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The possibility that fundamental discreteness implicit in a quantum gravity theory may

act as a natural regulator for ultraviolet singularities arising in quantum field theory has

been intensively studied. Here, along the same expectations, we investigate whether a non-

standard representation, called polymer representation can smooth away the large amount

of negative energy that afflicts the Hamiltonians of higher-order time derivative theories;

rendering the theory unstable when interactions come into play. We focus on the fourth-

order Pais-Uhlenbeck model which can be reexpressed as the sum of two decoupled harmonic

oscillators one producing positive energy and the other negative energy. As expected, the

Schrödinger quantization of such model leads to the stability problem or to negative norm

states called ghosts. Within the framework of polymer quantization we show the existence

of new regions where the Hamiltonian can be defined well bounded from below.
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I. INTRODUCTION

The standard model of particles has foundations on local quantum field theories having opera-

tors of mass dimension d ≤ 4. These operators are justified in order to implement the requirements

of stability and unitarity without further elaborations [1]. However, when going to higher energies

it is commonly believed that higher-order operators will play a key role in describing fundamental

physics. This may be particularly true when they involve higher time derivatives since the new

modes that arise allow to describe effects from a high scale. Usually these new modes are very high
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when the coupling of the higher-order time derivatives are suppressed by the high scale as taken

in effective approaches. Higher-order operators have received increased attention over the years.

They have been investigated in the context of loop quantum gravity [2–7], Lorentz symmetry viola-

tion [8–13], causality and stability [14], fine-tuning [15–18], the hierarchy problem [19, 20], radiative

corrections [21–23] and nonminimal couplings [24–29]. The presence of higher-order derivatives in

the gravitational sector are a key ingredient in order to achieve a consistent renormalization in the

semiclassical approach, where matter fields are quantized over classical curved background [30].

Higher time derivative theories were introduced long time ago by Ostrogradsky [31]. The ap-

proach is based on a variational formalism and involves a Lagrangian L(x, ẋ, ẍ . . . , x(n) = dnx
dtn )

and an extended Hamiltonian H(x, πẋ, πẍ . . . , πx(n)) of 2n variables. Ostrogradsky showed that the

formalism leads a higher-order Hamiltonian not bounded from below as can be seen in the non-

quadratic momenta terms that appear. This is the classical Ostrogradsky instability of higher-order

time derivative theories which can be avoided in a few cases, for instance when the models has

constraints [32].

The quantization of higher time derivative theories can be implemented introducing a change

of variables in order to transform the original Lagrangian into a sum of decoupled normal-order

Lagrangians. In general one of these Lagrangians has large negative energy leading to the instability

or alternatively, by changing the vacuum state, to an indefinite metric theory [33]. The instability

of the Hamiltonian has received much attention and has been tackled from different perspectives,

such as phase space reduction [34–36], complex canonical transformations [37], PT symmetry [38–

40], and Euclidean-path reduced amplitudes [41], gravitational ghosts and tachyons [42, 43]. In

quantum field theory, Lee and Wick showed that by imposing the negative norm states to decay it

is possible to preserve unitarity order by order in perturbation theory [44, 45]. Resurgence of such

ideas have been used to solve the hierarchy problem [19, 20] and in higher-order effective models

with Lorentz symmetry violation [46–48].

In this work we study the stability of higher-order time derivative models within the framework

of polymer quantization. In particular, we focus on the Pais-Uhlenbeck (P-U) model. The polymer

representation is a non-standard representation of quantum mechanics inspired by some results

that emerge from loop quantum gravity. The possibility of space discreteness that appears in loop

quantum gravity [49] has served to improve the convergence of quantum field theories [6, 7] and

cosmological singularities [50]. In this paper our main goal is to test whether the fundamental

discreteness implicit in the polymer representation allows to improve the stability of higher-order

theories. The polymer quantization has been considered in several studies such as two-point func-
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tions [51–53], cosmology [50, 54], central forces [55, 56], higher space derivatives [57], thermody-

namics [58], compact stars [59] and low energy limits [60, 61].

The organization of this work is as follows. In section II we introduce the P-U model and we

explicitly show the origin of the instability in the Schrödinger quantization. In the third section we

give a basic review of the polymer formalism. In section IV we polymer quantize the P-U model

and solve the Hamiltonian eigenvalue equation. From the previous results we analyze stability in

the region of validity of the theory. In the last section we give the conclusions.

II. THE PAIS-UHLENBECK MODEL

The P-U model consists of an harmonic oscillator coupled to a higher-order term described by

the Lagrangian

L =
1

2
mẋ2 − 1

2
kx2 − g

2
ẍ2 , (1)

where g is a small parameter. The equation of motion is

− kx−m
d2x

dt2
− g

d4x

dt4
= 0 . (2)

Inserting the plane wave ansatz x(t) = x0e
−iyt produces the four solutions

y = ±
√

m±
√

m2 − 4kg

2g
. (3)

We define the two positive solutions according to

ω1 = ω0

√

1−
√
1− 4ε

2ε
, ω2 = ω0

√

1 +
√
1− 4ε

2ε
, (4)

where we introduce ω0 =
√

k/m as the usual frequency and g = mε
ω2
0
with ε a small dimensionless

parameter. Now, in the limit ε→ 0 the first solution tends to the usual harmonic solution ω1 → ω0

and the second one ω2 → ω0√
ε
blows up. One expects this behavior of the last solution in theories

with higher-order time derivative theories indicating a possible window to physics at higher energy

scales. In order to avoid imaginary solutions we impose ε ≤ εc = 1/4 where εc is the critical value

at which the two solutions collapse ω1 = ω2.

The conjugate momenta to x and ẋ are defined by the expressions

p =
∂L

∂ẋ
− d

dt

(

∂L

∂ẍ

)

, (5)

π =
∂L

∂ẍ
. (6)
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From (1), they are given by

p = mẋ+ gx(3) , (7)

π = −gẍ . (8)

The Hamiltonian is constructed via the extended Legendre transformation H = pẋ+πẍ−L which

after substitution yields

H = −π
2

2g
− mẋ2

2
+ ẋp+

kx2

2
. (9)

Let us consider the new set of variables

x1 =
ω2
2x− π/g

ω2
2 − ω2

1

, x2 = −ω
2
1x− π/g

ω2
2 − ω2

1

, (10)

and

p1 = p− (m− gω2
2)ẋ , p2 = p− (m− gω2

1)ẋ , (11)

where m′ =
√

m2 − 4kg. They allow to define the ladder variables

a1 =

√

m′ω1

2~

(

x1 + i
1

m′ω1
p1

)

,

a2 =

√

m′ω2

2~

(

x2 + i
1

m′ω2
p2

)

. (12)

Using these variables the Hamiltonian can be expressed as the sum of two decoupled harmonic

oscillators

H =
~ω1

2
(a1a

†
1 + a†1a1)−

~ω2

2
(a2a

†
2 + a†2a2) , (13)

where we refer to the first and the second term as the positive and negative sectors of the theory.

The quantization of such model follows by imposing the usual commutation relations in the

extended phase space [x̂, p̂] = i~ and [ˆ̇x, π̂] = i~. With the use of the canonical variables [ x̂1, p̂1 ] =

i~ and [ x̂2, p̂2 ] = i~ one can check that the creation and annihilation operators satisfy

[

â1, â
†
1

]

= 1,
[

â2, â
†
2

]

= 1 . (14)

To find the ground state wave function denoted by Ψ0, consider the explicit action of the operators

in the Hilbert space

x̂ψ = xψ , p̂ψ = −i~∂ψ
∂x

, (15)

ˆ̇xψ = ẋψ , π̂ψ = −i~∂ψ
∂ẋ

. (16)
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Inserting these expression into the previous creation and annihilation operators (12) we identify

two realizations for the vacuum. The first one is to define the vacuum as the one annihilated by

â1 and â2

â1Ψ0 = â2Ψ0 = 0, (17)

leading to

Ψ0 = N0 e
g(ω1−ω2)

2~
(ẋ2+ω1ω2x2)+ ig

~
ω1ω2xẋ , (18)

where N0 is a normalization factor. The Hamiltonian turns out to be

Ĥ = ~ω1(N̂1 +
1

2
)− ~ω2(N̂2 +

1

2
) , (19)

where N̂1 = â†1â1 and N̂2 = â†2â2 are the number operators of positive and negative particles

respectively. We see that the energy is not bounded from below since one can always create more

negative particles.

A different vacuum Ψ′
0 amounts to change the annihilation operator in the negative sector and

to maintain the previous in the positive sector, namely

â1Ψ
′
0 = â′2Ψ

′
0 = 0 , (20)

with â′2 = â†2. The vacuum state Ψ′
0 in this case is

Ψ′
0 = N0 e

g(ω1+ω2)
2~

(ẋ2−ω1ω2x2)− ig

~
ω1ω2xẋ . (21)

Note that Ψ′
0 can be obtained in (18) performing the transformation ω2 → −ω2. The Hamiltonian

is found to be

Ĥ ′ = ~ω1(N̂1 +
1

2
) + ~ω2(N̂

′
2 +

1

2
) , (22)

where now [â′2, â
′†
2 ] = −1 and N̂ ′

2 = −â′†2 â′2 is the new number operator. In this case the theory has

positive defined Hamiltonian but the price to pay is to end up with negative norm states or ghosts

that may threaten the conservation of unitarity and with non-normalizable wave functions.

III. POLYMER REPRESENTATION

In quantum mechanics when dealing with the adjoint operators x̂ and p̂ usually one encounters

some technical problems due to their unboundedness. Therefore, it is convenient to switch to the

exponentiated versions Û(α) and V̂ (β)

Û(α) = eiαx̂, V̂ (β) = eiβp̂/~ , (23)
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whose action are defined by

Û(α)ψ(x) = eiαxψ(x) , V̂ (β)ψ(x) = ψ(x+ β) , (24)

for all state ψ(x) in the Hilbert space L2(R). Both operators Û(α) and V̂ (β) satisfy the Weyl-

Heisenberg algebra

Û(α)Û (α′) = Û(α+ α′) ,

V̂ (β)V̂ (β′) = V̂ (β + β′) ,

Û(α)V̂ (β) = e−iαβ V̂ (β)Û (α) , (25)

where the parameters α and β have (length)−1 and length dimensions respectively. From the

above algebra one can obtain the usual commutations relations [x̂, p̂] = i~. Due to the Stone-von-

Neumann theorem any representation of the commutation relations have the form of the operators

(23), modulo unitarity transformation, since the two operators Û(α) and V̂ (β) are strongly con-

tinuous in their parameters, see [49, 62] and references therein.

In the polymeric construction one starts with a graph given by a countable set of points in the

real line, denoted by γ = {xj : j ∈ N}, with some requirements [49]. We define the functions

associated to a graph γ as

f(x) =







fj x = xj

0 x 6∈ γ
(26)

and their Fourier transform functions f(k) given by

f(k) =
∑

j

fje
−ixjk , (27)

satisfying the relation

∑

j

|fj|2x2nj <∞ for n = 0, 1, 2, . . . (28)

We denote by Cylγ the space of all cylindrical functions f(k) and Cyl the union of all Cylγ over

all graphs γ. We add to the space Cyl all the limits of Cauchy sequences, that is the Cauchy

completion which is called the polymeric Hilbert space denoted by Hpoly endowed with the scalar

product

〈e−ikxi |e−ikxj〉 = δxi,xj
. (29)

Recall, this is an alternative form to view the Hilbert space within the construction of the rigged

Hilbert space Ω ⊂ H ⊂ Ω∗, see Ref. [63].
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The main differences between the polymeric representation and the usual of quantum mechanics

is that Hpoly is a non-separable space and has an intrinsic fundamental discreteness leading to a

nonequivalent representation, see Ref. [64]. To be precise, the action of the operators Û(α) and

V̂ (β) given in Eq. (24) is well-defined in Hpoly, however, in the polymer representation there is no

self-adjoint operator p̂ = −i~ ∂
∂x such that the second equality in (23) is satisfied, that is to say, the

momentum operator p̂ is not well defined on Hpoly. This is due to the fact that V̂ (β) is not weakly

continuous in the parameter β, as can be verified using the modified product with the Kronecker

delta in Eq. (29). Nevertheless, one can approximate the operator p̂ with the expression

p̂ = − i~

µ0

(

V̂ (µ0/2) − V̂ (−µ0/2)
)

, (30)

where µ0 is a fundamental length scale associated with a possible discreteness of space, coming

from a more fundamental theory. The above approximation is natural, at least in the distributional

sense, since if we take the limit as µ0 → 0 we recover the usual momentum operator in L2(R).

IV. STABILITY AND HIGHER-ORDER TIME DERIVATIVES

In section II we have expressed the P-U Hamiltonian as two decoupled harmonic oscillators, for

instance H = H1 −H2. Their quantum counterparts represent normal particles and nonstandard

ones producing negative energy sometimes called Lee-Wick particles [44, 45]. Using the new set of

variables (10) and (11) we find

H1 =
1

2
k1x

2
1 +

1

2m′ p
2
1 ,

H2 =
1

2
k2x

2
2 +

1

2m′ p
2
2 , (31)

where kj = m′ω2
j with j = 1, 2. In other words, the P-U model involves two oscillators with

the same mass m′ and so taking advantage of this fact we polymer quantize the system as two

individual harmonic oscillators.

The polymer Hilbert space Hpoly = Hpoly(x1) ⊗ Hpoly(x2) comprises the polymeric spaces for

each oscillator. In the Hilbert space we have the action of the operators

Û1(α1)ψ(x1) = eiα1x1ψ(x1) ,

V̂1(β1)ψ(x1) = ψ(x1 + β1) ,

Û2(α2)ψ(x2) = eiα2x2ψ(x2) ,

V̂2(β2)ψ(x2) = ψ(x2 + β2) . (32)
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Considering the wave function ψ(x1, x2) ∈ Hpoly we arrive at the Schrödinger equation

(

1

2
k1x̂

2
1 +

1

2m′ p̂
2
1 −

1

2
k2x̂

2
2 −

1

2m′ p̂
2
2

)

ψ(x1, x2)

= Eψ(x1, x2) , (33)

where E is the total energy of the system and the momentum operators are

p̂1 = − i~

µ1

(

V̂1(µ1/2)− V̂1(−µ1/2)
)

,

p̂2 = − i~

µ2

(

V̂2(µ2/2)− V̂2(−µ2/2)
)

, (34)

with µ1 and µ2 the fundamental lengths associated to Hpoly(x1) and Hpoly(x2).

With the ansatz ψ(x1, x2) = ψ1(x1)ψ2(x2) and considering the cylindrical function for each

oscillator j, namely

ψj(k) =
∑

ℓ

ψj(xj,ℓ)e
−ixj,ℓk , (35)

together with Eqs (34), we obtain the equations for the coefficients

ψj(xj,ℓ + µj) + ψj(xj,ℓ − µj)

=

(

2−
2Ejµ

2
j

~ωjd2j
+
µ2jx

2
j,ℓ

d4j

)

ψj(xj,ℓ) , (36)

where we have introduced E = E1−E2 and d
2
j =

~

m′ωj
. The previous equations suggest that one can

find solutions supported at the uniformly spaced points xj,ℓ = x0+ ℓµj for some x0 ∈ [0,min{µj}).
Indeed, given the parameters of the equations {ψ(xj,ℓ)}∞ℓ=−∞, by using (36) one can construct a

solution ψj supported on the lattice γjx0,µj := {xj,ℓ ∈ R | xj,ℓ = x0 + ℓµj, ℓ ∈ Z}. Using this in Eq.

(36) yields

ψj(xj,ℓ+1) + ψj(xj,ℓ−1)

=

(

2−
2Ejµ

2
j

~ωjd2j
+
µ2j (x0 + ℓµj)

2

d4j

)

ψj(xj,ℓ) . (37)

Without loss of generality, let us consider both graphs based on the point x0 = 0. Hence, with

xj,ℓ = ℓµj, ψj(kj) =
∑∞

ℓ=−∞ ψj(xj,ℓ)e
−ikjℓµj and multiplying the equation (37) by e−ikℓµj and

summing over ℓ, we arrive at

2 cos(kjµj)ψj(kj) = 2

(

1−
Ejµ

2
j

~ωjd2j

)

ψj(kj)−
µ2j
d4j
ψ′′
j (kj) , (38)



9

where kj ∈ (− π
µj
, π
µj
). Normalizing and arranging the terms we get

ψ′′
j (kj) + 2d2j

(

Ej

~ωj
+
d2j
µ2j

(cos(kjµj)− 1)

)

ψj(kj) = 0 . (39)

Finally, by making the change of variables zj =
kjµj+π

2 ∈ (0, π) we write

ψ′′
j (zj) + [aj − 2qj cos(2zj)]ψj(zj) = 0 , (40)

where qj = 4λ−4
j , aj = 8

λ4
j

(

λ2
jEj

~ωj
− 1

)

and λj = µ0/dj is a dimensionless parameter. Equation

(40) is the well-known Mathieu equation in its canonical form. We seek for periodic solutions of

the Mathieu equations, since ψj(0) = ψj(π) by construction.

In order to approximate perturbatively to the harmonic oscillator we take λ1 to be small, which

produces the the following asymptotic expansion for the first oscillator

a1,n(λ1) = −8λ−4
1 + 4(2n + 1)λ−2

1 − 1

4
(2n2 + 2n+ 1)

+O
(

λ21
)

, (41)

for n = 0, 1, 2, . . .. Considering the asymptotic expansion for a1 we can write

E1,n =
~ω1

2

(

(2n + 1)− 1

16
(2n2 + 2n+ 1)λ21

)

+O(λ41) . (42)

For the second oscillator we have two alternatives: the first one is to consider µ0 ≪ d2 which

analogously produces

E2,m =
~ω2

2

(

(2m+ 1)− 1

16
(2m2 + 2m+ 1)λ22

)

+O(λ42) . (43)

The second alternative is to consider a large λ2 leading to the expansion

E2,m =
~ω2

λ22
+ ~ω2

λ22
8
m2 +O(λ−6

2 ) . (44)

With exception of the ground state we have that the negative energy of the system increases

without limit. This case may be interesting to analyze from a field point of view, since in this case

the propagators turn to be suppressed by the high scale [51]. For the rigid rotator case in which λ1

is large as well as λ2, achieved for example taking large values of the original mass parameter m,

one can see that the energy spectrum goes as En,m ≈ ~

8 (λ
2
1n

2 − λ22m
2) which can be more negative

with respect to the Schrödinger representation for the same occupation numbers (n,m). In this

case there is no improvement for stability. Let us focus on the case λ1 ≪ 1 and λ2 ≪ 1 for which



10

−5 0 5 10 15

x 10
7

−8

−6

−4

−2

0

2

4
x 10

−4

m

E
n̄

,m
FIG. 1: Comparison of the P-U energies as a function of m evaluated at n̄ in the Schrödinger and polymeric

representation.

FIG. 2: The polymeric P-U energy En,m as a function of n and m.

the total energy En,m of the system can be written as

En,m =
~ω1

2

(

(2n + 1)− 1

16
(2n2 + 2n + 1)λ21

)

− ~ω2

2

(

(2m+ 1)− 1

16
(2m2 + 2m+ 1)λ22

)

. (45)

Analogously to the Schrödinger quantization the high energy oscillator seems to lead to the in-

stability, however we will show below that in certain regions the Hamiltonian can be defined well

bounded from below. It is important to emphasize that in the absence of operators connecting

the two Hilbert spaces the negative energy is not to serious and the problem of instability appears

upon introducing the interactions.

Let us consider the constraints imposed on the number of normal particles n that follows from

the absence of any polymeric effect in quantum mechanics. From the first term in (45), it can be

seen that the positive-oscillator corrections become significant or O(1) at the value n̄ =
√
h1. For
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example considering the vibrational modes of a carbon monoxide molecule with mass m = 10−26

kg and frequency ω1 = 1015s−1, and estimating the polymer scale to be µ1 = 10−19 m, we find

n̄ ≈ 107, see [49]. In addition, in several approaches to polymer quantum mechanics a cutoff in the

energy eigenvalues has been justified for the harmonic oscillator in order to implement a consistent

renormalization [60]. This upper limit is key to define our effective region, since now, in contrast

to what happens in the usual P-U model for higher values of the occupation number m and for

fixed n = n̄ the polymeric energy is bounded from below, see Fig. 1. In the general setting where

both occupation numbers n and m vary freely the total energy of the system is well bounded from

below, avoiding possible stability problems, as shown in Fig. 2.

V. CONCLUSIONS

In this work we have analyzed the stability of theories containing higher-order time derivatives

within the framework of polymeric quantization. For this we have focused on the well-known

Pais-Uhlenbeck model with fourth-order time derivatives in the Lagrangian. Using a canonical

transformation we have cast the theory into a sum of two decoupled harmonic oscillators, one with

positive energy and the other with negative energy. The negative-energy oscillator is responsible

for the instabilities that arise in the presence of interactions.

We have shown that the discrete nature of the polymer Hilbert space introduces corrections

in the energy spectrum of the P-U model which allows to define a region of positive defined

Hamiltonian. For this we have set a cutoff from observational constraints from quantum mechanics

due to the absence of any polymeric effect and further motivated by a consistent renormalization

program. We have established an effective region defined by small values of the parameters λ1

and λ2 at which the theory has a well bounded Hamiltonian. However, for the case with large λ1

and λ2 , we have found that the instability shows up for very low occupation numbers with no

improvement with respect to the usual Schrödinger quantization. We leave for future investigations

the inclusion of interactions and the case of large λ2 in the context of quantum field theory.
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