TABLA DE CONTENIDO

1	I	NT	ROI	DUCCIÓN	1
	1.1		Obj	etivos	3
	1.2		Alca	ance de cada capítulo	3
2	2 ANTECEDENTES				5
	2.1 Ensavos de BRB				5
	2.2		Prot	tocolo de carga	11
	2.3 Sistema de ensayo		ema de ensayo	12	
2.3.1 Apoyos fijos		1	Apoyos fijos.	12	
	2	2.3.	2	Apoyo deslizante.	14
	2	2.3.	3	Conexión Gusset	15
	2.4		Sist	ema de control y adquisición	16
	2	2.4.	1	Sistema de control	16
	2	2.4.	2	Sistema de adquisición	17
3	F	PR	OPIE	EDADES DE LOS MATERIALES	19
	3.1		Pro	piedades del material confinante	19
	3	3.1.	1	Ensayo de tracción del elastómero	19
	3	3.1.	2	Ensayo de corte directo.	24
	3.2		Pro	piedades del núcleo acero	30
	3	3.2.	1	Ensayo de tracción del acero.	30
4	0	DIS	EÑC	O Y FABRICACIÓN DE LOS ARRIOSTRAMIENTOS CON PANDEO	
R	EST	ΓRΙ	NGI	IDO	37
	4.1		Con	nponentes	37
	4	1.1.	1	Núcleo del arriostramiento	37
	4	1.1.	2	Material confinante.	38
	4	1.1.	3	Camisa exterior	39
	4	1.1.	4	Interfaz núcleo de acero y material confinante.	40
	4.2		Fab	ricación	41
_	4.3		Prot	totipos a ensayar	47
5 Pl	ת רסד	ИЕ TO	TOE TIP(OOLOGIA DE MONTAJE, INSTRUMENTACION Y ENSAYO DE LOS OS	48
	5.1		Met	odología de montaje	48
	5.2		Met	odología de instrumentación	50
	5	5.2.	1	Instalación de strain gages	50
	5.2.2		2	Instalación de LVDTs	52

5	5.3	Met	odología de ensayo	56				
5	5.4	Met	odología de desmontaje	58				
6	PR	ESE	NTACIÓN Y ANÁLISIS DE RESULTADOS	59				
6	6.1	Ens	ayo prototipo A (BRB1)	59				
6	6.2	Ensayo prototipo B (BRB2).						
6	6.3	Ens	ayo prototipo C (BRB3)	62				
6	6.4	Ens	ayo prototipo D (BRB4)	63				
6	6.5	Aná	ilisis de resultados	64				
	6.5	.1	Ciclos de histéresis	65				
	6.5	.2	Curva de energía disipada en función del desplazamiento	66				
	6.5	.3	Historial de desplazamientos de sensores (LVDT)	66				
	6.5	.4	Historial de deformaciones de sensores (strain gage)	67				
	6.5	.5	Desplazamientos fuera del plano	67				
6	6.6	Cor	nparación con arriostramientos con material tradicional	78				
7	CO	NCL	USIONES	79				
7	7.1	Lim	itaciones y recomendaciones.	80				
BIE	BIBLIOGRAFÍA							

ÍNDICE DE FIGURAS

Figura 1.1: Comportamiento riostra típica y de pandeo restringido (Santelices, 2014)	1
Figura 1.2: Componentes de un arriostramiento de pandeo restringido	2
Figura 2.1: Ensayo BRB realizado por Black (Black et al. 2000)	6
Figura 2.2: Montaje experimental realizado por Black (Black et al. 2000)	6
Figura 2.3: Historial de desplazamiento y curva de histéresis (Black et al. 2000)	7
Figura 2.4: Sección transversal BRBs (Newell et al. 2006).	8
Figura 2.5: Montaje experimental (Newell et al. 2006).	9
Figura 2.6: Ubicación de potenciómetros (Newell et al. 2006)	9
Figura 2.7: Ciclos de histéresis prototipo 1G y 2G (Newell et al. 2006).	. 10
Figura 2.8: Ciclos de histéresis prototipo 3G y 4G (Newell et al. 2006).	. 10
Figura 2.9: Historial de desplazamiento aplicado al BRB (Espinoza 2016)	. 11
Figura 2.10: Vista en planta y elevación del sistema de ensayo (Espinoza 2016)	. 12
Figura 2.11: Apoyo fijo conectado al extremo del arriostramiento.	. 13
Figura 2.12: Apoyo fijo conectado al extremo del actuador	. 13
Figura 2.13: Apoyo deslizante.	. 14
Figura 2.14: Conexión placa Gusset con extremo del BRB.	. 15
Figura 2.15: Servo válvula de control MOOG (Espinoza 2016)	. 17
Figura 2.16: Esquema instrumentación (Espinoza, 2016).	. 18
Figura 3.1: Probetas de elastómero – Ensayo de tracción	. 19
Figura 3.2: Pieza estándar para cortar probetas de elastómero (ASTM D412-06a)	. 20
Figura 3.3: Curva tensión – elongación probetas Serie 1	. 22
Figura 3.4: Curva tensión – elongación probetas Serie 2	. 22
Figura 3.5: Curva tensión – elongación probetas Serie 3	. 23
Figura 3.6: Resumen curva tensión – elongación	. 23
Figura 3.7: Máquina de ensayo de corte directo.	. 24
Figura 3.8: Dimensiones probetas de corte directo.	. 25
Figura 3.9: Probetas de elástomero para ensayo de corte directo	. 25
Figura 3.10: Posición inicial probeta de corte directo.	. 26
Figura 3.11: Posición deformada probeta de corte directo	. 26
Figura 3.12: Módulo de corte en función de la deformación	. 29
Figura 3.13: Amortiguamiento en función de la deformación	. 29
Figura 3.14: Dimensiones probeta para ensayo de tracción (ASTM E8/E8M-15a)	. 30
Figura 3.15: Probetas para ensayo de tracción	. 31
Figura 3.16: Máquina universal INSTRON y extensómetro (Izquierda), instante previo	а
la fractura sin extensómetro (Derecha)	. 32
Figura 3.17: Comparación máquina universal (MU) y extensómetro (Ext) - Probeta 1.	33
Figura 3.18: Comparación máquina universal (MU) y extensómetro (Ext) – Probeta 2.	33
Figura 3.19: Comparación máquina universal (MU) y extensómetro (Ext) – Probeta 3.	34
Figura 3.20: Comparación máquina universal (MU) y extensómetro (Ext) – Probeta 4.	34
Figura 3.21: Curva tensión deformación de probeta plana de acero.	. 35
Figura 3.22: Fractura probetas planas de acero.	. 36
Figura 4.1: Dimensiones núcleo y atiesador de acero.	. 37
Figura 4.2: Formas de uso del elástomero	. 38
Figura 4.3: Dimensiones tubo de acero.	. 39
Figura 4.4: Superficie arenada – interfaz bonded.	. 40
Figura 4.5: Núcleo de acero sin atiesador	. 41

Figura 4.6: Atiesador para núcleo de acero.	41
Figura 4.7: Perforado y soldadura núcleo de acero y atiesador	41
Figura 4.8: Soldadura núcleo de acero y tope central	42
Figura 4.9: Perforaciones camisa exterior	42
Figura 4.10: Relleno con planchas de elastómero zona extrema	43
Figura 4.11: Relleno con planchas de elastómero zona central	43
Figura 4.12: Gancho guía en extremo del núcleo.	44
Figura 4.13: Incorporación núcleo-elastómero a la camisa exterior	44
Figura 4.14: Matriz del arriostramiento.	45
Figura 4.15: Fijación en el extremo del núcleo.	45
Figura 4.16: Invección elastómero por perforaciones	46
Figura 4.17: Matriz de pivotes para prensado.	46
Figura 4.18: Prensado de elastómero.	46
Figura 4.19: Tapas extremas	47
Figura 5.1: Instalación actuador hidráulico	48
Figura 5.2: Unión apernada actuador hidráulico y apoyo fijo	49
Figura 5.3: Unión actuador hidráulico y sistema móvil con pasador	49
Figura 5.4: Unión apernada arriostramiento y placa Gusset	50
Figura 5.5: Instalación de strain gages.	51
Figura 5.6: Conexión strain gages al sistema de adquisición.	51
Figura 5.7: Instalación sensores de desplazamiento longitudinal.	52
Figura 5.8: Instalación sensores de desplazamiento fuera del plano	53
Figura 5.9: Incorporación sensor de desplazamiento fuera del plano	53
Figura 5.10: Instalación sensores de desplazamiento fuera del plano cara superior	54
Figura 5.11: Conexión LVDTs al sistema de adquisición	54
Figura 5.12: Instrumentación arriostramiento.	55
Figura 5.13: Historial de desplazamiento – Prototipo A	56
Figura 5.14: Historial de desplazamiento – Prototipos B	57
Figura 5.15: Historial de desplazamiento – Prototipo C y D	57
Figura 6.1: Fractura núcleo de acero prototipo A	60
Figura 6.2: Configuración final prototipo B.	61
Figura 6.3: Fractura núcleo de acero prototipo C	64
Figura 6.4: Curva carga en función del desplazamiento del actuador	68
Figura 6.5: Curva carga en función del desplazamiento del núcleo	69
Figura 6.6: Energía disipada en función del desplazamiento	70
Figura 6.7: Degradación de la rigidez en función del desplazamiento	71
Figura 6.8: Historial de desplazamiento del núcleo de acero	72
Figura 6.9: Historial de desplazamiento relativo entre núcleo y camisa exterior	73
Figura 6.10: Historial de deformación longitudinal zona central.	74
Figura 6.11: Historial de deformación longitudinal cara inferior	75
Figura 6.12: Historial de deformación longitudinal cara superior	76
Figura 6.13: Historial de deformación transversal	77

ÍNDICE DE TABLAS

abla 3.1: Dimensiones pieza C (ASTM D412-06a)	20
abla 3.2: Resultados tensión-elongación probetas - Serie 1	21
abla 3.3: Resultados tensión-elongación probetas - Serie 2	21
abla 3.4: Resultados tensión-elongación probetas - Serie 3	21
abla 3.5: Módulo de corte y amortiguamiento – Deformación 50%	27
abla 3.6: Módulo de corte y amortiguamiento – Deformación 75%	27
abla 3.7: Módulo de corte y amortiguamiento – Deformación 100%	28
abla 3.8: Módulo de corte y amortiguamiento – Deformación 115%	28
abla 3.9: Resumen de módulo de corte y amortiguamiento	28
abla 3.10: Dimensiones probetas planas de acero ASTM A36	31
abla 3.11: Comparación módulo de Young entre máquina universal y extensómetro.	32
abla 3.12: Resumen propiedades de las probetas de acero	35
abla 5.1: Numeración de strain gages.	51
abla 5.2: Notación de LVDTs.	55
abla 6.1: Carga máxima en ciclos para el prototipo A	59
abla 6.2: Carga máxima en ciclos para el prototipo B	61
abla 6.3: Carga máxima en ciclos para el prototipo C.	62
abla 6.4: Carga máxima en ciclos para el prototipo D.	63
abla 6.5: Desplazamientos máximos fuera del plano	67
abla 6.6: Peso arriostramiento con relleno de elastómero.	78
abla 6.7: Peso arriostramiento con relleno de mortero.	78