
Theoretical Computer Science 638 (2016) 108–111
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Reporting consecutive substring occurrences under bounded

gap constraints ✩

Gonzalo Navarro a,1, Sharma V. Thankachan b,∗
a Center of Biotechnology and Bioengineering, Department of Computer Science, University of Chile, Chile
b School of Computational Science and Engineering, Georgia Institute of Technology, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 March 2015
Received in revised form 14 October 2015
Accepted 5 February 2016
Available online 9 February 2016

Keywords:
Suffix trees
Geometric data structures
Heavy-path decomposition
Pattern matching

We study the problem of indexing a text T [1 . . .n] such that whenever a pattern P [1 . . . p]
and an interval [α, β] come as a query, we can report all pairs (i, j) of consecutive
occurrences of P in T with α ≤ j − i ≤ β . We present an O (n log n) space data structure
with optimal O (p + k) query time, where k is the output size.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Detecting close occurrences of patterns in a text is a problem that has been considered in various flavors. For example,
Iliopoulos and Rahman [6] consider the problem of finding all the k occurrences of two patterns P1 and P2 (of total length
p) separated by a fixed distance α known at indexing time. They gave a data structure using O (n logε n) space and query
time O (p + log log n + k), for any constant ε > 0. Bille and Gørtz [2] retained the same space and improved the time to the
optimal O (p + k).2 The problem becomes, however, much messier when we allow the distance between P1 and P2 to be
in a range [α, β], even if these are still known at indexing time. Bille et al. [3] obtained various tradeoffs, for example O (n)

space and O (p +σβ log log n +k) time, where σ is the alphabet size; O (n log n logβ n) space and O (p + (1 +ε)β log log n +k)

time; and O (σ β2
n logβ log n) space and O ((p + β)(β − α) + k) time.

Variants of the simpler case where P1 = P2 = P have been studied as well. Keller et al. [7] considered the problem
of, given an occurrence of P in T , find the next one to the right. They obtained an index using O (n logε n) space and
O (log log n) time. Another related problem they studied was to find a maximal set of nonoverlapping occurrences of P .
They obtained the same space and O (log log n + k) time. Muthukrishnan [8] considered a document-based version of the
problem: T is divided into documents, and we want to report all the k documents where two occurrences of P appear at
distance at most β . For β fixed at indexing time, he obtained O (n) space and optimal O (p + k) time; the space raises to
O (n log n) when β is given as a part of the query. Finally, Brodal et al. [4] considered the related pattern mining problem:

✩ A conference version of this paper appeared in Proc. CPM 2015.

* Corresponding author.
E-mail addresses: gnavarro@dcc.uchile.cl (G. Navarro), sharma.thankachan@gatech.edu (S.V. Thankachan).

1 Funded with Basal Funds FB0001, CONICYT, Chile.
2 This is optimal in the RAM model if we assume a general alphabet of size O (n).
http://dx.doi.org/10.1016/j.tcs.2016.02.005
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.02.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:gnavarro@dcc.uchile.cl
mailto:sharma.thankachan@gatech.edu
http://dx.doi.org/10.1016/j.tcs.2016.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.02.005&domain=pdf

G. Navarro, S.V. Thankachan / Theoretical Computer Science 638 (2016) 108–111 109
find all z maximal patterns P that appear at least twice in T , separated by a distance in [α, β]. They obtain O (n log n + z)
time, within O (n) space.

In this paper we focus on a rather clean variant of the problem, which (somewhat surprisingly) has not been considered
before: find the pairs of consecutive positions of P in T , which are separated by a distance in the range [α, β]. It is formally
stated as follows.

Problem 1. Index a text T [1 . . .n], such that whenever a pattern P [1 . . . p] and a range [α, β] come as a query, we can report
all pairs (i, j) of consecutive occurrences of P in T with α ≤ j − i ≤ β .

Note that we are not finding pairs of occurrences at distances in [α, β] if they are not consecutive. For example, for
[α, β] = [4, 6] and P = abc, we will find the pair of positions (7, 12) in T = abcabcabcdeabc, but not (1, 7), since the
occurrences at 1 and 7, while within the distance range, are not consecutive.

By using heavy-path decompositions on suffix trees and geometric data structures, we obtain the following result.

Theorem 1. There exists an O (n logn) space data structure with query time O (p + k) for Problem 1, where k is the output size.

2. Notation and preliminaries

The ith leftmost character of T is denoted by T [i], where 1 ≤ i ≤ n. The sub-string starting at location i and ending
at location j is denoted by T [i . . . j]. A suffix is a substring that ends at location n and a prefix is a string that starts at
location 1.

The suffix tree (ST) of T is a compact representation of all suffixes of T ◦ $, except $, in the form of a compact trie [10].
Here $ a special symbol that does not appear anywhere in T and T ◦ $ is the concatenation of T and $. The number of
leaves in ST is exactly n. The degree of an internal node is at least two. We use �i to represent the ith leftmost leaf in ST.
The edges are labeled with characters and the concatenation of edge labels on the path from root to a node u is denoted
by path(u). Then, path(�i) corresponds to the ith lexicographically smallest suffix of T , and its starting position is denoted
by SA[i]. The locus of a pattern P in T , denoted by locus(P), is the highest node u in ST, such that P is a prefix of path(u).
The set of occurrences of P in T is given by SA[i] over all i’s, where �i is in the subtree of locus(P). The space occupied
by ST is O (n) words and the time for finding the locus of an input pattern P is O (|P |). Additionally, for two nodes u and v ,
we shall use lca(u, v) to denote their lowest common ancestor.

We now describe the concept of heavy path and heavy path decomposition. The heavy path of ST is the path starting from
the root, where each node u on the path is the child with the largest subtree size (measured as number of leaves in it;
ties are broken arbitrary). The heavy path decomposition is the operation where we decompose each off-path subtree of the
heavy path recursively. As a result, any path(·) in ST will be partitioned into disjoint heavy paths. Sleator and Tarjan [9]
proved the following property; we will use log n to denote logarithm in base 2.

Lemma 1. The number of heavy paths intersected by any root to leaf path is at most logn, where n is the number of leaves in the tree.

Each node belongs to exactly one heavy path and each heavy path contains exactly one leaf node. The heavy path
containing �i will be called the i-th heavy path (and identified simply by the number i). For an internal node u, let hp(u)

be the unique heavy path that contains u.

Definition 1. The set Hi is defined as the set of all leaf identifiers j, where the path from root to � j intersects with the i-th
heavy path. That is, Hi = { j | hp(lca(� j, �i)) = i}.

Lemma 2.
∑n

i=i |Hi | ≤ n log n.

Proof. For any particular j, path from root to � j can intersect at most log n heavy paths, by Lemma 1. Therefore, j cannot
be a part of more than log n sets. �
3. The data structure

The key idea is to reduce our pattern matching problem to an equivalent geometric problem. Specifically, to the orthog-
onal segment intersection problem.

Definition 2 (Orthogonal segment intersection). A horizontal segment (xi, x′
i, yi) is a line connecting the 2D points (xi, yi)

and (x′
i, yi). A segment intersection problem asks to pre-process a given set S of horizontal segments into a data structure,

such that whenever a vertical segment (x′′, y′, y′′) comes as a query, we can efficiently report all the horizontal segments
in S that intersect with the query segment. Specifically, we can output the following set: {(xi , x′

i, yi) ∈ S | xi ≤ x′′ ≤ x′
i, y

′ ≤
yi ≤ y′′}.

110 G. Navarro, S.V. Thankachan / Theoretical Computer Science 638 (2016) 108–111
Fig. 1. Illustration of the main concepts of our data structure.

There exists an O (|S|) space and O (log log |S| + k) time solution for the segment intersection problem, where k is the
output size [5, Cor. 4.2(a)]. We now proceed to describe the reduction.

3.1. Reduction

One of the main components of our data structure is the suffix tree ST of T , and is used only for finding the locus of P .
Based on the heavy path on which the locus node is, we categorize the queries in different types.

Definition 3. A query with input pattern P is type-h if h = hp(locus(P)).

Let Gh be the data structure handling type-h queries, where Gh is a structure over a set Ih of horizontal segments, that
can efficiently answer segment intersection queries. The set Ih is generated from Hh using the following steps for each
j ∈Hh:

1. Let P j = path(lca(�h, � j)).
2. Let suc(j) be the first occurrence of P j after the position SA[j] in T and let pre(j) be the last occurrence of P j before

the position SA[j] in T . Clearly, neither in [(pre(j) + 1) . . . (SA[j] − 1)], nor in [(SA[j] + 1) . . . (suc(j) − 1)], P j has an
occurrence.

3. Now, obtain two segments w.r.t. j as follows:
(a) Let P ′

j be the shortest prefix of P j without any occurrence in [(pre(j) + 1) . . . (SA[j] − 1)]. Then, create segment
(xi, x′

i, yi) = (|P ′
j|, |P j |, SA[j] − pre(j)) and associate the pair (pre(j), SA[j]) of consecutive occurrences of P j as

satellite information.
(b) Similarly, let P ′′

j be the shortest prefix of P j without any occurrence in [(SA[j] + 1) . . . (suc(j) − 1)]. Then, create
segment (xi, x′

i, yi) = (|P ′′
j |, |P j |, suc(j) − SA[j]) and associate it to the pair (SA[j], suc(j)) of consecutive occur-

rences of P j as satellite information.

Clearly, |Ih| = 2|Hh|. The central idea of our solution is summarized below. Fig. 1 illustrates the idea.

Lemma 3. Let P and [α, β] be the input parameters of a query in Problem 1 and let h = hp(locus(P)). Then, the set of satellite
information associated with all those horizontal segments in Ih, which are stabbed by a vertical segment (p, α, β) (i.e., the segment
connecting the points (p, α) and (p, β)) forms the output to Problem 1.

Proof. First we prove that any satellite information (a, b) reported by the geometric query on Gh is an answer to the original
query. Let [s, e] be the x-interval corresponding to the reported satellite information (a, b). Then, s ≤ p ≤ e and α ≤ b −a ≤ β .
Here the condition e ≥ p ensures that both �SA−1[a] and �SA−1[b] are leaves in the subtree of locus(P). Therefore a and b
are occurrences of P . The condition s ≤ p ensures that there exists no occurrence of P in any location which is after a, but
before b (i.e., a and b are consecutive occurrences of P). Finally the y-coordinate ensures that α ≤ b − a ≤ β .

Now we prove that for every output (a, b) of Problem 1, there exists a segment (s, e, b − a) in Ih with s ≤ p ≤ e and
satellite information (a, b). Without loss of generality, let lca(�h, �SA−1[a]) be either lca(�h, �SA−1[b]) or an ancestor of it. Then,
let j = SA−1[a]. Since P occurs at position a, the leaf j descends from the subtree of locus(P), and since this node belongs
to the heavy path h, we have that lca(�h, � j) descends from locus(P), thus e ≥ p. Since there is no occurrence of P between
a and b, it holds s ≤ p. Then, a segment of the form (s, e, b − a) will indeed be created while processing j ∈ Hh during the
construction of Ih . �

In the light of Lemma 3, we have the following result.

G. Navarro, S.V. Thankachan / Theoretical Computer Science 638 (2016) 108–111 111
Lemma 4. There exists an O (n logn) space and O (p + log log n + k) query time solution for Problem 1, where k is the output size.

Proof. The space of ST is O (n) and the space required for maintaining the segment intersection structure over Ih , for all
values of h, is O (

∑
h |Ih|) = O (

∑
h |Hh|) = O (n log n). Thus, the total space is O (n log n) words. To answer a query, we first

find the locus of P in ST in O (p) time, and then query Gh , where h = hp(locus(P)), in O (log log n + k) time. Therefore, the
query time is O (p + log log n + k). �

The query time in Lemma 4 is optimal if p ≥ log log n. To handle queries where p is shorter than log log n, we use a
different approach.

3.2. Achieving optimal query time

We present an optimal query time data structure for p < log log n. Essentially, we associate a data structure D(u) with
each node u in ST, whose string depth (i.e., |path(u)|) is at most log log n. Observe that the number of occurrences of path(u)

in T is equal to size(u), where size(u) is the number of leaves in the subtree of u. Therefore, the number of consecutive
occurrences (i, j) of path(u) is size(u) − 1. Each such pair (i, j) can be mapped to a point (j − i) in one dimension along
with the pair (i, j) as an associated satellite data. We then create a one-dimensional range reporting data structure over
these (size(u) − 1) points and call it D(u). Whenever the locus of P is u, the answer can be obtained by issuing a one
dimensional range reporting query on D(u) with [α, β] as the input range. The satellite data associated with each reported
corresponds to an answer to Problem 1.

We use the data structure summarized in Lemma 5, by which queries can be answered in optimal time and the space of
D(u) can be bounded by O (size(u)) words.

Lemma 5. (See [1].) One dimensional range reporting queries over a set of m points in {0, 1, 2, . . . , 2w} can be answered in optimal
time using an O (m) space data structure, where w is the word size.

Note that the sum of all the size(u) terms for all the nodes u with the same string depth is n, and added over all the
nodes with string depth up to log log n is n log log n. Thus the space for the D(·) structures of all the nodes with string depth
up to log log n is O (n log log n) words. This completes the proof of Theorem 1.

4. Conclusions

We have addressed a clean variant of the problem related to finding close occurrences of a pattern P [1 . . . p] in a text
T [1 . . .n]: find pairs of consecutive occurrences that are within a distance range [α, β] (given at query time). Our data
structure uses O (n log n) space and optimal O (p + k) query time.

It is not hard to extend our result to the case where we look for the occurrence of P followed (or preceded) by some
function of P , such as its reverse string. We can build the geometric structure at each suffix tree node v considering the
function of the string represented by v , instead of the string itself. However, extending our solution to the general case of
two patterns [3] seems not possible.

An interesting open question is whether our optimal-time result can be obtained within o(n log n) space. Another ques-
tion is how our results can be extended to the document retrieval scenario, that is, listing the documents where two
consecutive occurrences of P appear separated by a distance in [α, β]. The current result [8] is similar to ours in space and
time, but it is restricted to the case α = 0. It is not clear if is the problem is harder, and by how much, for an arbitrary
value of α.

References

[1] S. Alstrup, G. Stølting Brodal, T. Rauhe, Optimal static range reporting in one dimension, in: Proc. 33rd Annual ACM Symposium on Theory of Comput-
ing, STOC, 2001, pp. 476–482.

[2] P. Bille, I.L. Gørtz, Substring range reporting, Algorithmica 69 (2) (2014) 384–396.
[3] P. Bille, I.L. Gørtz, H.W. Vildhøj, S. Vind, String indexing for patterns with wildcards, Theory Comput. Syst. 55 (1) (2014) 41–60.
[4] G.S. Brodal, R.B. Lyngsø, C.N.S. Pedersen, J. Stoye, Finding maximal pairs with bounded gap, in: Proc. 10th Annual Symposium on Combinatorial Pattern

Matching, CPM, in: LNCS, vol. 1645, 1999, pp. 134–149.
[5] T.M. Chan, Persistent predecessor search and orthogonal point location on the word RAM, ACM Trans. Algorithms 9 (3) (2013), article 22.
[6] C.S. Iliopoulos, M.S. Rahman, Indexing factors with gaps, Algorithmica 55 (1) (2009) 60–70.
[7] O. Keller, T. Kopelowitz, M. Lewenstein, Range non-overlapping indexing and successive list indexing, in: Proc. 10th International Workshop on Algo-

rithms and Data Structures, WADS, in: LNCS, vol. 4619, 2007, pp. 625–636.
[8] S. Muthukrishnan, Efficient algorithms for document retrieval problems, in: Proc 13th Annual ACM–SIAM Symposium on Discrete Algorithms, SODA,

2002, pp. 657–666.
[9] D.D. Sleator, R.E. Tarjan, A data structure for dynamic trees, J. Comput. Syst. Sci. 26 (3) (1983) 362–391.

[10] P. Weiner, Linear pattern matching algorithms, in: Proc. 14th Annual Symposium on Switching and Automata Theory, 1973, pp. 1–11.

http://refhub.elsevier.com/S0304-3975(16)00115-8/bib416C737472757042523031s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib416C737472757042523031s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib42473134s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib424756563134s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib424C50533939s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib424C50533939s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib4368613133s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib49523039s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib4B4B4C3037s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib4B4B4C3037s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib4D75743032s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib4D75743032s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib536C6561746F72543833s1
http://refhub.elsevier.com/S0304-3975(16)00115-8/bib5354s1

	Reporting consecutive substring occurrences under bounded gap constraints
	1 Introduction
	2 Notation and preliminaries
	3 The data structure
	3.1 Reduction
	3.2 Achieving optimal query time

	4 Conclusions
	References

