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a b s t r a c t

Linearity and contiguity are two parameters devoted to graph encoding. Linearity is a
generalization of contiguity in the sense that every encoding achieving contiguity k induces
an encoding achieving linearity k, both encoding having sizeΘ(k.n), where n is the number
of vertices of G. In this paper, we prove that linearity is a strictly more powerful encoding
than contiguity, i.e. there exists some graph family such that the linearity is asymptotically
negligible in front of the contiguity. We prove this by answering an open question asking
for the worst case linearity of a cograph on n vertices: we provide an O(log n/ log log n)
upper bound which matches the previously known lower bound.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the most widely used operation in graph algorithms is the neighbourhood query: given a vertex x of a graph G,
one wants to obtain the list of neighbours of x in G. The classical data structure that allows to do so is the adjacency lists.
It stores a graph G in O(n + m) space, where n is the number of vertices of G and m its number of edges, and answers
a neighbourhood query on any vertex x in O(d) time, where d is the degree of vertex x. This time complexity is optimal,
as long as one wants to produce the list of neighbours of x. On the other hand, in the last decades, huge amounts of data
organized in the form of graphs or networks have appeared in many contexts such as genomic, biology, physics, linguistics,
computer science, transportation and industry. In the same time, the need, for industrials and academics, to algorithmically
treat this data in order to extract relevant information has grown in the sameproportions. For these applications dealingwith
very large graphs, a space complexity of O(n + m) is often very limiting. Therefore, as pointed out by [15], finding compact
representations of a graph providing optimal time neighbourhood queries is a crucial issue in practice. Such representations
allow to store the graph entirely in memory while preserving the complexity of algorithms using neighbourhood queries.
The conjunction of these two advantages has great impact on the running time of algorithms managing large amount of
data.
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One possible way to store a graph G in a very compact way and preserve the complexity of neighbourhood queries is to
find an order σ on the vertices of G such that the neighbourhood of each vertex x of G is an interval in σ . In this way, one
can store the order σ on the vertices of G and assign two pointers to each vertex: one towards its first neighbour in σ and
one towards its last neighbour in σ . Therefore, one can answer adjacency queries on vertex x simply by listing the vertices
appearing in σ between its first and last pointer. It must be clear that such an order on the vertices of G does not exist for all
graphs G. Nevertheless, this idea turns out to be quite efficient in practice and some compression techniques are precisely
based on it [1,3,4,2,13]: they try to find orders on the vertices that group the neighbourhoods together, as much as possible.

Then, a natural way to relax the constraints of the problem so that it admits a solution for a larger class of graphs is to
allow the neighbourhood of each vertex to be split in at most k intervals in order σ . The minimum value of k which makes
possible to encode the graph G in this way is a parameter called contiguity [11] and denoted by cont(G). Another natural
way of generalization is to use at most k orders σ1, . . . , σk on the vertices of G such that the neighbourhood of each vertex is
the union of exactly one interval taken in each of the k orders. This defines a parameter called the linearity of G [6], denoted
lin(G). The additional flexibility offered by linearity (using k orders instead of just 1) results in a greater power of encoding,
in the sense that if a graph G admits an encoding by contiguity k, using one linear order σ and at most k intervals for each
vertex, it is straightforward to obtain an encoding of G by linearity k: take k copies of σ and assign to each vertex one of its
k intervals in each of the k copies of σ .

As one can expect, this greater power of encoding requires an extra cost: the size of an encoding by linearity k, which uses
k orders, is greater than the size of an encoding by contiguity k, which uses only 1 order. Nevertheless, very interestingly,
the sizes of these two encodings are equivalent up to a multiplicative constant. Indeed, storing an encoding by contiguity
k requires to store a linear ordering of the n vertices of G, i.e. a list of n integers, and the bounds of each of the k intervals
for each vertex, i.e. 2kn integers, the total size of the encoding being (2k + 1)n integers. On the other hand, the linearity
encoding also requires to store 2kn integers for the bounds of the k intervals of each vertex, but it needs k linear orderings
of the vertices instead of just one, that is kn integers. Thus, the total size of an encoding by linearity k is 3kn integers instead
of (2k + 1)n for contiguity k and therefore the two encodings have equivalent sizes.

Then the question naturally arises to know whether there are some graphs for which the linearity is significantly less
than the contiguity. More formally, does there exist some graph family for which the linearity is asymptotically negligible
in front of the contiguity? Or are these two parameters equivalent up to a multiplicative constant? This is the question we
address here. Our results show that linearity is strictly more powerful than contiguity.

Related work. Only little is known about contiguity and linearity of graphs. In the context of 0−1matrices, [11,16] studied
closed contiguity and showed that deciding whether an arbitrary graph has closed contiguity at most k is NP-complete for
any fixed k ≥ 2. For arbitrary graphs again, [10] (Corollary 3.4) gave an upper bound on the value of closed contiguity which
is n/4 + O(

√
n log n). Regarding graphs with bounded contiguity or linearity, only the class of graphs having contiguity 1,

or equivalently linearity 1, has been characterized, as being the class of proper (or unit) interval graphs [14]. For interval
graphs and permutation graphs, [6] showed that both contiguity and linearity can be up toΩ(log n/ log log n). For cographs,
a subclass of permutation graphs, [8] showed that the contiguity can even be up toΩ(log n) and is alwaysO(log n), implying
that both bounds are tight. TheO(log n) upper bound consequently applies for the linearity (of cographs) aswell, but [8] only
provides an Ω(log n/ log log n) lower bound. Finally, let us mention for the sake of completeness that [7] gave an algorithm
that computes a constant ratio approximation of the contiguity of a cograph, as well as a corresponding encoding, in linear
time.

Our results. Our main result (Theorem 2) is to exhibit a family of graphs Gh, h ≥ 1, such that the linearity of Gh is
asymptotically negligible in front of the contiguity of Gh. In order to do so, we prove (Theorem 1) that the linearity of a
cograph G on n vertices is always O(log n/ log log n). It turns out that this bound is tight, as it matches the previously known
lower bound on the worst-case linearity of a cograph [8].

Outline of the paper. Section 2 gives necessary background on the notions used throughout the article. Section 3 proves the
key technical statement of our work, showing that the linearity of a cograph is dominated by themaximal height of a certain
type of tree, called double factorial tree, included in its cotree. From there, Section 4 derives our main results: the tight upper
bound on the linearity of cographs and the construction of a subfamily of cographs for which the linearity is negligible in
front of the contiguity.

2. Preliminaries

All graphs considered here are finite, undirected, simple and loopless. In the following, G is a graph, V (or V (G)) is its
vertex set and E (or E(G)) is its edge set. We use the notation G = (V , E) and n stands for the cardinality |V | of V (G). An edge
between vertices x and ywill be arbitrarily denoted by xy or yx. The (open) neighbourhood of x is denoted by N(x) (or NG(x))
and its closed neighbourhood by N[x] = N(x) ∪ {x}. The subgraph of G induced by the set of vertices X ⊆ V is denoted by
G[X] = (X, {xy ∈ E | x, y ∈ X}).

For a rooted tree T and a node u ∈ T , the depth of u in T is the number of edges in the path from the root of T to u (the
root has depth 0). The height of T , denoted by h(T ), is the greatest depth of its leaves. We employ the usual terminology for
children, father, ancestors and descendants of a node u in T (the two later notions including u itself), and denote by C(u) the
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set of children of u. The subtree of T rooted at u, denoted by Tu, is the tree induced by node u and all its descendants in T . A
monotonic path C of a rooted tree T is a path such that there exists some node u ∈ C such that all nodes of C are ancestors
of u. The unique node of C which has no parent in C is called the root of the monotonic path.

In the following, the notion of minors of rooted trees is central. This is a special case of minors of graphs (see e.g. [12]),
for which we give a simplified definition in the context of rooted trees. The contraction of edge uv in a rooted tree T , where
u is the parent of v, consists in removing v from T and assigning its children (if any) to node u.

Definition 1 (Minor). A rooted tree T ′ is a minor of a rooted tree T if it can be obtained from T by a sequence of edge
contractions.

2.1. Linearity of graphs

There are actually two notions of linearity (as well as for contiguity, see [8] for definitions) depending on whether one
uses the open neighbourhood N(x) or closed neighbourhood N[x].

Definition 2 (p-line-model). A closed p-line-model (resp. open p-line-model) of a graph G = (V , E) is a tuple (σ1, . . . , σp) of
linear orders on V such that ∀v ∈ V , ∃(I1, . . . , Ip) such that ∀i ∈ [[1, p]], Ii is an interval of σi and N[x] =


1≤i≤p Ii (resp.

N(x) =


1≤i≤p Ii).

The closed linearity (resp. open linearity) of G, denoted by lin(G) (resp. lino(G)), is the minimum integer p such that there
exists a closed p-line-model (resp. open p-line-model) of G.

Remark 1. In the definition of a p-line-model, the set of vertices of the intervals Ii assigned to a vertex x are not necessarily
disjoint. They are only required to cover the neighbourhood of xwhile being included in it.

In the rest of the paper, we consider only closed linearity and closed contiguity. But, from [8] and from the inequalities
below, for both parameters, the closed notion and the open notion are equivalent. Therefore, the bounds we obtain here
(which hold up to multiplicative constants) hold indifferently for open notions and closed notions.

Lemma 1. For an arbitrary graph G, we have the following inequalities: lin(G) − 1 ≤ lino(G) ≤ 2lin(G).

Proof. The first inequality comes from the fact that an open model can always be turned into a closed model having one
additional order σ ′ and where each vertex x of G is assigned a singleton interval of σ ′ equal to {x}. Conversely, one can
transform a closed model into an open model by duplicating every order σ of the closed model into two copies σl and σr
in the open model. Then, for each vertex x, the interval assigned to x in σl is the left part of the interval (i.e. vertices of the
interval which are before x) assigned to x in σ . And the interval assigned to x in σr is the right part of its interval in σ .

Finally, we give two basic properties of linearity that we use in the following.

Remark 2. The linearity of an induced subgraph of a graph G is at most equal to the linearity of G itself.

Indeed, restricting a p-line-model of a graph G to a subset X of its vertices results in a p-line-model of G[X].

Remark 3. The linearity of the disjoint union GF of a (finite) collection F of graphs is the maximum of the linearities of the
graphs in F .

This comes from the fact that a model of GF can be built simply by appending the orders used for the models of the
graphs in F .

2.2. Cographs

There are several characterizations of the class of cographs. They are often defined as the graphs that do not admit the
P4 (path on 4 vertices) as induced subgraph. Equivalently, they are the graphs obtained from a single vertex under the
closure of the parallel composition and the series composition. The parallel composition of two graphs G1 = (V1, E1) and
G2 = (V2, E2) is the disjoint union of G1 and G2, i.e., the graph Gpar =


V1 ∪ V2, E1 ∪ E2


. The series composition of two

graphs G1 and G2 is the disjoint union of G1 and G2 plus all possible edges from a vertex of G1 to one of G2, i.e., the graph
Gser


V1 ∪ V2, E1 ∪ E2 ∪ {xy | x ∈ V1, y ∈ V2}


. These operations can naturally be extended to a finite number of graphs.

This gives a very nice representation of a cographG by a treewhose leaves are the vertices of the graph andwhose internal
nodes (non-leaf nodes) are labelled P , for parallel, or S, for series, corresponding to the operations used in the construction
of G. It is always possible to find such a labelled tree T representing G such that every internal node has at least two children,
no two parallel nodes are adjacent in T and no two series nodes are adjacent. This tree T is unique [5] and is called the cotree
of G. See the example in Fig. 1. Note that the subtree Tu rooted at some node u of cotree T also defines a cograph, denoted
Gu, and then V (Gu) is the set of leaves of Tu. The adjacencies between vertices of a cograph can easily be read on its cotree,
in the following way.
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Fig. 1. Example of tree (left), the cograph it represents (centre), and the associated cotree (right). Some vertices are decorated in order to ease the reading.

Remark 4. Two vertices x and y of a cograph G having cotree T are adjacent iff the least common ancestor u of leaves x and
y in T is a series node. Otherwise, if u is a parallel node, x and y are not adjacent.

Note that in all the paper, we abusively extend the notion of linearity to cotrees, referring to the linearity of their
associated cograph.

2.3. Comparing power of encodings

For a graph encoding scheme Enc and a graph G, we denote |Enc(G)| the minimum size of an encoding of G based on Enc
(there are in general, like here, different encodings based on the same encoding scheme and they do not have necessarily
the same size, some beingmore efficient than others). We now give a formal definition for an encoding scheme to be strictly
more powerful than another one.

Definition 3 (Strictly More Powerful Encoding). Let Enc1 and Enc2 be two graph encoding schemes.We say that Enc2 is at least
as powerful as Enc1 iff there exists α > 0 such that for all graphs G, |Enc2(G)| ≤ α|Enc1(G)|. Moreover, we say that Enc2 is
strictly more powerful than Enc1 iff Enc2 is at least as powerful as Enc1 and the converse is not true.

Note that, Enc1 is not at least as powerful as Enc2 iff there exists a series of graphs Gh, h ≥ 1, such that |Enc1(Gh)|/
|Enc2(Gh)| tends to infinity when h tends to infinity. In the introduction, we showed that the encoding schemes LinEnc and
ContEnc based on linearity and contiguity respectively are such that, for any graph G on n vertices, we have 2 n cont(G) ≤

|ContEnc(G)| ≤ 3 n cont(G) and |LinEnc(G)| = 3 n lin(G). Since lin(G) ≤ cont(G), this gives |LinEnc(G)| ≤
3
2 |ContEnc(G)|,

showing that linearity is an encoding at least as powerful as contiguity according to Definition 3. In addition, the previous
inequalities also imply that 2

3 cont(G)/lin(G) ≤ |ContEnc(G)|/|LinEnc(G)| ≤ cont(G)/lin(G). Altogether, we obtain the
following remark.

Remark 5. Linearity is an encoding at least as powerful as contiguity. Moreover, it is strictly more powerful iff there exists
a series of graphs Gh, h ≥ 1, such that |cont(Gh)|/|lin(Gh)| tends to infinity when h tends to infinity.

3. Linearity of a cograph and factorial rank of its cotree

In this section, we show that the linearity of a cograph is upper bounded by the size of somemaximal structure contained
in its cotree, more precisely by the height of amaximal double factorial tree (defined below), whichwe call the factorial rank
of a cotree. This result is interesting by itself as it provides a structural explanation of the difficulty of encoding a cograph
by linearity. For our concern, the interesting point is that the number of leaves of a double factorial tree of height h is Ω(h!).
Combined with this fact, the result presented in this section (Lemma 2) will allow us to derive in next section the desired
O(log n/ log log n) upper bound on the linearity of cographs. We start by some necessary definitions.

Definition 4 (Double Factorial Tree). The double factorial tree F h of height h is defined inductively as follows:

• F 0 is the (unique) tree of height 0, i.e., the tree made of one single leaf node, and
• for h ≥ 1, F h is the tree whose root has 2h + 1 children u, whose subtrees Fu are precisely F h−1.

Definition 5 (Factorial Rank). The factorial rank of a rooted tree T (see example in Fig. 2), denoted factrank(T ), is the
maximum height of a double factorial tree being a minor of T , that is:
factrank(T ) = max{h(T ′) | T ′ is a double factorial tree and a minor of T }.

We extend the notion of factorial rank to a node u in a tree T , referring to the factorial rank of its subtree Tu. The case
where the children of node u all have factorial rank strictly less than the one of uwill play a key role.

Definition 6 (Minimally of Factorial Rank k). Let u be a node of a tree T . If u has factorial rank k and if all the children of u
have factorial rank at most k − 1, we say that u isminimally of factorial rank k.
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Fig. 2. A tree (plain plus dashed arcs) of factorial rank 2. Plain arcs exhibit a double factorial minor of height 2, obtained by contracting dashed edges.

Fig. 3. Cotree of Gu (left) and example of the intervals for ai in σ1 and σ2 (right).

We are now ready to state the result of this section, which claims that the linearity of a cograph is linearly bounded by
the factorial rank of its cotree.

Lemma 2. Let T be a cotree and let u ∈ T of factorial rank k ≥ 0. Then, lin(Gu) ≤ 2k+ 3. Moreover, if k ≥ 1 and u is minimally
of factorial rank k, then lin(Gu) ≤ 2k + 2.

Proof. We prove the result by induction. For k ≥ 1, the induction hypothesis H(k) is formulated as follows: H(k) =‘‘all
nodes of factorial rank j ≤ k − 1 have linearity at most 2j + 3; and all nodes which are minimally of factorial rank k (i.e.,
whose children have factorial rank at most k − 1) have linearity at most 2k + 2’’.

Initialization step.
For the initialization of our recursion, i.e. for k = 1, wemust show that if u has factorial rank 0, then lin(Gu) ≤ 2×0+3 =

3, and that if u is minimally of factorial rank 1, then lin(Gu) ≤ 2 × 1 + 2 = 4.
Firstly, since every internal node of a cotree has at least two children, if u has factorial rank 0, then u is a leaf of T or u is an
internal node having exactly two leaf children (in all other cases, we can find F 1 as a minor of Tu). Then, it is straightforward
that lin(Gu) = 1 ≤ 3.
Now consider a node uwhich is minimally of factorial rank 1, that is u has factorial rank 1 and all its children have factorial
rank at most 0. If u is a parallel node, then, from Remark 3, its linearity is the maximum of the linearities of its children,
which is 1 in this case according to what precedes. Thus, we have lin(Gu) ≤ 4. If u is a series node, denote its children by
u1, u2, . . . , ul. Since all the children of u have factorial rank 0, asmentioned previously, they are either leaves of T or internal
nodes having exactly two leaf children. We consider the case where all of them are internal nodes having two leaf children
and we denote ai, bi the two leaf children of ui, for 1 ≤ i ≤ l. We show that in this case, the linearity of Gu is at most 2 (and
so ≤4) by exhibiting a 2-line-model (σ1, σ2) for Gu. As, in the other cases, the graph Gu is an induced subgraph of the graph
Gu we consider here, it follows from Remark 2 that its linearity is also at most 2 (and so ≤4).
Arguments of this paragraph are illustrated in Fig. 3. For σ1 and σ2, we use the same order on the vertices of Gu, defined as
σ1 = σ2 = a1, b1, a2, b2, . . . , al, bl. For any i ∈ [[1, l]], the interval associated to ai in σ1 is the set of vertices less than or
equal to ai in σ1 and the interval associated to bi in σ1 is the set of vertices greater than or equal to bi in σ1. In σ2, the interval
associated to ai is the set of vertices strictly greater than bi in σ2 and the interval associated to bi is the set of vertices strictly
less than ai in σ2.

Induction step.
We consider an integer k ≥ 2 such that H(k−1) is true, whichmeans in particular that all nodes minimally of rank k−1

can be encoded using 2k orders. We then show H(k) in two steps: first, we prove that any node u of factorial rank k− 1 (not
necessarily minimally) can be encoded using one more order (i.e. 2k + 1 orders instead of 2k for nodes minimally of rank
k − 1), then we prove that adding again one more order (i.e. using 2k + 2 orders), we can also encode any node v which is
minimally of factorial rank k.
1st step: node u of factorial rank k − 1.

In order to describe a (2k + 1)-line-model of Gu we need to distinguish different parts of Tu (see illustration in Fig. 4).
Let Uk−1 be the subset of nodes of Tu that have factorial rank k − 1. If Uk−1 is reduced to {u}, then u is minimally of
factorial rank k − 1 and the induction hypothesis allows to conclude without proving anything else. Otherwise, denote
Umin = {u1, u2, . . . , ul} ( Uk−1, where l ≥ 1, the subset of nodes of Uk−1 that are minimal for the ancestor relationship
(i.e., lowest in the cotree). By definition, these elements do not contain node u and are incomparable for the ancestor
relationship. Then, one can build a minor of Tu, by a sequence of edge contractions, where the set of children of u is exactly
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Fig. 4. Illustration of the case where u is of factorial rank k − 1. The top series node is u, and the whole cotree is Tu . The nodes depicted with non-dotted
lines belong to Uk−1 and the nodes depicted with (non-dotted) bold lines belong to Umin . The tree made of non-dotted nodes and edges is T ′

u and dotted
nodes belong to U≤k−2 . Dashed triangles are remaining parts of Tu: subcotrees rooted at nodes in Umin ∪ U≤k−2 .

Fig. 5. Example of partition into monotonic paths in the case where u is of factorial rank k− 1, for the cotree of Fig. 4. The three dot circled nodes of U≤k−2
form the set U1

≤k−2 .

Umin. It follows that |Umin| = l ≤ 2k, as otherwise u would be of factorial rank k. By definition again, all the children of
the nodes of Umin have factorial rank at most k − 2, and then the nodes of Umin are minimally of rank k − 1. By induction
hypothesis, it follows that for all i ∈ [[1, l]], ui admits a 2k-line-model for which we denote σj(ui), with 1 ≤ j ≤ 2k, its 2k
orders.

We denote T ′
u the subtree of Tu induced by the set of nodes Uk−1 (by definition, Umin ⊆ T ′

u). We also denote U≤k−2 the
set of nodes of Tu \ T ′

u whose parent is in T ′
u \ Umin. Nodes of U≤k−2 have, by definition, rank at most k − 2 and it follows

from the induction hypothesis that they admit a (2k − 1)-line-model. Then, for a node w ∈ U≤k−2, we again denote σj(w),
with 1 ≤ j ≤ 2k − 1, the 2k − 1 orders of such a model. In addition, we use an arbitrary partition P of the nodes of T ′

u into
l monotonic paths Ci such that for all i ∈ [[1, l]], ui ∈ Ci (see Fig. 5). Partition P naturally induces a generalized partition
(some parts may be empty) of U≤k−2 whose parts are denoted U i

≤k−2, with 1 ≤ i ≤ l: U i
≤k−2 is the subset of nodes of U≤k−2

whose parent belongs to Ci \ {ui}.
We can now describe the 2k + 1 orders (σj)1≤j≤2k+1 of the model we build for Gu. Importantly, note that V (Gw),

w ∈ Umin ∪U≤k−2, is a partition of V (Gu). In our construction, V (Gw) will always be an interval of σj for all w ∈ Umin ∪U≤k−2
and all j ∈ [[1, 2k + 1]]. Then, the description of σj is in two steps: we first give the order, denoted πj, in which the intervals
of nodes w ∈ Umin ∪ U≤k−2 appear in σj and then, for each w, we give the order, denoted σw

j , in which the vertices of Gw

appear in this interval. The description of orders πj will be done by choosing a local order on the children of each node of
Uk−1 \ Umin. Then πj is defined as the unique order on Umin ∪ U≤k−2 respecting all the chosen local orders, i.e. such that for
any v, v′

∈ Umin ∪ U≤k−2, if v and v′ have the same parent z and if v comes before v′ in the order chosen on children of z,
then all descendants of v come before all descendants of v′ in πj.

To fully describe the (2k+ 1)-line-model of u, we must also assign to each vertex x one interval of its neighbours in each
of the orders of the model, in such a way that these intervals entirely cover the neighbourhood of x. In order to help our
analysis, we distinguish between the external neighbourhood of vertex x, which is defined as N[x] \ V (Gw) (or equivalently
N(x) \ V (Gw), as x ∈ V (Gw)), where w is the unique node of Umin ∪ U≤k−2 being an ancestor of leaf x in Tu, and its internal
neighbourhood which is defined as N[x] ∩ V (Gw). Our construction starts with the description of the 2k first orders of the
model, which we use to encode the majority of adjacencies of Gu, and finishes with the description of order σ2k+1 which is
used to encode the remaining adjacencies.

For j ∈ [[1, 2k]], the purpose of order σj is to satisfy the external neighbourhoods of vertices of Gw for w ∈ {uj} ∪ U j
≤k−2.

It entirely succeeds to do so for uj and encodes only one part (out of the two parts that we distinguish in the following)
of the external neighbourhoods of V (Gw) for nodes w ∈ U j

≤k−2, the remaining part being encoded in σ2k+1. Then, for each
w ∈ {uj} ∪ U j

≤k−2, the internal neighbourhoods of vertices of Gw are encoded in the remaining 2k − 1 orders of (σj)1≤j≤2k.
It is enough for w ∈ U j

≤k−2, since they admit a (2k − 1)-line-model by recursion hypothesis, but one order is missing for uj
which is minimally of rank k − 1 and is then only guaranteed to admit a 2k-line-model by recursion hypothesis. Again, the
missing order will be found in σ2k+1.
External neighbourhoods and choice ofπj’s. Let j ∈ [[1, 2k]], in this paragraph,we define the orderπj inwhich the intervals
of vertices of Gw appear in σj, for w ∈ Umin ∪ U≤k−2. If j > l, the order πj we choose does not matter, any arbitrary order is
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Fig. 6. Rearrangement of the cotree of Fig. 4 to obtain order π6 , aimed at gathering in one interval the external neighbourhood of node u6 . For each strict
ancestor v of u6 , the order on the children of v has been rearranged so that if v is series (nodes v1, v3 here), the child of v which is an ancestor of u6 is
placed first (i.e. on the left, on the drawing) and if v is parallel (node v2 here), this child is placed last (i.e. on the right). The order π6 is then obtained by
reading the nodes of Umin ∪U≤k−2 (small circles, bold or dashed, at the top of dashed triangles) from left to right on the drawing: nodes that have a parallel
ancestor with u6 (circled by one dashed bold ellipse) appear on the left of u6 and nodes that have a series ancestor with u6 (circled by four bold ellipses)
appear on the right of u6 .

suitable. However, if j ≤ l, the purpose of order πj is to satisfy the external adjacencies of the vertices of Gw for any node
w ∈ {uj} ∪ U j

≤k−2 (see Fig. 5). In this case, as explained above, we define πj by choosing an order for the children of u′ for
each node u′ of Uk−1 \Umin. If u′ is an ancestor of uj and if u′ is a parallel node, we choose an order for the children of u′ such
that the (unique) child of u′ which is an ancestor of uj is the last child in the order (any such order being suitable). If u′ is an
ancestor of uj and u′ is a series node, we choose an order such that the child of u′ which is an ancestor of uj is the first child of
the order (any such order being suitable). And finally, if u′ is not an ancestor of uj, then any order on its children is suitable
for πj. This way, the external neighbourhood of any vertex x of Guj is exactly the interval of σj formed by the vertices on the
right of the interval of Guj (containing the last vertex of σj), and this is the interval assigned to x in σj. Indeed, the vertices on
the right of the interval of Guj have a series least common ancestor with node uj and are therefore adjacent to all the vertices
of Guj , while the vertices on the left of the interval of Guj have a parallel least common ancestor with node uj and are then
non-adjacent to the vertices of Guj (see example in Fig. 6). As a conclusion of this paragraph, thanks to this choice of πj’s, the
external neighbourhood of all the vertices of Guj , for all j ∈ [[1, l]], is entirely encoded in order σj. Also note that the interval
associated to the vertices of Guj in σj, which is the same for all vertices of Guj , contains the last vertex of order σj. We use this
property in the 2nd step of the induction.

For a node w ∈ U j
≤k−2, the situation is slightly more complicated and we consider two cases.

• If the father of w, denoted w′, is a parallel node, then, as previously, the external neighbourhood of vertices of Gw is an
interval of σj. Indeed, this external neighbourhood is exactly the set of leaves contained in the subtrees of the children v
of the series ancestors of w (which are all strict ancestors of w′) such that v is not itself an ancestor of w. But, as w′ is an
ancestor of uj, thanks to the order πj chosen above, this set of leaves is an interval containing the last element of σj. This
interval is the one we associate, in σj, to all the vertices of Gw .

• If the father of w, denoted w′, is a series node, then the external neighbourhood of vertices of Gw is not an interval of
σj but almost: it is the union of two intervals of σj. Let us distinguish three parts in the external neighbourhood of the
vertices of Gw . The first part, denoted A, is the set of leaves descending from the children v of the series nodes being strict
ancestors of w′ such that v is not itself an ancestor of w. As in the parallel case above, thanks to the choice we made for
orderπj, A is an interval containing the last element of σj. The second part, denoted B, is the set of leaves descending from
the children of w′ that come after w in the order chosen for πj. Clearly, B is an interval of σj and from the definition of
πj, B ∪ A is exactly the interval of vertices, denoted I>w , that are on the right of the interval of Gw in σj. This interval I>w

is the one we associate to vertices of Gw in σj. Note that it contains the last element of σj. The last part of the external
neighbourhood of the vertices of Gw is denoted I<w and is made of the set of leaves descending from the children of w′

that precede w in the order chosen for πj. As A, I<w is an interval of σj, but this part of the external neighbourhood of the
vertices of Gw is not covered in σj. This will be done in the additional order σ2k+1.

Before we describe order σ2k+1, for the purpose of the 2nd step of the induction, note that again, the interval of external
neighbours associated to any node w ∈ U j

≤k−2, for any j ∈ [[1, l]], contains the last vertex of order σj.
We now define the order π2k+1 used to build order σ2k+1, using the partition of T ′

u into paths Ci introduced earlier. To
define π2k+1, for any node u′

∈ Uk−1 \Umin, we use the same order on the children of u′ as the one used for πi, with i ∈ [[1, l]]
such that u′

∈ Ci. This ensures that for any nodew ∈ U≤k−2 whose parentw′ is a series node of Ci, the interval I<w of external
neighbours which was not covered in order σi (note that since w′

∈ Ci then w ∈ U i
≤k−2) will also be an interval of σ2k+1.

This is precisely the interval we assign to vertices of Gw in σ2k+1, which is possible as their internal neighbourhood will be
entirely satisfied in the 2k first orders, as described below.
Internal neighbourhoods and choice of σw

j ’s. The orders σw
j used for the vertices of Gw , with w ∈ Umin ∪ U≤k−2, in order

σj, with j ∈ [[1, 2k]], are chosen as follows.

• For any node ui ∈ Umin, with i ∈ [[1, l]], and all j ∈ [[1, 2k]],
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– if j = i, then we can take any arbitrary order for the vertices of Gui . Indeed, in σi, the vertices of Gui have already been
assigned an interval made only of their external neighbours (see above), meaning that this interval does not contain
any vertex of Gui .

– If j ≠ i, the order on the vertices of Gui is σj(ui) and the interval associated to vertices of Gui in σj is the same as the one
associated to them in σj(ui).

• For a node w ∈ U≤k−2 and all j ∈ [[1, 2k]], the order we choose for the vertices of Gw depends on the path Ci, with
1 ≤ i ≤ l, of the partition P to which belongs the father of w.
– If j = i thenwe use any arbitrary order for the vertices of Gw . Again, in σi, the vertices of Gw have already been assigned

an interval made only of their external neighbours (see above) and therefore it does not contain any vertex of Gw .
– If j < i (resp. if j > i) then we use the order σj(w) (resp. σj−1(w)), and the interval of σj associated to the vertices of

Gw is the same as the one associated to them in σj(w) (resp. σj−1(w)).

In this way, for any i ∈ [[1, l]] and for any w ∈ U i
≤k−2, since Gw needs only 2k − 1 orders to be encoded, all the internal

adjacencies of vertices of Gw have been covered by the intervals associated to them in orders σj, for 1 ≤ j ≤ 2k and j ≠ i.
For nodes ui, 1 ≤ i ≤ l, the situation is the same: only 2k − 1 orders, namely the orders σj for 1 ≤ j ≤ 2k and j ≠ i, have
been used to encode the internal neighbourhoods of Gui . But unfortunately, since ui is minimally of factorial rank k − 1,
the recursion hypothesis only guarantees that lin(Gui) ≤ 2k. Then, one more interval is needed to fully cover the internal
neighbourhood of vertices of Gui . For this, we use one additional order σ2k+1.

Actually, we already used order σ2k+1 in what precedes, in order to cover the external neighbourhood of some vertices.
To this purpose, we fixed the order π2k+1 in which the intervals of vertices of Gw , for w ∈ Umin ∪U≤k−2, appear in σ2k+1. But
we still have the liberty of choosing the orders σw

j on the vertices of Gw , for all w ∈ Umin ∪ U≤k−2. We use this possibility
for each node ui ∈ Umin: we choose the order on the vertices of Gui in σ2k+1 as being σi(ui), the one which has not been used
until now, and the interval associated to vertices of Gui in σ2k+1 is the same as the one associated to them in σi(ui). This is
possible as the external neighbourhood of vertices of Gui has already been entirely satisfied before, in order σi.

Thus, using the 2k + 1 orders described above, both the internal and the external neighbourhoods of the vertices of Gw ,
for all w ∈ Umin ∪ U≤k−2, have been covered. Since {V (Gw)}w∈Umin∪U≤k−2 is a partition of the vertices of Gu, this proves that
lin(Gu) ≤ 2k+1 and this achieves the 1st step of the induction. Also remember, as we use it in the 2nd step of the induction
described below, that in themodel we built forGu, for any vertex x there exists an index j ∈ [[1, 2k+1]] such that the interval
associated to x in σj contains the last vertex of σj.
2nd step: node v minimally of factorial rank k.
In order to finish the induction step and then the proof of Lemma 2, we now show that for a node v minimally of factorial
rank k (i.e., whose children have factorial rank at most k − 1), we have lin(Gv) ≤ 2k + 2.

First consider the case where v is a parallel node. In this case, from Remark 3, the linearity of v is the maximum of the
linearity of its children. Since the children of v all have factorial rank atmost k−1, it follows from the 1st step of our induction
that their linearity is at most 2k + 1. Consequently, we have lin(Gv) ≤ 2k + 1, and then in particular lin(Gv) ≤ 2k + 2.

Let us now consider the case where v is a series node and let us denote v1, v2, . . . , vl, with l ∈ N, the children of v. From
what precedes, all of them have linearity at most 2k+1 and for each i ∈ [[1, l]]we have a (2k+1)-line-model of Gvi denoted
(σj(vi))j∈[[1,2k+1]]. A remarkable property of this (2k+1)-line-model, whichwe have constructed above, is that for any vertex
x of Gvi , there exists an index j ∈ [[1, 2k]] such that the interval associated to x in σj(vi) contains the last vertex of σj(vi). For
each vertex x, we denote ind(x) such an index j. We now use this property in order to construct a (2k+ 2)-line-model of Gv ,
which we denote (σ1, . . . , σ2k+1, σ2k+2).

For any j ∈ [[1, 2k+1]], the order σj used for v is simply the concatenation (denoted+) of the orders of the (2k+1)-line-
models of its children, from left to right in increasing value of the index. More explicitly, for all j ∈ [[1, 2k + 1]], we define
σj as σj = σj(v1) + σj(v2) + · · · + σj(vl). For any i ∈ [[1, l]] and for any vertex x of Gvi , if j ≠ ind(x), the interval associated
to x in σj is the same as the one associated to x in σj(vi). On the other hand, if j = ind(x), as the interval associated to x in
σind(x)(vi) contains the last vertex of σind(x)(vi), in the order σind(x) of the model of Gv , we extend this interval on the right by
including the vertices of Gvi′

for all i′ > i. As v is a series node, all these vertices are indeed adjacent to x (see Fig. 7).
In this way, for any i ∈ [[1, l]] and for any vertex x of Gvi , the internal neighbourhood of x is entirely covered in the orders

σ1, . . . , σ2k+1. Regarding the external neighbourhood of x ∈ V (Gvi), note that it can be expressed as


i′∈[[1,l]] and i′≠i V (Gvi′
).

The part


i′>i V (Gvi′
) is already covered in order σind(x). Then, only the part


i′<i V (Gvi′

) of the external neighbourhood of
x remains to be covered. This is the purpose of order σ2k+2 which we define as follows. For i ∈ [[1, l]], we take any arbitrary
orderσarb(i) on the vertices ofGvi andwebuildσ2k+2 asσ2k+2 = σarb(1)+σarb(2)+· · ·+σarb(l). Then, for any i ∈ [[1, l]] and for
any vertex x of Gvi , we associate to x the interval of σ2k+2 made of the vertices of


i′<i V (Gvi′

) (see Fig. 7). Doing so, the entire
external neighbourhood of all the vertices of Gv are covered in the 2k+ 2 orders we defined. Thus, (σ1, . . . , σ2k+1, σ2k+2) is
a (2k + 2)-line-model of Gv which is then of linearity at most 2k + 2.

This completes the induction step and the proof of Lemma 2.

4. Main results

The first result we derive from Lemma 2 is a tight upper bound on the worst-case linearity of cographs on n vertices.
Until now, the best known upper bound [8] was O(log n), and [8] also exhibits some cograph families having a linearity up
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Fig. 7. Illustration of the (2k+1)-line-model of Gv for v minimally of factorial rank k, and of the intervals associated to a vertex x of Gvi , for some i ∈ [[1, l]].
The interval associated to x in an order σ is denoted Iσ (x).

to Ω(log n/ log log n). Here, we show a new upper bound of O(log n/ log log n) that matches the lower bound of [8]. This is
a direct consequence of Lemma 2 and of the fact that a double factorial tree of height h has Ω(h!) leaves.

Theorem 1. For any cograph G on n vertices, we have lin(G) = O(log n/ log log n), and this upper bound is tight.

Proof. Let T denote the cotree of G and k = factrank(T ). From Lemma 2, the linearity of G is in O(k). Let us now show that
k = O(log n/ log log n), which will conclude this proof. According to the definition of factorial rank, G has at least as many
vertices as the number of leaves of the double factorial tree of height k, which has

k
i=0(2i + 1) leaves. It follows from

Stirling’s approximation of factorial that

n ≥

k
i=0

(2i + 1) =
(2(k + 1))!
2k+1(k + 1)!

≥
2
√

π

e


2(k + 1)

e

k+1

and consequently

log n ≥ (k + 1)

log(k + 1) + log


2
e


+ log


2
√

π

e


≥ (k + 1)


log(k + 1) − 1


.

As x ≥ y > 1 implies x
log x ≥

y
log y , we have

log n
log log n

≥
(k + 1)


log(k + 1) − 1


log(k + 1) + log


log(k + 1) − 1


and it follows that k = O(log n/ log log n).

And finally, as [8] exhibits some cographs having linearity Ω(log n/ log log n), consequently, the upper bound provided
by the lemma is tight.

We now prove the main result aimed by this paper: linearity is a strictly more powerful encoding than contiguity, which
means, from Remark 5, that there exist some graph families for which the linearity is asymptotically negligible in front of
the contiguity (hereafter denoted cont(G) for a graph G).

Theorem 2. There exists a series of graphs Gh, h ≥ 1, such that cont(Gh)/lin(Gh) tends to infinity when h tends to infinity.

Proof. For h ≥ 1, let Gh be the connected cograph whose cotree is a complete binary tree of height h and let n = 2h denote
the number of vertices of Gh. It is proven in [8] that cont(Gh) = Θ(log n) and that lin(Gh) = Ω(log n/ log log n). Then,
Theorem 1 above implies that lin(Gh) = Θ(log n/ log log n) and therefore cont(Gh)/lin(Gh) = Θ(log log n), which achieves
the proof.

5. Perspectives

In this paper, we showed that linearity provides a strictly more powerful encoding for graphs than contiguity does,
meaning that the ratio between the contiguity and the linearity of a graph is not bounded by a constant. From a practical
point of view, the meaning of our result is that using several orders, instead of just one, for grouping neighbourhoods of
vertices can greatly enhance compression rates in some cases.
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We obtained our main result by exhibiting a graph family, namely a subfamily of cographs, for which the ratio between
the contiguity and the linearity tends to infinity as fast as Ω(log log n), with n the number of vertices in the graph. As a
by-product of our proof, but meaningful in itself, we also showed tight bounds for the worst-case linearity of cographs on n
vertices; tight boundswere previously known for contiguity. Several questions naturally arise from these results and others.

Open question 1. What is the worst case contiguity and the worst-case linearity of arbitrary graphs?

It is straightforward to see that both of these values are bounded by n/2. Conversely, since there are 2n(n−1)/2 graphs on
n labelled vertices and since contiguity and linearity do not depend on the labels of the vertices, then both encodings must
use at least n2 bits for graphs on n vertices. Moreover, when the value of the parameter is k, the size of the corresponding
encoding is O(k n) integers, that is O(k n log n) bits. Consequently, both parameters must be at leastΩ(n/ log n) in the worst
case. For contiguity, [10] gave an upper bound asymptotically equivalent to n/4. Is Ω(n) indeed the worst-case contiguity
of a graph? Is the worst-case for linearity the same as the one for contiguity? Another appealing question which is closely
related is the following.

Open question 2. For arbitrary graphs, what is the maximum gap between contiguity and linearity?

In other words, let (Gn)n≥1 be a family of graphs on n vertices and let f (n) = cont(Gn)/lin(Gn). Can f (n) tend to infinity
faster than Ω(log log n)? What is the maximum asymptotic growth possible for f (n)? Answering those questions would be
both theoretically and practically of key interest for the field of graph encoding.
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