards clause gadgets the encodings of the truth values of formula variables. The clause
gadget is built in such a way as to allow a unique up to duality satisfying spin-assignment extension if and only if not all the
truth value encodings ‘‘arriving’’ to the clause gadget represent the same truth value.

Unfortunately, fundamental edges of clause gadgets are not serious. However, once every literal cycle of a clause gadget
is identified with an end cycle of a replicator gadget, fundamental edges of the clause gadget will become serious in the
triangulation thus formed—since fundamental edges of the replicator gadgets are serious, and because fundamental edges
of the clause and replicator gadgets will be identified. This explains why when stating the following claims we assume
seriousness of fundamental edges of the clause gadgets. The functionality provided by a clause gadget is summarized by the
next results, the first of which is obvious.

Proposition 10. Let C be a clause gadget. Assume that fundamental edges of C are serious. Then, for any satisfying spin-
assignment, all literal cycles of C have the same sign.

Proposition 11. Let C be a clause gadget. Assume that fundamental edges of C are serious. In the following cases there is no
satisfying spin-assignment extension to C:

1. when all literal cycles of C are monochromatic, and
2. when all literal cycles of C are non-monochromatic.

Proof. To prove the first claim, by duality and Proposition 10, it suffices to show that if all nodes in each literal cycle are
assigned+1, then there is no feasible spin-assignment extension to C . This case is worked out in Fig. 14(a).

To establish the second claim, it suffices to show that the same conclusion holds when the literal cycles uwv, v′wu′ and
v′uw′ are all assigned++− (node labels as in Fig. 13). This case is worked out in Fig. 14(b). �

Proposition 12. Let C be a clause gadget. Assume that the fundamental edges of C are serious. If exactly one literal cycle of C is
monochromatic (respectively, non-monochromatic) there is a unique up to duality satisfying spin-assignment extension to C.

Proof. By duality and Proposition 10 themonochromatic case holds if we show that in each of the following situations there
is exactly one feasible spin-assignment extension to C (node labels as in Fig. 13): (a) when the literal cycle uwv is assigned
+++ and spins++− are assigned to cycles v′wu′ and v′uw′, (b) when the literal cycle v′wu′ is assigned+++ and spins
+ + − are assigned to cycles uwv and v′uw′, and (c) when the literal cycle v′uw′ is assigned + + + and spins + + − are
assigned to cycles uwv and v′wu′. Each case is worked out separately in Fig. 15(a), (b), and (c).

For the non-monochromatic case,we proceed in the sameway. Again, by duality and Proposition 10, it suffices to examine
the following situations (node labels as in Fig. 13): (a) when the literal cycle uwv is assigned + + − and spins + + + are
assigned to cycles v′wu′ and v′uw′, (b) when the literal cycle v′wu′ is assigned + + − and spins + + + are assigned to
cycles uwv and v′uw′, and (c) when the literal cycle v′uw′ is assigned+ + − and spins+ + + are assigned to cycles uwv
and v′wu′. Each case is worked out in Fig. 16(a), (b), and (c). �



A. Jiménez, M. Kiwi / Discrete Applied Mathematics 210 (2016) 45–60 55

(a) Case where all literal cycles are monochromatic. (b) Case where all literal cycles are non-monochromatic.

Fig. 14. Cases analyzed to establish that there are no satisfying spin-assignment extensions to the clause gadget when all literal cycles are either
monochromatic or non-monochromatic.

Fig. 15. Unique forced satisfying spin-assignments to a clause gadget when exactly one literal cycle is monochromatic. Each shown spin-assignment
encodes a truth value assignment to the variables of a clause where not all truth values are equal.

Fig. 16. Unique forced satisfying spin-assignments to a clause gadget when exactly one literal cycle is non-monochromatic. Each shown spin-assignment
encodes a truth value assignment to the variables of a clause where not all truth values are equal.

3. The main reduction

Wenow describe the reduction from Pos-NAE-3SAT to SatAssign. Let ϕ be a Boolean formula in conjunctive normal form,
where each clause has exactly three (non-negated) literals. Let x1, . . . , xn be the variables and Cl1, . . . , Clm be the clauses
of ϕ. Let ti denote the number of times variable xi appears in the collection of clauses (multiple occurrences are counted
multiple times). Define

ki =

2, if ti = 1,
2⌈(1/2) log2(ti)⌉, if ti > 1.
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To each variable xi we associate a choice gadget Li. To each clause Clj we associate a clause gadget Cj. For i = 1, . . . , n, we
identify the starting cycle of a ki-replicator gadget Rki with the variable cycle of the choice gadget Li so that the fundamental
edge of Li that belongs to Li’s variable cycle and the fundamental edge of Rki that belongs to its starting cycle coincide. Note
that the number of end cycles of Rki is at least ti. For i = 1, . . . , n, identify ti end cycles of Rki with literal cycles of the clause
gadgets C1, . . . , Cm where variable xi appears in such a way that the fundamental edges of the end cycles of Rki and the
fundamental edges of the literal cycles of the clause gadgets coincide. Identify the remaining 2ki − ti end cycles of Rki (if any)
with the outer cycle of a cap gadget. Denote by Tϕ the surface triangulation thus obtained.

We first make a simple observation.

Lemma 13. The fundamental edges of each clause gadget of Tϕ are serious.

Proof. Just observe that by construction of Tϕ , fundamental edges of clause gadgets are identified with fundamental edges
of replicator gadgets which are known to be serious, as established by Corollary 8(1). �

Note that, by construction, the surface on which Tϕ is embedded is an orientable closed surface of genus at least
m + n + 4

n
i=1(2

ki − 1) (1 due to each choice gadget L1, . . . , Ln, another 1 due to each clause gadget C1, . . . , Cm, and
4(2ki − 1) due to each replicator gadget Rki , i = 1, . . . , n). Clearly, since each 3-cycle circumscribing gadget holes were
identified with a 3-cycle circumscribing another gadget hole, the surface on which Tϕ is embedded does not have holes,
i.e. it is a closed surface. Moreover, since the construction process does not create additional faces, each face of Tϕ is a face
of some gadget. Thence, each face is bounded by a 3-cycle, so Tϕ is a triangulation. Finally, note that since each of the gad-
gets used in the construction of Tϕ is embeddable in an orientable surface with holes, the resulting surface on which Tϕ is
embedded is also an orientable surface. Summarizing, Tϕ is a triangulation of an orientable closed surface.

We say that ϕ is connected if for every non-trivial partition {S, S̄} of the clauses of ϕ (i.e. S, S̄ ≠ ∅, S ∩ S̄ = ∅, and S ∪ S̄
equals the set of clauses of ϕ) there is at least one variable that appears in one of the clauses in S and in one of the clauses
of S̄.

We now make a couple of useful observations.

Lemma 14. Let ϕ be an instance of Pos-NAE-3SAT . If ϕ is connected, then the surface in which Tϕ is embedded is also connected.

Proof. Assume Tϕ is embedded in a non-connected surface. Consider the set S of clauses whose associated clause gadgets
are embedded in one of the connected surface components, say S. Let S̄ be the collection of clauses not in S. Note that {S, S̄}
is non-trivial. Moreover, the set of variables that appear in clauses in S (respectively, in S̄) correspond to those variables
associated to choice gadgets embedded in S (respectively, not in S). Both of these collection of variables must be disjoint,
contradicting the fact that ϕ is connected. �

Lemma 15. Consider an instance ϕ of Pos-NAE-3SAT . Let Cl be a clause of ϕ and x1, x2, and x3 the (not necessarily distinct)
variables appearing in Cl. Let L1, L2, and L3 be the (not necessarily distinct) choice gadgets of Tϕ associated to x1, x2 and x3,
respectively. Let C be the clause gadget of Tϕ associated to Cl. Then, for every satisfying spin-assignment s to Tϕ , the literal cycles
of C and the variable cycles of L1, L2, and L3 have the same sign. Moreover, if ϕ is connected, then all literal cycles and variable
cycles of Tϕ have the same sign.

Proof. By Proposition 10 and Lemma 13, for any satisfying spin-assignment to Tϕ all literal cycles of C have the same sign.
Without loss of generality, we can assume that all literal cycles of C are positive. Hence, the end cycles of the replicator
gadgets, say Rk1 , Rk2 , and Rk3 , which are identified with the literal cycles of C , must all be positive. Since k1, k2 and k3 are
even, by Corollary 8(2), the starting cycles of Rk1 , Rk2 and Rk3 are positive. Given that the variable cycles of L1, L2, and L3 are
identified in Tϕ with the starting cycles of Rk1 , Rk2 and Rk3 , the first stated claim follows.

The last statement follows trivially from Lemma 14. �

Theorem 16. If ϕ is a connected instance of Pos-NAE-3SAT , then

1. For each truth value assignment thatwitnessesmembership of ϕ in Pos-NAE-3SAT , there is exactly one (up to duality) satisfying
spin-assignment to Tϕ .

2. For every pair of duality related satisfying spin-assignment to Tϕ there is exactly one truth value assignment that witnesses
membership of ϕ in Pos-NAE-3SAT .

Proof. Let a1, . . . , an be a truth value assignment to the variables x1, . . . , xn that is a witness of membership of ϕ in
Pos-NAE-3SAT. We claim that there is a unique up to duality satisfying spin-assignment to Tϕ . As usual, let Cl1, . . . , Clm
be the clauses of ϕ, let C1, . . . , Cm denote the associated clause gadgets, and let L1, . . . , Ln and Rk1 , . . . , Rkn be the choice and
replicator gadgets associated to variables x1, . . . , xn.

If ai is True, fix the spins of all nodes of the variable cycle of Li in such a way that the cycle ends up being positive
and monochromatic (observe that this can be done in a unique way). Otherwise, ai is False, fix the spins of all nodes of
the variable cycle of Li in such a way that the cycle ends up being positive and non-monochromatic (observe that since
fundamental edges of choice gadgets are serious, this can again be done in a unique way). Extend the so far partially defined
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satisfying spin-assignment to the union of choice gadgets (by Proposition 5, such a satisfying assignment extension exists
and is unique).

Similarly, fix the spins of the nodes of the literal cycles of each clause gadget Cj according to the truth value taken by the
associated Boolean formula variable, i.e. if the variable’s value is True, make the literal cycle positive and monochromatic,
and positive and non-monochromatic otherwise (observe again that such spin-assignments can be done in a unique way).
Extend once more the so far partially defined spin-assignment to the union of clause gadgets. We claim that such an
extension exists and is unique. Indeed, given that a1, . . . , an is a witness of membership of ϕ in Pos-NAE-3SAT, the variables
in each clause Clj do not take the same truth value under the assignment a1, . . . , an. Thus, the aforementioned spin-
assignment to the literal cycles of Cj is such that not all literal cycles end up having the same chromaticity. By Proposition 12,
each clause gadget has a unique satisfying spin assignment extension, thus establishing our claim.

Recall that variable cycles of choice gadgets (respectively, literal cycles of clause gadgets) are identified with starting
cycles (respectively, end cycles) of replicator gadgets. Hence, for all i = 1, . . . , n, the partial spin-assignment thus far defined
makes the start and end cycle of the replicator gadget Rki positive and monochromatic (respectively, non-monochromatic)
if and only if ai is True (respectively, False). Given that ki is even and positive for all i = 1, . . . , n, by Corollary 8(4) and
Proposition 9, there is a unique extension of the previously defined partial spin-assignment to all nodes of replicator gadgets
so the resulting spin-assignment is a satisfying spin-assignment for Tϕ .

We now prove the second part of the claimed result. Assume there is a satisfying spin-assignment s to Tϕ . By Lemma 15
and since ϕ is connected, all literal and variable cycles of Tϕ have the same sign, say positive. For i = 1, . . . , n, let ai be
True if the variable cycle of Li is positive and monochromatic, and False if the variable cycle of Li is positive and non-
monochromatic. We claim that a1, . . . , an is a witness of membership of ϕ in Pos-NAE-3SAT. Indeed, assume xj1 , xj2 , and
xj3 are the (not necessarily distinct) variables appearing in clause Clj. Let s ∈ {1, 2, 3}. Since the start cycle of the replicator
gadgets Rkjs is identified with the variable cycle of the choice gadget Ljs , then by Corollary 8 the end cycles of Rkjs must be
monochromatic if and only if ajs is True. Since the non-capped end cycles of replicator gadgets are identified with the literal
cycles of clause gadgets, we have that the literal cycle of the clause gadget Cj associated to the variable xjs is monochromatic
if and only if ajs is True. Moreover, all literal cycles of clause gadgets are positive. Since s is a satisfying spin-assignment, by
Propositions 11 and 12, the literal cycles of Cj cannot all be either monochromatic or non-monochromatic. This implies that
aj1 , aj2 , and aj3 are not all equal, as we wanted to establish. �

Corollary 17. Let ϕ be an instance of Pos-NAE-3SAT . Then, ϕ is satisfiable if and only if there is a satisfying spin-assignment to
Tϕ .

Proof. If ϕ is connected, the result is immediate from Theorem 16. Assume ϕ is not connected. Then, there are ϕ1, . . . , ϕc
instances of Pos-NAE-3SAT such that each ϕi is connected and ϕ = ∧c

i=1 ϕi. Moreover, ϕ belongs to Pos-NAE-3SAT if and
only if ϕ1, . . . , ϕc belong to Pos-NAE-3SAT. By Theorem 16, this is equivalent to saying that ϕ belongs to Pos-NAE-3SAT if
and only the union of the surface triangulations Tϕ1 , . . . , Tϕc , i.e. Tϕ , admits a satisfying spin assignment. �

The next result allows us to successfully handle, in our reduction, instances of Pos-NAE-3SAT which are not connected.

Lemma 18. Let ϕ be an instance of Pos-NAE-3SAT . Then, there exists a log-space (hence, polynomial time) computable instance
ϕ′ of Pos-NAE-3SAT such that ϕ′ is connected and the following equality holds:{a⃗ : if a⃗ is a witness of membership of ϕ in Pos-NAE-3SAT }


=

1
2

{a⃗′ : if a⃗′ is a witness of membership of ϕ′ in Pos-NAE-3SAT }
 .

Proof. Assume x1, . . . , xn are the variables and C1, . . . , Cm the clauses of ϕ. Consider two additional Boolean variables y and
z and define n additional clauses C ′1, . . . , C

′
n such that C ′i = xi ∧ y ∧ z. Let ϕ′ be the conjunction of C1, . . . , Cn, C ′1, . . . , C

′
n.

Clearly,ϕ′ is a connected instance of Pos-NAE-3SATwhich is log-space computable givenϕ. Note that amembershipwitness
a1, . . . , as of an instance of Pos-NAE-3SAT cannot be such that all ai’s are equal. This immediately implies that x1, . . . , xn
is a witness of membership of ϕ in Pos-NAE-3SAT if and only if x1, . . . , xn, y = 0, z = 1 and x1, . . . , xn, y = 1, z = 0 are
witnesses of membership of ϕ′ in Pos-NAE-3SAT. �

Corollary 19. Let ϕ be an instance of Pos-NAE-3SAT . Then, there exists a log-space (hence, polynomial time) computable instance
ϕ′ of Pos-NAE-3SAT such that{s : s is a satisfying spin-assignments to Tϕ′}

 = 4 ·
{a⃗ : if a⃗ is a witness of membership of ϕ in Pos-NAE-3SAT }

 .
To conclude, note that given an instance ϕ of Pos-NAE-3SATwith n variables andm clauses each of the necessary gadgets

can be constructed in O(log |V (T ′ϕ)|) space, i.e. in log-space in the size of the encoding of ϕ. The number of choice, block-
replicator, and clause gadgets that need to be built are n + 2,

n
i=1(2

ki − 1) = O(m), and m + n, respectively. Hence, an
encoding of a rotation system for Tϕ′ can be computed in log-space, thence in polynomial time. Then, Corollaries 17 and 19
imply Theorems 1 and 2, respectively.
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Fig. 17. #Monotone-2SAT.

Fig. 18. New clause gadget.

4. Additional hardness results

Wenow establish the #P-hardness of #GroundSt (Theorem 3). The result will follow by aweakly parsimonious reduction
from the standard counting version of monotone 2-satisfiability, formally defined in Fig. 17 and usually abbreviated as
#Monotone-2SAT. It is known that #Monotone-2SAT is #P-complete [17] even though every instance of #Monotone-2SAT
is trivially satisfiable (by setting all variables to True).

The strategy to prove Theorem 3 is based on a modification of the reduction presented in the preceding section. Indeed
all gadgets except one, the clause gadget, on which the new reduction relies are identical to those on which the proof of
the #P-hardness of #SatAssign (Theorem 2) relies. The key new ingredient we use to derive hardness result for #GroundSt
is that every instances of #Monotone-2SAT is satisfiable. Therefore, since the new reduction will be weakly parsimonious,
any surface triangulation T to which an instance of #Monotone-2SAT ends up being mapped will admit a satisfying spin-
assignment. Hence, the groundstates of T will correspond exactly to satisfying states, and vice versa.

The new clause gadget will be a punctured triangulation of an orientable closed surface of genus two. Each new clause
gadget is built by gluing together a choice gadget5 and the punctured toroidal triangulation with three removed faces de-
picted in Fig. 18. Specifically, the construction takes a choice gadget, say L̃, (see Fig. 4), and identifies the literal cycle CL̃ of
the choice gadget L̃ with the cycle C̃ = {ũw̃w} of the new clause gadget, as depicted in Fig. 18. The identification is done
in such a way that edge ũw̃ of the cycle C̃ coincides with the fundamental edge of the choice gadget L̃. As usual, the cycles
circumscribing the holes of the clause gadget (uxw and uyw in the new clause gadget) will be called literal cycles. Moreover,
edge uw will be referred to as the fundamental edge of the new clause gadget.

The functionality provided by the new clause gadget is summarized by the next results, the first of which is obvious and
the proof of the second one is analogous to Proposition 12.

Proposition 20. Let C be a new clause gadget. Assume that the fundamental edge of C is serious. Then, for any satisfying spin-
assignment to C, both literal cycles of C have the same sign.

Proposition 21. Let C be a new clause gadget. Assume that the fundamental edge of C is serious. In each of the following cases
there is a unique up to duality pair of satisfying spin-assignment extensions to C:
1. when all literal cycles of C are monochromatic,
2. when exactly one literal cycle of C is monochromatic.
Moreover, when all literal cycles of C are non-monochromatic, there is no satisfying spin-assignment extension to C.

5 Again, the choice gadget will not be associated to Boolean variables, we only rely on it because of one of its properties. In particular, because its
fundamental edge is serious.
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The reduction from #Monotone-2SAT to #GroundSt maps an instance ϕ of #Monotone-2SAT to a surface triangulation
Tϕ in the same way as the reduction of the previous section associates to an instance of #Pos-NAE-3SAT and instance of
#SatAssign, except that new clause gadgets are used instead of the clause gadgets defined in the previous section. It follows
that if ϕ is connected, then

1. For each truth-value assignment that satisfies ϕ there is a unique up to duality pair of groundstates of Tϕ .
2. For every pair of duality related groundstates of Tϕ there is exactly one truth-value assignment that satisfies ϕ.

Since an instance of #Monotone-2SAT may not be connected we require the following result.

Lemma 22. For any ϕ instance of #Monotone-2SAT , there is a log-space (hence, polynomial time) computable instance ϕ′ of
#Monotone-2SAT such that ϕ′ is connected and the following equality holds:{a⃗ : a⃗ is a truth-value assignment that satisfies ϕ}

 = {a⃗′ : a⃗′ is a truth-value assignment that satisfies ϕ′}

− 1.

Proof. Assume x1, . . . , xn are the variables and C1, . . . , Cm the clauses of ϕ. Consider one additional Boolean variable y and
definen additional clausesC ′1, . . . , C

′
n such thatC ′i = xi∧y. Letϕ′ be the conjunction ofC1, . . . , Cm, C ′1, . . . , C

′
n. Clearly,ϕ

′ is an
instance of #Monotone-2SAT which is connected and log-space computable given ϕ. Assume ϕ is satisfied when x1, . . . , xn
take the truth-value a1, . . . , an. If one among a1, . . . , an, say ai, is False, then y must take the truth-value True in order for
C ′i to evaluate to True. If all of a1, . . . , an are equal to True, then ϕ′ will evaluate to True at a1, . . . , an, y independently of
the value taken by y. Conversely, if ϕ′ is satisfied for a given truth-value assignment of x1, . . . , xn, y, then ϕ is satisfied for
the same assignment to x1, . . . , xn. The desired conclusion immediately follows. �

Note now that given an instance ϕ of #Monotone-2SAT with n variables and m clauses each of the necessary reduction
gadgets can be constructed in O(log |V (Tϕ′)|) space, i.e. in log-space in the size of the encoding of ϕ. The number of choice,
block-replicator, and clause gadgets that need to be built are n+ 1,

n
i=1(2

ki − 1) = O(m), andm+ n, respectively. Hence,
an encoding of a rotation system for Tϕ′ can be computed in log-space, thence in polynomial time (in fact, in linear time). In
other words, the following result holds:

Corollary 23. Let ϕ be an instance of #Monotone-2SAT . Then, there exists a log-space (hence, polynomial time) computable
instance ϕ′ also of #Monotone-2SAT such that{σ : σ is a groundstate of Tϕ′}

 = 2 ·
{a⃗ : a⃗ is a truth-value assignment that satisfies ϕ}

+ 1

.

Corollary 23 immediately implies Theorem 3. Recall that in the thermodynamical limit at zero temperature, the entropy
of the antiferromagnetic Ising model for a triangulation T is proportional to the logarithm of its number of groundstates
normalized by the number of nodes of T . Hence, Corollary 23 says that already the determination of the entropy of such
systems, at zero temperature, is an extremely hard problem, specifically it is #P-hard. This latter result is complementary
to that of [1], which establishes that for the general Ising model (not just the antiferromagnetic version), it is NP-hard to
compute its partition function—a quantity fromwhich the system’s entropy in the thermodynamical limit can be efficiently
computed.

We conclude this section with the proof of the last of the main results of this article.

Proof of Corollary 4. First, recall the definition of energy (refer to (1)) of a spin assignmentσ of a triangulation T andobserve
that for the edge cut Cσ consisting of the edges of T whose extremes are assigned distinct spins, the following holds:

ET (σ ) =


uv∈E(T )

σ(u) · σ(v) = |E(T )| − 2|Cσ |.

Hence, since groundstates (i.e. states of minimum energy) of the antiferromagnetic Isingmodel over triangulations are non-
constant, they correspond to edge cuts of maximum size.

A second crucial observation is that implicit in the proof of Theorem 3 is the fact that #GroundSt remains #P-hard even
when restricted to connected triangulations.

Clearly, if σ is a groundstate of the antiferromagnetic Ising model over a triangulation T , then it is non-constant and
the corresponding edge-cut Cσ is of maximum size. On the other hand, an edge-cut C of a connected triangulation T
corresponding to the set of edgeswith one of its extremes in∅ ≠ S ( V (T ) gives rise to twoduality related spin assignments;
(1) the spin assignment σ that is identically−1 and+1 over S and V (T ) \ S, respectively, and (2) the spin assignment−σ .
Since T is connected, σ is uniquely determined (up to duality) by the edge-cut C of T . It follows that if C is a maximum size
edge-cut and T is a connected triangulation, then

|{σ : σ is a groundstate of T }| = 2 · |{C : C is a maximal edge-cut of T }| .

The #P-hardness of #TriangMaxCut follows immediately from Theorem 3. �
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5. Final comments

We believe that this work raises several interesting problems. First, characterize the class of surface triangulations that
do not exhibit groundstate degeneracy. Second, to determine the groundstate degeneracy of random triangulations in
the antiferromagnetic Ising model. Solutions to this latter problem could help understand the behavior of geometrically
frustrated systems, which is a central problem in condensed matter physics.

On the other hand, spin glass models have attracted considerable attention over recent years, both in solid state and
in statistical physics (see for instance [14]). In the Ising spin glass model, coupling constants are randomly distributed, in
fact they are typically set to either +1 or −1 uniformly at random. (The antiferromagnetic Ising model corresponds to the
particular case where the coupling constant is set to−1 with probability equal to one.) In this random setting, it would be
interesting to study the behavior of (the random variable corresponding to) the number of groundstates of the Ising model
on plane triangulations (where groundstates are satisfying states) and toroidal triangulations (where groundstates are not
necessarily satisfying states).
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