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a b s t r a c t

Occupational accidents pose several negative consequences to employees, employers, environment and
people surrounding the locale where the accident takes place. Some types of accidents correspond to low
frequency-high consequence (long sick leaves) events, and then classical statistical approaches are
ineffective in these cases because the available dataset is generally sparse and contain censored
recordings. In this context, we propose a Bayesian population variability method for the estimation of the
distributions of the rates of accident and recovery. Given these distributions, a Markov-based model will
be used to estimate the uncertainty over the expected number of accidents and the work time loss. Thus,
the use of Bayesian analysis along with the Markov approach aims at investigating future trends
regarding occupational accidents in a workplace as well as enabling a better management of the labor
force and prevention efforts. One application example is presented in order to validate the proposed
approach; this case uses available data gathered from a hydropower company in Brazil.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Occupational accidents pose several negative consequences to
employees, employers, environment and people surrounding the
locale where the event takes place. In this context, the develop-
ment of quantitative models may aid the decision makers to
determine adequate safety policies and operational procedures
that in turn reduce the probability of occurrence and/or the
severity of these undesired events.

Indeed, Moscoso et al. [31] assert that the analysis of the
accident rate can be of great help to determine the safety proce-
dures to be implemented. Yet, the investigation of the recovery
time from accidents is also equally important in cases where the
on Engineering, Universidade
os, s/n, Cidade Universitária,
7112.
evaluation of unavailability and work time loss is of interest. In
fact, significant research effort has been put on the quantitative
analysis of occupational accidents regarding the assessment of
rates of accident and recovery. For instance, Cawley and Homce
[9], Chia et al. [11], Konstandinidou et al. [24] and Moscoso et al.
[31] discuss occupational accidents in the electrical, construction,
petrochemical and olive oil facilities, respectively, and assess the
rates of accident and recovery for different causes. Camino et al.
[7], Blanch et al. [6] and Lilley et al. [25] in turn analyzed the
relationship between the severity of accidents, in terms of their
recovery rate, and various organizational and individual variables
such as age, gender, type of contract, time of accident, length of
service in the company, company size, day of the week, among
others. Carnero and Pedregal [8] and Freivalds and Johnson [18]
evaluate accident rates in order to show the evolution and the
profile of occupational accidents over the year, providing relevant
information to detect periods where careful attention should be
taken to improve safety. Furthermore, various researches have
analyzed accident rates with the purpose to estimate the cost of
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accidents [21,22,37,38,40]. In this context, Yakovlev and Sobel [40]
showed that profit increases with the safety investment because
the relationship between the prevention expenditure and the
accident rates is negative.

Initiatives such as the Workgroup Occupational Risk Model
(WORM) project, which has been carried out by the Ministry of
Social Affairs and Employment of the Netherlands, have also given
rise to a set of quantitative models that assess occupational risks.
For example, Ale et al. [3] and Ale et al. [1] developed an Occupa-
tional Risk Model (ORM) that basically consists in three stages: (i)
analyzing accident data; (ii) tailoring these data into a Functional
Block Diagram (FBD); and (iii) optimizing solutions for risk reduc-
tion. The first step of the ORM uses a tool called “Storybuilder” that
systematically classifies and analyses reports of past accidents. Ale
et al. [2] also adopted the “Storybuilder” to investigate accident
reports in the construction industry in The Netherlands. Papazoglou
et al. [33], Aneziris et al. [4], and Aneziris et al. [5] used FBD to
evaluate the occupational risk of falling from mobile ladders, for fall
from height, and for crane activities respectively. Papazoglou et al.
[34] in turn presented a model based on a homogeneous Poisson
stochastic process to estimate the probabilities for occupational
accidents per hour of exposure and for a year of average exposure
considering three possible consequences: death, permanent and
recoverable injuries.

A common characteristic of most of the above-mentioned
papers is that they rely on either “top-down” (national data and
general statistics) or “bottom-up” (records gathered from various
organizations) data-collection methods. Jallon et al. [22] state that
instead of “top-down” and “bottom-up” strategies, the “local”
approach, which is based on in-company data, allows the accurate
assessment of occupational accidents in specific workplaces.
However, “local” accident recordings are generally sparse and
contain many censored records and, according to Meel et al. [28],
classical statistical approaches are ineffective in this context.
Therefore, the use of Bayesian methods may be more suitable for
the “local” approach.

Indeed, Meel et al. [28] and Marcoulaki et al. [26] developed
Bayesian approaches for the assessment of the rate of accidents.
Marcoulaki et al. [27] extended these Bayesian models by con-
sidering sick leaves (time necessary for an employee to be recov-
ered from an accident), and the associated work time loss. To this
end, a prior Gamma distribution was considered to model both the
rates of accident and recovery. The use of the Gamma distribution
allowed an analytical solution for formulating the posterior dis-
tributions because it forms a conjugated pair with the Poisson
distribution, which in turn was used in the construction of the
likelihood function. From these distributions, Marcoulaki et al. [27]
developed closed-form results for some occupational measures
such as the accident rates, duration of recovery from an accident,
and the worker unavailability. Papazoglou et al. [32] also adopted a
Bayesian-based approach to assess the uncertainty in the quanti-
fication of risk rates of occupational accidents.

However, the models of Meel et al. [28], Marcoulaki et al. [27]
and Papazoglou et al. [32] as well as the classical statistics based
approaches have been established under the assumption that all
company workers have homogeneous/identical behavior in terms
of the occurrence of accidents, i.e., they assumed that rates of
accident and recovery are the same for all workers. Despite that, it
has been shown that due to the existence of individual factors
(age, gender, experience, time, etc.) it is expected that workers
have distinct rates of accident and recovery even in the situation
they have similar roles in the workplace [10,36,6]. However, as
pointed out by Fragola [17], the more inhomogeneous the database
becomes, the tighter the uncertainty bounds due to the larger size
of the aggregated population. This occurs when inhomogeneous
data are aggregated as if they were homogeneous [14]. Therefore,
in this case, even though the rates of accident and recovery would
be better estimated in accordance with the statistical sense
because the confidence intervals would be narrower, those occu-
pational measures would be less representative of each sub-
population that composes the mixture.

Thus, it is important to analyze the variability of these rates in a
population of workers in order to forecast the random behavior of
the occupational accidents within a workplace. However, in a
“local” perspective, we may have little or no availability of acci-
dents data, mainly if it is desired to make a categorized analysis
(for example, by type of accidents). Then, other sources of infor-
mation such as data from similar facilities may be used to draw
occupational measures of interest.

Therefore, this paper proposes a Bayesian method to estimate
rates of accident and recovery. We consider that each worker has
unique rates of accident and recovery and the Bayesian Population
Variability Analysis (BPVA), also known as the first phase in a two-
stage Bayesian, or hierarchical Bayes [13], is here used to estimate
the variability distribution of these rates within a group of non-
homogeneous workers. Unlike Marcoulaki et al. [27], where the
rates of accident and recovery are considered homogeneous for
different workers and conjugate distribution pairs are used, the
solution here is not analytically obtainable, and thus we resort to a
Markov Chain Monte Carlo (MCMC) approach to draw the non-
parametric posterior distributions. Hence, we use the outputs of
the BPVA, which are the distributions of the rates of accident and
recovery, to feed a two-state Markov-based model that in turn will
estimate the expected number of accidents and the expected
unavailability of the labor force. These quantities will provide
information to investigate future trends regarding occupational
accidents in the workplace as well as enabling a better manage-
ment of the labor force. At the best of authors’ knowledge, no
article has yet adopted BPVA to model occupational accidents.
Indeed, the procedures here implemented for BPVA are based on
the mathematical methods developed for risk and reliability ana-
lysis, such as those in Kaplan [23], Mosleh and Apostolakis [30],
Pörn [35] and Droguett et al. [13]. In this work, these methods are
tailored for the context of analysis of occupational accidents.

The remainder of this paper is organized as follows. Section 2
presents the theoretical background about the BPVA in the context
of occupational accidents. Section 3 presents the proposed model,
illustrating the implementation of the proposed BPVA-Markov
procedure. Section 4 validates the model from an example appli-
cation, which uses evidence from real accident reports of a
hydropower company in Brazil. Finally, Section 5 provides some
concluding remarks.
2. Bayesian population variability assessment

Similarly to Singpurwalla [39] claims in the context of relia-
bility analysis, we here argue that rates of accident λ and recovery
μ are expressions of our personal uncertainty about the work-
place’s dynamic behavior. Given that, we can associate these
quantities to each individual worker i¼ 1;…;m, and then consider
the variability of rates over the whole population. A representation
of this variability, in the form of a probability distribution, is
referred to as the Population Variability Distribution (PVD) and its
assessment is named Population Variability Analysis (PVA).

As in procedures of PVA [13,20,23,35], we assume that a
member of a given family of a parametric distribution may
describe PVD. If we have enough data for each i-th worker, it is
possible to define the parameters of PVD of λ and μ directly from
the dataset. In this section, we review the BPVA based on Deely
and Lindley [12], Kaplan [23], Mosleh and Apostolakis [30], Pörn
[35] and Droguett et al. [13].
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In fact, let ρ be a random variable that defines either the
accident rate λ or the recovery rate μ of a worker and φðρÞ ¼φ
ρjθ1;…;θr
� �

denotes a parametric PVD with r parameters. A
probability distribution πρ θ

� �¼ πρ θ1;…;θr
� �

over the parameters
of the model can be used to describe the uncertainty over PVD.
Then, the estimated population variability density p̂ ρ

� �
is taken as

p̂ ρ
� �¼ Z

…
Z
θ1 ;…;θr

φ ρjθ1;…;θr
� �

:πρ θ1;…;θr
� �

dθ1…dθr :

Therefore, the estimated p̂ ρ
� �

consists of a weighted mix of
distributions of the chosen model. In BPVA, the assessment of the
PVD of ρ may be based on two different types of information:

� Eρ0: prior state of knowledge on ρ, which may be drawn from
“top-down”, “bottom-up” data or experts opinions;

� Eρ1: “local” data - exposure data from accident recordings of
workers in a workplace.

Type Eρ0 is the prior evidence that provides information about
πρ θ

� �
. Then,πρ0 θ

� �¼ π θ jE0
� �

is the prior probability distribution
over the parameters θ and p̂0 ρ

� �¼ p̂ ρjE0
� �¼ R

θφ ρjθ� �
πρ0 θ

� �
dθ is

the prior PVD of ρ. The evidence Eρ1 in turn includes the available
data obtained from accident datasets. Therefore, the distribution of
the population variability parameters based on types Eρ0 and Eρ1
information is developed by applying the Bayes’ theorem:

πρ1 θ
� �¼ π θ jEρ0 ; E

ρ
1

� �¼ PðEρ1 jθ ; E
ρ
0Þπ

ρ
0 θ
� �

R
θPðE

ρ
1 jθ ; E

ρ
0Þπ

ρ
0 θ
� �

dθ
; ð1Þ

where P Eρ1 jθ ; E
ρ
0

� �
is the likelihood of the evidence Eρ1. Then, the

PVD over ρ, conditional on Eρ0 and Eρ1, or the posterior PVD, is given
by p̂1 ρ

� �¼ p̂ ρjEρ0 ; E
ρ
1

� �¼ R
θφ ρjθ� �

πρ1 θ
� �

dθ .
For a workplace with m workers, the evidence Eρ1 is the set of

the exposure data of each worker (Eρ1i; i¼ 1;…;m). Assuming that
the accidents suffered by each worker are independent, the like-
lihood function of the evidence Eρ1 becomes

P Eρ1 jθ ; E
ρ
0

� �¼∏m
i ¼ 1P Eρ1i jθ ; E

ρ
0

� �
; ð2Þ

where P Eρ1i jθ ; E
ρ
0

� �
is the probability of observing evidence Eρ1i for

the i-th employee.
Note that the likelihood for the i-th worker can be obtained as a

function of the accident measure ρi, which is one of the values of
the random variable ρ that is in turn distributed according to
φ ρjθ� �

. Therefore, we calculate the probability of observing the
evidence E1i by allowing the accident measure to assume all
possible values, i.e., by averaging P Eρ1i jθ ; E

ρ
0 ;ρi

� �
over the dis-

tribution of ρ:
P Eρ1i jθ ; E

ρ
0

� �¼ R
ρP Eρ1i ρ; E

ρ
0

�� �
Uφ ρ θ

�� �
Udρ

��
which can be replaced into Eq. (2) to obtain the likelihood

function by using the whole available information.
3. BPVA and Markov-based integrated model for estimating
occupational measures

3.1. Exposure data: The worker’s timeline

The exposure data (type Eρ1 evidence) is used to formulate the
likelihood function of the Bayesian model described in the previous
section. The likelihood model, which is proposed in Section 3.2,
uses run-time data in the form of the number of events, which
occurred during the exposure time. We assume all occupational
accidents are fairly reported and recorded and the forms used to
register them contain the accident date and the duration of the
recovery time from that accident. In addition, data on the dates of
admission and dismissal of each worker are required.
Indeed, the run-time data may be constructed from the time-
lines of the population of workers as described in Fig. 1, which
shows the timelines for a workplace with m¼ 12 workers over a
period starting at TS and ending at TF , where TSiZTS and TFirTF

are, respectively, the starting and end times for the i-th worker, for
i¼ 1;…;m. Over the interval ½TSi;TFi�, the i-th worker may be
involved in Ki accidents. The elapsed working time ti;j corresponds
to the time interval between the day when the i-th worker is
recovered after the ðj-1Þ-th accident and the day of the j-th acci-
dent ðj¼ 1;2;…;KiÞ; the respective recovery time is denoted by ri;j.
The time range between the recovery from the last accident, Ki,
and TFi is denoted by si over which no accident takes place.

In Fig. 1, the starting points TS1, TS2, TS3, TS6, TS7, TS9, TS10 and
TS11 coincide with TS, which means these workers were hired
before or at TS, while the end times TF1, TF2, TF3, TF4, TF5, TF7, TF10

and TF11 overlap TF , i.e., the workers 1, 2, 3, 4, 5, 7, 10 and 11
remained working at least by TF . Workers 1, 2, 3, 7, 10 and 11 were
observed from TS to TF , while the others worked for a fraction of
this time. Workers 3, 5, 8 and 11 had no accidents; then,
s3 ¼ TF3�TS3, s5 ¼ TF5�TS5, s8 ¼ TF8�TS8 and s11 ¼ TF11�TS11. The
contract of worker 9 expired when he returned from the last
accident, thus s9 ¼ 0; this situation may not be allowed in accor-
dance with some national labor regulations that prevent workers
to be fired during a specified period after their recovery from an
accident.

Finally, the end time (TF ) occurs before worker 10 is back
to work. Thus, the recovery time r10;1 is said to be censored
and s10 ¼ 0. Note that Ti ¼

PKi
j ¼ 1 ti;j

� �
þsi ¼ TFi�TSi�Ri (where

Ri ¼
PKi

j ¼ 1 ri;j) represents the total time for which the i-th
worker was submitted to the risks of occupational accidents, i.e.,
Ti is the total exposure time of the i-th worker. Thus, the run-time
data of the i-th worker are the pairs Ki; Tif g and KRi;Rif g, which are
quantities necessary for the analysis of the rates of accident and
recovery respectively. Note that KRi, which is the number of
recoveries of the i-th worker, may be equal to either Ki or to Ki�1
(when the last recovery time ri;j is censored, as in the case of
worker 10). Table 1 illustrates the exposure data extracted from
Fig. 1, where Eλ1 and Eμ1 correspond to type Eρ1 evidence for the
analysis of the rates of accident ρ¼ λ and recovery ρ¼ μ
respectively.

Furthermore, for some type of analysis such as work time loss,
only accident with sick leave is relevant. In this case, the accidents
without time loss are not considered in the timeline construction
phase. For example, Table 2 displays the exposure data for workers
6 and 7 when we only consider the accidents with leave of
absence. In Table 2, K6 ¼ 0 and K7 ¼ 1, while K6 ¼ 1 and K7 ¼ 3 in
Table 1, given that worker 6 did not have accidents with time loss
and the worker 7 suffered two accidents without time loss.

This section has provided an overview of the type E1 evidence
necessary for the likelihood function Eρ1 construction in the BPVA.
Despite its complexity, the model requires simple data likely to be
available in the company database. Relevant data to use the
models include only the number of workdays, the workdays lost
due to recovering from occupational accidents, and the number of
occupational accidents over the period of observation for each
worker. The following section develops the BPVA for occupational
accidents based on these data.

3.2. BPVA

3.2.1. The likelihood function
In order to perform a population variability analysis for an

accident measure ρ of interest we need to specify an appropriate
PVD φ ρjθ� �

to define the underlying variability ofρ. The specifi-
cation of φ ρjθ� �

may be guided by the nature of the accident



Table 1
Exposure data (E1 evidence).

Worker(i) Eλ1 Eμ1

Ki Ti KRi Ri

1 1 t1;1þs1 1 r1;1
2 2 t2;1þt2;2þs2 2 r2;1þr2;2
3 0 s3 – –

4 1 t4;1þs4 1 r4;1
5 0 s5 – –

6 1 t6;1þs6 1 r6;1
7 3 t7;1þt7;2þt7;3þs7 3 r7;1þr7;2þr7;3
8 0 s8 – –

9 1 t9;1 1 r9;1
10 1 t10;1 0 r10;1
11 0 s11 – –

12 2 t12;1þt12;2þs12 2 r12;1þr12;2

Table 2
Run-time data of the workers 6 and 7 for accidents with time loss.

Worker (i) Eλ1 Eμ1

Ki Ti KRi Ri

6 0 t6;1þs6 � �
7 1 t7;1þt7;2þt7;3þs7 1 r7;2

 

TF2 s2 r2,2 t2,2 r2,1 t2,1 TS2 

TF3 s3 TS3 

TF5 s5 TS5 

TF4 s4 r4,1 t4,1 TS4 

TF6 s6 r6,1 = 0t6,1 TS6 

t7,3 r7,3 = 0 TF7 s7 r7,2 t7,2 r7,1= 0 t7,1 TS7 

TF8 s8 TS8 

TF9 r9,1 t9,1 TS9 

TF10 r10,1 t10,1 TS10 

r12,2 t12,2 TF12 s12 r12,1 t12,1 TS12 

TF11 s11 TS11 

t1,1 r1,1 s1 TF1 TS1 

TS TF 

Start (TSi) Accident Back to work Finish (TFi)

Work time (ti,j; si) Recovery time (ri,j) 

Fig. 1. Timelines for a workplace with 12 workers. Adapted from Marcoulaki et al. [27].
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measure. Due to conceptual similarities in the analyzed quantities,
we assume that the population variability of the unknown acci-
dent measure ρ is given by a Lognormal distribution as in Droguett
et al. [13]. Then,

φ ρjθ� �¼φ ρjv; τ� �¼ 1ffiffiffiffiffiffi
2π

p
ρτ

e� 1
2

ln ρ� v
τ

� �2

; ð3Þ

where v and τ are the mean and standard deviation of the natural
logarithm of ρ.

The likelihood is a data-driven function that depends on the
type of the available evidence. Let us assume that the available
sources of evidence (type Eρ1 evidence) are run-time data

qi;wi
� �

; i¼ 1;…m
� 	

, where qi ¼ Ki and wi ¼ Ti if the analysis is for
the rate of accident ρ¼ λ or qi ¼ KRi and wi ¼ Ri if the analysis is for
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the rate of recovery ρ¼ μ; these quantities are obtained as dis-
cussed in the previous section. If we know the accident measure ρi

of each worker i¼ 1;…;m, we can use the Poisson distribution to
estimate the likelihood of observing qi events over time wi [13]:

P qi;wi jρi; E0
� �¼ ðρi:wiÞqi :e�ρi :wi

Γðqiþ1Þ ð4Þ

As we only know that ρi is one of the possible values of variable
ρ which is distributed according to φ ρjv; τ� �

, we average the
likelihood given by Eq. (4) over all possible values of ρ in order to
calculate the probability of the data unconditional on the
unknown value of ρ:

Pðqi;wi v; τ; E0j Þ ¼
Z
ρ
P qi;wi ρ; E0

�� �
Uφ ρ v; τj ÞUdρ;�� ð5Þ

Replacing (3) and (4) in to Eq. (5), we have:

P Eρ1 jv; τ; E
ρ
0

� �¼ Z
ρ

ρ:wi
� �qi :e�ρ:wi

Γ qiþ1
� � :

1ffiffiffiffiffiffi
2π

p
ρτ

e� 1
2

ln ρ� v
τ

� �2

dρ
̇

ð6Þ
πρ1 v; τjEρ0 ; E
ρ
1

� �¼
∏
m

i ¼ 1

R
ρ
ρ:wið Þqi :e� ρ:wi

Γ qi þ1ð Þ : 1ffiffiffiffiffi
2π

p
ρτ
e� 1

2
ln ρ� v

τ

� �2

dρ

" #
U f LN ρ50

� �
:f LN EFρ

� �
:1:645ev:e1:645τ

R
v

R
τ ∏

m

i ¼ 1

R
ρ
ρ:wið Þqi :e� ρ:wi

Γ qi þ1ð Þ : 1ffiffiffiffiffi
2π

p
ρτ
e� 1

2
ln ρ� v

τ

� �2

dρ

" #
U :f LN ρ50

� �
:f LN EFρ

� �
:1:645ev:e1:645τ :dv:dτ

ð10Þ
where ρ¼ λ or ρ¼ μ: Then, the total likelihood is obtained by
replacing (6) into Eq. (2).

P Eρ1 jv; τ; E
ρ
0

� �¼∏m
i ¼ 1

Z
ρ

ρ:wi
� �qi :e�ρ:wi

Γ qiþ1
� � :

1ffiffiffiffiffiffi
2π

p
ρτ

e� 1
2

ln ρ� v
τ

� �2

dρ
̇

ð7Þ

3.2.2. The prior distribution
The proposed procedure involves the specification of an

informed continuous prior distribution over the parameter space θ
of the variability model. This prior state of knowledge is the type
Eρ0 evidence and it may be estimated by either “top-down” or
“bottom-up” data. Then, the analyst is required to provide central
value estimates and the extent of variability for the population
variability parameters (θ).

Following the multiplicative error model proposed in Droguett
and Mosleh [15] and Droguett and Mosleh [16], if these estimates
are specified in terms of a median (central value estimate) and the
error factor (extent of variability), they take the form of Lognormal
distributions. Indeed, if θk

50 and EFθk are the median and the error

factor of the k-th parameter θk (k¼ 1;…; r), then the probability
density over θk can be represented by Eq. (8):

f LN
�
θk θk

50; EFθk

��� �
¼ 1ffiffiffiffiffiffi

2π
p

:θk
50:

lnEF
θk

1:645

e
� 1

2

lnθk � lnθk
50

lnEF
θk

=1:645


 �2

; ð8Þ

where f LN :ð Þ is the lognormal density function.
As v and τ are in a natural scale, Droguett et al. [13] suggested

that the prior distributions were specified over the median
(ρ50 ¼ ev) and the error factor (EFρ ¼ e1:645τ) of the variability
measure ρ instead of over the mean (v) and standard deviation (τ).
Thus, by considering that the population variability parameters are
independent, the prior density over the model’s parameter space
(v, τ) is then found by applying the standard density
transformation given as follows [13]:

πρ0 v; τð Þ ¼ f LN ρ50

� �
:f LN EFρ

� �
:
∂ ρ50; EFρ
� �
∂ v; τð Þ

����
����

¼ f LN ρ50 jα; δ
� �

:f LN EFρ jβ; ε
� �

:1:645ev:e1:645τ
̇

ð9Þ

where α and β are the median estimates of ρ50 and EFρ respec-
tively, and δ and ε are the error factor estimates of ρ50 and EFρ
respectively. Other prior specifications are discussed in Kaplan
[23] and Pörn [35].

3.2.3. A posterior distribution specification and the variability
measures

The likelihood function and prior distribution have been
incorporated in a Bayesian inference procedure in which the
posterior density πρ1 θE

� �
is computed for either ρ¼ λ or ρ¼ μ. If

the likelihood function and prior distribution are given as in (7)
and (9), then the posterior distribution of the population varia-
bility parameters in Eq. (1) can be rewritten as Eq. (10).
Then, as Eq. (10) is not analytically obtainable, it is estimated by
using a MCMC-based method [19]. Thus, a N-sample set S¼
ðv1; τ1Þ;…; ðvN ; τNÞ

� 	
representing the posterior density over the

parameters of the variability distribution model φ ρjv; τ� �
is gen-

erated from Eq. (10) and the estimated population variability
density is computed as p̂ ρ

� �¼ 1
N

PN
k ¼ 1 φ ρjvk; τk

� �
. The corre-

sponding mean and variance are computed as η̂ρ ¼ 1
N

PN
k ¼ 1 η

vk; τkð Þ and σ̂ ρ
2 ¼ 1

N

PN
k ¼ 1 σ

2 vk; τkð Þ, where η v; τð Þ and σ2 v; τð Þ are
the mean and variance of φ ρjv; τ� �

.
Furthermore, the generated results include uncertainty bounds

of the cumulative variability distribution P̂ ρ
� �¼ R ρ

x ¼ 0 p̂ xð Þdx in the
form of z-th percentiles P̂ z ρ

� �
. The z-th percentile is determined

by finding the value P̂ z ρ
� �

for which a fraction z=100 of the
samples satisfies

R ρ
x ¼ 0 φ xjvk; τkð Þdxo P̂ z ρ

� �
. These bounds provide

the analyst a basis to assess the uncertainty associated with the
estimated PVD over ρ.

3.3. Markov-based model for estimation of occupational measures

Given the percentiles over the rate of accident ρ¼ λ and the
rate of recovery ρ¼ μ, a two-state continuous Markov process as
shown in Fig. 2 may be used to characterize the random behavior
of an accident-recovery process of a representative worker. By
representative worker, we mean an employee that describes the
behavior of any worker at the workplace and whose rates of
accident and recovery are drawn as an average of the rates of all
individuals within the population. Thus, a metric (e.g., the
expected number of accidents) for the whole population of
workers may be obtained by multiplying the number m of workers
by the estimate obtained for the representative worker.

In Fig 2, if the worker is in first state, he/she is performing his/
her function normally, whereas if he/she is in the second state he/
she is recovering from an accident (on sick leave). Then, this model
will be adopted in order to estimate (i) the expected number of
accidents and (ii) the unavailability and work time loss.



Fig. 3. Methodology: integrating BPVA and Markov models for estimating occu-
pational measures.

Fig. 2. Markov’s diagram for the accident-recovery process of a representative
worker.
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To this end, consider the transitions between states 1 and
2 take place according to the rates of accident λl and recovery μl

that are random variables whose cumulative variability distribu-
tions P̂ λ

� �
and P̂ μ

� �
are estimated from the BPVA procedure

described in the previous sections. The uncertainty over the rates
of accident and recovery is here propagated by a Monte Carlo-
based method through which it is possible to sample B values of λl
and μl, l¼ 1;…;B, and then estimate the measures of interest by
solving B times the Markov process of Fig 2. Thus, we can compute
the average, variance and confidence intervals over the indicators
of interest.

Fig 3 illustrates the proposed methodology highlighting the
integration between the BPVA and Markov models. The next three
sections explain this procedure to estimate the expected number
of accidents, the unavailability and work time loss.

3.3.1. Expected number of accidents
As represented in Fig 2, an occupational accident happens

when a transition from state 1 to state 2 takes place. Therefore, the
number of accidents of a representative worker is related to the
frequency the process visits state 2. Then, the expected number of
occupational accidents suffered over a period of time t is the
expected number of visits to state 2 up to t, HlðtÞ, which is given as
HlðtÞ ¼ μl

λl þμl
λlt.

Then, we generate a sample set containing B pairs (λl;μl), l¼ 1
;…;B (B being large enough) from P̂ λ

� �
and P̂ μ

� �
distributions, and

the curve HðtÞ of the expected number of visits to state 2 up to t
within the worker’s population is estimated as HðtÞ ¼ 1

B

PB
l ¼ 1

HlðtÞ ¼ t
B

PB
l ¼ 1

μl :λl
λl þμl

. The expected number of occupational acci-

dents occurred in a workplace with m workers, for which dis-
tributions of the rates of accident and recovery are estimated by
P̂ λ
� �

and P̂ μ
� �

, over a period of time t is calculated as

E N tð Þ½ � ¼m:H tð Þ ¼m:t
B

XB

l ¼ 1

μl:λl
λlþμl

ð11Þ

3.3.2. Unavailability and work time loss
The unavailability UðtÞ is the probability that the Markov pro-

cess is in state 2 at time t. The steady-state value of UðtÞ defined by
U ¼ lim

t-1
UðtÞ represents the expected time fraction over which the

worker will stay in state 2, i.e., the expected unavailable time.
Thus, the Ul are formulated for B pairs (λl;μl), l¼ 1;…;B as
Ul ¼ λl

λl þμl
.

Similarly to what has been done for the expected number of
accidents, we can define the average of the steady-state unavail-
ability curve from the sample set of B pairs (λl;μl), l¼ 1;…;B as
U ¼ 1

B

PB
l ¼ 1

λl
λl þμl

. Finally, the expected work time loss (or the total
expected time in recovery) during a given time t is calculated as
E Ll tð Þ½ � ¼ t:Ul [27]. Then, in a workplace with m workers, the total
expected work time loss over (0, t] can be estimated as

E L tð Þ½ � ¼m:t:U ¼m:t
B

XB
l ¼ 1

λl
λlþμl

ð12Þ

3.3.3. The uncertainty over the expected estimates
The estimates of the measures of interest presented in the

previous sections are point estimates in form of expected values of
number of accidents (E N tð Þ½ �) and work time loss (E L tð Þ½ �). It is also
interesting to obtain the uncertainty bounds in terms of z-th
percentiles in order to provide a probability interval for the
quantitiesN tð Þ, and L tð Þ, which may be achieved from the uncer-
tainty bounds, P̂ z ρ

� �
, defined in Section 3.2.3. Therefore, the z-th

percentiles corresponding to the uncertainty about the expected
number of accidents (E Nz% tð Þ½ �) and the expected work time loss
(E Lz% tð Þ½ �)) may be obtained as follows:

I. Generate λl from P̂ λ
� �

and μl from P̂ μ
� �

;
II. Estimate the measures HlðtÞ, and LlðtÞ as in previous sections;
III. Repeat the steps I, and II by a number of l¼ 1;…;B times (B

being large enough). Then, we will obtain a set of B different
estimates representing the distribution corresponding to the
uncertainty about the estimated measures HlðtÞ, and LlðtÞ.
Thus, the z-th percentiles of E Nz% tð Þ½ � and E Lz% tð Þ½ � are given
from the set containing the B estimates HlðtÞ, and LlðtÞ as well
as the expected values E N tð Þ½ � and E L tð Þ½ � computed in pre-
vious sections.

In the next section, we illustrate and discuss the use of the
BPVA-Markov model by means of one example, which applies the
proposed model for a real case of a hydropower company in Brazil
with the purpose of validating the model, forecasting and ana-
lyzing the workplace occupational measures.
4. Application example

4.1. Description of the problem

In this section, the BVPA-Markov procedure is applied to a real
dataset obtained for a hydropower company. Run-time data were
collected from 01/01/2005 to 12/31/2010 in order to construct the
workers timeline (Fig 1) and the likelihood function (Eq. (6)). Then,
the BVPA is applied in order to assess the population variability
distributions of the rates of accidents and recovery of a population
of transmission lines and electrical maintenance workers of a
hydropower company. Note that our focus here is on the type of
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worker and not on the type of accident that this worker may
suffer. In fact, all records of accidents available in the dataset for a
given worker were considered. It is important to emphasize that
we may also focus on different types of accidents for a same
worker. In this situation, we would need to divide the dataset into
categories in accordance with the type of accident (e.g. falling,
slipping, stumbling, etc.).

The model is applied for evaluating the occupational measures
of interest due to only the occurrence of accidents with time loss
and, therefore, the run-time data were obtained as given in
Table 2; then, this dataset is available in Table 3. For this popula-
tion, 232 workers were analyzed (summing up 453,081 men-days
of work) for which 50 accidents were recorded, involving 40
workers. From the 40 workers who had accidents, 4 suffered two
accidents and 3 had three accidents. The others 33 workers had
only one accident. Thus, no accident was observed for 192 out of
232 workers (see Table 3).

4.2. BVPA-Markov analysis

The prior distributions are chosen as in Eq. (9), i.e., they are for-
mulated over the median and the error factor (PVD parameters). As
“top-down”, “bottom-up” and expert opinions are not here available
to construct the prior distributions, the prior estimates were obtained
from statistics extracted from the exposure data. We can consider the
data usage in order to obtain the prior estimates under the hypothesis
that the experts build their opinions based on their experience, which
depends on the events that they observed, i.e., on the dataset itself.

Therefore, let a, b, c and d be the parameters of the prior dis-
tribution defined over the parameters of the accident rate PVD and
e, f, g and h be the parameters of the prior distribution over the
parameters of the recovery rate PVD. Indeed, consider a and e are
the median estimates, b and f are the error factors of the medians,
c and g are the value central estimates of the error factors, d and h
are the error factors of the error factors. These quantities are here
estimated as follows:

� The parameters a and e can be estimated as the 50-th percentile
of the data set formed by the ratio between the number of events

and the exposure time of each injured worker, i.e., a¼median

Kj

Tj

� �
and e¼median KRj

Rj

� �
, where jA ijworkeriwasinjured

� 	
;

� According to Mosleh [29], the error factor can be written as the
ratio between the 95-th percentile and the median of the
distribution, thus the c and g parameters can be estimated as:

c¼
95 th quantile

Kj
Tj

� �
median

Kj
Tj

� � and g¼
95 th quantile

KRj
Rj

� �
median

KRj
Rj

� � , with j defined as in

previous item;
� The extent of variability estimates can be interpreted as the

uncertainty measure that characterizes the confidence of the
analyst on the value central estimates (Section 3.2.2). Then, we
chose b, f, d and h parameters were fixed in the value 5;

Then, the parameters of the prior distributions were estimated
as a¼ 0:00046, b¼ 5, c¼ 2:99, d¼ 5, e¼ 0:106, f ¼ 5, g ¼ 3:17 and
h¼ 5. After solving the BVPA model, the PVD of the rates of acci-
dent and recovery were estimated and shown in Fig 4.

Note that in Fig 4(a) (distribution for the accident rate) the
uncertainty bounds found at the lowest values are wider than they
are for the highest ones. This behavior can be explained by the fact
that part of the distribution is highly influenced by those 192
workers for which no accident was observed, i.e., censored data.
This behavior is not observed in the estimated recovery rate
distribution (Fig 4(b)) because the censored data about the
non-injured workers are not considered in the construction of the
likelihood function of μ.

From these distributions, the Markov-based model was applied
to infer the expected number of accidents with time loss (Eq. (11))
and the expected work time loss (Eq. (12)). Table 4 shows the
expected number of accidents E N tð Þ½ � and the work time loss
E N tð Þ½ � for t ¼ 365 days, and the respective uncertainty bounds (5-
th and 95-th percentiles).

Note that the censored data (no accident observed for 192
workers) implies a strong impact on the uncertainty analysis.
However, this is (should be) the context possibly encountered in
accident analysis since many types of accidents are rather rare
events. Moreover, note that the run-time dataset gathered in
Table 3 corresponds to one of the various possible samples that
could be observed. Thus, the estimates given in Fig 4 and Table 4
could be different from the true measures since there still exists
uncertainty over the data collected.

4.3. Sensitivity analysis

It is interesting to assess the sensitivity of the model for dif-
ferent prior estimates, which in this case were previously obtained
from the dataset itself. Thus, we allowed the value central esti-
mates (a, c, e and g) to vary, resulting in 8 new estimated PVDs for
the accident rate and 8 new for recovery rate. Figs 5 and 6 show
these estimated distributions (and the corresponding uncertainty
bounds) for different combinations of a, c, e and g.

From the shape and scale of the distributions, we can verify
that no significant variation is observed for the estimated dis-
tributions. The highest average of the expected PVDs of the acci-
dent rate was 0.00021 while the smallest was 0.00015. For the
recovery rate, these values are 0.102 and 0.0912. Furthermore, the
Markov-based model was applied using all combinations of dis-
tributions of the accident and recovery rates and the highest and
the smallest expected number of accidents with time loss were
10.89 and 9.99, and the highest and the smallest expected work
time loss were 264.19 and 220.57. These results show the proposed
model is not too sensitive to the prior estimates. This is a rather
important result especially in this case, for which “top-down”,
“bottom-up” and experts opinions are not available to feed the
prior model.

4.4. The impact of (not) considering inhomogeneity

The BVPA model applied in this real case provides estimations
for PVDs of the rates of accident and recovery. To evaluate the
application of the proposed model we also predicted the measures
E N tð Þ½ � and E L tð Þ½ � by using values of λ̂ and μ̂ given by Maximum
Likelihood Estimators (MLE). In this case, we assume that all
company workers would have homogeneous behavior in terms of
the occurring (and recovering from) accidents.

Then, the estimators of λ and μ are given as λ̂ ¼ Pm
i ¼ 1

Ki=
Pm
i ¼ 1

Ti

and μ̂ ¼ Pm
i ¼ 1

KRi=
Pm
i ¼ 1

Ri, which are the MLE of the parameters of an

exponential distribution. The expected number of accidents E N tð Þ½ �
with time loss and the expected work time loss E L tð Þ½ � can be

estimated directly from Markov model equations by E N tð Þ½ � ¼m:t

μ̂ :λ̂
λ̂þ μ̂

and E L tð Þ½ � ¼m:t λ̂
λ̂þ μ̂

.

The uncertainty bounds of λ and μ can be calculated as λz% ¼

λ̂þG z%ð Þ � λ̂ffiffiffiffiffiffiffiffiffiP
Ki

p and μz% ¼ μ̂þG z%ð Þ � μ̂ffiffiffiffiffiffiffiffiffiffiffiP
KRi

p , where G z%ð Þ is

the z-th percentile of a variable that follows a Gaussian distribu-
tion with mean and standard deviation equal to 0 and 1,



Table 3
Run-time data used in the real case.

Worker(i) Ki Ti KRi Ri Worker(i) Ki Ti KRi Ri Worker(i) Ki Ti KRi Ri

1 0 2191 – – 79 0 2191 – – 157 0 2191 – –

2 0 2191 – – 80 0 2191 – – 158 0 2191 – –

3 0 2191 – – 81 0 2191 – – 159 1 2105 1 –

4 0 2191 – – 82 1 1986 1 205 160 0 2191 – –

5 0 2191 – – 83 0 2191 – – 161 3 2163 3 –

6 0 2191 – – 84 0 2191 – – 162 1 2158 1 –

7 0 2191 – – 85 0 2191 – – 163 0 2191 – –

8 0 2191 – – 86 0 2191 – – 164 0 2191 – –

9 0 57 – – 87 0 2191 – – 165 0 2191 – –

10 0 2191 – – 88 0 2191 – – 166 1 2189 1 –

11 0 2191 – – 89 0 2191 – – 167 2 2172 2 –

12 0 2191 – – 90 0 2191 – – 168 0 2191 – –

13 1 2176 1 15 91 0 2191 – – 169 0 2191 – –

14 1 2184 1 7 92 0 2191 – – 170 2 2186 2 –

15 0 2191 – – 93 0 2191 – – 171 0 2191 – –

16 0 2191 – – 94 0 2191 – – 172 0 2191 – –

17 0 2191 – – 95 0 2191 – – 173 0 2191 – –

18 0 2191 – – 96 0 2191 – – 174 0 2191 – -
19 0 2191 – – 97 0 2191 – – 175 1 2188 1 3
20 0 2191 – – 98 0 2191 – – 176 0 2191 – –

21 1 2177 1 14 99 0 2191 – – 177 1 2175 1 16
22 0 2191 – – 100 0 2191 – – 178 0 2191 – –

23 0 2191 – – 101 0 2191 – – 179 0 2191 – –

24 0 2191 – – 102 0 2191 – – 180 0 2191 – –

25 0 2191 – – 103 0 2191 – – 181 0 2191 – –

26 0 2191 – – 104 0 2191 – – 182 0 2191 – –

27 0 2191 – – 105 0 2191 – – 183 0 2191 – –

28 0 2191 – – 106 0 2191 – - 184 0 2191 - –

29 0 2191 – – 107 1 2114 1 77 185 1 2186 1 –

30 0 2191 – – 108 0 2191 – – 186 0 2191 – –

31 0 2191 – – 109 0 2191 – – 187 0 2191 – –

32 0 2191 – – 110 3 2147 3 44 188 0 2191 – –

33 0 2191 – – 111 1 2178 1 13 189 1 2183 1 –

34 0 2191 – – 112 0 2191 – – 190 0 2191 – –

35 1 2184 1 7 113 0 2191 – – 191 3 2174 3 17
36 0 2191 – – 114 1 2166 1 25 192 2 2180 2 11
37 0 2191 – – 115 0 2191 – – 193 1 2188 1 3
38 1 2186 1 5 116 0 2191 – – 194 0 2191 – –

39 0 2191 - – 117 0 2191 – – 195 1 2014 1 12
40 1 2011 1 180 118 0 2191 – – 196 0 1904 – –

41 0 2191 – – 119 0 2191 – – 197 1 1746 1 15
42 0 2191 – – 120 1 2176 1 15 198 0 1642 – –

43 0 2191 – – 121 0 2191 – - 199 1 1633 1 9
44 0 2191 – – 122 2 2171 2 20 200 1 1627 1 15
45 0 2191 – – 123 0 2191 – – 201 1 930 1 3
46 0 2191 – – 124 0 2191 – – 202 0 933 – –

47 0 2191 – – 125 0 2191 – – 203 1 926 1 7
48 0 2191 – – 126 1 2183 1 8 204 1 927 1 6
49 0 2191 – – 127 0 2191 – – 205 0 933 – –

50 0 2191 – – 128 0 2191 – – 206 0 933 – –

51 0 2191 – – 129 0 2191 – – 207 0 933 – –

52 0 2191 – – 130 0 2191 – – 208 0 933 – –

53 0 2191 – – 131 0 2191 – – 209 0 933 – –

54 0 2191 – – 132 0 2191 – – 210 0 933 – –

55 0 2191 – – 133 0 2191 – – 211 0 933 – –

56 0 2191 – – 134 1 2188 1 3 212 0 933 – –

57 0 2191 – – 135 0 2191 – – 213 0 625 – –

58 0 2191 – – 136 0 2191 – – 214 0 625 – –

59 0 2191 – – 137 0 2191 – – 215 0 625 – –

60 0 2191 – – 138 0 2191 – – 216 0 625 – –

61 0 2191 – – 139 0 2191 – – 217 0 625 – –

62 0 2191 – – 140 0 2191 – – 218 0 625 – –

63 0 2191 – – 141 0 2191 – – 219 0 625 – –

64 1 2171 1 20 142 0 2191 – – 220 0 625 – –

65 0 2191 – – 143 0 2191 – – 221 0 625 – –

66 0 2191 – – 144 0 2191 – – 222 0 625 – –

67 0 2191 – – 145 0 2191 – – 223 0 625 – –

68 0 2191 – – 146 0 2191 – – 224 0 625 – –

69 0 2191 – – 147 0 2191 – – 225 0 113 – –

70 1 2176 1 15 148 0 2191 – – 226 0 113 – –

71 0 2191 – – 149 1 2184 1 7 227 0 113 – –

72 0 2191 – – 150 0 2191 – – 228 0 113 – –

73 0 57 – – 151 0 2191 – – 229 0 113 – –

74 0 2191 – – 152 1 2176 1 15 230 0 113 – –

75 0 2191 – – 153 1 2182 1 9 231 0 113 – –
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Table 3 (continued )

Worker(i) Ki Ti KRi Ri Worker(i) Ki Ti KRi Ri Worker(i) Ki Ti KRi Ri

76 0 2191 – – 154 0 2191 – – 232 0 2191 – –

77 0 2191 – – 155 0 2191 – –

78 0 2191 – – 156 0 2191 – –

Fig. 4. Population variability cumulative distribution functions of the rates of accident (a) and recovery (b).

Table 4
Number of accidents and work time loss and estimates from proposed model for
t ¼ 365 days obtained by BVPA-Markov model.

Estimate E N tð Þ½ � E L tð Þ½ �

Expected 10.51 238.38
5-th percentile 6.22 82.05
95-th percentile 14.81 477.44
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respectively. The uncertainty bounds of E N tð Þ½ � and E L tð Þ½ � (E N tð Þ½ �z%
and E L tð Þ½ �z%) can be obtained by the following procedure:

i. Generate u1 e u2 as random variables uniformly distributed
between 0 and 100;

ii. Compute E N tð Þ½ � and E L tð Þ½ � using λu1% and μu2%
rather than λ̂

and μ̂;
iii. Repeat the previous steps D times (D being large enough) and
iv. Make E N tð Þ½ �z% and E L tð Þ½ �z% equal to the z-th quantile of the set

containing D different estimates to E N tð Þ½ � and E L tð Þ½ �.

By doing that, the accident and recovery rates were estimated
as λ̂ ¼ 0:00011 and μ̂ ¼ 0:0497. The occupational measures are
presented in Table 5 considering a time interval of 365 days.

First, note that, as pointed out by Fragola [17], as inhomoge-
neous data were aggregated as if they were homogeneous in
Table 5, the confidence intervals obtained by the MLE-Markov
model are narrower than those estimated by BVPA-Markov
approach. However, even though in Table 5 the rates of accident
and recovery are better estimated in accordance with the statis-
tical sense, those occupational measures are less descriptive of
each subpopulation (worker) that composes the mixture than
those of Table 4 since inhomogeneity is not considered in this
section.

Yet, the real data of the 2011 year was collected in order to
compare them with predictions obtained from proposed model as
well as the MLE-based model. Table 6 summarizes the accident
data in that year. The proposed model presented a better result
than the MLE-based model once the measures estimated from the
proposed model are closer to the real data than ones estimated
from the MLE-based model. Furthermore, the probability intervals
obtained from the proposed model contain the real values, where
as the confidence interval for the work time loss estimated from
the MLE-based model does not contain the real observed value.

Also, all predicted occupational measures from MLE-based
model are smaller than the ones obtained from proposed model.
These results show that the MLE-based model tends to predict
fewer values for the occupational measures. This behavior may be
explained by the event 0 data, i.e., those workers for which no
accidents were observed. The MLE model underestimates the
accident rate while the proposed model is able to cope with the
impact of the censored data. Thus, these results provide evidence
in favor of the proposed Bayesian model as an efficient approach to
represent the actual workplace.
5. Concluding remarks

The proposed model discussed in this paper is based on the
Bayesian Population Variability Analysis method, which allows
evaluating the population variability distributions of the rates of
accidents and recovery from run-time data of workers submitted
to the same occupational risks. The population variability analysis
approach permits uncertainty assessment on these quantities of
interest, which in turn feed a two-state Markov-based model
adopted to estimate occupational measures such as the expected
number of accidents and the expected work time loss
distributions.

The model here developed can be informed using available
databases of occupational accidents documented in the industry.
Data requirement for using the proposed model are very mild
from a practical standpoint, and include only the number of
workdays, the workdays lost due to recovering from occupational
accidents, and the number of occupational accidents over the
period of observation for each worker. In addition, the model
requires prior estimates about the rates of accident and recovery
in form of central value and extent of variability, which can be
obtained from “top-down” or “bottom-up” data. Moreover, the
sensitivity analysis of the Section 4 shown that reasonable prior
estimates can be obtained from the exposure dataset itself.

An example has shown that the numerical solution of the
models is feasible and provides a good estimation for rates of
accident and recovery. The results show that by considering the
uncertainty bounds around the estimated distribution, it is in fact
possible to distinguish between regions of the distribution where



Fig. 6. Population variability distributions of the recovery rate for different prior parameters.

Table 5
Number of accidents and work time loss and estimates from MLE and Markov
based model, not considering inhomogeneity.

Estimate E N tð Þ½ � E L tð Þ½ �

Expected 9.34 188.21
5-th percentile 7.17 130.94
95-th percentile 11.5 268.40

Table 6
Summary of accident data collected in 2011.

Data Value

Total of workers 232
Accidents with time loss 11
Total work time loss 269
Total of workers for which no accident with time loss was observed 221

Fig. 5. Population variability distributions of the accident rate for different prior parameters.
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we believe to have a good and a poor estimate. In addition, the
proposed model was compared to Maximum Likelihood Estima-
tors. The results showed that the proposed model presented a
representation of the real population whereas the maximum
likelihood estimators underestimate the occupational accidents
based on the estimated accident and recovery rates due to the
existence of censored data. The proposed model, therefore,
provides a better analysis to the accident and recovery rates and,
consequently, to the estimates of frequency of accidents and of
work time loss. Moreover, it is important to highlight that the
approach was thought to be applied on in-company data (where
the Bayesian approach is more needed) and that it is possible to
apply it on regular basis, for example, to support decision making
of national policies.

It is important here to point out also some limitations of the
proposed model. First, the model did not assume possible trends
on the rates of accidents and recovery over time, i.e., it is con-
sidered that the population variability distribution is the same
during the observation period and over the future period used for
prediction. Secondly, even though the proposed model only
requires, as input data, the number of workdays, the workday’s
loss, and the number of occupational accidents over the period of
observation for each worker, estimating the prior population
variability parameters involves a significant degree of knowledge
on probability distributions and on the variability of the rates of
accidents among workers. However, in the absence of this evi-
dence, the methodology also allows to estimate this information
from the available exposure data. Finally, the application example
developed in the paper did not distinguish the data into different
types of accidents. Thus, the required information was obtained
without discriminating the different modes of accidents (e.g.,
falling, slipping, stumbling, etc.). This means that the obtained
results are related to the total accident frequency and number of
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day’s loss due to any type of accidents suffered by transmission
lines and electrical maintenance workers of the hydropower
company considered in this paper. Nevertheless, the model is also
able to analyze different accident risks separately, supporting the
prioritization of preventive actions. To this end, it would be
necessary to collect the required information categorized for each
type of accidents.

To conclude, tailoring of this model to also consider accidents
without time loss and the possibility of changing the population
variability distribution over time are topics of ongoing research.
While the former issue is important as a precursor to prevent the
occurrence of more severe accidents, the latter may be done by
proposing a model for population variability analysis of non-
homogeneous rates.
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