

SPECTRAL ANALYSIS OF TYPE II SUPERNOVAE

TESIS PARA OPTAR AL GRADO DE DOCTOR EN CIENCIAS MENCIÓN ASTRONOMÍA

CLAUDIA PATRICIA GUTIÉRREZ AVENDAÑO

PROFESOR GUÍA:

MARIO HAMUY WACKENHUT

MIEMBROS DE LA COMISIÓN:

JOSEPH PAUL ANDERSON PAULINA LIRA TEILLERY RENÉ MENDEZ BUSSARD

> SANTIAGO DE CHILE 2016

Resúmen

La idea principal de esta tesis es el análisis de los espectros ópticos de las supernovas de tipo II (SNs II) y sus correlaciones con los parámetros fotométricos. Este análisis se basa en la caracterización de la diversidad espectral y el uso de esta para entender de una mejor forma los mecanismos físicos que involucran a las SNs II. Un objetivo clave es vincular la evolución transitoria a las propiedades del progenitor antes de la explosión. Para este propósito utilizo 893 espectros ópticos (entre 3 y 363 días) de 123 SNs II que se obtuvieron entre 1986 y 2009.

Con el fin de comparar consistentemente las propiedades observadas de las SNs II, es necesario tener una época común. Para ello, estimo las fechas de explosión usando imágenes antes de la explosión y del descubrimiento y la técnica de ajuste espectral, los cuales muestran muy buenos resultados. Centrándome en el perfil P-Cygni de H_{α} , encuentro que SNs con menor componente de absorción con respecto a la emisión (valores pequeños en a/e), son más brillantes en el máximo, tienen una tasa de declinación más rápida en las curvas de luz, duraciones más cortas en la fase opticamente gruesa y velocidades de expansión más altas. Teniendo en cuenta estos resultados, sugiero que las diferencias entre las SNs de rápido declive (IIL) y las SNs con meseta (IIP) están relacionados con la masa de la envoltura de hidrógeno al momento de la explosión.

Expandiendo el análisis a la cobertura total de los espectros, analizo la aparición de las líneas de Fe II y su evolución con el tiempo con respecto a las diferencias en a/e y la velocidad de H_{α} en una época dada, la magnitud en el máximo, la la tasa de declive, y la metalicidad del medio. Especulo que la evolución de líneas podría indicar diferencias en las temperaturas y/o metalicidad. Además, encuentro un componente adicional de absorción en el lado azul de H_{α}. Concluyo de que este componente en los espectros tempranos está asociado a Si II λ 6355, mientras que en la fase de la meseta está relacionado con una característica de alta velocidad en las líneas de hidrógeno, las cuales podrían indicar señales de interacción entre el material expulsado y el viento de la supergigante roja. Por otro lado, la presencia de Si II podría estar relacionada con el radio progenitor.

Analizando las propiedades espectrales y sus correlaciones con parámetros fotométricos, encuentro que SNs con velocidades más altas son más brillantes, tienen seudo-anchos equivalentes más pequeños, tasas de declive más rápidas, duraciones más cortas en la fase opticamente gruesa y en la meseta y masas de niquel más altas. Relacionando estos parámetros con las propiedades físicas de la explosión y del progenitor, especulo que la duración de la meseta está relacionado con la masa de la envoltura de hidrógeno, la tasa de declive en la curva de luz está relacionada con el radio del progenitor, y las velocidades de expansión del material expulsado con la energía de la explosión.

Abstract

The basis of this thesis is the analysis of optical wavelength spectroscopy of type II supernovae (SNe II) and their correlations with photometric parameters. This analysis involves characterising the diversity of the spectral evolution of SNe II, and using this characterisation to further understand the physical mechanisms behind SNe II. A key aim is to link the transient evolution to pre-explosion progenitor properties. To that purpose, I use 893 optical wavelength spectra of 123 SNe II obtained between 1986 and 2009, and ranging from between 3 and 363 days post explosion.

In order to consistently compare observed properties of SNe II, it is necessary to have a common epoch. For this, I estimate the explosion epochs using pre-explosion images and spectral matching technique, which have very good agreements. Concentrating on the dominant H_{α} P-Cygni profile, I find that SNe with less absorption component with respect to emission have faster declining light curves, shorter optically thick phase durations, higher ejecta velocities and are brighter at maximum. I suggest that the differences between fast declining (IIL) and plateau (IIP) SNe are related with the pre-explosion hydrogen envelope mass and that they do not come from different progenitor families.

Expanding the analysis to the full coverage of the spectra, I analyse the appearance of lines in SNe II and their time evolution with respect to differences in the ratio of absorption to emission (a/e) and H_{α} velocity at a particular epoch, the magnitude at maximum, the decline rate, and environment metallicity. I speculate that line evolution could indicate differences in temperatures and/or metallicity. I also find an extra absorption component on the blue side of H_{α} . I conclude that this component in early spectra (before 35 days) is associated with Si II λ 6355, while in the plateau phase is related with high velocity (HV) features of hydrogen lines. These HV features could imply signs of interaction between the SNe ejecta and the red supergiant (RSG) wind, and could be used to constrain the nature of the circumstellar environment of SNe II. On the other hand, I speculate that the presence of Si II is related with larger progenitor radius.

Spectral properties are analysed and correlated with photometric parameters. I find that SNe with higher velocities are brighter, have smaller pseudo-equivalent widths, faster declining light curves, shorter optically thick duration phases and plateau durations, and higher Ni masses. I attempt to relate observable SNe parameters with physical properties of the explosion and progenitor. Thus, I speculate that the plateau duration is related with the hydrogen envelope mass at the moment of the explosion, the initial light-curve decline rate is related with the radius of the progenitor, and the expansion ejecta velocities with the explosion energy. A los que están... A los que estuvieron

Agradecimientos

En primer lugar quiero agradecer a mis supervisores, Joe Anderson y Mario Hamuy. A Joe le doy infinitas gracias por su apoyo incondicional, paciencia, entusiasmo y toda la experiencia científica que me transmitió durante largas horas de discusiones; a Mario por haberme impulsado a seguir siempre adelante, por darme la oportunidad de trabajar en su grupo. A ambos agradezco la confianza que depositaron en mi. También agradezco a los profesores de Calán por haberme ayudado a crecer científicamente, especialmente a Paulina Lira por su paciencia y dedicación. A Luc Dessart por su buena disposición a la hora de responder mis múltiples inquietudes y a Christophe Martayan por su confianza. Agradezco al grupo de supernovas: Thomas de Jaeger, Lluis Galbany, Hanin Kuncaravakti, Francisco Forster, Giuliano Pignata, y con mucha más gratitud a Santiago González, por haberme apoyado cuando más lo necesitaba. También le doy las gracias a mis compañeros de generación (Fernando Becerra, Fernando Olguín, Elise Servajean, Paula López, Jesús Umanzor, Nicola Astudillo) por haberme incluido en su grupo y ayudado a adaptarme con más facilidad. A Lara y Lucerito, compañeras de oficina y de aventuras. A mis compañeros de oficina, de almuerzo, de la van, etc... Julián Mejia, Regis Cartier, Paula Sánchez, Ismael Botti, Angel Rincón, Celia Verdugo, Felipe Santana por estar dispuestos a invertir su tiempo en ocio. A los funcionarios (Lucho Lalo, Natalie, la Señora Nelly, Marta, Alejandro, José, Rogelio, Alejandro, doña Mary, don Jorge y don Richard) por su amabilidad y cariño. También quiero agradecer a los compañeros y amigos de la ESO y de la Universidad: Kora, Julio, Jesús, Daniel, Liz, Tomek, Paul, Elvar, Pascale, Amal, Gaby, Francisco.

Quiero agredecer profundamente a Alejo por haberme acompañado en los momentos mas difíciles, por haberme impulsado a seguir mi sueño. A mi familia y amigos por apoyarme desde la distancia y por creer en mi.

Agradezco a CONICYT-AGCI por apoyarme a través del Programa Nacional de Becas de Postgrado para extranjeros. Al Centro de Excelencia en Astrofísica y Tecnologías Afines (CATA), a la Iniciativa Científica Milenio por apoyarme a través del Núcleo Milenio de Supernovas (MCSS) y del Instituto Milenio de Astrofísica (MAS), y al Observatorio Europeo Austral (ESO).

Contents

1	Intr	oducti	on	1
	1.1	Superi	nova explosions	1
	1.2	Superi	novae classification	1
	1.3	Genera	al properties of type II supernovae	4
	1.4	Goals	of this dissertation	5
2	\mathbf{H}_{lpha}	Spectr	al diversity of type II supernovae	6
	2.1	Abstra	act	6
	2.2	Introd	uction	7
	2.3	SN II	data and measurements	8
	2.4	Result	S	11
	2.5	Discus	sion	12
	2.6	Conclu	sions	14
3	San	ple ch	aracterization	17
	3.1	Abstra	act	17
	3.2	Introd	uction	18
	3.3	Data s	sample	20
		3.3.1	The Cerro Tololo Supernova Survey	24
		3.3.2	The Calán/Tololo survey (CT)	25
		3.3.3	The Tololo Supernova program, SOIRS	25
		3.3.4	The Carnegie Type II Supernova Survey (CATS)	25
		3.3.5	The Carnegie Supernova Project (CSP)	25
	3.4	Observ	vations and data reduction	25
		3.4.1	Observations	26
		3.4.2	Data reduction	41
	3.5	Explos	sion epoch estimations	42
		3.5.1	SNID implementation	42
		3.5.2	New SNID templates	43

	3.6	Sampl	e properties $\ldots \ldots 57$
	3.7	Spectr	al line identification
		3.7.1	The H_{α} P-Cygni profile
		3.7.2	H_{β} , H_{γ} and H_{δ} absorption features $\ldots \ldots \ldots$
		3.7.3	He I λ 5876 and Na ID λ 5893
		3.7.4	Fe-group lines
		3.7.5	The Ca II IR triplet
		3.7.6	O I lines
		3.7.7	Cachito: Hydrogen High Velocity Features or the Si II $\lambda 6355$ line? . $~67$
		3.7.8	Nebular Features
	3.8	Spectr	al measurements
		3.8.1	Expansion velocities
		3.8.2	Velocity decline rate
		3.8.3	Pseudo-equivalent widths
	3.9	Line E	
		3.9.1	Expansion velocity evolution
		3.9.2	Velocity decline rate of H_{β} analysis $\ldots \ldots \ldots$
		3.9.3	pEWs evolution
		3.9.4	Cachito: Hydrogen HV features or the Si II $\lambda 6355$ line? 79
		3.9.5	O I λ 7774
	3.10	Conclu	usions
4	\mathbf{Spe}	ctrosco	opic and photomeric correlations 89
	4.1	Abstra	act
	4.2	Introd	uction
	4.3	Data	
	4.4	Measu	$rements \dots \dots$
		4.4.1	Spectral measurements
		4.4.2	Photometric measurements
	4.5	Physic	eal implications
	4.6	Result	s
		4.6.1	Spectral correlations in the photospheric phase
		4.6.2	Spectroscopic and photometric properties
	4.7	Discus	sion $\ldots \ldots \ldots$
		4.7.1	H_{α} P-Cygni diversity
		4.7.2	The Si II λ 6355 line
		4.7.3	Other comparisons

	4.8 Conclusions	. 109
5	Summary	121
Bi	bliography	123
A	SNe II spectral series	136
в	SNe II spectral matching technique	158

List of Figures

1.1	Spectra of SNe	3
1.2	Classification scheme	4
2.1	SN II H _{α} P-Cygni profiles	10
2.2	Light curve and spectral measurements	11
2.3	Correlations between H_{α} and photometric parameters	13
3.1	Redshift distribution	24
3.2	Number of spectra distribution	41
3.3	Spectral matching example	56
3.4	Spectral matching and non-detection methods comparison $\ldots \ldots \ldots \ldots$	57
3.5	Distribution of the number of spectra as a function of epoch $\ldots \ldots \ldots$	58
3.6	Distribution of the first and last spectrum	59
3.7	s_2 distribution	60
3.8	Line identification in the early spectra	61
3.9	Line identification at 31 days	62
3.10	Line identification at ~ 70 days $\ldots \ldots \ldots$	63
3.11	Line identification in the nebular phase	64
3.12	${\rm H}_{\alpha}$ P-Cygni profile evolution in SN 1992 ba $\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	65
3.13	Complicated H_{α} P-Cygni profile of SN 2007X	68
3.14	Nebular spectral of seven different SNe of our sample	69
3.15	Examples of pEWs measured	72
3.16	Appearance of lines in SNe II	73
3.17	Expansion velocity evolution at 50 days	77
3.18	Distribution of the H_{α} velocity at 50 days $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	78
3.19	Distribution of the expansion ejecta velocities at 50 days	79
3.20	pEWs evolution at 50 days	80
3.21	${\rm H}_{\alpha}$ P-Cygni profile of low and intermediate velocity SNe II \hdots	81
3.22	Evolution of a/e between explosion and 120 days $\ldots \ldots \ldots \ldots \ldots \ldots$	82

3.23	Velocity evolution of Cachito: Si II $\lambda 6355$. 83
3.24	Velocity evolution of Cachito: High velocity features	. 84
3.25	Spectral evolution of the H_{α} and H_{β} lines of SN 2004fc	. 85
3.26	Correlation between $pEW(O I)/pEW(H_{\alpha} abs)$ and s_2	. 86
4.1	Correlation matrix of the individual velocity measurements at 50 days	. 98
4.2	Correlation matrix of the individual pEW measurements at 50 days	. 99
4.3	Relations between H_{α} velocities and the pEWs	. 100
4.4	Relations between Fe II λ 5169 velocities and the pEWs	. 101
4.5	Relations between Na ID velocities and the pEWs	. 102
4.6	Correlation matrix of spectral and photometric parameters	. 103
4.7	Correlations between Pd and $s_3 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 104
4.8	Correlations between Pd and six different parameters	. 105
4.9	Correlations between s_3 and five different parameters	. 105
4.10	Correlations between 56 Ni and the expansion velocities $\ldots \ldots \ldots$. 106
4.11	Correlations: M_{max} vs. velocities; M_{max} vs. pEWs	. 107
4.12	Correlations between pEW(Fe II λ 5018) and Pd	. 110
A.1	SN II spectral series	. 137
A.2	SN II spectral series	. 138
A.3	SN II spectral series	. 139
A.4	SN II spectral series	. 140
A.5	SN II spectral series	. 141
A.6	SN II spectral series	. 142
A.7	SN II spectral series	. 143
A.8	SN II spectral series	. 144
A.9	SN II spectral series	. 145
A.10	SN II spectral series	. 146
A.11	SN II spectral series	. 147
A.12	2 SN II spectral series	. 148
A.13	3 SN II spectral series $\ldots \ldots \ldots$. 149
A.14	SN II spectral series	. 150
A.15	5 SN II spectral series \ldots	. 151
A.16	3 SN II spectral series $\ldots \ldots \ldots$. 152
A.17	SN II spectral series	. 153
A.18	3 SN II spectral series $\ldots \ldots \ldots$. 154
A.19	SN II spectral series	. 155

B.35 Best spectral matching of SN $\stackrel{\circ}{_{\sim}}$	2003ej	 			 	••	 		•	. 176
B.36 Best spectral matching of SN 2	2003fb	 			 	•	 	•	•	. 176
B.37 Best spectral matching of SN 2	2003gd	 	•		 	•	 		•	. 177
B.38 Best spectral matching of SN 2	2003hd	 			 	•	 	•	•	. 177
B.39 Best spectral matching of SN 2	2003 hg	 			 	•	 	•	•	. 178
B.40 Best spectral matching of SN 2	2003hk	 			 	•	 	•	•	. 179
B.41 Best spectral matching of SN 2	2003hl	 			 	•	 	•		. 179
B.42 Best spectral matching of SN 2	2003 hn	 			 	•	 	•		. 180
B.43 Best spectral matching of SN 2	2003 ho	 			 	•	 	•	•	. 180
B.44 Best spectral matching of SN 2	2003ib	 			 	•	 	•	•	. 181
B.45 Best spectral matching of SN 2	2003ip	 			 	•	 	•	•	. 182
B.46 Best spectral matching of SN 2	2003iq	 			 	•	 	•	•	. 182
B.47 Best spectral matching of SN 2	2004ej	 			 	•	 	•	•	. 182
B.48 Best spectral matching of SN 2	$2004 \mathrm{er}$	 			 	•	 	•	•	. 183
B.49 Best spectral matching of SN 2	$2004 \mathrm{fb}$	 	•		 	•	 	•	•	. 183
B.50 Best spectral matching of SN 2	$2004 \mathrm{fc}$	 			 	•	 	•	•	. 184
B.51 Best spectral matching of SN 2	2004fx	 			 	•	 	•	•	. 184
B.52 Best spectral matching of SN 2	$2005 \mathrm{J}$	 			 	•	 	•	•	. 185
B.53 Best spectral matching of SN 2	$2005 \mathrm{K}$	 			 	•	 	•	•	. 185
B.54 Best spectral matching of SN 2	$2005\mathrm{Z}$	 			 	•	 	•	•	. 186
B.55 Best spectral matching of SN 2	2005af	 			 	•	 	•	•	. 186
B.56 Best spectral matching of SN 2	2005an	 			 	•	 	•	•	. 187
B.57 Best spectral matching of SN 2	2005 dk	 			 	•	 	•	•	. 187
B.58 Best spectral matching of SN 2	2005 dn	 			 	•	 	•	•	. 188
B.59 Best spectral matching of SN 2	2005 dt	 			 	•	 	•		. 188
B.60 Best spectral matching of SN 2	$2005 \mathrm{dw}$				 	•	 	•		. 189
B.61 Best spectral matching of SN 2	2005 dx	 			 	•	 	•		. 190
B.62 Best spectral matching of SN 2	2005 dz	 			 	•	 	•	•	. 191
B.63 Best spectral matching of SN 2	$2005 \mathrm{es}$	 			 	•	 	•	•	. 191
B.64 Best spectral matching of SN 2	$2005 \mathrm{me}$				 	•	 		•	. 192
B.65 Best spectral matching of SN 2	2006ai	 			 	•	 	•	•	. 193
B.66 Best spectral matching of SN 2	2006bc	 			 	•	 	•	•	. 193
B.67 Best spectral matching of SN 2	2006be	 			 	•	 		•	. 194
B.68 Best spectral matching of SN 2	2006bl	 			 	•	 	•	•	. 195
B.69 Best spectral matching of SN 2	2006ee	 			 	•	 	•	•	. 196
B.70 Best spectral matching of SN 2	2006it	 			 	•	 	•	•	. 197
B.71 Best spectral matching of SN 2	2006iw	 			 	•	 		•	. 197

$\operatorname{B.72}$ Best spectral matching of SN	$2006 \mathrm{ms}$	•	 •		 •	 	•			. 198
$\operatorname{B.73}$ Best spectral matching of SN	2006qr				 •	 	•	 •		. 198
$\operatorname{B.74}$ Best spectral matching of SN	2007P				 •	 	•	 •		. 199
$\operatorname{B.75}$ Best spectral matching of SN	2007U				 •	 	•	 •		. 200
B.76 Best spectral matching of SN $$	2007W				 •	 	•	 •		. 200
$\operatorname{B.77}$ Best spectral matching of SN	2007X			•	 •	 	•	 •		. 201
B.78 Best spectral matching of SN $$	$2007\mathrm{Z}$				 •	 	•	 •		. 202
B.79 Best spectral matching of SN $$	2007aa				 •	 	•	 •		. 202
$\operatorname{B.80}$ Best spectral matching of SN	2007ab				 •	 	•	 •		. 203
B.81 Best spectral matching of SN $$	2007 av				 •	 	•	 •		. 203
$\operatorname{B.82}$ Best spectral matching of SN	$2007 \mathrm{bf}$				 •	 	•	 •		. 204
$\operatorname{B.83}$ Best spectral matching of SN	$2007 \mathrm{hm}$				 •	 	•	 •		. 204
B.84 Best spectral matching of SN $$	2007il				 •	 	•	 •		. 205
$\operatorname{B.85}$ Best spectral matching of SN	2007it				 •	 				. 206
B.86 Best spectral matching of SN $$	2007ld				 •	 	•	 •		. 206
$\operatorname{B.87}$ Best spectral matching of SN	2007oc				 •	 	•	 •		. 207
B.88 Best spectral matching of SN $$	2007od				 •	 	•	 •		. 207
B.89 Best spectral matching of SN $$	2007 sq				 •	 	•	 •		. 208
$\operatorname{B.90}$ Best spectral matching of SN	2008F				 •	 	•	 •		. 208
B.91 Best spectral matching of SN $$	2008H				 •	 	•	 •		. 209
B.92 Best spectral matching of SN $$	2008K			•	 •	 	•	 •		. 209
$\operatorname{B.93}$ Best spectral matching of SN	2008M				 •	 	•	 •		. 210
$\operatorname{B.94}$ Best spectral matching of SN	2008W				 •	 	•	 •		. 210
$\operatorname{B.95}$ Best spectral matching of SN	2008ag				 •	 	•	 •		. 211
B.96 Best spectral matching of SN $$	2008aw				 •	 	•	 •		. 211
$\operatorname{B.97}$ Best spectral matching of SN	$2008 \mathrm{bh}$				 •	 	•	 •		. 211
B.98 Best spectral matching of SN $$	2008bk				 •	 	•	 •		. 212
$\operatorname{B.99}$ Best spectral matching of SN	$2008 \mathrm{bm}$				 •	 	•	 •		. 212
B.100 Best spectral matching of SN $$	2008bp				 •	 	•	 •		. 213
B.101Best spectral matching of SN $$	$2008 \mathrm{br}$				 •	 	•	 •		. 214
B.102Best spectral matching of SN $$	2008bu				 •	 	•	 •		. 214
B.103Best spectral matching of SN $$	2008ga				 •	 	•	 •		. 215
B.104 Best spectral matching of SN $$	2008gi			•	 •	 	•			. 216
B.105Best spectral matching of SN $$	$2008 \mathrm{gr}$				 •	 	•	 •		. 216
B.106Best spectral matching of SN $$	2008hg			•	 •	 	•	 •		. 217
B.107 Best spectral matching of SN $$	2008ho			•	 •	 	•	 •		. 217
B.108 Best spectral matching of SN $$	2008if				 •	 	•	 •		. 218

B.109Best	$\operatorname{spectral}$	matching	of SN	2008il	•						•				•	•	 2	18
B.110Best	spectral	matching	of SN	2008in							•	•			•	•	 2	19
B.111Best	spectral	matching	of SN	2009N			•				•	•			•	•	 2	19
B.112Best	spectral	matching	of SN	2009W	•	•					•				•	•	 2	20
B.113Best	spectral	matching	of SN	2009ao	•	•					•				•	•	 2	21
B.114Best	spectral	matching	of SN	2009au	•	•					•				•	•	 2	21
B.115Best	spectral	matching	of SN	2009bu							•	•			•	•	 2	22
B.116Best	spectral	matching	of SN	2009bz	•		•	•			•				•	•	 2	22

List of Tables

2.1	SNe II spectral and photometric parameters at t_{tran}
2.2	Pearson's values between all the parameters at t_{tran}
3.1	SNe II sample
3.2	Spectroscopic observations information
3.3	Reference SNe II
3.4	Explosion epoch estimations
3.5	Spectral features used in the statistical analysis
3.6	KS-Test values
3.7	Model properties
4.1	Average of correlations
4.2	Photometric parameters
4.3	Velocity values at 50 days $\ldots \ldots 115$
4.4	pEW values at 50 days $\ldots \ldots \ldots$

Chapter 1 Introduction

1.1 Supernova explosions

The word supernovae was introduced by Baade & Zwicky in 1934, to refer to a bright "new" star in the sky. However, the first remarks on such "new stars" comes from the second century A.D. by Chinese astronomers. They reported the appearance of a new star in the sky, which after than certain length of time, faded away. One of the most famous such events is the Crab nebula. This object was observed in AD 1054, with a maximum apparent magnitude of -4, in the constellation Taurus. It was visible for more than six months, outshining even many bright stars. Later, in A.D. 1572 and 1604, two "new stars" were discovered. The first one by Tycho Brahe in the constellation Cassiopeia, and the second one by Johannes Kepler only a few years before the invention of the telescope. These days, the rate of discovery of "new stars", i.e. supernovae, has significantly increased due to modern telescopes and detectors, together with systematic searches.

It is now known that Supernovae (SNe hereafter) are the explosions of stars ending their lives and that they represent some of the most energetic events that occur in the Universe. During the explosion ~ 10^{51} ergs (or 1 foe) of energy is released, and the interstellar medium is enriched by heavy elements synthesized by the star during its evolution and explosion. Their peak luminosities can be comparable to the total light of their host-galaxies (~ $10^{10} L_{\odot}$). They play a very important role in stellar evolution and in the chemical evolution of galaxies, and they are also powerful cosmological tools, most famously as distance indicators.

1.2 Supernovae classification

The initial SN classification was achieved by Minkowski (1941) based on spectroscopic differences: SNe with broad emission features and no clear signs of hydrogen in the

spectrum were classified as Type I, while SNe with strong broad Balmer lines, Type II. Later, new SN types were introduced and in the '80s a classification scheme was established. Thus, the Type I class was sub-classified into three classes according to the presence or absent of different lines:

- **SNe Ia:** the spectra show Si II lines.
- SNe Ib: spectra display He I lines but absent of Si II.
- SNe Ic: spectra do not show neither Si II nor He I.

Similarly, the Type II was also divided into subgroups based on spectral features (Filippenko et al., 1993, Schlegel, 1990, Filippenko, 1997), and in some cases on photometric behaviour (Barbon et al., 1979) as follows:

- SNe IIb: the spectra show strong hydrogen lines during the first weeks since explosion. Later, the Balmer lines disappear and He I lines emerge.
- **SNe IIn:** show narrow emission lines in their spectra, attributed to interaction with circumstellar medium (CSM).
- **SNe IIP:** the light curve shows a "plateau" or quasi-constant luminosity for a few months.
- SNe IIL: the light curve shows a linear decline of luminosity after maximum.

However, recent studies (e.g. Anderson et al., 2014b, Sanders et al., 2014, Valenti et al., 2016) have shown that the last two classes (IIL and IIP) display a continuum in their light curve properties and it is not possible to divide them into two different groups. Figure 1.1 shows the spectra of the SN types at maximum, three weeks and one year since maximum.

Although the initial classification was done according the spectral information, SNe can be classified according to their explosion mechanism into two groups: core-collapse SNe (CC-SNe) from massive stars, and thermonuclear SNe from white dwarf (WD) stars in binary systems (see Figure 1.2). The accepted picture is that young massive stars with $M_{ZAMS} > 8 M_{\odot}$ collapse when their iron core reaches the Chandrasekhar mass near 1.4 M_{\odot} (Smartt, 2009). At this point the pressure provided by the electrons becomes insufficient to balance gravity and the core becomes condemned to gravitational collapse. This is followed by the explosion of the star, presumably due to heat deposited by the neutrinos created in the center. This process leads to the formation of a neutron star or a black hole, which depends on the initial mass of the star and the amount of material falling to the core in the collapse. Belonging to the CC-SNe class are SNe II, Ib/c, IIn, and

Figure 1.1 The spectra of the main SN types at maximum, three weeks and one year after maximum (from Turatto 2003).

IIb. Their spectral differences are possibly due to the amount of mass loss during the life of the star. In this scenario, SNe II keep a significant fraction of H at the moment of the explosion, while SNe Ib/c lose their H envelope due to strong stellar winds or transfer to a binary companion (Podsiadlowski et al., 1992, Nomoto et al., 1996, Yoon et al., 2010).

On the other hand, Type Ia SNe come from the thermonuclear burning of a carbon-oxygen white dwarf either triggered by the interaction with the companion in a close binary system (Hoyle and Fowler, 1960) or by direct collisions of white dwarfs (Raskin et al., 2009). In the leading scenario of a close binary system, the nature of the explosion and companion star is still debated. Two of the most popular models considered are the single degenerate (SD; Nomoto 1982, Iben and Tutukov 1984) and the double degenerate (DD) scenarios (Iben and Tutukov, 1984, Webbink, 1984). In the former, a white dwarf accretes matter from the companion, which can be a subgiant or main-sequence star, while in the latter the SN is produced by the merging of two white dwarfs. SNe Ia are thought to explode near the Chandrasekhar mass, although recent simulations of sub-Chandrasekhar mass explosions have been successful for both

Figure 1.2 The classification scheme of supernovae (from Turatto 2003).

scenarios (Sim et al., 2012, Kromer et al., 2010, Pakmor et al., 2012). Unlike CC-SNe, in the thermonuclear explosion the entire star is disrupted and the iron and intermediatemass elements produced in the explosion are expelled at great velocities to the interstellar medium leaving no compact object at its center.

1.3 General properties of type II supernovae

During the evolution and explosion of the stars, chemical elements heavier than boron are produced and are driven out through the interstellar medium thanks to the enormous kinetic energies liberated during stellar deaths (Smartt et al., 2009). At the beginning, the SN luminosity increases due to the diffusion of internal energy, and the light curve reaches the optical maximum. In this stage, the ejecta is dense and opaque, however with the expansion of the ejecta, the density and temperature decrease and the photosphere recedes. At this moment, the ionized hydrogen matter begins to recombine. The opacity goes down and the residual trapped internal energy can be released. When the recombination phase ends, the envelope is transparent and the light curve settles onto the exponential tail, during which the radioactive decay of ⁵⁶Co represents the main energy source (Arnett, 1979, Barbon et al., 1984). Generally, SN II evolution is studied in two phases: photospheric and nebular. In the photospheric phase, the SNe II spectra exhibit the Balmer lines, Ca II, Na I D, and iron group lines. With time, the photosphere becomes transparent and the nebular phase starts. At this moment, the inner regions are exposed and the spectra are dominated by forbidden lines. For details of the spectral lines see Appendix A.

1.4 Goals of this dissertation

SNe II are the most frequent stellar explosions in nature (Li et al., 2011) and they have a significant role in the chemical evolution of galaxies. They are produced by the final explosion of massive (> 8 M_{\odot}) stars, which retain a significant part of their hydrogen envelope at the time of the explosion, and hence their spectra show prominent Balmer lines. The direct identification of Red Supergiant (RSG) stars on pre-explosion images (e.g. Van Dyk et al., 2003, Smartt et al., 2004, Maund and Smartt, 2005, Smartt et al., 2009, Smartt, 2015) suggests that SNe II arise from this stellar type. SNe II display a huge diversity both spectroscopic and photometric. However it is not clear how this diversity is associated to progenitor and explosion properties.

The goal of this thesis is to do an analysis of optical wavelength spectroscopy of SNe II and their correlations with photometric parameters. This analysis involves characterising the diversity of the spectral evolution of SNe II, and using this characterisation to further understand the physical mechanisms behind SNe II. A key aim is to link the transient evolution to pre-explosion progenitor properties.

The thesis is organized as follows. In Chapter 2, I present the study of the H_{α} P-Cygni profile diversity for 52 SNe II at a common epoch (t_{tran}). Chapter 2 has been published in the The Astrophysical Journal Letters as Gutiérrez et al. 2014, ApJL, 786, 15. In Chapter 3, I present the characterization of the spectral diversity of SNe II. Chapter 4 shows the correlations between spectral and photometric parameters of SNe II at 50 days since explosion. Chapter 3 and Chapter 4 will each be submitted separately in The Astrophysical Journal. Finally, in Chapter 5, I summarize the main conclusions of this work.

Chapter 2

H_{α} spectral diversity of type II supernovae: correlations with photometric properties

This chapter is published in The Astrophysical Journal Letters as Gutiérrez, C. P.; Anderson, J. P.; Hamuy, M.; González-Gaitán, S.; Folatelli, G.; Morrell, N. I.; Stritzinger, M. D.; Phillips, M. M.; McCarthy, P.; Suntzeff, N. B. and Thomas-Osip, J. **2014**, ApJL, 786, 15

2.1 Abstract

We present a spectroscopic analysis of the H_{α} profiles of hydrogen-rich type II supernovae. A total of 58 type II supernovae having well sampled optical light curves and spectral sequences were analyzed. Concentrating on the H_{α} P-Cygni profile we measure its velocity from the FWHM of emission and the ratio of absorption to emission (a/e) at the epoch of transition between initial and plateau decline phases, and search for correlations between these spectral parameters and photometric properties of the V-band light curves. Testing the strength of various correlations we find that a/e appears to be the dominant spectral parameter in terms of describing the diversity in our measured supernova properties. It is found that supernovae with smaller a/e have higher H_{α} velocities, more rapidly declining light curves from maximum, during the plateau and radioactive tail phase, are brighter at maximum light and have shorter optically thick phase durations. We discuss possible explanations of these results in terms of physical properties of type II supernovae, speculating that the most likely parameters which influence the morphologies of H_{α} profiles are the mass and density profile of the hydrogen envelope, together with additional emission components due to circumstellar interaction.

2.2 Introduction

Type II Supernovae (SNe II) are produced by the final explosion of massive (> 8 M_{\odot}) stars. They retain a significant part of their hydrogen envelope at the time of the explosion, and hence their spectra show strong Balmer lines. Studies of the variety of SNe II have relied on photometric analysis, cataloging this group in two sub-classes according to the shape of the light curve: SNe with a plateau (quasi-constant luminosity for a period of a few months) are classified as SNe IIP, while SNe with steeper declining linear light curves as SNe IIL (Barbon et al., 1979). However, despite the role played by SNe II in stellar evolution, the impact on their environments and their importance as standardized candles, an overall picture describing the physics which underpins their diversity is lacking. It has been suggested that SNe IIL are produced by progenitors which explode with smaller mass H envelopes, which then lead to SNe with more linearly declining light curves and shorter or non-existent 'plateaus' (Popov, 1993). Indeed, this was argued to be the case for the prototype SN IIL 1979C (Branch et al., 1981). This would imply that SNe IIL progenitors suffer from a higher level of mass-loss than their IIP counterparts. In addition, a number of SNe IIL have shown evidence for circumstellar (CSM) interaction at late times (e.g. SN 1986E, Cappellaro et al. 1995b; SN 1979C, Milisavljevic et al. 2009), which has been interpreted as evidence of interaction of the ejecta with the pre-supernova CSM (see e.g. Sahu et al. 2006, Inserra et al. 2013). However, a number of authors have also claimed evidence for signs of CSM interaction in SNe IIP (e.g. SN 1999em, Pooley et al. 2002; SN 2004et, Kotak et al. 2009; SN 2007od, Inserra et al. 2011, Andrews et al. 2010; SN 2009bw, Inserra et al. 2012).

In recent years many individual studies have been published focusing on particular properties of individual SNe, but few statistical studies where the spectral and photometric properties have been directly related are available. Patat et al. (1994) found correlations and anti-correlations between the maximum B-band magnitude (M_{max}^B) , the color at maximum $((B - V)_{max})$ and the ratio of absorption to emission (e/a) in H_{α} , concluding that SNe IIL have shallower P-Cygni profiles (larger e/a values) than SNe IIP. Hamuy and Pinto (2002) analysed 17 SNe IIP and found that SNe with brighter plateaus have higher expansion velocities. Similar results were found by Pastorello et al. (2004) with four SNe II, who concluded that low luminosity SNe have narrow spectral lines indicating low expansion velocities. Hamuy (2003) used observations together with the analytical models of Litvinova and Nadezhin (1983, 1985) to derive physical SN IIP properties. He found that more massive progenitors produce more energetic explosions and in turn produce more nickel. These results were confirmed by Pastorello et al. (2003) with a heterogeneous group of SNe II that share a very wide range of physical properties.

Despite the above results, it is currently unclear whether underlying spectral and photometric relations exist for the whole ensemble of SN II events. Therefore, here we attempt to remedy this situation by presenting an initial statistical analysis of some spectroscopic and photometric properties of a large sample of SNe II.

In this chapter we present results showing the diversity of H_{α} P-Cygni profiles, and relations between spectral and photometric parameters for a sample of 58 SNe. The chapter is organized as follows. In § 2.3 we outline our SN sample and we define the measurements, then in § 2.4 we present the results. In § 2.5 possible physical explanations of those results are discussed, and finally in § 2.6 we list our conclusions. We note that a detailed analysis of the V-band light curve properties of the currently analyzed sample of SN II is being presented in (Anderson et al. 2014b, hereafter A14).

2.3 SN II data and measurements

The sample of SNe II employed in this study was obtained by the Carnegie Supernova Project (CSP, Hamuy et al. 2006) between 2004 and 2009 plus previous campaings: the Calan/Tololo Supernova Survey (CT), the Cerro Tololo SN program, the Supernova Optical and Infrared Survey (SOIRS) and the Carnegie Type II Supernova Survey (CATS). The full spectroscopic sample will be published in an upcoming paper. Data reductions were performed with IRAF¹ using the standard routines (bias subtracted, flat-field correction, 1-D extraction and wavelength correction). Detailed discussion of spectroscopic observations and reductions for CSP was first presented in Hamuy et al. (2006), then outlined further in Folatelli et al. (2013). These are also applicable to previous data. From this database we selected a sub-sample of events with sufficient data to measure our spectral and photometric parameters. SN IIn and SN IIb were not analysed in this work.

SNe II show a large diversity in their spectra. As the dominant spectral feature is the H_{α} P-cygni profile, for this initial study we concentrate on this line's properties. The H_{α} line presents a diversity that can be derived from the shape and strength in the emission and absorption, and in the line width. Figure 1 shows the variety in SNe II H_{α} P-Cygni profiles, where the SNe are ordered in terms of an increasing ratio of absorption to emission (a/e) components (as defined below) around the transition time between

¹IRAF is distributed by the National Optical Astronomy Observatories (NOAO), which are operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.

initial and plateau decline phases. We see that the absorption is the component which changes most from one SN to another rather than the emission. There are SNe with little absorption (e.g. SN 2006ai, SN 2006Y), while there are others with boxy absorption profiles (e.g. SN 2003cx, SN 2007X). One can observe in Figure 1 that the first SNe show little absorption compared to emission. Gradually the SNe change to show more classic P-Cygni profiles with significant absorption components. A number of SNe show an extra absorption component on the blue side of H_{α} (e.g. SN 2003hn, SN 2007ad, SN 2008aw).

To analyze the SNe spectra within our sample we define two measurements: (1) the expansion velocity in H_{α} via the FWHM of the emission, and (2) the ratio of equivalent widths of absorption to emission (a/e) components of H_{α} . This ratio was initially proposed by Patat et al. (1994) as the flux ratio of the emission to absorption. However, we choose a/e because in a few SNe H_{α} shows an extremely weak absorption component. In order to relate spectral and light curve properties we use the V-band photometric properties as defined by A14: s_1 : initial decline from the maximum (magnitudes $100d^{-1}$), s_2 : 'plateau' decline rate (magnitudes $100d^{-1}$), s_3 : radioactive tail decline (magnitudes $100d^{-1}$), M_{max} : magnitude at V-band maximum, and OPTd: optically thick phase duration (days): time from the explosion epoch through to the end of the plateau phase. We define a common epoch in order to measure spectral properties, which we identified in the light curves: the B-band transition time (t_{tran}) . This common epoch is defined as the transition between s_1 and s_2 determined by chi-square minimization. We interpolate all the spectral measurements to this epoch. These parameters are all labeled in the light-curve parameter schematic presented in Figure 2 (left).

To estimate SN ejecta expansion velocities through H_{α} the minimum flux of the absorption component of P-Cygni line profile is commonly used. However, a few SNe in this sample present an extremely weak absorption component, complicating this method. Therefore, we employ the FWHM of emission line for velocity estimations. To verify the concordance between these methods we measure velocities from the minima of absorption and the FWHM of the emission in H_{α} in SNe with a well defined absorption, finding consistent results. The ratio of absorption to emission (a/e) in H_{α} was obtained by measuring the equivalent widths (EW) of each component. Examples of these measurements are shown in Figure 2 (right). The top panel shows a normal H_{α} P-Cygni profile, i.e., a profile with well defined absorption and emission components, while the bottom panel shows a peculiar profile with an extra absorption component on the blue side. Similar features were identified by Leonard et al. (2001), Leonard et al. (2002b) and Leonard et al. (2002a) in SN 1999em as high velocity (HV) features, while in the case of SN 2005cs the line was identified as Si II λ 6355 absorption (Pastorello et al., 2006). This peculiar structure complicates measurements of the EW of absorption, because it is hard

Figure 2.1 Variety in SN II H_{α} P-Cygni profiles ordered in terms of increasing a/e starting top left, finishing bottom right. The Host galaxy features were removed and the spectra are shifted to be centered on the peak of H_{α} emission. The epoch of the spectra shown are those in closest time proximity to t_{tran} . In general the difference between epochs of the spectra and t_{tran} is within ± 10 days.

to objectively define the continuum. Therefore, we simply trace a straight line along the absorption feature to mimic the continuum flux, which can be seen in Figure 2 (right). All spectral measurements were performed with IRAF using the *splot* package. The errors for the H_{α} velocity and a/e are mainly dominated by how the continuum is defined. Errors

Figure 2.2 Left: An example of the light-curve parameters measured for each SN within the sample in the V-band. Observed absolute magnitude at peak, M_{max} is shown in blue, as applied to the sample data points (magenta) of SN 1999em. The positions of the three measured slopes; s_1 , s_2 , and s_3 are shown in green. The optically thick phase duration, OPTd is indicated in black. Three time epochs are labeled: t_0 , the explosion epoch; t_{tran} , the transition from s_1 to s_2 ; and t_{end} , the end of the optically thick phase. *Right:* Examples of spectral measurements. Top: SN 2009bz shows a normal H_{α} P-Cygni profile with absorption and emission components well defined. Bottom: SN 2008aw shows a peculiar profile with a extra component on the blue side. In both plots, the blue line represents the FWHM of emission, which is used for the velocities values, and black horizontal line defines the continuum level used to measure the EW of emission and absorption.

were obtained by measuring many times the FWHM and the EW, respectively, changing the trace of the continuum. Using these multiple measurements we calculate a mean and take the standard deviation to be the error on that measurement.

2.4 Results

In Table 2.1 we list the measured spectral and photometric parameters: H_{α} velocity, a/e, s_1, s_2, s_3, M_{max} and OPTd for each SN, together with the host galaxy and the heliocentric radial velocity and t_{tran} . We searched for correlations between all seven of our defined parameters against each other. Using the Pearson correlation test, a/e was observed to be the dominant measured spectral parameter as it has the highest correlation with all other

parameters. The photometric parameter s_1 has the highest mean correlation, however it shows no correlation with the H_a velocity. Table 2.2 shows the strength of the correlations between all our parameters, plus the number of events (within each correlation), and the probability of finding such a correction by chance. The light curve parameters plus the H_a velocity are plotted versus a/e in Figure 3. The plot shows that SNe with smaller a/e have higher H_a velocities, more rapidly declining light curves after maximum, both in the 'plateau' and radioactive tail phases, are brighter and have shorter OPTd values. SNe with higher a/e show opposite behavior. Given that OPTd and s_3 are most likely related to the envelope/ejecta mass (see A14 for detailed discussion), this would appear to imply that a/e is also related to the mass retained by the progenitor before explosion. Indeed, this further points to SNe historically classified as IIL (high s_2) having smaller mass envelopes at the epoch of explosion than their IIP (low s_2) counterparts. Moreover, we see a continuum of events in terms of spectral diversity, thus suggesting a possible continuum in pre-SN envelope masses.

2.5 Discussion

We have presented and analysed the H_{α} spectral diversity in 58 SNe II and their correlations with photometric parameters. Analyzing the sample we see a variety in the H_{α} P-Cygni profiles which can be derived from the shape and strength in the emission and absorption, and in the line width. Patat et al. (1994) found that M_{max}^B and $(B - V)_{max}$ correlate with e/a in H_{α} , concluding that SNe IIL have larger e/a values (i.e. small a/evalues). While in our sample we have not made distinctive IIP-IIL classification, our results are consistent with these of Patat et al. (1994), which show that SNe with high s_2 values (faster declining light curves) have small a/e values and are more luminous.

Arcavi et al. (2012) identified a subdivision of SNe II (based on 21 events in the Rband) suggesting that SNe IIL and SNe IIP are not members of one continuous class and may result from different physical progenitor systems. However, A14 with a bigger sample (116 events in the V-band) suggest an observational continuum of events which may be driven by differences of envelope mass at the epoch of explosion, a parameter which is most directly constrained in A14 through observations of the optically thick phase duration (OPTd) and the decline rate during the radioactive tail (s_3). This conclusion of an observational continuum is also supported by the spectral analysis presented in this paper (see Figure 3), where differences in the spectral parameters (especially a/e) may also be explained by changes in the hydrogen envelope mass retained.

Schlegel (1996) discussed possible explanations for the behavior of the H_{α} P-Cygni

Figure 2.3 Relations between a/e, H_{α} velocity, s_1 , s_2 , s_3 and M_{max} . Panel A: a/e vs. s_3 . Panel B: a/e vs. Optically thick phase. Panel C: a/e vs. s_2 . Panel D: a/e vs. M_{max} . Panel E: a/e vs. s_1 . Panel F: a/e vs. H_{α} velocity.

profile with the most likely being: (1) extra emission fills in the absorption component (as can be seen in SN 2008aw, Figure 2, bottom); (2) the envelope mass is low; and (3) a steep density gradient in the hydrogen envelope. The first explanation invokes scattering of emission off either CSM or the outer envelope (in the case of very extended envelope). The second explanation is described in a low-mass envelope, where there is less absorbing material, so little P-Cygni absorption component will be formed. The third explanation argues that a very steep density gradient implies less absorbing material at high velocities, and so does not produce a well defined P-Cygni profile. Although these considerations could explain the diversity found in our sample, numerous studies discuss other explanations based on the complex P-Cygni line profiles. Baron et al. (2000) granted the term 'complicated P-Cygni profile' to explain the double P-Cygni absorption found in Balmer Series and He I λ 5876 in SN 1999em, concluding that these absorption features arise in two velocities regions in the expanding ejecta of the SN at different velocities. Pooley et al. (2002) argue that this extra component might be the signature of weak interaction with a low density CSM, while Chugai et al. (2007) attributes these features to ejecta wind interactions. In conclusion, the change in H_{\alpha} P-Cygni profile (*a/e* and FWHM of emission) is most likely related to two parameters: changes in the envelope properties (i.e. its mass and density profile) and the degree of CSM interaction. Although the possible explanations for the behavior of the H_{\alpha} P-Cygni profile have been exposed, these extra components could be attributed to HV H I features or, absorption lines of other ions (Si II). This issue will be further explored after a full spectral analysis. This will determine if similar features are also present in the blue side of He I λ 5876 and H_{\beta}.

2.6 Conclusions

We have presented an initial analysis of the spectral diversity H_{α} of SNe II and how this relates to light curve properties. It has been found that while much diversity and peculiarities exist, spectral and photometric properties do appear to be correlated which can be linked to pre-SN properties. We finally list our main conclusions:

- a/e is an important parameter describing the spectral diversity of SNe II.
- SNe with low a/e values appear to have high H_{α} velocities and decline rates, are brighter and have a smaller *OPTd* values.
- While any definitive spectral distinction between IIP and IIL is not clear, SNe with higher s₂ values (i.e. more 'linear' SNe) have smaller a/e values, have higher H_α velocities, and are more luminosity.
- We speculate that the envelope mass retained before explosion and the density gradient play a very important role to determine the differences of H_{α} P-Cygni profile.
- CSM interaction could also be a cause of the change in the P-Cygni profiles, suggesting that faster declining SNe have more intense interactions

SN	Host	Becession velocity	t +	M	81	80	80	Ontd	ale	H. velocity
011	ralawy	$(lm c^{-1})$	(MID)	(mag)	$(mag \ 100 d^{-1})$	$(mng \ 100d^{-1})$	$(mag \ 100 d^{-1})$	(dava)	u/c	$(l_{\rm rm} a^{-1})$
	galaxy	(RHIS)	(1013D)	(mag)	(mag 100 <i>a</i>)	(mag 100 <i>a</i>)	(mag 100 <i>a</i>)	(uays)		(kiii S)
1986L	NGC 1559	1305	46747.4 ± 0.5	-18.19 ± 0.2	3.32 ± 0.16	1.28 ± 0.03	• • •	92.24 ± 6.71	0.21 ± 0.09	6354 ± 392
1991al	LEDA 140858	4575	48478.1 ± 1.3	-17.62 ± 0.2		1.55 ± 0.06	1.26 ± 0.26		0.28 ± 0.02	7771 ± 320
1992ba	NGC 2082	1185	48926.3 ± 1.0	-15.39 ± 0.8		0.73 ± 0.02	0.86 ± 0.07	103.97 ± 8.54	0.68 ± 0.14	4439 ± 334
1999br	NGC 4900	960	51308.4 ± 0.5	-13.77 ± 0.4		0.14 ± 0.02			0.61 ± 0.03	3566 ± 297
1999cr	ESO 576-G034	6069	51273.6 ± 0.7	-17.20 ± 0.2	1.80 ± 0.06	0.58 ± 0.06	• • •	78.06 ± 7.62	0.19 ± 0.09	5728 ± 357
1999em	NGC 1637	717	51509.7 ± 0.7	-16.94 ± 0.1	• • •	0.31 ± 0.02	0.88 ± 0.05	92.86 ± 5.83	0.57 ± 0.07	5915 ± 306
2002gd	NGC 7537	2676	52581.6 ± 0.8	-15.43 ± 0.3	2.87 ± 0.25	0.11 ± 0.05			0.19 ± 0.11	4023 ± 320
2002 gw	NGC 922	3084	52583.1 ± 1.0	-15.76 ± 0.2		0.30 ± 0.03	0.75 ± 0.09	82.33 ± 5.83	0.46 ± 0.05	6217 ± 274
2002hj	NPM1G +04.0097	7080	52595.8 ± 3.1	-16.91 ± 0.2		1.92 ± 0.03	1.41 ± 0.01	90.24 ± 7.62	0.38 ± 0.04	6857 ± 334
2003B	NGC 1097	1272	52666.2 ± 1.9	-15.54 ± 0.3		0.65 ± 0.03	1.07 ± 0.03	83.19 ± 11.4	0.40 ± 0.04	4251 ± 658
2003E	MCG -4-12-004	4470	52661.5 ± 3.5			-0.07 ± 0.03		97.42 ± 7.62	0.40 ± 0.04	5028 ± 424
2003T	UGC 4864	8373	52686.8 ± 1.5			0.82 ± 0.02	2.02 ± 0.14	90.59 ± 10.44	0.55 ± 0.11	7360 ± 411
2003bl	NGC 5374	4377	52736.7 ± 1.2	-15.35 ± 0.3	1.05 ± 0.35	0.24 ± 0.04		92.81 ± 4.24	0.47 ± 0.06	6596 ± 311
2003bn	2MASX J10023529	3831	52729.7 ± 8.6	-16.80 ± 0.2	0.93 ± 0.06	0.28 ± 0.04		92.97 ± 4.24	0.60 ± 0.03	6121 ± 352
2003cn	IC 849	5433	52743.6 ± 1.7	-16.26 ± 0.2		1.43 ± 0.04		67.80 ± 5.00	0.22 ± 0.08	5074 ± 361
2003 cx	NEAT J135706.53	11100	52754.7 ± 4.2	-16.79 ± 0.2		0.76 ± 0.03		87.82 ± 5.83	0.29 ± 0.05	7314 ± 343
2003hd	MCG -04-05-010	11850	52886.9 ± 1.6	-17.29 ± 0.2		1.11 ± 0.04	0.72 ± 0.68	82.39 ± 5.83	0.76 ± 0.05	4800 ± 350
2003hg	NGC 7771	4281	52898.3 ± 3.3		1.60 ± 0.06	0.59 ± 0.03		108.50 ± 5.83	0.38 ± 0.07	7360 ± 466
2003hn	NGC 1448	1170	52900.9 ± 3.9	-17.11 ± 0.1		1.46 ± 0.02	1.08 ± 0.05	90.10 ± 10.44	0.29 ± 0.03	7268 ± 375
2004 er	MCG -01-7-24	4411	53319.3 ± 0.4	-17.08 ± 0.2	1.28 ± 0.03	0.40 ± 0.03		120.15 ± 5.00	0.56 ± 0.09	7680 ± 553
2004 fc	NGC 701	1831	53335.7 ± 0.4			0.82 ± 0.02		106.06 ± 3.16	0.37 ± 0.09	5440 ± 585
2005an	SO 506-G11	3206	53466.1 ± 0.3		3.34 ± 0.06	1.89 ± 0.05		77.71 ± 5.00	0.17 ± 0.04	8548 ± 343
2005 dk	C 4882	4708	53638.4 ± 0.9		2.26 ± 0.09	1.18 ± 0.07		84.22 ± 6.71	0.30 ± 0.10	7008 ± 567
2005 dz	GC 12717	5696	53666.7 ± 0.8	-16.57 ± 0.2	1.31 ± 0.08	0.43 ± 0.04		81.86 ± 5.00	0.66 ± 0.10	5952 ± 512
2005J	NGC 4012	4183	53421.1 ± 0.4	-17.50 ± 0.3	2.11 ± 0.07	0.96 ± 0.02		94.03 ± 7.62	0.54 ± 0.07	6637 ± 245
2005Z	NGC 3363	5766	53432.9 ± 1.0			1.83 ± 0.01		78.84 ± 6.71	0.31 ± 0.06	8512 ± 430
2006Y	anon	10074	53794.7 ± 0.6	-17.97 ± 0.13	8.15 ± 0.76	1.99 ± 0.12	4.75 ± 0.34	47.49 ± 5.00	0.01 ± 0.02	7588 ± 244
2006ai	ESO 005- G 009	4571	53813.7 ± 1.0	-18.06 ± 0.2	4.97 ± 0.17	2.07 ± 0.04	1.78 ± 0.24	63.26 ± 5.83	0.08 ± 0.06	7291 ± 307
2006be	IC 4582	2145	53835.4 ± 0.5	-16.47 ± 0.3	1.26 ± 0.08	0.67 ± 0.02		72.89 ± 6.71	0.34 ± 0.15	6308 ± 283
2006ee	NGC 774	4620	53997.2 ± 1.3	-16.28 ± 0.2		0.27 ± 0.02		85.17 ± 5.00	0.49 ± 0.14	6034 ± 366
2006iw	2MASX J23211915	9226	54049.40 ± 1.9	-16.89 ± 0.1		1.05 ± 0.03			0.46 ± 0.09	6162 ± 448
2006qr	MCG -02-22-023	4350	54098.2 ± 1.2			1.46 ± 0.02		96.85 ± 7.62	0.55 ± 0.08	5440 ± 535
2007aa	NGC 4030	1465	54162.7 ± 0.8	-16.32 ± 0.3		-0.05 ± 0.02			0.70 ± 0.10	5028 ± 462
2007il	IC 1704	6454	54393.4 ± 2.0	-16.78 ± 0.2		0.31 ± 0.02		103.43 ± 5	0.38 ± 0.15	7634 ± 636
2007ld	SDSS J204929.40	8994	54402 ± 1.9	-17.30 ± 0.2	2.93 ± 0.15	1.12 ± 0.16			0.14 ± 0.06	8685 ± 690
2007oc	NGC 7418	1450	54419.8 ± 0.4	-16.68 ± 0.2		1.83 ± 0.01		71.62 ± 5.83	0.11 ± 0.06	7634 ± 386
2007od	UGC 12846	1734	54427.7 ± 0.3	-17.87 ± 0.8	2.37 ± 0.05	1.55 ± 0.01			0.17 ± 0.04	7314 ± 672
2007P	ESO 566-G36	12224	54154.9 ± 3.2			2.36 ± 0.04		88.33 ± 5.83	0.32 ± 0.04	6880 ± 410
2007U	ESO 552-65	7791	54168.8 ± 1.7	-17.87 ± 0.4	2.94 ± 0.02	1.18 ± 0.01			0.27 ± 0.06	6994 ± 407
2007W	NGC 5105	2902	54164.3 ± 1.0	-15.80 ± 0.2		0.12 ± 0.04		77.29 ± 7.62	0.52 ± 0.13	4800 ± 392
2007X	ESO 385-G32	2837	54180.8 ± 0.3	-18.22 ± 0.3	2.43 ± 0.06	1.37 ± 0.03		97.71 ± 5.83	0.20 ± 0.03	8091 ± 346
2008aw	NGC 4939	3110	54563.8 ± 0.6	-18.03 ± 0.2	3.27 ± 0.06	2.25 ± 0.03	1.97 ± 0.09	75.83 ± 10.44	0.13 ± 0.02	7817 ± 398
2008bh	NGC 2642	4345	54593.0 ± 2.6		3.00 ± 0.27	1.20 ± 0.04			0.22 ± 0.03	6857 ± 397
2008bk	NGC 7793	227.	54602.3 ± 1.4	-14.86 ± 0.1		0.11 ± 0.02	1.18 ± 0.02	104.83 ± 6.71	0.65 ± 0.16	2925 ± 155
2008br	IC 2522	3019	54579.2 ± 1.6	-15.30 ± 0.2		0.45 ± 0.02			0.40 ± 0.06	4571 ± 205
2008gr	IC 1579	6831	54801.8 ± 0.9	-17.95 ± 0.1		2.01 ± 0.01			0.17 ± 0.03	8731 ± 521
2008if	MCG -01-24-10	3440	54850.0 ± 0.4	-18.15 ± 0.2	4.03 ± 0.07	2.10 ± 0.02		75.85 ± 5.83	0.08 ± 0.03	8685 ± 441
2008in	NGC 4303	1566	54851.5 ± 0.8	-15.48 ± 0.5	1.82 ± 0.20	0.83 ± 0.02		92.20 ± 6.71	0.23 ± 0.06	6903 ± 416
2008K	ESO 504-G5	7997	54513.0 ± 1.2	-17.45 ± 0.1		2.72 ± 0.02	2.07 ± 0.26	87.11 ± 5.00	0.16 ± 0.07	7954 ± 511
2008M	ESO 121-26	2267	54508.9 ± 0.6	-16.75 ± 0.3		1.14 ± 0.02	1.18 ± 0.26	75.34 ± 9.49	0.22 ± 0.04	6674 ± 290
2009bu	NGC 7408	3494	54940.1 ± 1.0	-16.05 ± 0.2	0.98 ± 0.16	0.18 ± 0.04			0.50 ± 0.13	5943 ± 516
2009N	NGC 4487	1034	54877.1 ± 0.5	-15.35 ± 0.4		0.34 ± 0.01		89.50 ± 5.83	0.41 ± 0.10	5348 ± 599

Table 2.1 SNe II spectral and photometric parameters at t_{tran}

Measurements made of our sample of SNe as mentioned in section 2. The first three columns present the SNe name and the host galaxy information: Host galaxy name and their recession velocities. From column 4 to column 9 the photometric measurements: t_{tran} (in *B*-band), M_{max} , s_1 , s_2 , s_3 , and *Optd* (in *V*-band) are presented. In column 10 we present the a/e, followed by the H_{α} velocity.

CHAPTER 2.

16

Table 2.2 Pearson's values between all the parameters at t_{tran}

	a/e	H_{α} vel.	s_1	s2	<i>s</i> 3	M_{max}	Opt. thick
a/e		$-0.51 (58; 3.95 \times 10^{-5})$	$-0.65 (25; 4.19 \times 10^{-4})$	$-0.64 (58; 7.54 \times 10^{-8})$	-0.52(16; 0.04)	$-0.49 (45; 5.87 \times 10^{-4})$	$0.52 (43; 3.44 \times 10^{-4})$
H_{α} vel.	$-0.51 (58; 3.95 \times 10^{-5})$		0.12(25; 0.66)	$0.58~(58;~1.85\times10^{-6})$	-0.13 (16; 0.63)	$-0.70 (45; 9.10 \times 10^{-8})$	-0.07 (43; 0.67)
s_1	$-0.65 (25; 4.19 \times 10^{-4})$	0.12(25; 0.55)		$0.72 (25; 4.29 \times 10^{-5})$	0.93(4; 0.07)	-0.55(20; 0.02)	$-0.73 (18; 5.14 \times 10^{-4})$
s_2	$-0.64 (58; 7.54 \times 10^{-8})$	$0.58~(58;~1.85\times10^{-6})$	$0.72~(25;~4.29\times10^{-5})$		0.53(16; 0.03)	$-0.70 (45; 9.34 \times 10^{-8})$	$-0.40 (43; 8.60 \times 10^{-3})$
s_3	-0.47 (17; 0.06)	-0.03(17; 0.91)	0.60(4; 0.39)	0.45 (17; 0.07)		-0.57 (16; 0.02)	-0.53 (16; 0.03)
M_{max}	$0.49~(45; 9.87 \times 10^{-4})$	$-0.70 (45; 9.10 \times 10^{-8})$	-0.55(20; 0.02)	$-0.70 (45; 9.34 \times 10^{-8})$	$-0.72 (15; 2.65 \times 10^{-3})$		0.29(33; 0.11)
OPTd	$0.52~(43; 3.44 \times 10^{-4})$	-0.07 (43; 0.67)	$-0.73 (18; 5.14 \times 10^{-4})$	$-0.40 (43; 8.60 \times 10^{-3})$	-0.49 (16; 0.05)	0.29(33; 0.11)	

We present the Pearson's r-parameter which indicates the strength of the correlation, together with in brackets the number of events, and probability of finding such correlation by chance.

Chapter 3

Type II supernova spectral diversity. Paper I: Observations, sample characterization and spectral line evolution

3.1 Abstract

We present 893 optical wavelength spectra of 123 nearby type II supernovae (SNe II) obtained between 1986 and 2009, and ranging between 3 and 363 days post explosion. Here, we outline our observations and data reductions techniques, together with a characterization of the spectral diversity of SNe II. A statistical analysis of the spectral matching technique is discussed as an alternative to non-detection constraints for estimating SN explosion epochs. The time evolution of spectral lines is presented and analysed in terms of how this differs for SNe of different photometric, spectral, and environmental properties. We conclude that the feature located at $\sim 5700 - 5800$ Å is related to He I in early phases (before 25 days) and associated to Na I D in the recombination phase (later than 30 days). Between 15 and 25 days the transition from He I to Na I D happens. Around of 60% of our sample show the extra absorption component on the blue side of the H_{α} P-Cygni profile (Cachito feature) between 7 and 120 days since explosion. Studying the nature of Cachito, we conclude that these features at early times (before ~ 35 days) are associated with Si II $\lambda 6355$, while later during the plateau phase they are related to high velocity (HV) features of hydrogen lines. These HV features could imply signs of interaction between the SNe ejecta and the RSG wind. We find a huge range in ejecta expansion velocities at all epochs, which could imply a

large range in explosion energies. We also find a large range in the absolute strength and evolution of various lines. This implies a range in the temperature evolution (radius) and progenitor metallicities in our sample.

3.2 Introduction

Supernovae (SNe) that show strong Balmer lines in their spectra, are known as Type II SNe (SNe II henceforth, Minkowski 1941). They are produced by the final explosion of massive (> 8 M_{\odot}) stars, which retain a significant part of their hydrogen envelope at the time of the explosion. Red supergiant (RSG) stars have been found at the position of SN II explosion sites in pre-explosion images (e.g. Van Dyk et al., 2003, Smartt et al., 2004, 2009, Maund and Smartt, 2005, Smartt, 2015), suggesting that they are the direct progenitors of the vast majority of SNe II.

Initially SNe II were classified according to the shape of the light curve: SNe with faster 'linear' declining light curves are cataloged as SNe IIL, while SNe with a plateau (quasiconstant luminosity for a period of a few months) as SNe IIP (Barbon et al., 1979). More recently, two classes were added within the SNe II group: SNe IIn and SNe IIb. SNe IIn show narrow emission lines in their spectra (Schlegel, 1990), attributed to interaction with circumstellar medium (CSM), while SN IIb are thought to be transitional objects, between SN II and SN Ib (Filippenko et al., 1993). The latter two sub-types (IIn and IIb) are not included in the bulk of the analysis for this chapter, and are not discussed any further.

A large diversity is observed in the spectral and photometric properties of SNe II¹. This includes: fast declining SNe (e.g. Branch et al., 1981, Buta, 1982, Cappellaro et al., 1995a), intermediate between SNe IIL/IIP (e.g. Clocchiatti et al., 1996), peculiar events (e.g. Menzies et al., 1987, Catchpole et al., 1987, 1988), low luminosity/velocity objects (e.g. Turatto et al., 1998, Pastorello et al., 2006, Zhang et al., 2014), intermediate luminosity SNe (e.g. Roy et al., 2011, Takáts et al., 2014), together with the historical separation between SNe IIL and SNe IIP (Barbon et al., 1979, Arcavi et al., 2012, Faran et al., 2014a,b).

Many individual studies have been published showing spectral line identification, evolution and parameters such as velocities, pseudo-equivalent widths (pEWs) for specific SNe. Examples of very well studied SNe include SN 1979C (e.g. Branch et al., 1981, Immler et al., 2005), SN 1980K (e.g. Buta, 1982, Dwek, 1983, Fesen et al., 1999),

¹Throughout the rest of the manuscript we use SN II to refer to all SNe which would historically have been classified as SN IIP or SN IIL. In general we will differentiate these events by referring to their specific light-curve or spectral morphology, and we only return to this historical separation if clarification and comparison with previous works is required.

SN 1999em (e.g. Baron et al., 2000, Leonard et al., 2002a, Hamuy et al., 2001), SN 1999gi (e.g. Leonard et al., 2002b), SN 2004dt (e.g. Li et al., 2005, Sahu et al., 2006, Misra et al., 2007, Maguire et al., 2010), SN 2005cs (e.g. Pastorello et al., 2006, 2009). The first two SNe (1979C and 1980K) are the prototypes of SNe IIL according to their linear light curve behaviour. They showed bright luminosities and high expansion velocities. On the other hand, the rest of the objects indicated before belong to the family of SNe IIP. They display longer plateaus and lower velocities compared to SNe IIL. For SN 2005cs, the expansion velocity and luminosity are even lower, probably due to its low energy explosion (see Pastorello et al. 2009). All SNe IIP mentioned here have progenitor mass estimates (Smartt, 2015) in a range between 8 and 15 M_{\odot} .

In the recent years, the study of individual SNe have increased significantly, however statistical studies of the diversity of these parameters are to date scarce. Here we attempt to remedy this situation. The purpose of this chapter is to present a statistical characterization of the optical spectra of SNe II, as well as an initial analysis of their spectral features. Only in this way can the full SN II spectral diversity be characterized in order to further understand the diversity in physics which explains the SN II phenomenon. To that aim, we have analyzed more than 900 spectra of 123 SNe II between 3 and 363 days since explosion. We identified 11 features in the photospheric phase and four in the nebular phase with the aim of understanding the overall evolution of optical wavelength spectroscopy of SNe II with time.

The chapter is organized as follows. In section 3.3 we outline the data sample. The spectroscopic observations and data reduction techniques are presented in section 3.4. In section 3.5 the estimation of the explosion epoch and their implementation are presented. In section 3.6 we describe the sample properties, while in section 3.7 we present the spectral feature identification. The spectral measurements are presented in section 3.8 while the line evolution analysis and the conclusions are in section 3.9 and 3.10, respectively.

While here in chapter 3 we concentrate on the overall characterisation of SN II spectral diversity, in a second analysis; chapter 4, we build on this characterisation to present an investigation of correlations between different spectral and photometric parameters, and try to understand these in terms of the diversity of the underlying physics of the explosions and their progenitors.

3.3 Data sample

Our dataset was obtained between 1986 and 2009 from a range of different sources. This sample consists of 898 optical spectra of 123 SNe II^2 , of which 4 were provided by the Cerro Tololo Supernova Survey (CTSS), 7 were obtained by the Calán/Tololo survey (CT, Hamuy et al. 1993, PI: Hamuy 1989-1993), 5 by the Supernova Optical and Infrared Survey (SOIRS, PI: Hamuy, 1999-2000), 31 by the Carnegie Type II Supernova Survey (CATS, PI: Hamuy, 2002-2003) and 76 by the Carnegie Supernova Project (CSP, Hamuy et al. 2006 PIs: Phillips & Hamuy, 2004-2009). These follow-up campaigns concentrated on obtaining well sampled and high cadence light curves and spectral sequences of nearby SNe, based mainly on 2 criteria. 1) that SNe were brighter than $V \sim 17$ mag at discovery, and 2) that those discovered SNe were classified as being relatively young, at maximum one month from explosion. The redshift distribution of our sample is shown in Figure 3.1. The figure shows that the majority of the sample have a redshift < 0.03. SN 2002ig has the highest redshift in the sample with a value of 0.077, while the nearest SN (SN 2008bk) has a redshift of 0.00076. The mean value of the sample is 0.0178 and the median is 0.0152. The redshift information comes from the heliocentric recession velocity of each host galaxy as published in the NASA/IPAC extragalactic Database $(NED)^3$. These NED values were compared with those obtained through the measurement of narrow emission lines observed within SN spectra and originating from host H II regions. In case of discrepancy between both sources, we give the priority to our spectral estimations. Two of our SNe (SN 2006Y and SN 2007ld) occur in anonymous host galaxies. Their redshift were obtained from the Asiago supernova catalog⁴ and from the narrow emission lines within SN spectra originating from the underlying host galaxy, respectively. Table 3.1 lists the sample of SNe II selected for this work, their host galaxy information, and the campaign to which they belong.

 $^{^2\}mathrm{In}$ the data release we include 8 spectra of the SN 1987 A-like, 2000cb, which has not been analysed in this work.

³http://ned.ipac.caltech.edu

⁴http://graspa.oapd.inaf.it

Table 3.1: SN II sample

	Host	Recession	Hubble	$E(B-V)_{\rm MW}$	Discovery	Discovery	Explosion	N of	
SN	Galaxy	velocity (km s ^{-1})	type	(mag)	date	Reference	Epoch	$_{\rm spectra}$	Campaign
1986L	NGC 1559	1305	SBcd	0.026	46711.1	IAUC 4260	$46708.0^{n}(3)$	31	CTSS
1988A	NGC 4579	1517	SABb	0.036	47179.0	IAUC 4533	$47177.2^{n}(2)$	5	CTSS
1990E	NGC 1035	1241	SAc	0.022	47937.7	IAUC 4965	$47935.1^{n}(3)$	5	CTSS
1990K	NGC 0150	1584	SBbc	0.013	48037.3	IAUC 5022	$48001.5^{n}(6)$	9	CTSS
1991al	2MASX J19422191-5506275	4575^{1}	?	0.054	48453.7	IAUC 5310	$48442.5^{s}(8)^{*}$	8	CT
1992af	ESO 340-G038	5541	S	0.046	48802.8	IAUC 5554	$48798.8^{s}(8)^{*}$	5	CT
1992am	MCG -01-04-039	14397^{1}	S	0.046	48829.8	IAUC 5570	$48813.9^{s}(6)^{*}$	2	CT
1992 ba	NGC 2082	1185	SABc	0.051	48896.2	IAUC 5625	$48884.9^{s}(7)$	10	CT
1993A	2MASX J07391822-6203095	8790^{1}	?	0.153	49004.6	IAUC 5693	$48995.5^{n}(9)$	2	CT
1993K	NGC 2223	2724	SBbc	0.056	49075.5	IAUC 5733	$49065.5^{n}(9)$	17	CT
1993S	2MASX J22522390-4018432	9903	S	0.014	49133.7	IAUC 5812	$49130.8^{s}(5)$	4	CT
1999br	NGC 4900	960	$_{\rm SBc}$	0.021	51281.0	IAUC 7141	$51276.7^{n}(4)$	8	SOIRS
1999ca	NGC 3120	2793	\mathbf{Sc}	0.096	51296.0	IAUC 7158	$51277.5^{s}(7)^{*}$	4	SOIRS
1999cr	ESO 576-G034	6069^{1}	S/Irr	0.086	51249.7	IAUC 7210	$51246.5^{s}(4)^{*}$	5	SOIRS
1999eg	IC 1861	6708	SA0	0.104	51455.5	IAUC 7275	$51449.5^{s}(6)^{*}$	2	SOIRS
$1999 \mathrm{em}$	NGC 1637	717	SABc	0.036	51481.0	IAUC 7294	$51476.5^{n}(5)$	12	SOIRS
2002 ew	NEAT J205430.50-000822.0	8975	?	0.091	52510.8	IAUC 7964	$52500.6^n(10)$	7	CATS
2002 fa	NEAT J205221.51+020841.9	17988	?	0.088	52510.8	IAUC 7967	$52502.5^{s}(8)^{*}$	6	CATS
2002 gd	NGC 7537	2676	SAbc	0.059	52552.7	IAUC 7986	$52551.5^{s}(4)^{*}$	12	CATS
2002 gw	NGC 922	3084	SBcd	0.017	52560.7	IAUC 7995	$52553.5^{s}(8)^{*}$	11	CATS
2002hj	NPM1G +04.0097	7080	?	0.102	52568.0	IAUC 8006	$52562.5^{n}(7)$	7	CATS
2002hx	PGC 023727	9293	SBb	0.048	52589.7	IAUC 8015	$52582.5^{n}(9)$	9	CATS
2002ig	SDSS J013637.22+005524.9	23100^{2}	?	0.034	52576.7	IAUC 8020	$52570.5^{s}(5)^{*}$	5	CATS
210	MCG + 00-03-054	15420	?	0.033	?	?	$52486.5^{s}(6)^{*}$	6	CATS
2003B	NGC 1097	1272	SBb	0.024	52645.0	IAUC 8042	$52613.5^{s}(11)^{*}$	9	CATS
2003E	MCG -4-12-004	4470^{3}	Sbc	0.043	52645.0	IAUC 8044	$52629.5^{s}(8)^{*}$	8	CATS
2003T	UGC 4864	8373	SAab	0.028	52665.0	IAUC 8058	$52654.5^n(10)$	6	CATS
2003bl	NGC 5374	4377^{3}	SBbc	0.024	52701.0	IAUC 8086	$52696.5^{s}(4)^{*}$	8	CATS
$2003 \mathrm{bn}$	2MASX J10023529-2110531	3828	?	0.057	52698.0	IAUC 8088	$52694.5^{n}(3)$	12	CATS
2003ci	UGC 6212	9111	$^{\rm Sb}$	0.053	52720.0	IAUC 8097	$52711.5^{n}(8)$	7	CATS
2003cn	IC 849	5433^{3}	SABcd	0.019	52728.0	IAUC 8101	$52717.5^{s}(4)^{*}$	5	CATS
2003 cx	NEAT J135706.53-170220.0	11100	?	0.083	52730.0	IAUC 8105	$52725.5^{s}(5)^{*}$	6	CATS
2003 dq	MAPS-NGP 04320786358	13800	?	0.016	52739.7	IAUC 8117	$52731.5^{n}(8)$	3	CATS
2003 ef	NGC 4708	4440^{3}	SAab	0.041	52770.7	IAUC 8131	$52757.5^{s}(9)^{*}$	6	CATS
2003 eg	NGC 4727	4388^{1}	SABbc	0.046	52776.7	IAUC 8134	$52764.5^{s}(5)^{*}$	5	CATS
2003ej	UGC 7820	5094	SABcd	0.017	52779.7	IAUC 8134	$52775.5^{n}(5)$	3	CATS
2003fb	UGC 11522	5262^{3}	Sbc	0.162	52796.0	IAUC 8143	$52772.5^{s}(10)^{*}$	4	CATS
2003gd	M74	657	SAc	0.062	52803.2	IAUC 8150	$52755.5^{s}(9)^{*}$	3	CATS
2003hd	MCG -04-05-010	11850	$^{\rm Sb}$	0.011	52861.0	IAUC 8179	$52855.9^{s}(5)^{*}$	9	CATS
2003hg	NGC 7771	4281	$_{\rm SBa}$	0.065	52870.0	IAUC 8184	$52865.5^{n}(5)$	5	CATS
2003hk	NGC 1085	6795	SAbc	0.033	52871.6	CBET 41	$52866.8^{s}(4)^{*}$	4	CATS
2003hl	NGC 772	2475	SAb	0.064	52872.0	IAUC 8184	$52868.5^n(5)$	6	CATS
2003hn	NGC 1448	1170	SAcd	0.013	52877.2	IAUC 8186	$52866.5^n(10)$	9	CATS
2003ho	ESO 235-G58	4314	SBcd	0.034	52851.9	IAUC 8186	$52848.5^{s}(7)^{*}$	5	CATS
2003ib	MCG -04-48-15	7446	$^{\rm Sb}$	0.043	52898.7	IAUC 8201	$52891.5^{n}(8)$	5	CATS
2003ip	UGC 327	5403	Sbc	0.058	52913.7	IAUC 8214	$52896.5^{s}(4)$	4	CATS
2003iq	NGC 772	2475	SAb	0.064	52921.5	CBET 48	$52919.5^{n}(2)$	5	CATS
--------------------	--------------------------	-------------	--------------	-------	---------	-----------------	----------------------------	----	------
2004 dy	IC 5090	9352	Sa	0.045	53242.5	IAUC 8395	$53240.5^{n}(2)$	3	CSP
2004 ej	NGC 3095	2723	SBc	0.061	53258.5	CBET 78	$53223.9^{s}(9)^{*}$	9	CSP
$2004 \mathrm{er}$	MCG -01-7-24	4411	SAc	0.023	53274.0	CBET 93	$3271.8^{n}(2)$	10	CSP
$2004 \mathrm{fb}$	ESO 340-G7	6100	S	0.056	53286.2	IAUC 8420	$53258.6^{s}(7)^{*}$	4	CSP
2004 fc	NGC 701	1831	$_{\rm SBc}$	0.023	53295.2	IAUC 8422	$53293.5^{n}(1)$	10	CSP
2004 fx	MCG -02-14-3	2673	$_{\rm SBc}$	0.090	53307.0	IAUC 8431	$53303.5^{n}(4)$	10	CSP
2005J	NGC 4012	4183	$^{\rm Sb}$	0.025	53387.0	IAUC 8467	$53379.8^{s}(7)^{*}$	11	CSP
2005K	NGC 2923	8204	?	0.035	53386.0	IAUC 8468	$53369.8^{s}(8)$	2	CSP
2005Z	NGC 3363	5766	S	0.025	53402.0	IAUC 8476	$53396.7^{n}(6)$	9	CSP
2005af	NGC 4945	563	SBcd	0.156	53409.7	IAUC 8482	53320.8 ^s (17)*	9	CSP
2005an	ESO 506-G11	3206	S0	0.083	53432.7	CBET 113	$53431.8^{s}(6)^{*}$	7	CSP
2005 dk	IC 4882	4708	SBb	0.043	53604.0	IAUC 8586	53601.5 ^s (6)*	7	CSP
2005 dn	NGC 6861	2829	SA0	0.048	53609.5	IAUC 8589	53602.6 ^s (6)*	8	CSP
2005 dt	MCG -03-59-6	7695	SBb	0.025	53614.7	CBET 213	$53605.6^{n}(9)$	1	CSP
2005 dw	MCG -05-52-49	5269	Sab	0.020	53612.7	CBET 219	$53603.6^{n}(9)$	3	CSP
2005 dx	MCG -03-11-9	8012	S	0.021	53623.0	CBET 220	$53611.8^{s}(7)^{*}$	1	CSP
2005 dz	UGC 12717	5696	Scd	0.072	53623.7	CBET 222	$53619.5^{n}(4)$	7	CSP
2005es	MCG +01-59-79	11287	S	0.076	53643.7	IAUC 8608	$53638.7^{n}(5)$	1	CSP
2005gz	MCG -01-53-022	8518	SBbc	0.06	53654.7	IAUC 8616	$53650.2^{n}(5)$	1	CSP
2005lw	IC 672	7710	?	0.043	53719.0	CBET 318	$53716.8^{s}(10)$	14	CSP
2005me	ESO 244-31	6726	SAc	0.022	53728.2	CBET 333	$53717.9^{s}(10)^{*}$	1	CSP
2006Y	anon	10074^{2}	?	0.115	53770.0	IAUC 8668	$53766.5^{n}(4)$	13	CSP
2006ai	ESO 005-G009	4571^{1}	SBcd	0.113	53784.0	CBET 406	$53781.6^{s}(5)$	12	CSP
2006bc	NGC 2397	1363	SABb	0.181	53819.1	CBET 446	$53815.5^{n}(4)$	3	CSP
2006be	IC 4582	2145	S	0.026	53819.0	CBET 449	$53802.8^{s}(9)^{*}$	4	CSP
2006bl	MCG +02-40-9	9708	?	0.045	53829.5	CBET 597	$53822.7^{s}(10)^{*}$	3	CSP
2006ee	NGC 774	4620	S0	0.054	53966.0	cbet 597	$53961.9^{n}(4)$	13	CSP
2006it	NGC 6956	4650	SBb	0.087	54009.5	CBET 660	$54006.5^{n}(3)$	6	CSP
2006iw	2MASX J23211915+0015329	9226	?	0.044	54011.5	CBET 663	$54010.7^{n}(1)$	5	CSP
2006ms	NGC 6935	4543	SAa	0.031	54046.2	CBET 725	$54028.5^{s}(6)^{**}$	4	CSP
2006ar	MCG -02-22-023	4350	SABbc	0.040	54070.0	CBET 766	$54062.8^{n}(7)$	8	CSP
2007P	ESO 566-G36	12224	Sa	0.036	54124.0	CBET 819	$54118.7^{n}(5)$	6	CSP
2007U	ESO 552-65	7791	S	0.046	54136.5	CBET 835	$54133.6^{s}(6)^{*}$	7	CSP
2007W	NGC 5105	2902	SBc	0.045	54146.5	CBET 844	$54130.8^{s}(7)^{*}$	7	CSP
2007X	ESO 385-G32	2837	SABc	0.060	54146.5	CBET 844	$54143.5^{s}(5)$	12	CSP
2007Z	PGC 016993	5277	Sbc	0.525	54148.7	CBET 847	$54135.6^{s}(5)$	2	CSP
2007aa	NGC 4030	1465	SAbc	0.023	54149.7	CBET 848	$54126.7^{s}(8)^{*}$	11	CSP
2007ab	MCG -01-43-2	7056	SBbc	0.235	54150.7	CBET 851	$54123.9^{s}(10)$	5	CSP
2007av	NGC 3279	1394	Scd	0.032	54180.2	CBET 901	$54173.8^{s}(5)^{*}$	4	CSP
2007bf	UGC 09121	5327	Sbc	0.018	54285.0	CBET 919	$54191.5^{n}(7)$	4	CSP
2007hm	SDSS J205755.65-072324.9	7540	?	0.059	54343.7	CBET 1050	$54336.6^{s}(6)^{*}$	7	CSP
2007il	IC 1704	6454	S	0.042	54354.0	CBET 1062	$54349.8^{n}(4)$	12	CSP
2007it	NGC 5530	1193	SAc	0.103	54357.5	CBET 1065	$54348.5^{n}(1)$	11	CSP
2007ld	anon	7499^{1}	?	0.081	54379.5	CBET 1098	$54376.5^{s}(8)^{*}$	7	CSP
2007oc	NGC 7418	1450	SABcd	0.014	54396.5	CBET 1114	$54388.5^{n}(3)$	17	CSP
2007od	UGC 12846	1734	Sm	0.032	54407.2	CBET 1116	$54400.6^{s}(5)^{*}$	14	CSP
2007sg	MCG -03-23-5	4579	SAbc	0.183	54443.0	CBET 1170	$54422.8^{s}(6)^{*}$	7	CSP
2008F	MCG -01-8-15	5506	SBa	0.044	54477.5	CBET 1207	$54469.6^{s}(6)^{*}$	2	CSP
2008H	ESO 499- G 005	4287	SAc	0.057	54481.0	CBET 1210	$54432.8^{s}(8)$	1	CSP
2008K	ESO 504-G5	7997	Sb	0.035	54481.0	CBET 1211	$54475.5^{s}(6)^{*}$	12	CSP
2008M	ESO 121-26	2267	SBc	0.040	54480.7	CBET 1214	$54471.7^{n}(9)$	12	CSP

2008W	MCG -03-22-7	5757	\mathbf{Sc}	0.086	54502.7	CBET 1238	$54483.8^{s}(8)^{*}$	10	CSP
2008ag	IC 4729	4439	SABbc	0.074	54499.5	CBET 1252	$54477.9^{s}(8)^{*}$	18	CSP
2008aw	NGC 4939	3110	SAbc	0.036	54528.0	CBET 1279	$54517.8^{n}(10)$	12	CSP
$2008 \mathrm{bh}$	NGC 2642	4345	SBbc	0.020	54549.0	CBET 1311	$54543.5^{n}(5)$	6	CSP
2008bk	NGC 7793	227	SAd	0.017	54550.7	CBET 1315	$54540.9^{s}(8)^{*}$	26	CSP
$2008 \mathrm{bm}$	CGCG 071-101	9563	\mathbf{Sc}	0.023	54554.7	CBET 1320	$54522.8^{s}(6)$	4	CSP
$2008 \mathrm{bp}$	NGC 3095	2723	SBc	0.061	54558.7	CBET 1326	$54551.7^{n}(6)$	5	CSP
$2008 \mathrm{br}$	IC 2522	3019	SAcd	0.083	54564.2	CBET 1332	$54555.7^{n}(9)$	4	CSP
2008 bu	ESO 586-G2	6630	S	0.376	54574.0	CBET 1341	$54566.8^{s}(7)$	5	CSP
2008 ga	LCSB L0250N	4639	?	0.582	54734.0	CBET 1526	$54711.5^{s}(7)$	3	CSP
2008gi	CGCG 415-004	7328	\mathbf{Sc}	0.060	54752.0	CBET 1539	$54742.7^{n}(9)$	6	CSP
2008gr	IC 1579	6831	SBbc	0.012	54768.7	CBET 1557	$54769.6^{s}(6)^{*}$	5	CSP
2008hg	IC 1720	5684	Sbc	0.016	54785.5	CBET 1571	$54779.8^{n}(5)$	6	CSP
2008ho	NGC 922	3082	SBcd	0.017	54796.5	CBET 1587	$54792.7^{n}(5)$	3	CSP
2008if	MCG -01-24-10	3440	$^{\rm Sb}$	0.029	54812.7	CBET 1619	$54807.8^{n}(5)$	20	CSP
2008il	ESO 355-G4	6276	SBb	0.015	54827.7	CBET 1634	$54825.6^{n}(3)$	3	CSP
2008in	NGC 4303	1566	SABbc	0.020	54827.2	CBET 1636	$54825.4^{n}(2)^{*}$	13	CSP
2009A	KUG 0150-036B	5128	S	0.025	54833.5	CBET 1645	$54821.5^{n}(10)$	5	CSP
2009N	NGC 4487	1034	SABcd	0.019	54856.3	CBET 1670	$54846.8^{s}(5)$	13	CSP
2009W	SDSS J162346.79+114423	5100	?	?	54865.0	CBET 1683	$54816.9^{s}(9)$	1	CSP
2009aj	ESO 221- G 018	2883	Sa	0.130	54887.0	CBET 1704	$54880.5^{n}(7)$	12	CSP
2009ao	NGC 2939	3339	Sbc	0.034	54895.0	CBET 1711	$54890.7^{n}(4)$	7	CSP
2009au	ESO 443-21	2819	Scd	0.081	54902.0	CBET 1719	$54897.5^{n}(4)$	10	CSP
2009bu	NGC 7408	3494	SBc	0.022	54916.2	CBET 1740	$54901.9^{s}(8)^{*}$	6	CSP
2009bz	UGC 9814	3231	Sdm	0.035	54920.0	CBET 1748	$54915.8^{n}(4)$	5	CSP

 1 Measured using our own spectra.

² Taken from the Asiago supernova catalog: http://graspa.oapd.inaf.it/ (Barbon et al., 1999).

³ From our own data (Jones et al., 2009).

 s Explosion epoch estimation through spectral matching.

 n Explosion epoch estimation from SN non-detection.

Observing campaigns: CTSS=Cerro Tololo Supernova Survey; CT=Calán/Tololo Supernova Program; SOIRS=Supernova Optical and Infrared Survey; CATS=Carnegie Type II Supernova Survey; CSP=Carnegie Supernova Project.

In the first column the SN name, followed by its host galaxy are listed. In column 3 we list the host galaxy heliocentric recession velocity. These are taken from the Nasa Extragalactic Database (NED: http://ned.ipac.caltech.edu/) unless indicated by a superscript (sources in table notes). In columns 4 and 5 we list the host galaxy morphological Hubble types (from NED) and the reddening due to dust in our Galaxy (Schlafly and Finkbeiner, 2011) taken from NED. In column 6, 7 and 8 we list the discovery date, their reference and the explosion epochs. The number of spectra and the the observing campaign from which each SN was taken are given in column 9 and 10, and acronyms are listed in the table notes.

 \ast SNe with explosion epochs different to that published by Anderson et al. (2014b).

From our SNe II sample, SNe IIn, SNe IIb and SN 1897A-like events (SN 2006au and SN 2006V; Taddia et al. 2012) were excluded based on spectral and photometric information. Details of the SNe IIn sample can be found in Taddia et al. (2013), while those of the SNe IIb will be published in an upcoming paper (Stritzinger et al., in prep). The photometry of our sample in the V-band was published by Anderson et al. (2014b). More recently, Galbany et al. (2016) released the UBVRIZ photometry of our sample obtained between 1986 and 2003. Around 500 spectra of 80 objects are published here for the first time. Now we briefly discuss each of the surveys providing SNe for our analysis.

Figure 3.1 Distribution of heliocentric redshifts for the 123 SN II in our sample.

3.3.1 The Cerro Tololo Supernova Survey

A total of 4 SNe II (SN 1986L, SN 1988A, SN 1990E, and SN 1990K) were extensively observed at CTIO by the Cerro Tololo SN program (PIs: Phillips & Suntzeff, 1986-2003). These SNe have been analyzed in previous works (e.g Schmidt et al., 1993, Turatto et al., 1993, Cappellaro et al., 1995a, Hamuy, 2001).

3.3.2 The Calán/Tololo survey (CT)

The Calán/Tololo survey was a project of follow-up campaigns to study the usefulness of SNe as distance indicators. A total of 50 SNe were obtained between 1989 and 1993. The analysis of SNe Ia were published by Hamuy et al. (1996). Spectral and photometric details of six SNe II were presented by Hamuy (2001). In this analysis we include these six SNe II and an additional object, SN 1993K.

3.3.3 The Tololo Supernova program, the Supernova Optical and Infrared Survey (SOIRS)

The Supernova Optical and Infrared Survey carried out a program to obtain optical and IR photometry and spectroscopy of nearby SNe (z < 0.08). In the course of 1999-2000, 20 SNe were observed, six of which are SNe II. Details of these SNe were published by Hamuy (2001), Hamuy et al. (2001), Hamuy and Pinto (2002), and Hamuy (2003).

3.3.4 The Carnegie Type II Supernova Survey (CATS)

Between 2002 and 2003 the Carnegie Type II Supernova Survey observed 34 SNe II. Optical spectroscopy and photometry of these SNe have been used to derive distances (Olivares, 2008, Jones et al., 2009), the spectral data have not been released until now.

3.3.5 The Carnegie Supernova Project (CSP)

The Carnegie Supernova Project (CSP) was a five year follow-up program to obtain high quality optical and near infrared light curves and optical spectroscopy. The data obtained by CSP between 2004 and 2009 consist of ~ 250 SNe of all types, of which 76 correspond to SNe II. The first SN Ia photometry data were published in Contreras et al. (2010), while their analysis was done by Folatelli et al. (2010). A second data release was provided by Stritzinger et al. (2011). A spectroscopy analysis of SNe Ia was published by Folatelli et al. (2013). The CSP spectral data for SNe II are published here for the first time, while the complete optical and near-IR photometry will be published by Anderson et al. (in prep.) and de Jaeger et al. (in prep.), respectively.

3.4 Observations and data reduction

In this section we summarize our observations and the data reduction techniques. However, a detailed description of the CT methodology is presented in Hamuy et al. (1993), in the case of SOIRS is described in Hamuy et al. (2001) and for CSP can be found in Hamuy et al. (2006) and Folatelli et al. (2013).

3.4.1 Observations

The data presented here were obtained with a great variety of instruments and telescopes, as shown in Table 3.2. The majority of the spectra were taken in long-slit spectroscopic mode with the slit placed along the paralactic angle. However, when the SN was located close to the host, it was necessary to pick a different and more convenient angle to avoid contamination from the host. The majority of our spectra cover the range of ~ 3800 to ~ 9500 Å. The observations were performed with the Cassegrain spectrographs at 1.5-m and 4.0-m telescopes at Cerro Tololo, with the Wide Field CCD Camera (WFCCD) at the 2.5m du Pont Telescope, the Low Dispersion Survey Spectrograph (LDSS2; Allington-Smith et al. 1994) on the Magellan Clay 6.5-m telescope and the Inamori Magellan Areal Camera and Spectrograph (IMACS; Dressler et al. 2011) on the Magellan Baade 6.5-m telescope at Las Campanas Observatory. At La Silla, the observations were carried out with the ESO Multi-Mode Instrument (EMMI; Dekker et al. 1986) in medium resolution spectroscopy mode (at the NTT) and the ESO Faint Object Spectrograph and Camera (EFOSC; Buzzoni et al. 1984) at the NTT and 3.6-m and NTT telescopes. We also have 3 spectra for SN 2006ee obtained with the Boller & Chivens CCD spectrograph at the Hiltner 2.4 m Telescope of the MDM Observatory. Table 3.2 displays a complete journal of the 898 spectral observations, listing for each spectrum the UT and Julian dates, phases, wavelength range, FWHM resolution, exposure time, airmass, and the telescope and instrument used.

UT Date	JD	Phase	Tel.	Inst.	Wavelength	Resol.	Exp.	Air-
		(days)			Range (AA)	(AA)	(s)	mass
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			SN 19	86L				
3561-6446 1986-10-09	2446712 50	4			3681-7728		1000	1 21
1986-10-11	2446714 50	6			3730-7168		1556	1 20
1986-10-12	2446715.50	7			3800-7322		2000	1.21
1986-10-13	2446716.50	8			3681-4988		1352	1.21*
1986-10-14	2446717.50	9			3681-4988		2500	1.19*
1986-10-15	2446718.50	10			3681-4988		2500	1.18*
1986-10-20	2446723.50	15			3720-5031		3000	1.24*
1986-10-26	2446729.50	21			3830-7330		2000	1.20
1986-10-28	2446731.50	23			3596-5125		2000	1.37
1986-10-28	2446731.50	23			3590-5130			1.37
1986-10-29	2446732.50	24			3675-5240		1200	1.23
1986-11-01	2446735.50	27			3270-7205		1800	1.21
1986-11-02	2446736.50	28			3270-7205		1200	1.2
1986-11-03	2446737.50	29			3847-7357		2000	1.22
1986-11-03	2446737.50	29			3270-7205		1200	1.21
1986-11-04	2446738.50	30			4166-7701		1800	1.22
1986-11-04	2446738.50	30			3270-7205		1200	1.20
1986-11-05	2446739.50	31			3270-7205		1200	1.20
1986-11-06	2446740.50	32			3270-7205		1200	1.21
1986-11-07	2446741.50	33			3270-7205		1200	1.21
1986-11-10	2446744.50	36			4166-7701		1800	1.23
1986-11-11	2446745.50	37			3830-7285		1000	1.19
1986-11-14	2446748.50	40			3561-6446			1.20
1986-11-16	2446750.50	42			3561-6446			1.18
1986-11-25	2446759.50	51			3450-6950		2000	1.20*
1986-12-09	2446773.50	65			3680-6670		1000	1.44
1986-12-10	2446774.50	66			3769-7329		2262	
1986-12-23	2446787.50	79			3991-7548		2394	
1987-01-01	2446796.50	88			3776-7578		2545	
1987-01-23	2446818.50	110			3450-6950		3000	1.20
1987-01-30	2446825.50	117			5601-7998			1.24
			SN 198	88A				
1988-01-28	2447188.50	11			3047-7731		600	1.37
1988-01-29	2447189.50	12			3034-7778		600	1.35
1988-02-02	2447193.50	16			5786-10284		600	1.34
1988-02-03	2447194.50	17			2914-7389		600	1.34
1988-03-06	2447226.50	49			7699-10964		600	1.48
			SN 199	90E				
1990-02-23	2447945.50	10			3172-7910		600	1.37
1990-03-04	2447954.50	19			3147-6412		600	1.35
1990-03-04	2447954.50	19			3147-9083		600	1.34
1990-03-19	2447969.50	34			5794-9082		600	5.52
1990-07-03	2448075.50	140			2979-7726		600	1.48
			SN 199	90K				
1990-05-31	2448042.50	41			3177-6489		240	1.23
1990-05-31	2448042.50	41			6180-9553		360	1.38
1990-06-07	2448049.50	48			2980-7729		900	1.31
1990-06-08	2448050.50	49			6078-10597		900	1.23
1990-06-12	2448054.50	53			2982-7731		900	1.15
1990-06-19	2448061.50	60			5933-10440		600	1.33
1990-07-03	2448075.50	74			2980-7726		1200	1.20
1990-08-13	2448116.50	115			2994-7733		1800	1.01
1990-08-17	2448120.50	119			2982-7737		1800	1.03
			SN 199)1al				
1991-08-05	2448473.50	31			3595 - 9899			
1991-08-06	2448474.50	32			3545 - 6794			
1991-08-10	2448478.50	36			3545 - 9793			
1991-08-13	2448481.50	39			4432 - 7052			
1991-09-02	2448501.67	59			2961 - 7621		3600	1.24
1991-09-14	2448513.68	71			3218 - 7417		2x600	1.40
1991-10-10	2448538.61	97			2957 - 7612		1800	1.41
1991-11-07	2448567.54	125			3157 - 7384		600	1.45
			SN 199	92af				
1992-07-09	2448812.87	14			4666 - 7037		1800	1.25
1992-07-10	2448813.81	15			4667 - 7038		1200	1.07
1992-07-29	2448832.76	34			3194 - 7364		900	1.08
1992-10-01	2448896.59	98			3149 - 7360		3x1200	1.08
1992-10-31	2448926.55	128			3152-7334		3x1800	1.21

Table 3.2: Spectroscopic observations information

			SN 199	2am			
1992-07-29	2448832.89	19			3106-7161	 900	1.10
1992-10-01	2448896.78	84			3061-7156	 3X900	1.16
			SN 199	2ba			
1992-10-01	2448896.85	12			3196-7470	 4X180	1.23
1992-10-01	2448896.90	12			6159-10112	 120	1.20
1992-10-05	2448900.88	16			5968-10447	 150	1.20
1992-10-05	2448900.82	16			3119-7367	 4X900	1.25
1992-10-27	2448922.81	38			2944-7658	 2X1200	1.21
1992-11-23	2448949.80	65			3182-7425	 500	1.22
1992-12-18	2448974.83	95			3213-7468	 2X90	1.45
1993-01-28	2449015.69	131			3683-6977	 600	1.34
1993-02-27	2449045.66	161			3082-8918	 2X2700	1.67
1993-03-21	2449067.54	183			5806-9125	 4X480	1.34
			SN 199	93A			
1993-01-28	2449015.72	20			3591-6803	 1200	1.22
1993-04-21	2449098.60	103			3132-7240	 2X900	1.56
			SN 199	93K			
1993-04-01	2449078.50	13			3171-7610	 900	1.05
1993-04-21	2449098.55	33			3180-7386	 3x600	1.75
1993-04-28	2449105.50	40			3665-9759	 2x1200	1.31
1993-05-16	2449123.47	58			3657-9741	 2x300	1.61
1993-05-17	2449124.47	59			6001-9743	 	
1993-05-17	2449124.47	59			7053-6728	 	
1993-11-17	2449308.83	243			5789-8357	 	1.00
1993-11-18	2449309.78	244			4453-8357	 	1.02
1993-11-18	2449309.82	244			4453-7053	 	1.00
1993-11-18	2449309.50	244			4453-7053	 	1.02
1993-12-15	2449336.78	271			3660-6825	 2x1800	1.02
1994-01-14	2449366.65	301			6355-10282	 1200	1.10
1994-01-14	2449366.66	301			6355-10282	 1800	1.15
1994-01-14	2449366 60	301			3696-6817	 1800	1.01
1994-01-14	2449366.62	301			3657-6827	 1500	1.04
1994-02-10	2449393.70	328			5802-8370	 	1.29
1994-03-17	2449428.58	363			4181-7506	 3600	1.16
			SN 19	935			
1993-06-26	2449164.76	34			2903-7478	 2x1800	1.28
1993-06-28	2449166.50	36			3872-9339	 	
1993-07-23	2449191.92	61			3111-7448	 1800	1.21
1993-08-24	2449223.76	93			3574-9523	 2x1800	1.02
			SN 199	99br			
1999-04-23	2451291.50	15			3463-9271	 3x600	1.30
1999-04-26	2451294.50	18			2990-11961	 900	1.19
1999-04-29	2451297.50	21			2990-11961	 600	1.20
1999-05-03	2451301.50	25			2990-11961	 600	1.18
1999-05-11	2451309.50	33			2990-11961	 900	1.47
1999-05-19	2451317.50	41			2990-11961	 400	1.37
1999-05-21	2451320.02	43			3339-10249	 2x1800	1.24
1999-07-21	2451380.45	104			3113-8757	 2400	1.29
			SN 199	99ca			
1999-05-06	2451303.50	26			10603-14225	 4x303	1.20*
1999-05-07	2451304.50	27			3170-10005	 600	1.04
1999-05-11	2451305.50	31			3338-10080	 900	1.10
1999-05-19	2451309.50	39			3170-10006	 400	1.11
			SN 199	99cr			
1999-03-20	2451257.50	11	DUP		3528-9086	 4x900	1.03
1999-03-30	2451267.50	21			3430-8821	 600	1.02
1999-04-23	2451291.50	45	DUP		3406-9116	 2x1200	1.30
1999-05-03	2451301.50	55			3136-9893	 600	1.04
1999-05-07	2451305.50	59			3136-9901	 600	1.02
			SN 199	99eg			
1999-10-16	2451467.50	18	DUP		3521-9038	 1200	1.74
1999-11-19	2451501.50	52	NTT		4597-9879	 200	1.76
			SN 199	9em			
1999-11-02	2451484.50	8			8978-12653	 3x200	1.59
1999-11-03	2451485.50	9			3292-10074	 200	1.40
1999-11-09	2451491.50	15			3292-10074	 150	1.32
1999-11-14	2451496.50	20			3292-10074	 150	1.23
1999-11-18	2451500.50	24			2992-26935	 3x200	1.27
1999-11-19	2451501.50	25			3292-10074	 150	1.23
1999-11-28	2451510.50	34			8978-26935	 2x200	1.18
1999-12-16	2451528.75	52			4907-9257	 2x900	1.23
1999-12-31	2451543.75	67			3092-7109	 2x450	1.22
2000-04-09	2451643.50	167			3292-10074	 300	2.42
			SN 200	2ew			

28

2002-09-12	2452329.50	29	DUP	WF	3670-7080	 2x1800	1.43
2002-09-13	2452329.50	30	DUP	WF	3670-7080	 1800	1.33'
2002-09-28	2452545.50	45	CLA	LD	3496-8740	 600	1.38
2002-10-08	2452555.50	55	DUP	WF	3709-9060	 2x900	1.61
2002-10-15	2452562.50	62	CLA	LD	3496-8740	 600	1.41
2002-10-25	2452572.50	72	CLA	LD	3496-8740	 600	1.00
2002-10-29	2452576.50	76	CLA	LD	3496-8740	 600	1.79
			SN 200	2fa			
2002-09-12	2452529.50	27	DUP	WF	3565-6875	 2x1800	1.17
2002-09-28	2452545.50	43	CLA	LD	3395-8489	 600	1.29
2002-10-08	2452555.50	53	DUP	WF	3603-8800	 5x900	1.21
2002-10-14	2452561.50	59	CLA	LD	3395-8489	 600	1.17
2002-10-25	2452572.50	70	CLA	LD	3395-8489	 900	1.00
2002-10-29	2452576.50	74	CLA	LD	3395-8489	 900	1.35
			SN 200	2gd			
2002-10-08	2452555.50	4	DUP	WF	3786-9247	 2x300	1.89
2002-10-14	2452561.50	10	CLA	LD	3568-8920	 300	1.36
2002-10-25	2452572.50	21	CLA	LD	3568-8920	 300	1.00
2002-10-29	2452576.50	25	CLA	LD	3568-8920	 300	1.42
2002 10 20	2452577 50	26	DUP	WF	3786 0247	 450	1 30
2002-10-00	2452585 50	20	DUP	WF	3786 0247	 450	1.00
2002-11-07	2452588 50	37	CLA		3568 8020	 180	2.00
2002-11-10	2452500.50	20	CLA		2151 0247	 200	1.55
2002-11-12	2452590.50	59	CLA		3151-9247	 300	1.00
2002-11-28	2452606.50	55	DUD	LD WD	3131-9247	 300	1.24
2002-12-01	2452609.50	58	DUP	WF	3786-9247	 600	1.57
2002-12-27	2452635.50	84	DUP	WF	3746-7215	 3x600	1.86
2003-01-09	2452648.50	97	CLA	LD -	3151-9247	 300	2.42
			SN 2003	2gw			
2002-10-25	2452572.50	19	CLA	LD	3563-8908	 300	1.00
2002-10-29	2452576.50	23	CLA	LD	3563-8908	 300	1.03
2002-10-30	2452577.50	24	DUP	WF	3781-9234	 450	1.04
2002-11-07	2452585.50	32	DUP	WF	3781 - 9234	 450	1.00
2002-11-10	2452588.50	35	CLA	LD	3563-8908	 200	1.26
2002-11-12	2452590.50	37	CLA	LD	3147 - 9234	 300	1.06
2002-11-28	2452606.50	53	CLA	LD	3147 - 9234	 300	1.03
2002-12-01	2452609.50	56	DUP	WF	3781-9234	 600	1.02
2002-12-27	2452635.50	82	DUP	WF	3741-7205	 3x600	1.53
2003-01-03	2452642.50	89	DUP	WF	3741-7205	 3x600	1.93
2003-01-10	2452649.50	96	CLA	LD	3147-9234	 300	1.51
			SN 200	2hj			
2002-11-07	2452585.50	23	DUP	WF	3731-9114	 450	1.21
2002-11-10	2452588.50	26	CLA	LD	3516-8792	 200	1.59
2002-11-12	2452590.50	28	CLA	LD	3106-9114	 300	1.25
2002-11-28	2452606.50	44	CLA	LD	3180-9330	 300	1.22
2002-12-03	2452611.50	49	DUP	WF	3731-9114	 600	1.22
2002-12-27	2452635.50	73	DUP	WF	3692-7111	 3x600	1.51
2003-01-08	2452647 50	85	CLA	LD	3106-9114	 300	1 45
2000 01 00	2102011100	00	SN 200	2hx	0100 0111	000	1110
2002-11-28	2452606 50	24	CLA	LD	3084-9049	 300	1.99
2002-11-20	2452600.50	24	DUP	WF	3705 9049	 600	1 11
2002-12-01	2452605.50	52	DUD	WE	2666 7061	 22600	1.11
2002-12-27	2452055.50	60	DUD	WE	3000-7001	 3x000	1.07
2003-01-03	2452642.50	00	CLA	WF ID	3000-7001	 32000	1.04
2003-01-08	2452647.50	05	CLA		3084-9049	 300	1.12
2003-01-09	2452648.50	00	CLA	LD	3084-9049	 600	1.12
2003-01-27	2452666.50	84	DUP	WF	3705-9049	 1200	1.14
2003-02-03	2452673.50	91	DUP	WF	3705-9049	 900	1.06
2003-03-04	2452702.50	120	DUP	WF	3685 - 9044	 900	1.13
			SN 200	2ig			
2002-11-10	2452588.50	18	CLA	LD	3345 - 8364	 200	1.17
2002-11-12	2452590.50	20	CLA	LD	2955 - 8671	 300	1.16
2002-11-28	2452606.50	36	CLA	LD	2955 - 8671	 450	1.18
2002-12-03	2452611.50	41	DUP	WF	3550 - 8671	 900	1.17
2002-12-27	2452635.50	65	DUP	WF	3513 - 6765	 4x900	1.46
			SN 21	10			
2002-09-28	2452588.50	59	CLA	LD	3424 - 8560	 450	1.21
2002-09-30	2452590.50	60	DUP	WF	3633-8874	 4x900	1.32
2002-10-08	2452606.50	69	DUP	WF	3633-8874	 4x900	1.37
2002-10-14	2452611.50	75	CLA	LD	3424-8560	 600	1.44
2002-10-25	2452635.50	86	CLA	LD	3424-8560	 900	1.00
2002-10-29	2452635.50	90	CLA	LD	3424-8560	 900	1.16
			SN 200)3B			
2003-01-06	2452645.50	32			3684-8961	 	
2003-01-08	2452647.50	34	CLA	LD	3166-9290	 200	1.00
2003-01-09	2452648.50	35	CLA	LD	3166-9290	 200	1.13
2003-01-10	2452649 50	36	CLA	LD	3166-9290	 200	1 45

2003-02-03	2452673.50	60	DUP	WF	3783 - 9285		600	2.17
2003-03-02	2452700.50	87	DUP	WF	3803-9290		600	1.61
2003-03-31	2452729.50	116	DUP	WF	3764-7249		2x700	2.36
2003-06-07	2452797 50	184	DUP	WF	3783-9285		2x300	1.60
2002-00-01	2452101.00	284	CLA	ID	2594 9061		450	1.00
2003-09-15	2452897.81	204	SN 200	25	3384-8901		450	1.01
0002 01 00	0450640 50	10	SIN 200		2122 0104		200	1.00
2003-01-09	2452648.50	18	CLA	LD	3133-9194		300	1.06
2003-01-10	2452649.50	19	CLA	LD	3133-9194		300	1.12
2003-01-27	2452666.50	36	DUP	WF	3764 - 9194	• • •	900	1.57
2003-03-03	2452701.50	71	DUP	WF	3744 - 9189		352	1.41
2003-03-12	2452710.50	80	DUP	WF	3744-9189		900	1.67
2003-03-31	2452729 50	99	DUP	WF	3725-7174		2x900	1 72
2003 04 10	2452730 50	100	CLA	LD	3547 8860		240	1.60
2003-04-10	2452753.50	103	CLA	ID	2547-8860		240	2.20
2003-05-05	2452764.50	134	CLA		3547-8869		240	2.30
			SN 200	3T				
2003-02-03	2452673.50	19	DUP	WF	3716-9076		900	1.55
2003-03-03	2452701.50	47	DUP	WF	3696 - 9071		900	1.48
2003-03-12	2452710.50	56	DUP	WF	3696-9071		900	1.70
2003-03-31	2452729.50	75	DUP	WF	3677-7082		3x900	1.68
2003 04 10	2452730 50	85	CLA	LD	3502 8755		300	1.60
2003-04-10	2452755.50	110	CLA		3502-8755		300	1.00
2003-05-05	2452764.50	110	CLA		3502-8755		300	1.54
			SN 200	3Ы				
2003-03-03	2452701.50	5	DUP	WF	3746 - 9193		600	1.23
2003-03-04	2452702.50	6	DUP	WF	3746 - 9193		900	1.32
2003-03-31	2452729.50	33	DUP	WF	3726-7177		2x900	1.37
2003-04-06	2452735.50	39	DUP	WF	3746-9193		900	1.40
2003 04 10	2452730 50	43	CLA	LD	3540 8872		200	2.15
2002-04-10	2452765.50	40	CLA	ID	2540 0072		200	1 41
2003-05-05	2452764.50	08	CLA		3349-8872		300	1.41
2003-05-30	2452789.50	93	DUP	W F	3746-9193		2x900	1.88
2003-06-04	2452794.50	98	CLA	LD	3549 - 8872	• • •	300	2.10
			SN 200	3bn				
2003-03-08	2452706.50	12	DUP	WF	3751-9205		300	1.18
2003-03-12	2452710.50	16	DUP	WF	3751-9205		900	1.36
2003-03-31	2452729 50	35	DUP	WF	3731-7186		2x900	1 16
2002-04-04	2452722.50	20	DUP	WE	0001-1100		600	1.15
2003-04-04	2452755.50	39	DUP	VV P	88843333-		000	1.10
2003-04-07	2452736.50	42	DUP	WF	3751-9205		600	1.01
2003-04-10	2452739.50	45	CLA	LD	3553 - 8884		250	1.54
2003-05-05	2452764.50	70	CLA	LD	3553 - 8884		250	1.30
2003-05-30	2452789.50	95	DUP	WF	3751 - 9205		2x600	1.22
2003-06-04	2452794.50	100	CLA	LD	3751-9205		300	1.6
2003-06-07	2452797.50	103	DUP	WF	3751-9205		2x600	1.18
2003-06-23	2452813 50	119	DUP	WF	3751-9205		2x600	1 31
2002-06-20	2452820.50	196	CLA	ID	2552 9994		2000	2.09
2003-00-30	2432820.30	120	CLA		3333-8884		300	2.08
			SN 200	3C1				
2003-03-31	2452729.50	18	DUP	WF	3668-7065		2x900	1.50
2003-04-04	2452733.50	22	DUP	WF	3688-9050		900	1.84
2003-05-05	2452764.50	53	CLA	LD	3494 - 8735		300	1.95
2003-05-30	2452789.50	78	DUP	WF	3688-9050		2x600	1.22
2003-06-04	2452794.50	83	CLA	LD	3494-8735		450	1.32
2003 06 07	2452707 50	86	DUP	WF	3688 9050		32000	1 38
2002-00-01	2452151.50	105	DUD	WE	2688 0050		2-000	1.00
2003-00-20	2452810.50	105	DUP	WF	3088-9030		2x900	1.70
			SN 200	3cn				
2003-03-31	2452729.50	12	DUP	WF	3712-7150		2x900	1.27
2003-04-04	2452733.50	16	DUP	WF	3732 - 9159		600	2.34
2003-04-10	2452739.50	22	CLA	LD	3535-8839		300	1.46
2003-05-05	2452764.50	47	CLA	LD	3535-8839		300	1.29
2003-06-07	2452797.50	80	DUP	WF	3732-9159		2x900	1.88
			SN 200	302	0.02 0.00			
0002 04 10	0450520 50	1.4	CT A	JUL I	9470 0001		200	1 70
2003-04-10	2452739.50	14	CLA	LD	3472-8081		300	1.79
2003-05-05	2452764.50	39	CLA	LD	3472-8681		450	1.23
2003-06-04	2452794.50	69	CLA	LD	3472 - 8681		450	1.77
2003-06-07	2452797.50	72	DUP	WF	3665 - 8994		3x600	2.14
2003-06-24	2452814.50	89	DUP	WF	3665-8994		2x900	1.21
2003-06-30	2452820.50	95	CLA	LD	3472-8681		450	1.41
			SN 200	3da				
2003 05 05	9459764 50	30	CT A	LD	3440 9600		300	1 49
2003-03-03	2402704.00	33	OLA DUE	<u>т</u> р	3440-0000		300	1.42
2003-05-30	2452789.50	58	DUP	WF	3631-8911		2x900	1.74
2003-06-04	2452794.50	63	CLA	LD	3440-8600		450	1.46
			SN 200	3ef				
2003-05-30	2452789.50	32	DUP	WF	3748-9199		2x450	1.33
2003-06-04	2452794.50	37	CLA	LD	3551-8878		300	1.37
2003-06-07	2452797 50	40	DUP	WF	3748-0100		2x600	1 30
2003 06 24	2/52131.00	57	DUD	WE	37/9 0100		2-450	1 1 4
2003-00-24	2402814.00	57	DUP CT 1	VV F	3/40-9199		2x450	1.14
2003-06-30	2452820.50	63	CLA	LD	3551-8878	• • •	300	1.72
2003-08-15	2452866.50	109	CLA	LD	3551 - 8878		450	2.00

			SN 200	3eg			
2003-05-30	2452789.50	25	DUP	WF	3745 - 9191	 2x300	1.64
2003-06-04	2452794.50	30	CLA	LD	3548 - 8871	 200	1.45
2003-06-07	2452797.50	33	DUP	WF	3745-9191	 2x300	1.49
2003-06-30	2452820.50	56	CLA	LD	3548-8871	 300	1.45
2003-08-20	2452871.51	107	DUP	WF	3745-9191	 600	2.39
			SN 200	3ei			
2003-05-30	2452789.50	14	DUP	WF	3736-9169	 2x300	1.41
2003-06-04	2452794 50	19	CLA	LD	3539-8849	 300	1.33
2003-06-25	2452815 50	40	DUP	WF	3736-9169	 2x450	1.30
2000-00-20	2402010.00	40	SN 200	3fb	0100-0100	2,400	1.00
2003-06-07	2452797 50	25	DUP	WF	3734-9164	 2~900	1.99
2003-06-01	2452820 50	18	CLA	LD	3537 8844	 450	1.22
2003-00-30	2452866 50	40	CLA	LD	2527 9944	 450	1.22
2003-08-15	2452800.50	94	DUD		3337-8844	 900	1.23
2003-08-20	2452871.02	99	DUP CN 000	VV F	3734-9164	 2x900	1.22
			SN 200	3gd			
2003-06-27	2452817.50	62	DUP	WF	3791-9304	 2x300	1.54
2003-06-30	2452820.50	65	CLA	LD	3592-8980	 75	1.82
2003-09-26	2452908.71	153	DUP	WF	3791-9304	 2x600	1.47
			SN 200	3hd			
2003-08-15	2452866.50	11	CLA	LD	3463 - 8658	 450	1.22
2003-08-20	2452871.86	16	DUP	WF	3655-8970	 2x900	1.01
2003-09-15	2452897.70	42	CLA	LD	3463 - 8658	 450	1.15
2003-09-18	2452900.76	45	DUP	WF	3636-7003	 3x900	1.02
2003-09-26	2452908.67	53	DUP	WF	3655 - 8970	 2x900	1.14
2003-10-16	2452928.64	73	DUP	WF	3655-8970	 900	1.09
2003-11-05	2452948.79	93	CLA	LD	3463-8658	 450	1.48
2003-11-29	2452972.64	117	DUP	WF	3655-8970	 2x1200	1.07
2003-12-16	2452989.66	134	DUP	WF	3655-8970	 2x900	1.33
			SN 200	3hg			
2003-09-07	2452889.61	24	CLA	LD	3551-8878	 410	2.33
2003-09-15	2452897 65	32	CLA	LD	3551-8878	 600	1.67
2003-09-18	2452000.68	35	DUP	WF	3720 7181	 3-000	1.55
2003-00-16	2452008.57	63	DUP	WF	3748 0100	 2×900	1.63
2003-10-10	2452928.57	107	DUP	WE	2748 0100	 2x900	1.03
2003-11-29	2452972.54	107	EN 200	91-1-	3740-9199	 2x900	1.59
0002 00 10	0450000.04	2.4	DUD	JUD	2000 7110	0.000	1.00
2003-09-18	2452900.84	34	DUP	WF	3090-7118	 2x900	1.20
2003-09-26	2452908.77	42	DUP	WF	3715-9118	 2x900	1.22
2003-10-16	2452928.79	62	DUP	WF	3715-9118	 900	1.25
2003-11-29	2452972.69	106	DUP	WF	3715-9118	 2x900	1.30
			SN 200	3h1			
2003-09-18	2452900.79	32	DUP	WF	3749-7220	 2x600	1.50
2003-09-26	2452908.73	40	DUP	WF	3768-9248	 2x900	1.54
2003-10-16	2452928.71	60	DUP	WF	3768-9248	 2x900	1.50
2003-11-05	2452948.77	80	CLA	LD	3570-8926	 300	2.22
2003-11-23	2452966.68	98	DUP	WF	3768 - 9248	 2x600	1.73
2003-12-23	2452996.59	128	DUP	WF	3768 - 9248	 2x900	1.68
			SN 200	3hn			
2003-09-15	2452897.85	31	CLA	LD	3586 - 8965	 90	1.04
2003-09-18	2452900.87	34	DUP	WF	3765 - 7251	 2x300	1.04
2003-09-26	2452908.82	42	DUP	WF	3785-9288	 2x600	1.04
2003-10-16	2452928.83	62	DUP	WF	3785-9288	 600	1.07
2003-11-05	2452948.82	82	CLA	LD	3586-8965	 150	1.18
2003-11-23	2452966.81	100	DUP	WF	3785-9288	 2x600	1.29
2003-12-16	2452989.74	123	DUP	WF	3785-9288	 3x600	1.29
2003-12-23	2452996 68	130	DUP	WF	3785-9288	 2x600	1 13
2008 12 28	2453040.69	174	CLA	LD	3586-8965	 600	2.03
2001 02 00	2100010100		SN 200	3ho	0000 0000	000	2.00
2003 09 07	2452880 53	41	CLA	LD	3540 8873	 900	1 15
2002-00-01	2452807.50	40	CLA	ID	2540 8872	000	1.10
2003-09-15	2452697.59	49	DUD	WE	3349-8873	 3000	1.00
2003-09-18	2452900.58	02 CO	DUP	WE	3727-7177	 3x900	1.00
2003-09-26	2452908.55	00	DUP	WF	3746-9194	 3x900	1.06
2003-11-23	2452966.58	118	DUP GN 2000	W F	3746-9194	 3x900	1.63
0000 00 1-	0.170000	~	SN 200	31D	2000 5:11	0.000	
2003-09-18	2452900.65	9	DUP	WF	3900-7100	 2x900	1.15
2003-09-26	2452908.52	17	DUP	WF	3850-8200	 2x900	1.01
2003-10-16	2452928.54	37	DUP	WF	3800-9100	 2x900	1.06
2003-11-16	2452959.52	68	CLA	LD	3800-8800	 600	1.30
2003-11-23	2452966.54	75	DUP	WF	4100-9000	 2x900	1.62
			SN 200	3ip			
2003-10-16	2352928.61	32	DUP	WF	3700-9150	 2x900	1.31
2003-11-05	2352948.65	52	CLA	LD	3600-8850	 450	1.35
2003-11-23	2352966.64	70	DUP	WF	3900-9150	 2x900	1.49
2003-12-16	2352989.63	93	DUP	WF	4400-9100	 2x450	2.30
-		-	SN 200	3iq			
				-			

2003-10-16	2452928.5	9	DUP	WF	4800-9200		2x1200	1.53
2003-11-05	2452948.5	29	CLA	LD	3700-9100		300	1.86
2003-11-23	2452966.5	47	DUP	WF	3900-9200		2x600	1.62
2003-12-16	2452989.5	70	DUP	WF	4000-9200		180	3.27
2003-12-23	2452996.5	77	DUP	WF	3900-9200		2x900	1.94
			SN 200	4dv				
2004-09-07	2453255.61	15	DUP	MS	3663-7097	5.0	3x900	1.12*
2004-09-14	2453262.55	22	DUP	WF	3683-8951	8.0	3x900	1 18*
2004-09-14	2453268 58	22	DUP	WF	3683 8051	8.0	3×900	1.10*
2004-03-20	2400200.00	20	SN 200	401	3003-0351	0.0	31300	1.12
2004 09 14	2453262.01	30	DUP	WF	3765 0151	8.0	480	2.54
2004-09-14	2453262.91	44	DUP	WE	4480.0521	8.0	400	2.54
2004-09-19	2403207.89	44	DUD	WE	2765 0151	8.0	300	2.09
2004-09-20	2455208.50	40	CLA	WF ID	3703-9131	0.0	300	2.32
2004-10-24	2453302.50	79	CLA	LD	3567-8918	14.0	3x300	1.50
2004-11-17	2453326.84	103	DUP	WF	3765-9240	8.0	3x600	1.23
2004-11-26	2453335.74	112	CLA	LD	3567-8918	14.0	3x300	1.93
2004-12-04	2453343.50	120	DUP	WF	3765-9151	8.0	500	1.05
2004-12-13	2453352.79	129	DUP	WF	3765-9151	8.0	3x900	1.13
2004-12-19	2453358.76	135	CLA	LD	3567-8918	14.0	3x450	1.17
			SN 200	4er				
2004-10-24	2453302.79	31	CLA	LD	3547 - 8869	14.0	3x300	1.22
2004-11-17	2453326.73	55	DUP	WF	3744-9189	8.0	3x600	1.25
2004-11-25	2453334.71	63	CLA	LD	3547 - 8869	14.0	3x300	1.26
2004-12-04	2453343.68	72	DUP	WF	3744 - 9101	8.0	3x600	1.24
2004-12-09	2453348.66	77	DUP	WF	3744-9101	8.0	3x600	1.21
2004-12-13	2453352.68	81	DUP	WF	3744-9101	8.0	3x600	1.35
2004-12-17	2453356.60	85	T60	CS	3153-9436	14.0	3x160	1.14
2004-12-19	2453358.61	87	CLA	LD	3547-8869	14.0	3x400	1.14
2005-01-11	2453381.56	110	T60	CS	3153-9475	14.0	3x120	1.20
2005-03-17	2453446.50	175	DUP	WF	3744-9101	8.0	900	2.51
			SN 200	4fb				
2004-10-24	2453302 58	44	DUP	WF	3723-9048	8.0	3x900	1.96
2004-11-17	2453326 54	68	CLA	LD	3527-8818	14.0	3x300	1 33
2004-11-17	2453335 52	77	CLA	LD	3527-8818	14.0	3x450	1.00
2004-11-20	24533333.52	95	DUP	WE	2722 0127	14.0 8.0	21600	1.45
2004-12-04	2400040.04	85	SN 200	Afe	3723-3137	0.0	32000	1.47
2004 10 24	2452202.60	0	CI A	ID	2579 9045	14.0	21-200	1.06
2004-10-24	2455502.09	3	DUD	WE	2776 0069	14.0	3x300	1.00
2004-11-17	2453326.71	33	DUP	WF ID	3776-9268	8.0	3x300	1.20
2004-11-25	2453334.69	41	CLA	LD	3578-8945	14.0	150	1.30
2004-12-04	2453343.62	50	DUP	WF	3776-9178	8.0	3x300	1.12
2004-12-09	2453348.63	55	DUP	WF	3776-9178	8.0	3x300	1.18
2004-12-13	2453352.60	59	DUP	WF	3776-9178	8.0	3x300	1.12
2004-12-17	2453356.54	63	T60	CS	3180-9517	14.0	3x900	1.07
2004-12-19	2453358.57	65	CLA	LD	3578 - 8945	14.0	3x200	1.09
2004-01-11	2453381.53	88	T60	CS	3180 - 9555	14.0	3x600	1.17
2004-02-12	2453413.53	120	DUP	WF	3776 - 9178	8.0	3x300	1.74
			SN 200	4fx				
2004-11-17	2453326.81	23	DUP	WF	3766 - 9242	8.0	3x450	1.13
2004-11-25	2453334.73	31	CLA	LD	3568-8920	14.0	3x300	1.06
2004-12-04	2453343.74	40	DUP	WF	3766-9153	8.0	3x450	1.09
2004-12-09	2453348.81	45	DUP	WF	3766-9153	8.0	3x450	1.42
2004-12-17	2453356.68	53	T60	CS	3171-9491	14.0	3x120	1.07
2004-12-19	2453358.66	55	CLA	LD	3568-8920	14.0	3x300	1.06
2004-01-11	2453381.61	78	T60	CS	3171-9529	14.0	3x120	1.07
2004-02-04	2453405.63	102	DUP	WF	3766-9153	8.0	3x900	1.24
2004-02-08	2453409.61	106	DUP	WF	3766-9153	8.0	3x900	1.21
2004-02-00	2453413.60	110	DUP	WF	3766-9153	8.0	3x900	1.21
2004-02-12	2400410.00	110	SN 200	51	0100-0100	0.0	OADOO	1.22
2005 02 04	2453405 78	26	DUP	WF	3747 0107	8.0	3x700	1.30
2005-02-04	2452400.70	20	DUP	WE	2747 0107	8.0	2:700	1.30
2005-02-08	2403409.79	24	DUD	WE	3747-9107	8.0	32700	1.30
2005-02-12	2403413.82	34 65	DUP	WE	3747-9107	0.0	3x700	1.30
2005-03-15	2453444.70	60	DUP	WF	3747-9107	8.0	3x600	1.30
2005-03-19	2453448.67	69	DUP	VV F	3747-9107	8.0	3x600	1.30
2005-03-24	2453453.68	74	DUP	MS	3727-7171	5.0	3x900	1.30
2005-04-03	2453462.67	84	DUP	WF	3747-9107	8.0	3x800	1.30
2005-04-07	2453467.66	88	DUP	WF	3747-9107	8.0	3x800	1.30
2005-04-12	2453472.66	93	DUP	WF	3747-9107	8.0	3x600	1.30
2005-04-15	2453475.69	96	DUP	WF	3747-9107	8.0	3x600	1.40
2005-04-19	2453479.56	100	DUP	WF	3747-9107	8.0	3x600	1.40
			SN 200	5K				
2005-02-08	2453409.68	40	DUP	WF	3698 - 8987	8.0	3x900	1.46
2005-02-12	2453413.71	44	DUP	WF	3698-8987	8.0	3x900	1.44
			SN 200	5Z				
2005-02-04	2453405.74	9	DUP	WF	3727-9059	8.0	3x700	1.65
2005-02-08	2453409.76	13	DUP	WF	3727-9059	8.0	3x700	1.60

2005-02-12	2453413.78	17	DUP	WF	3727 - 9059	8.0	3x700	1.64
2005-03-15	2453444.66	48	DUP	WF	3727-9059	8.0	3x600	1.60
2005-03-19	2453448.61	52	DUP	WF	3727-9059	8.0	3x800	1.66
2005-03-24	2453453 50	57	DUP	MS	3707-7134	5.0	3-900	1.64
2005-05-24	2453453.50	07	DUD	WD	2707-1134	0.0	3,300	1.04
2005-04-03	2453462.62	67	DUP	VV F	3727-9059	8.0	3x900	1.60
2005-04-07	2453467.61	71	DUP	WF	3727-9059	8.0	3x1200	1.60
2005-04-15	2453475.58	79	DUP	WF	3727-9059	8.0	3x900	1.60
			SN 200	5af				
2005 02 12	2453413.86	03	DUP	WF	3702 0217	8.0	120	1.07
2005-02-12	2453415.80	93	DUP	VV I	3792-9217	8.0	120	1.07
2005-03-15	2453444.78	124	DUP	W F	3792-9217	8.0	3x200	1.07
2005-03-19	2453448.74	128	DUP	WF	3792-9217	8.0	3x200	1.07
2005-03-24	2453453.75	133	DUP	MS	3772-7258	5.0	3x300	1.07
2005-04-03	2453463 75	143	DUP	WF	3792-9217	8.0	3x200	1 10
2005 04 07	2452467.84	147	DUP	WE	2702 0217	8.0	21200	1.49
2003-04-07	2453407.84	147	DUP	VV I	3792-9217	8.0	3x200	1.42
2005-04-12	2453472.76	152	DUP	WF	3792-9217	8.0	3x200	1.14
2005-04-15	2453475.80	155	DUP	WF	3792-9217	8.0	3x200	1.32
2005-04-19	2453479.75	159	DUP	WF	3792-9217	8.0	200	1.18
			SN 200	5an				
2005 02 15	2452444 75	19	DUP	WF	2758 0122	8.0	2::600	1.01
2003-03-13	2403444.70	15	DUI	VV L	3738-9133	8.0	3x000	1.01
2005-03-19	2453448.71	17	DUP	WF	3758-9133	8.0	3x600	1.01
2005-03-24	2453453.72	22	DUP	MS	3738-7193	5.0	3x800	1.00
2005-04-07	2453467.77	36	DUP	WF	3758-9133	8.0	3x600	1.16
2005-04-12	2453472 72	41	DUP	WF	3758-9133	8.0	3×600	1.07
2005-04-12	0450475.72	44	DUD	WE	9759-9199	0.0	0,000	1.01
2005-04-15	2453475.73	44	DUP	VV F	3758-9133	8.0	3x600	1.11
2005-04-19	2453479.70	48	DUP	WF	3758 - 9133	8.0	3x600	1.06
			SN 200	5dk				
2005-09-26	2453639.50	40	DUP	WF	3740-9090	8.0	3x600	1.11
2005 00 27	2452640 52	41	DUP	WE	2740 0000	8.0	21600	1 1 2
2003-09-27	2453040.52	41	DUP	VV I	3740-9090	8.0	3x000	1.12
2005-10-05	2453648.50	49	DUP	WF	3740-9090	8.0	3x600	1.12
2005-10-18	2453661.54	62	NTT	\mathbf{EM}	3150 - 5217	6.0	3x300	1.18
2005-10-18	2453661.53	62	NTT	$\mathbf{E}\mathbf{M}$	5709-10040	9.0	3x300	1.26
2005-10-18	2453661 51	62	NTT	EM	3937-10040	9.0	3x300	1.22
2005 10 10	2452600 54	100	DUD	MC	2720 7176	5.0 5.0	2-1200	1.70
2003-11-23	2403099.04	100	DUP	101.5	3720-7170	5.0	5X1200	1.79
			SN 200	5dn				
2005-09-26	2453639.55	37	DUP	WF	3759-9137	8.0	3x600	1.07
2005-10-05	2453648.53	46	DUP	WF	3759-9137	8.0	3x600	1.07
2005-10-18	2453661 56	59	NTT	EM	3166-5243	6.0	3x200	1.21
2005 10 10	2452661 50	50	NTT	EM	5728 10000	0.0	2-150	1.20
2005-10-18	2403001.09	59	IN I I	E IVI	5758-10092	9.0	5x150	1.50
2005-10-18	2453661.58	59	N'T'T	EM	3957-10092	9.0	3x150	1.26
2005-11-06	2453680.53	78	T60	CS	3166 - 9454	14.0	3x900	1.27
2005-11-24	2453698.52	96	DUP	MS	3740-7212	5.0	3x1200	1.48
2005-11-25	2453699 51	97	T60	CS	3166-9483	14.0	3x900	1 45
2000 11 20	2100000101	01	EN 200	E J4	0100 0100	1110	0.000	1110
			5IN 200	Jat				
2005-09-26	2453639.6	34	DUP	WF	3703-9000	8.0	3x900	1.02
			SN 2005	5dw				
2005-09-26	2453639.59	36	DUP	WF	3733-9074	8.0	3x900	1.01
2005 10 05	2453648 58	45	DUP	WF	3733 0074	8.0	3~000	1.00
2005-10-00	2400040.00	101	DUD	WE	9799-0074	0.0	1000	1.00
2005-12-20	2453724.50	121	DUP	VV F	3733-9074	8.0	1200	1.84
			SN 200	5dx				
2005-09-26	2453639.78	24	DUP	WF	3698-8988	8.0	3x900	1.13
			SN 200	5dz				
2005 00 26	2453639 70	20	DUP	WF	3728 0061	8.0	3~000	1.25
2005-05-20	2400000.10	20	DUD	WE	2720-2001	0.0	3,700	1.20
2005-10-05	2453648.71	29	DUP	VV F	3728-9001	8.0	3x700	1.30
2005-10-18	2453661.68	42	NTT	$_{\rm EM}$	3139-5200	6.0	3x300	1.36*
2005-10-18	2453661.65	42	NTT	$\mathbf{E}\mathbf{M}$	3924-10008	9.0	3x300	2.09
2005-10-18	2453661.66	42	NTT	EM	3924-10008	9.0	3x300	1.27
2005 10 10	2452725 54	106	DUD	WE	2728 0061	8.0	2-1200	1 55
2005-12-21	2403723.34	100	DUP	VV F	3728-9001	8.0	3X1200	1.55
2005-12-23	2453727.53	108	DUP	WF	3728-9061	8.0	3x1200	1.57
			SN 200	5es				
2005-10-05	2453648.67	10	DUP	WF	3659-8893	8.0	3x900	1.29
			SN 200	5øz				
0005 10 10	0459661 69	1.1	NIDE	552	2007 0014	0.0	2 200	1
2005-10-18	2453001.03	11	NII	EM	3887-9914	9.0	3x300	1.55
			SN 200	5lw				
2005-12-18	2453722.80	6	NTT	$\mathbf{E}\mathbf{M}$	3899 - 9944	9.0	3x450	1.33
2005-12-21	2453725.81	9	DUP	WF	3704-9003	8.0	3x900	1.24
2005-12 23	2453727 81	11		WF	3704.0003	8.0	3-000	1.22
2000-12-20	2400121.01	11	DUI	VV I'	0004-0000	0.0	3,300	1.44
2005-01-26	2453761.84	45	CLA	LD	3696-5982	2.9	900	1.06
2005-01-26	2453761.85	45	CLA	LD	5541 - 9731	4.7	900	1.08
2005-03-05	2453799.80	83	DUP	WF	3704-9003	8.0	3x900	1.24
2005-03-08	2453802.82	86	DUP	WF	3704-9003	8.0	3x900	1.37*
2005 02 15	2452000 51	0.0	CT A	TD	2000 6120	0.0	000	1.06
2000-00-10	2403809.71	93	CLA GT ·	цп т =	3000-0130	2.9	900	1.00
2005-03-15	2453809.71	93	CLA	LD	5673-9950	4.7	900	1.05
2005-03-22	2453816.73	100	DUP	WF	3704-9003	8.0	900	1.13
2005-03-24	2453818.78	102	DUP	WF	3704-9003	8.0	3x900	1.43*
2005-04-02	2453827 73	111	DUP	WF	3704-9003	8.0	3x900	1.25*
		- -		* * ±	0.01.0000	0.0	0	

2005-04-24	2453849.58	133	DUP	WF	3704-9003	8.0	3x900	1.05
2005-04-26	2453851.65	135	DUP	WF	3704-9003	8.0	3x1200	1.17**
2002 02 20	0450504 50		SN 200	5me	0515 0000	0.0	1000	1 00
2006-02-28	2453794.52	77	DUP	WF	3715-9030	8.0	1200	1.88
2006 02 12	945 9770 67	1.2	SIN 200	EM	2004 5194	6.0	2200	1 15*
2006-02-13	2453779.07	13	NTT	EM	5608 0862	0.0	3x300	1.10
2006-02-13	2453779.69	13	NTT	EM	3867-9862	9.0	3x300	1 1 9*
2006-02-10	2453793.63	27	DUP	WF	3674-8929	8.0	3x900	1 14
2006-03-05	2453799.54	33	DUP	WF	3674-8929	8.0	3x900	1.08
2006-03-08	2453802.60	36	DUP	WF	3674-8929	8.0	3x900	1.14
2006-03-14	2453808.59	42	CLA	LD	3659-5926	2.9	3x600	1.14
2006-03-14	2453808.59	42	CLA	LD	5485-9642	4.7	3x600	1.20
2006-03-22	2453816.55	50	DUP	WF	3674-8929	8.0	3x900	1.12
2006-03-23	2453817.57	51	DUP	WF	3674-8929	8.0	3x900	1.15
2006-03-30	2453824.51	58	DUP	WF	3674 - 8929	8.0	3x900	1.10
2006-04-23	2453848.48	82	DUP	WF	3674 - 8929	8.0	3x1200	1.14
2006-04-26	2453851.54	85	DUP	WF	3674-8929	8.0	3x1200	1.38
			SN 200	6ai				
2006-03-05	2453799.61	18	DUP	WF	3707-9009	8.0	3x400	1.75
2006-03-08	2453802.68	21	DUP	WF	3707-9009	8.0	3x600	1.83
2006-03-15	2453809.56	28	CLA	LD	3692-6130	2.9	3x300	1.74*
2006-03-15	2453809.56	28	CLA	LD	5700-9725	4.7	3x300	1.75^
2006-03-15	2453809.66	28	N'I''I'	EM	3121-5170	6.0	3x300	1.82
2006-03-15	2453809.67	28	N'I'T	EM	3902-9950	9.0	3x300	1.84
2006-03-15	2453809.69	28	N'I'T DUD	EM	5658-9950	9.0	3x300	1.87
2006-03-22	2453816.59	30	DUP	WE	3707-9009	8.0	3x600	1.78
2006-03-24	2453818.01	37	DUP	WE	3707-9009	8.0	3x600	1.60
2006-03-30	2453841.61	43 60	BAA	IM	3842 9670	4.0	3x600	1 01*
2006-04-10	2453850 50	69	DUP	WF	3707-9200	4.0 8.0	3x600	1.31
2000-04-20	2400000.00	00	SN 200	6bc	0101-5200	0.0	0A000	1.11
2006-03-30	2453824.55	9	DUP	WF	3782-9193	8.0	3x400	1.36
2006-04-16	2453841.53	26	BAA	IM	3824-9660	4.0	3x600	1.39
2006-04-21	2453847.49	31	DUP	WF	3782-9193	8.0	3x400	1.35
			SN 200	6be				
2006-03-30	2453824.85	22	DUP	WF	3772-9169	8.0	3x200	1.88
2006-04-02	2453827.87	25	DUP	WF	3772-9169	8.0	3x300	1.99
2006-04-24	2453849.79	47	DUP	WF	3772-9169	8.0	4x600	1.88
2006-04-25	2453850.75	48	DUP	WF	3772-9169	8.0	3x400	1.86
			SN 200	6bl				
2006-04-16	2453841.82	19	BAA	IM	3842 - 9500	4.0	3x900	1.42
2006-04-23	2453848.69	26	DUP	WF	3678-8940	8.0	3x600	1.56
2006-04-26	2453851.75	29	DUP	WF	3678-8940	8.0	3x600	1.38
			SN 200	6ee				
2006-09-25	2454003.79	42	DUP	WF	3742-9094	8.0	3x900	1.37
2006-09-28	2454006.68	45	DUP	WF	3742-9094	8.0	3x900	1.39
2006-10-05	2454013.70	52	N'I'T	EM	3151-5219	6.0	3x300	1.37
2006-10-05	2454013.75	52	NII	EM	3711-10044	9.0	3x300	1.41
2006-10-05	2454013.72	52	N I I MCII	EM DC	3950-10044	9.0	3x300	1.39
2006-10-06	2454014.72	54	MCH	BC BC	2050 10044	0.1 2.1	3x600	1.05
2006-10-07	2454015.72	58	DUP	WF	3800 0200	8.0	3x600	1.05
2006-10-21	2454029 73	68	MGH	BC	3800-9200	3.1	3x600	1.00
2006-11-03	2454042.69	81	NTT	EM	4000-10100	9.0	3x900	1.62
2006-11-03	2454042.66	81	NTT	EM	3151-5219	6.0	3x400	1.02
2006-11-03	2454042.68	81	NTT	EM	5800-10100	9.0	3x400	1.38
2006-11-16	2454055.63	94	DUP	WF	3800-9200	8.0	3x900	1.38
			SN 200)6it				
2006-10-08	2454016.58	10	CLA	LD	5940-10570	4.0	3x300	1.47
2006-10-10	2454018.53	12	DUP	WF	3800-9200	8.0	3x600	1.36
2006-10-13	2454021.49	15	DUP	WF	3800-9200	8.0	3x900	1.34
2006-11-03	2454042.55	36	NTT	$\mathbf{E}\mathbf{M}$	3150 - 5218	6.0	3x300	1.57
2006-11-03	2454042.54	36	NTT	$\mathbf{E}\mathbf{M}$	5710 - 10042	9.0	3x299	1.85
2006-11-03	2454042.52	36	NTT	$\mathbf{E}\mathbf{M}$	3949 - 10042	9.0	3x300	1.71
			SN 200	6iw				
2006-10-08	2454016.61	6	CLA	LD	5849-10410	4.0	2x300	1.15^{*}
2006-10-10	2454018.63	8	DUP	WF	3800-9200	8.0	3x1200	1.15
2006-10-13	2454021.58	11	DUP	WF	3800-9200	8.0	3x1800	1.18
2006-11-16	2454087.58	45	DUP	WF	3800-9200	8.0	3x900	1.16
2006-12-18	2454055.54	77	DUP	WF	3800-9200	8.0	3x900	1.95
		_	SN 200	6ms				_
2006-11-09	2454048.67	20	CLA	LD	5800-9826	4.7	2x300	2.71
2006-11-09	2454048.67	20	CLA	LD	3727-6038	2.9	2x300	2.61*
∠000-11-16	2454055.51	27	DUP	VV F	3800-9200	8.0	3x500	1.25

2006-11-22	2454061.56	33	DUP	WF	3800-9200	8.0	3x500	1.57
2006-12 12	2454082 76	20	SN 200	bdr BC	3627 0200	80	3~000	1 17
2000-12-13	2454082.70	20	DUP	DU	3027-9800	0.0	32900	1.17
2006-12-18	2454087.85	25	DUP	WF	3745-9101	8.0	900	1.08
2007-01-01	2454101.82	39	CLA	LD	3651-6049	2.9	3x700	1.06
2007-01-01	2454101.78	39	CLA	LD	5690 - 9842	4.7	3x700	1.09
2007-01-13	2454113.82	51	DUP	BC	3960-10000	8.0	900	1.18
2007-01-14	2454114.80	52	DUP	BC	5075 - 9693	8.0	1200	1.11
2007-01-29	2454129.68	67	BAA	IM	4217-9500	4.0	3x1200	1.07
2007-02-25	2454156.66	94	DUP	WF	3800-9200	8.0	3x900	1.08
			SN 200	7P				
2007-01-29	2454129.80	11	BAA	IM	4279 - 9525	4.0	3x900	1.01
2007-01-31	2454131.71	13	NTT	$\mathbf{E}\mathbf{M}$	3223-5280	6.0	3x400	1.03
2007-02-12	2454143.76	25	DUP	WF	3800-9200	8.0	3x1200	1.04
2007-02-13	2454144.85	26	DUP	WF	3800-9200	8.0	1200	1.38
2007-02-19	2454150.66	32	DUP	WF	3800-9200	8.0	3x1200	1.05
2007-04-18	2454208.64	90	DUP	WF	3800-9200	8.0	3x1000	1.21
			SN 200	07U				
2007-02-11	2454142.56	9	DUP	WF	3800-9200	8.0	3x900	1.04
2007-02-12	2454143 53	10	DUP	WF	3800-9200	8.0	3x1200	1.00
2007-02-13	2454144 58	11	DUP	WF	3800-9200	8.0	3x1200	1 10
2007 02 10	2454150.61	17	DUP	WF	3800 9200	8.0	3×900	1 20
2007-02-15	2454162.60	20	NTT	EM	4000 10100	0.0	4:400	1.20
2007-03-04	2454105.00	10	DUD	DC	4000-10100	9.0	4,400	1.47
2007-03-14	2454173.54	40	DUP	BC	3429-9600	8.0	3x1200	1.22
2007-04-19	2454209.47	76	DUP CN 900	WF	3800-9200	8.0	3x900	1.41
0007 00 10	0454150.01	00	SN 200	7W	2200.0000	0.0	2 600	1.00
2007-02-19	2454150.81	20	DUP	WF	3800-9200	8.0	3x600	1.06
2007-02-25	2454156.88	26	DUP	WF	3800-9200	8.0	600	1.10
2007-03-04	2454163.80	33	N'1"1"	EM	3961-10101	9.0	3x300	1.04
2007-03-14	2454173.76	43	DUP	BC	3430-9552	8.0	3x600	1.04
2007-04-12	2454202.77	72	DUP	WF	3800-9200	8.0	3x600	1.15
2007-04-18	2454208.79	78	DUP	WF	3800-9200	8.0	3x600	1.31
2007-05-11	2454231.77	101	DUP	BC	3344-9458	8.0	900	1.64
			SN 200	07X				
2007-02-19	2454150.78	7	DUP	WF	3764 - 9148	8.0	3x300	1.18
2007-02-25	2454156.90	14	DUP	WF	3764 - 9148	8.0	300	1.02
2007-03-04	2454163.87	20	NTT	$\mathbf{E}\mathbf{M}$	3962-10100	9.0	3x300	1.01
2007-03-10	2454169.90	26	BAA	IM	3800-10180	6.0	300	1.08
2007-03-14	2454173.82	30	DUP	BC	3430-9626	8.0	3x400	1.01
2007-03-19	2454178.82	35	DUP	BC	3419-9600	8.0	3x400	1.01
2007-03-26	2454185.88	42	DUP	BC	3400-9600	8.0	3x400	1.15
2007-04-12	2454202.85	59	DUP	WF	3800-9200	8.0	300	1.20
2007-04-17	2454207.87	64	DUP	WF	3800-9200	8.0	3x300	1.35
2007-04-25	2454215 78	72	DUP	BC	3564-9714	8.0	3x500	1.09
2007-04-23	2454215.78	88	DUP	BC	3344 9460	8.0	3x400	1.05
2007-05-11	2404201.71	88	SN 200	177	3344-3400	0.0	52400	1.05
2007 02 10	2454150 58	15	DUP	WF	3800 0200	8.0	3-000	1 74
2007-02-19	2454150.58	21	DUP	WE	2800-9200	8.0	3x900	1.74
2007-02-25	2434130.30	21	SN 200	722	3800-3200	0.0	3,300	1.75
2007 02 19	2454150 74	24	DUP	WF	3800 0200	8.0	32300	1 17
2007-02-19	2454150.74	24	DUD	WE	3800-9200	8.0	3x300	1.17
2007-02-23	2454150.77	30	NULL	VV F	3800-9200	8.U C 0	3x300	1.13
2007-03-04	2454105.09	37	NIII	EIVI	5500-5274	0.0	3x300	1.20
2007-03-04	2454163.67	37	NII	EM	5771-10150	9.0	3x300	1.17
2007-03-04	2454163.70	37	NII	EM	3980-10150	9.0	3x300	1.20
2007-03-14	2454173.73	47	DUP	BC	3440-9630	8.0	3x600	1.13
2007-03-19	2454178.69	52	DUP	BC	3402-9580	8.0	3x600	1.14
2007-03-26	2454185.74	59	DUP	BC	3383-9600	8.0	3x600	1.20
2007-04-12	2454202.67	76	DUP	WF	3800-9200	8.0	3x500	1.15
2007-04-18	2454208.72	82	DUP	WF	3800-9200	8.0	3x400	1.38
2007-05-11	2454231.54	105	DUP	BC	3344-9550	8.0	3x900	1.13
			SN 200	7ab				
2007-03-04	2454163.89	40	NTT	$\mathbf{E}\mathbf{M}$	4000-10180	9.0	3x400	1.18
2007-03-14	2454173.90	50	DUP	BC	3429-9600	8.0	600	1.12
2007-03-19	2454178.89	55	DUP	BC	3419 - 9530	8.0	3x900	1.12
2007-03-26	2454185.84	62	DUP	BC	3400-9550	8.0	3x1200	1.17
2007-04-17	2454207.90	84	DUP	WF	3800-9200	8.0	3x900	1.21
			SN 200	7av				
2007-03-26	2454185.69	12	DUP	BC	3400-9600	8.0	3x600	1.42
2007-04-12	2454202.61	29	DUP	WF	3800-9200	8.0	3x400	1.34
2007-04-18	2454208.61	35	DUP	WF	3800-9200	8.0	3x400	1.38
2007-05-11	2454231.48	58	DUP	BC	3343-9530	8.0	3x400	1.32
		-	SN 200	7bf		-		
2007-04-12	2454202.73	11	DUP	WF	3800-9200	8.0	3x900	1.41
2007-04-17	2454207.75	16	DUP	WF	3800-9200	8.0	3x900	1.44
2007-04-25	2454215.72	24	DUP	BC	3600-9650	8.0	3x900	1.42
						~ • • •		

2007-05-11	2454231.65	40	DUP	BC	3344-9500	8.0	3x900	1.41
0005 00 10	0.15.1055.00	10	SN 2007	hm DC	0500.0000	0.0	0.000	1.00
2007-09-12	2454355.69	19	DUP	BC	3506-9600	8.0	3x900	1.29
2007-09-18	2454361.65	25	DUP	BC	3408-9550	8.0	3x900	1.18
2007-10-03	2454376.55	40	3P6	EF	5220-9260	4.0	3x900	1.08
2007-10-03	2454376.52	40	3P6 DUD	EF	3300-6075	2.7	3x900	1.09
2007-10-16	2454389.60	53	DUP	BC	3412-9500	8.0	3x1200	1.28
2007-11-05	2454409.54	73	DUP	WF	3800-9200	8.0	3x900	1.28
2007-11-17	2454421.53	85	BAA SN 200	IM 07il	3900-10600	6.0	900	1.39
2007-09-18	2454361.88	12	DUP	BC	3408-9500	8.0	3x1200	1.88
2007-10-03	2454376.74	27	3P6	EF	3300-6065	2.7	3x900	1.40
2007-10-03	2454376 78	27	3P6	EF	5108-9250	4.0	3x900	1 48
2007-10-16	2454389.72	40	DUP	BC	3412-9600	8.0	3x1200	1.40
2007-10-21	2454394.69	45	DUP	BC	3352-9530	8.0	3x900	1.39
2007-10-28	2454401.65	52	CLA	LD	4076-9250	7.0	3x900	1.38
2007-11-05	2454409.63	60	3P6	EF	3300-6060	20.0	3x900	1.44
2007-11-05	2454409.60	60	3P6	EF	5539-9240	30.0	3x900	1.39
2007-11-11	2454415.64	66	DUP	WF	3800-9200	8.0	3x900	1.41
2007-12-01	2454435 62	86	3P6	EF	5108-9262	30.0	3x900	1.51
2007-12-01	2454435.59	86	3P6	EF	3300-6060	20.0	3x900	1.41
2007-12-10	2454444 62	95	DUP	WF	3800-9200	8.0	1200	1.61
			SN 200	7it.		0.0		
2007-09-15	2454358 48	10	DUP	BC	3668-6822	8.0	2x150	1.58
2008-02-24	2454520.87	172	BAA	IM	3743-10700	7.0	600	1.00
2008-03-14	2454539 88	191	3P6	EF	3286-6006	20.0	3x300	1.00
2008-03-14	2454539.87	191	3P6	EF	5199-9203	30.0	400	1.05
2008-04-07	2454563.83	215	DUP	WF	3800-9200	8.0	3x600	1 14
2008-04-12	2454568 86	220	DUP	WF	3800-9200	8.0	3x600	1 29
2008-04-12	2454569.80	220	DUP	WF	3800-9200	8.0	3x900	1.20
2008-04-26	2454582 75	221	BAA	IM	3879-10370	6.0	600	1.10
2008-04-20	2454585 76	204	DUP	WF	3800 0200	8.0	32600	1 10
2008-04-23	2454508.70	250	DUP	WF	3800 9200	8.0	3x600	1.10
2008-05-12	2454616 74	250	DUP	BC	3476 9660	8.0	3x600	1.03
2000-00-00	2404010.14	200	SN 200	7ld	0410-0000	0.0	0,000	1.04
2007-10-08	2454381.5	5	BAA	IM	3900-9950	4.0	900	1.14
2007-10-16	2454389.5	13	DUP	BC	3412-9500	8.0	1200	1.19
2007-10-21	2454394.5	18	DUP	BC	3352-9400	8.0	900	1.16
2007-10-28	2454401.5	25	CLA	LD	4076-9278	7.0	970	1.22
2007-11-04	2454408.5	32	3P6	EF	3300-6060	20.0	600	1.22
2007-11-04	2454408.5	32	3P6	EF	5660-9250	30.0	600	1.30
2007-11-11	2454415.5	39	DUP	WF	3800-9200	8.0	900	1.48
			SN 200	7oc				
2007-11-04	2454408.56	20	3P6	\mathbf{EF}	3300-6017	20.0	3x300	1.01
2007-11-04	2454408.55	20	3P6	\mathbf{EF}	5660-9195	30.0	3x300	1.02
2007-11-05	2454409.64	21	DUP	WF	3800-9200	8.0	3x300	1.23
2007-11-11	2454415.60	27	DUP	WF	3800-9200	8.0	3x300	1.12
2007-11-17	2454421.56	33	BAA	IM	3809-10670	6.0	3x100	1.08
2007-11-19	2454423.61	35	NTT	$\mathbf{E}\mathbf{M}$	3200-5300	6.0	3x200	1.27
2007-11-19	2454423.63	35	NTT	$\mathbf{E}\mathbf{M}$	5800-10180	9.0	3x200	1.44
2007-11-19	2454423.64	35	NTT	$\mathbf{E}\mathbf{M}$	4000-10180	9.0	3x199	1.36
2007-11-26	2454430.57	42	CLA	MA	3100-9450	0.5	2x600	1.15
2007-11-30	2454434.53	46	3P6	\mathbf{EF}	3300-6065	20.0	3x300	1.05
2007-11-30	2454434.52	46	3P6	\mathbf{EF}	5660-9240	30.0	3x300	1.08
2007-12-03	2454437.54	49	DUP	WF	3800-9200	8.0	3x300	1.13
2007-12-09	2454443.62	55	DUP	WF	3800-9200	8.0	3x400	1.71
2007-12-17	2454451.55	63	BAA	IM	3873-10670	6.0	3x200	1.36
2007-12-18	2454452.54	64	NTT	$\mathbf{E}\mathbf{M}$	3200-5262	6.0	3x300	1.31
2007-12-18	2454452.57	64	NTT	$\mathbf{E}\mathbf{M}$	5790-10190	9.0	3x300	1.53
2007-12-18	2454452.56	64	NTT	$\mathbf{E}\mathbf{M}$	3980-10190	9.0	3x300	1.42
			SN 200	7od				
2007-11-04	2454408.60	8	3P6	\mathbf{EF}	3300-6045	20.0	3x300	1.49
2007-11-04	2454408.59	8	3P6	\mathbf{EF}	5660 - 9243	30.0	3x300	1.51
2007-11-05	2454409.59	9	DUP	WF	3300-9200	8.0	3x300	1.50
2007-11-11	2454415.57	15	DUP	WF	3800-9200	8.0	3x300	1.50
2007-11-17	2454421.55	21	BAA	IM	3809-10670	6.0	3x100	1.48
2007-11-19	2454423.52	23	NTT	$\mathbf{E}\mathbf{M}$	3200-5269	6.0	3x200	1.49
2007-11-19	2454423.55	23	NTT	$\mathbf{E}\mathbf{M}$	5800-10180	9.0	3x200	1.49
2007-11-19	2454423.54	23	NTT	$\mathbf{E}\mathbf{M}$	4000-10180	9.0	3x200	1.49
2007-12-01	2454435.53	35	3P6	\mathbf{EF}	3300-6074	20.0	3x300	1.50
2007-12-01	2454435.52	35	3P6	\mathbf{EF}	5220-9257	30.0	3x300	1.53
2007-12-03	2454437.57	37	DUP	WF	3800-9200	8.0	3x400	1.71
2007-12-10	2454444.58	44	DUP	WF	3800-9200	8.0	3x400	1.97
2007-12-17	2454451.53	51	BAA	IM	3809-10670	6.0	3x200	1.74
2008-01-04	2454469.54	69	3P6	\mathbf{EF}	3300-6073	20.0	3x400	2.52

			SN 200'	$7 \mathrm{sq}$				
2007-12-18	2454452.77	30	NTT	$\mathbf{E}\mathbf{M}$	4000-10100	9.0	4x1800	1.07
2007-12-27	2454461.81	39	BAA	IM	3800-9450	6.0	1200	1.01^{*}
2007-12-28	2454462.79	40	BAA	IM	3800-9450	6.0	3x1200	1.02
2008-01-03	2454468.70	46	3P6	EF	3300-6070	20.0	3x1200	1.13
2008-01-03	2454468.74	46	3P6	EF	5220-9257	30.0	3x1200	1.03
2008-01-05	2454470.73	48	CLA	BC	4166-10200	8.0	3x1200	1.05
2008-02-25	2454521.08	99	SN 200	8F	3030-9420	7.0	5X1200	1.04
2008-01-17	2454482.61	13	NTT	EM	4000-10180	9.0	3x1200	1.41
2008-01-26	2454491.61	22	DUP	BC	4859-9500	8.0	3x900	1.58*
			SN 200	8H				
2008-01.17	2454482.82	50	NTT	$\mathbf{E}\mathbf{M}$	4000-10180	9.0	3x600	1.03
			SN 200	8K				
2008-01-17	2454482.78	7	NTT	$\mathbf{E}\mathbf{M}$	4000-10200	9.0	3x900	1.11
2008-01-26	2454491.74	16	DUP	BC	4859-9500	8.0	3x900	1.17
2008-02-01	2454497.75	22	DUP	BC	3510-9650	8.0	3x1200	1.08
2008-02-14	2454510.75	35	NTT	EM	4000-10200	9.0	900	1.02
2008-02-19	2454515.74	40	CLA	MA	3102-9470	0.5	1200	1.02
2008-02-24	2454520.77	45	BAA	IM	6390-10700	7.0	3x200	1.78
2008-03-09	2454534.80	59 64	2D6	IM FF	2200 6020	0.0	900 2x000	1.11
2008-03-14	2454539.70	64	3P6	EF	5220-9220	20.0	3x900 3x900	1.00
2008-03-31	2454556 70	81	DUP	WF	3800-9200	8.0	3x900	1.02
2008-04-12	2454568.69	93	DUP	WF	3800-9200	8.0	3x900	1.07
2008-04-26	2454582.63	107	BAA	IM	4300-10360	6.0	3x900	1.03
			SN 2008	8M				
2008-01-26	2454491.66	20	DUP	$_{\rm BC}$	4859-9700	8.0	3x300	1.18
2008-01-27	2454492.75	21	3P6	\mathbf{EF}	3300-6073	20.0	3x300	1.44
2008-01-27	2454492.76	21	3P6	\mathbf{EF}	5230-9260	30.0	3x300	1.49
2008-02-01	2454497.65	26	DUP	BC	3510 - 9685	8.0	3x300	1.20
2008-02-13	2454509.68	38	NTT	$\mathbf{E}\mathbf{M}$	4000-10220	9.0	3x600	1.33
2008-02-25	2454521.63	50	CLA	LD	3620-9422	7.0	3x600	1.28
2008-03-13	2454538.53	67	3P6	EF	3300-6073	20.0	3x400	1.16
2008-03-13	2454538.51	67 70	3P6	EF	5230-9260	30.0	3x400	1.18
2008-03-19	2454544.50	73	CLA	MA	3327-9465	0.5	1200	1.17
2008-03-20	2454545.50	74 85	DUP	WF	3800 9200	8.0	3x000	1.20
2008-03-31	2454569 48	98	DUP	WF	3800-9200	8.0	3x300 3x1200	1.24
2000-04-10	2404005.40	50	SN 2008	sw	0000-0200	0.0	041200	1.24
2008-02-13	2454509.71	26	NTT	EM	4000-10130	9.0	3x600	1.05
2008-02-19	2454515.69	32	CLA	MA	3150-9470	0.5	1200	1.04
2008-02-24	2454520.72	32	BAA	IM	4000-10715	7.0	3x900	1.16
2008-03-14	2454539.62	56	3P6	\mathbf{EF}	3300-6075	20.0	3x900	1.04
2008-03-14	2454539.66	56	3P6	\mathbf{EF}	5220-9260	30.0	3x900	1.12
2008-03-20	2454545.61	62	CLA	LD	3630-9430	7.0	3x900	1.05
2008-04-07	2454563.59	80	DUP	WF	3800-9200	8.0	3x600	1.14
2008-04-13	2454569.59	86	DUP	WF	3800-9200	8.0	3x900	1.18
2008-05-12	2454598.54	115	DUP	WF	3800-9200	8.0	1200	1.30
2008-05-22	2454608.50	125	BAA SN 2009	IM Pa m	4500-10700	7.0	3x900	1.25
2008-02-13	2454509 88	39	NTT	EM	3500-5295	6.0	3×600	1.80
2008-02-13	2454509.85	32	NTT	EM	4000-10150	9.0	3x600	1.00
2008-02-24	2454520.90	43	BAA	IM	3743-10716	7.0	600	1.54
2008-02-25	2454521.87	44	CLA	LD	3620-9405	7.0	3x900	1.67
2008-03-13	2454538.85	61	3P6	\mathbf{EF}	3300-6030	20.0	3x600	1.54
2008-03-13	2454538.85	61	3P6	\mathbf{EF}	5230-9240	30.0	3x600	1.45
2008-03-19	2454544.87	67	CLA	MA	3303-9450	0.5	1200	1.41
2008-03-20	2454545.91	68	CLA	LD	3630-9430	7.0	900	1.33
2008-03-28	2454553.86	76	NTT	$\mathbf{E}\mathbf{M}$	3500-5300	6.0	3x300	1.36
2008-03-28	2454553.88	76	NTT	$\mathbf{E}\mathbf{M}$	4000-10150	9.0	3x200	1.32
2008-04-07	2454563.87	86	DUP	WF	3800-9200	8.0	3x600	1.32
2008-04-12	2454568.90	91	DUP	WF	3800-9200	8.0	600	1.28
2008-04-13	2454509.80	92 104	DUP	VV F IM	3800-9200	8.0 6.0	3X1200 2x600	1.31
2008-04-25	2454598 80	104	DUP	WF	3800-9200	8.0	3x600	1.27
2008-05-12	2454602.81	125	BAA	IM	4200-10570	7.0	3x900	1.20
2008-05-22	2454608.77	131	BAA	IM	4500-10700	7.0	3x600	1.29
2008-05-30	2454616.77	139	DUP	BC	3480-9660	8.0	3x900	1.27
			SN 2008	Baw				
2008-03-13	2454538.81	21	3P6	\mathbf{EF}	3300-6030	20.0	3x400	1.07
2008-03-13		0.1	200	EE	F020 0000	30.0	3×400	1.10
	2454538.81	21	3P6	EF	5250-9220	00.0	07400	
2008-03-19	2454538.81 2454544.76	21 27	CLA	MA	3240-9460	0.5	900	1.05
2008-03-19 2008-03-20	2454538.81 2454544.76 2454545.84	21 27 28	CLA CLA	MA LD	3240-9460 3650-9400	0.5 7.0	900 3x600	$1.05 \\ 1.26$

2008-03-28	2454556.81	36	N'1"1'	EM	4000-10170	9.0	3x200	1.16
2008-03-31	2454569.75	39	DUP	WF	3800-9200	8.0	3x400	1.28
2008-04-13	2454582.75	52	DUP	WF	3800-9200	8.0	3x700	1.17
2008-04-26	2454585 72	65	CLA	LD	3650-9450	7.0	3x600	1.30
2008 04 20	2454507.69	60	DUD	WE	2800 0200	8.0	2600	1 20
2008-04-29	2434397.08	08	DUI	VV I	3800-9200	8.0	3x000	1.20
2008-05-11	2454616.70	80	DUP	WF	3800-9200	8.0	3x500	1.18
2008-05-30		99	DUP	BC	3480-9640	8.0	3x900	1.70
			SN 200	8bh				
2008-03-28	2454553.66	10	NTT	EM	4000-10000	9.0	3x299	1.50
2008 03 31	2454556 59	13	DUP	WF	3800 0200	8.0	3×600	1 10
2000-03-31	2454500.55	10	DUD	WV I	3800-3200	0.0	32000	1.13
2008-04-13	2454569.65	26	DUP	WF	3800-9200	8.0	1200	1.87
2008-04-26	2454582.52	39	CLA	LD	3650-9400	7.0	3x900	1.16
2008-05-05	2454591.51	48	DUP	WF	3800-9200	8.0	3x900	1.21
2008-05-12	2454598.49	55	DUP	WF	3800-9200	8.0	3x900	1.21
			SN 200	8bk				
2008 04 12	2454568.02	20	DUP	WF	2707 0228	8.0	120	2.26
2008-04-12	2434308.92	20	DUI	VV I	3191-9228	8.0	120	2.30
2008-04-13	2454569.91	29	DUP	WF	3797-9228	8.0	120	2.50
2008-04-25	2454581.92	41	BAA	IM	3876-10367	6.0	3x60	1.74
2008-04-26	2454582.91	42	BAA	IM	3875-10367	6.0	6x60	1.73
2008-04-26	2454582.90	42	CLA	LD	3623-9425	7.0	3x120	1.88
2008 05 05	2454501 03	51	DUP	WF	3707 0228	8.0	3-120	1.40
2008-05-05	2454551.55	51	DUD	WV I	0707-0220	0.0	3,120	1.40
2008-05-11	2454597.88	57	DUP	WF	3797-9228	8.0	120	1.69
2008-05-12	2454598.90	58	DUP	WF	3797 - 9228	8.0	3x120	1.46
2008-05-16	2454602.91	62	BAA	IM	3923-10580	6.0	100	1.28
2008-05-22	2454608.91	68	BAA	IM	3878-10858	7.0	3x60	1.21
2008-05-30	2454616 84	76	DUP	BC	3473-9672	8.0	4x120	1 49
2008-06-00	2464610.04	01	DUD	DC	2572 0769	0.0	2-600	1.70
2008-06-04	2454621.81	81	DUP	BC	3572-9768	8.0	3x600	1.72
2008-06-16	2454633.88	93	BAA	IM	3455 - 9479	2.0	3x200	1.09
2008-09-15	2454724.64	184	BAA	IM	4024-10717	7.0	4x600	1.06
2008-09-17	2454726.59	186	CLA	LD	3643-9452	7.0	4x600	1.23
2008-09-21	2454730 76	190	DUP	WF	3797-9228	8.0	3x600	1.08
2008 00 21	245472772	107	DUD	WE	2707 0220	8.0	2-600	1.05
2008-09-28	2404707.70	197	DUF	VV F	3191-9228	8.0	3x000	1.05
2008-09-29	2454738.63	198	DUP	WF	3797-9228	8.0	3x600	1.03
2008-10-14	2454753.59	213	NTT	\mathbf{EF}	3398-6015	27.0	3x900	1.02
2008-10-14	2454753.66	213	NTT	\mathbf{EF}	5236-9203	39.0	3x900	1.01
2008-11-05	2455505.61	235	BAA	IM	3973-10049	7.0	4x180	1.01
2008 11 20	2454790.65	250	NTT	FF	3207 5000	27.0	3x400	1.27
2000-11-20	2404700.00	200	NIDE	DD	5201-0000	21.0	2 400	1 477
2008-11-20	2454790.68	250	NII	EF	5236-9203	39.0	3x400	1.47
2008-11-25	2454795.66	255	DUP	WF	3797-9228	8.0	900	1.40
2008-12-10	2454810.57	270	NTT	\mathbf{EF}	3297 - 5999	27.0	3x400	1.10
2008-12-10	2454810.55	270	NTT	\mathbf{EF}	5236-9203	39.0	3x400	1.17
			SN 2008	Rhm				
2008 04 07	2454562 76	41	DUP	WE	2800 0200	8.0	22000	1 44
2008-04-07	2434303.70	41	DUP	VV I	3800-9200	0.0	3,2900	1.44
2008-04-13	2454569.70	47	DUP	WF	3800-9200	8.0	3x900	1.32
2008-04-26	2454582.72	60	CLA	LD	3512 - 9137	7.0	3x900	1.46
2008-05-15	2454601.65	74	BAA	IM	4064-10245	7.0	3x700	1.41
			SN 200	8bp				
2008 04 07	2454562 72	10	DUP	WF	2765 0151	8.0	2-1200	1 49
2003-04-07	2454503.72	12	DOI	17.6	1005 10050	5.0	0.000	1.42
2008-04-26	2454582.57	31	BAA	IM	4207-10670	7.0	3x900	1.07
2008-05-05	2454591.65	40	DUP	WF	3765 - 9151	8.0	3x900	1.48
2008-05-12	2454598.60	47	DUP	WF	3765 - 9151	8.0	3x1200	1.3
2008-05-22	2454608.55	57	BAA	IM	4390-10670	7.0	3x900	1.19
			SN 200	8br				
2008 04 12	9454569 FO	1.9	DUD	WE	2761 0149	8.0	2000	1.01
2008-04-12	2434308.30	15	DUI	VV L	3701-9142	8.0	3x900	1.01
2008-04-26	2454582.50	27	CLA	LD	3590-9338	7.0	3x900	1.05
2008-05-05	2454591.50	36	DUP	WF	3761 - 9142	8.0	3x900	1.07
2008-05-12	2454598.50	43	DUP	WF	3761-9142	8.0	3x900	1.13
			SN 200	8bu				
2008 04 22	2454578 74	19	CLA	LD	3610 10502	7.0	900	1 1 1
2000-04-22	2454576.74	12	DAA		4150 10140	1.0	300	1.11
2008-04-25	2454581.84	12	BAA	11/1	4153-10148	6.0	3x900	1.03
2008-04-26	2454582.82	12	BAA	IM	4163-10161	6.0	3x1200	1.01
2008-05-12	2454598.75	32	DUP	WF	3716-9032	8.0	3x1200	1.01
2008-05-16	2454602.75	36	BAA	IM	4105-10354	6.0	3x1200	1.01
			SN 200	8ga				
2008 10 27	9454766 01	55	DUD	-o~ WE	2800 0225	0.0	2-1900	1.40
2000-10-27	2404/00.81		DUP NTT	vv r	3600-9235	0.0	381000	1.48
2008-11-20	2454790.79	79	NΤΤ	\mathbf{EF}	3300-6003	27.0	3x600	1.65*
2008-12-21	2454821.65	110	DUP	WF	3800-9235	8.0	3x1200	1.49
			SN 200	8gi				
2008-10-14	2454753.70	11	NTT	EF	3319-5874	27.0	3x900	1.27^{*}
2008-10 14	9454759 79	11	NTT	 FF	5113 8097	30.0	3~600	1 01*
2000-10-14	2-0-100.10 0454550 55	1.17	DUD	171.	9709 0011	00.0	0.00	1.41
2008-10-20	2454759.77	17	DUP	VV F	3708-9011	8.0	900	1.26
2008-10-27	2454766.75	24	DUP	WF	3708-9011	8.0	3x1200	1.24
2008-11-04	2454774.62	32	CLA	LD	3548 - 9209	7.0	3x900	1.35
2008-12-22	2454822.62	80	DUP	WF	3708-9011	8.0	4x1200	1.30

SN 2008 gr

2008-11-02	2454772.59	3	BAA	IM	3934-10470	6.0	800	1.00
2008-11-19	2454789.61	20	NTT	\mathbf{EF}	3225 - 5868	27.0	3x600	1.02
2008-11-23	2454793.67	24	DUP	WF	3714-9026	8.0	3x700	1.24
2008-12-15	2454815.60	46	CLA	LD	3538-9217	7.0	3x400	1.22
2008-12-29	2454829.60	60	DUP	WF	3714-9026	8.0	3x900	1.39
			SN 200	8hg				
2008-11-19	2454789.57	10	NTT	EF	3238 5891	27.0	5x600	1.02
2008-11-20	2454790.71	11	NTT	EF	5141 9037	39.0	3x600	1.21
2008 11 23	2454703 73	14	DUP	WF	3728 0061	8.0	32800	1.34
2008-11-23	2454755.15	20	DOI	IM	2047 10522	6.0	4x000	1.04
2008-12-08	2454808.02	29	NTT	EE	2020 5001	0.0	4x900	1.07
2008-12-10	2454810.01	31	NII	EF	5256 5691	27.0	3x400	1.08
2008-12-10	2454810.64	31	NTT	EF.	5141 9037	39.0	3x400	1.14
			SN 200	8ho				
2008-12-10	2454810.67	18	N'I'T	\mathbf{EF}	3266-5942	27.0	3x400	1.18
2008-12-10	2454810.70	18	NTT	\mathbf{EF}	5186 - 9115	39.0	3x400	1.29
2008-12-15	2454815.63	23	CLA	LD	3582-9333	7.0	600	1.07
			SN 200	8if				
2008-12-18	2454818.79	11	CLA	LD	3588-9322	7.0	3x600	1.12
2008-12-20	2454820.79	13	DUP	WF	3757-9130	8.0	3x600	1.11
2008-12-21	2454821.74	14	DUP	WF	3757-9130	8.0	3x600	1.28
2008-12-22	2454822.74	15	DUP	WF	3757-9130	8.0	3x600	1.27
2008-12-23	2454823.78	16	DUP	WF	3757-9130	8.0	3x600	1.11
2008-12-24	2454824.78	17	DUP	WF	3757-9130	8.0	3x600	1.12
2008-12-27	2454827 50	20	DUP	WF	3757-9130	8.0	3x600	1.09
2008-12-29	2454829.81	22	DUP	WF	6478-10007	8.0	600	1.07
2000-12-25	2454826.71	22	CLA	ID.	2570 0222	7.0	000	1.07
2009-01-05	2454850.71	41	CLA		3579-9322	7.0	900	1.23
2009-01-17	2454848.76	41	CLA	LD	3587-9332	7.0	100	1.07
2009-01-22	2454853.81	46	CLA		3579-9321	7.0	300	1.17
2009-02-11	2454873.73	66	BAA	IM	3987-10007	5.0	3x400	1.09
2009-02-16	2454878.66	71	BAA	IM	3975-9997	5.0	400	1.07
2009-02-23	2454885.67	78	DUP	WF	3757-9130	8.0	3x400	1.08
2009-02-25	2454887.70	80	DUP	WF	3757-9130	8.0	3x600	1.11
2009-03-16	2454906.62	99	BAA	IM	3980-10111	11.0	3x500	1.07
2009-03-28	2454918.60	111	DUP	WF	3757-9130	8.0	3x900	1.09
2009-04-03	2454924.54	117	DUP	WF	3757-9130	8.0	3x900	1.07
2009-04-17	2454938.54	131	CLA	LD	3672-9328	7.0	900	1.08
2009-04-22	2454943.54	136	DUP	BC	3322-9462	8.0	3x900	1.09
			SN 200)8il				
2008-12-28	2454888.51	3	DUP	WF	3721-9044	8.0	3x600	1.04
2008-12-29	2454828 57	4	DUP	WF	3721-9044	8.0	3x600	1.33
2009-02-26	2454829.65	63	DUP	WF	3721-9044	8.0	3×900	1 47
2000 02 20	2101020100	00	SN 200	Sin	0.21 0011	0.0	01000	1.11
2008 12 20	2454820 83	4	DUP	WF	3780 0186	8.0	500	1 5 3
2000-12-29	2454825.85	15	NTT	EE.	2000-5100	20.0	200	1.00
2009-01-09	2434840.83	15	NIII	EF	5262-5972	20.0	300	1.55
2009-01-09	2454840.80	15	N I I	EF	5212-9162	30.0	3x300	1.52
2009-01-22	2454853.82	28	CLA	LD	3601-9379	7.0	3x300	1.20
2009-02-08	2454870.79	45	CLA	LD	3696-9389	7.0	300	1.22
2009-02-11	2454873.78	48	BAA	IM	4011-10066	5.0	3x300	1.22
2009-02-25	2454887.77	62	DUP	WF	3780-9186	8.0	3x400	1.21
2009-03-16	2454990.20	81	NTT	\mathbf{EF}	3282 - 5972	27.0	3x400	1.21
2009-03-16	2454990.20	81	NTT	\mathbf{EF}	5212-9162	39.0	3x400	1.22
2009-03-29	2454919.76	94	DUP	WF	3780-9186	8.0	3x900	1.31
2009-04-03	2454924.70	99	DUP	WF	3780-9186	8.0	900	1.23
2009-04-17	2454938.63	113	CLA	LD	3694 - 9385	7.0	3x700	1.22
2009-04-23	2454944.71	119	DUP	BC	3343 - 9517	8.0	3x900	1.41
			SN 200	9A				
2009-01-05	2454836.56	15	CLA	LD	3558-9268	7.0	600	1.23
2009-01-09	2454840 56	19	NTT	EF	3244-5901	27.0	3x400	$1 44^{\Box}$
2009-01-09	2454840 58	19	NTT	EF	5151-9053	39.0	3x400	1 20
2009-01-09	2454640.56	10	CLA	LD	2650 0065	55.0	52400	0.04
2009-02-08	2454870.56	49	CLA	LD	3652-9265	7.0	600	2.24
2009-02-09	2454871.55	50	CLA	LD	3652-9276	7.0	3x600	2.17
			SN 200	9N				
2009-02-08	2454870.80	24	CLA	LD	3703-9406	7.0	3x300	1.08
2009-02-09	2454871.77	25	CLA	LD	3703-9405	7.0	3x600	1.15
2009-02-11	2454873.81	27	BAA	IM	4018-10084	5.0	3x300	1.07
2009-02-24	2454886.81	40	DUP	WF	3786-9203	8.0	3x300	1.09
2009-02-25	2454887.84	41	DUP	WF	3786-9203	8.0	3x400	1.15
2009-02-26	2454888.83	42	DUP	WF	3786-9203	8.0	3x400	1.12
2009-03-15	2454905.84	59	BAA	IM	4012-10078	5.0	400	1.32
2009-03-29	2454919.80	73	DUP	WF	3786-9203	8.0	3x700	1.29
2009-04-03	2454924.73	78	DUP	WF	3786-9203	8.0	700	1.11
2009-04-18	2454939.66	93	DUP	BC	3438-9625	8.0	3x900	1.07
2009-04-23	2454944 76	98	DUP	BC	3349-9534	8.0	3x900	1 46
2009-05-01	2454952 66	106	CLA	LD	3708-9412	7.0	3x700	1 11
2009-05-23	2454974 61	128	DUP	BC	3348-9532	8.0	3×900	1 14
	= 10 10 I H.OI	120		20	0010-0004	0.0	SA500	T · T . E

			SN 200	9W				
2009-08-02	2454870.87	54	CLA	LD	3654-9283	7.0	600	1.90
			SN 200	9aj				
2009-02-26	2454888.72	8	DUP	WF	3763 - 9146	8.0	3x300	1.27
2009-03-11	2454901.89	21	BAA	IM	3988 - 10025	5.0	3x400	1.16
2009-03-16	2454990.20	26	NTT	\mathbf{EF}	3268 - 5946	27.0	3x400	1.06
2009-03-16	2454990.20	26	NTT	\mathbf{EF}	5189 - 9121	39.0	3x400	1.07
2009-03-28	2454918.83	38	DUP	WF	3763 - 9146	8.0	3x600	1.13
2009-04-03	2454924.79	44	DUP	WF	3763 - 9146	8.0	3x600	1.09
2009-04-17	2454938.77	58	CLA	LD	3678 - 9344	7.0	3x600	1.11
2009-04-18	2454939.70	59	DUP	BC	3416 - 9564	8.0	3x900	1.06
2009-04-22	2454943.69	63	DUP	BC	3327 - 9475	8.0	3x900	1.06
2009-04-23	2454944.84	64	DUP	BC	3329 - 9475	8.0	3x900	1.40
2009-04-30	2454951.79	71	CLA	LD	3666 - 9354	7.0	3x600	1.29
2009-05-14	2454965.64	85	BAA	IM	3935-10035	5.0	3x600	1.06
			SN 200	9ao				
2009-03-15	2454905.54	15	BAA	IM	3981-10001	5.0	3x600	1.46
2009-03-16	2454906.66	16	BAA	IM	3981-10001	11.0	3x900	1.32
2009-03-28	2454918.64	28	DUP	WF	3757 - 9132	8.0	3x600	1.40
2009-04-03	2454924.59	34	DUP	WF	3757 - 9132	8.0	3x900	1.30
2009-04-18	2454939.54	49	DUP	$_{\rm BC}$	3411 - 9551	8.0	3x900	1.28
2009-04-23	2454944.56	54	DUP	$_{\rm BC}$	3324-9462	8.0	3x1000	1.36
2009-05-01	2454952.49	62	CLA	LD	3679 - 9340	7.0	3x800	1.27
			SN 200	9au				
2009-03-15	2454905.80	8	BAA	IM	3988-10017	5.0	3x500	1.03
2009-03-16	2454990.20	9	NTT	\mathbf{EF}	3269 - 5947	27.0	3x500	1.01
2009-03-16	2454990.20	9	NTT	\mathbf{EF}	5190 - 9123	39.0	3x500	1.04
2009-03-28	2454918.80	21	DUP	WF	3764 - 9148	8.0	3x500	1.10
2009-03-29	2454919.87	22	DUP	WF	3764 - 9148	8.0	3x900	1.45
2009-04-03	2454924.75	27	DUP	WF	3764 - 9148	8.0	3x700	1.03
2009-04-17	2454938.73	41	CLA	LD	3679 - 9346	7.0	3x700	1.07
2009-04-22	2454943.65	46	DUP	BC	3328 - 9477	8.0	3x900	1.00
2009-05-01	2454952.74	55	CLA	LD	3686-9356	7.0	3x900	1.23
2009-05-23	2454974.65	77	DUP	BC	3328 - 9475	8.0	3x900	1.11
			SN 2009	9bu				
2009-03-29	2454919.91	18	DUP	WF	3755 - 9127	8.0	600	1.98
2009-04-03	2454924.90	23	DUP	WF	3321 - 9454	8.0	3x900	1.43
2009-04-18	2454939.87	38	DUP	BC	3678 - 9335	8.0	3x600	1.47
2009-04-23	2454944.88	43	DUP	BC	3410 - 9544	8.0	4x700	1.85
2009-05-01	2454952.90	51	CLA	LD	3410 - 9544	7.0	4x700	1.85
2009-05-23	2454974.85	73	DUP	BC	3322 - 9455	8.0	3x900	1.69
			SN 200	9bz				
2009-04-03	2454924.85	9	DUP	WF	3759 - 9136	8.0	3x700	1.37
2009-04-18	2454939.75	24	DUP	$_{\rm BC}$	3413 - 9553	8.0	3x900	1.31
2009-04-22	2454943.73	28	DUP	$_{\rm BC}$	3323 - 9465	8.0	3x900	1.31
2009-05-01	2454952.71	37	CLA	LD	3681-9343	7.0	3x600	1.31
2009-05-14	2454965.72	50	BAA	IM	3931-10025	5.0	3x600	1.33

Columns: (1) UT date of the observation; (2) Julian date of the observation; (3) Phase in days since explosion; (4) Telescope code – 3P6: ESO 3.6-m Telescope; BAA: Las Campanas Magellan I 6.5-m Baade Telescope; CLA: Las Campanas Magellan II 6.5-m Clay Telescope; DUP: Las Campanas 2.5-m du Pont Telescope Telescope; NTT: New Technology Telescope; (5) Instrument code – BC: Boller & Chivens spectrograph; EF: ESO Faint Object Spectrograph and Camera (EFOSC-2); EM: ESO Multi-Mode Instrument (EMMI); IM: Inamori Magellan Areal Camera and Spectrograph (IMACS), LD: Low Dispersion Survey Spectrograph (LDSS); WF: Wide Field Reimaging CCD Camera (WFCCD); (6) Wavelength range covered; (7) Spectral resolution in Å as estimated from arc-lamp lines; (8) Total exposure time; (9) Airmass at the middle of the observation.

 $\stackrel{\star}{_}$ Spectra with low S/N

□ Peculiar SN

 \clubsuit Spectra with defects resulting from the observing procedure or data reduction.

The distribution of the number of spectra per object for our sample is shown in Figure 3.2. Seven SNe (SN 1993A, SN 2005dt, SN 2005dx, SN 2005es, SN 2005gz, SN2005me, SN 2008H) only have one spectrum, while 90% of the sample have between two and twelve spectra. SN 1986L is the object with the most spectra (31), followed by SN 2008bk with 26. On average we have 7 spectra per SNe and a median of 6. There are 88 SNe II for which we have five or more spectra, 32 that have ten or more, and 6 objects with over 15 spectra (SN 2007oc, SN 2008ag, SN 2008if, SN 1993K, SN 2008bk and SN 1986L). In the current work, 3% of our obtained spectra are not used for analysis. This is due to low S/N that does not allow useful extraction of our defined parameters. However, these spectra are still included in the data release, and are noted in Table 3.2.

Figure 3.2 Histogram of the number of spectra per SN. The distribution peaks at 4 spectra.

3.4.2 Data reduction

Spectral reduction were achieved in the same manner for all data, using IRAF⁵ and employing standard routines, including: bias subtraction, flat-fielding correction, one-dimensional (1D) spectral extraction and sky subtraction, wavelength correction, and flux calibration. Telluric corrections have only been applied to data obtained after October 2004.

In Appendix A we show plots with the spectral series for all SNe of our sample.

⁵IRAF is distributed by the National Optical Astronomy Observatories (NOAO), which are operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.

3.5 Explosion epoch estimations

Before discussing the properties of our sample, in this section we outline our methods for estimating explosion epochs. The non-detections of SNe on pre-discovery images is the most accurate method for determining the explosion epoch for any given SN. Explosion epochs with non-detections are estimated using the mid-point between SN discovery and non-detection. The error on this epoch is then $(MJD_{disc}-MJD_{non-det})/2$. However within our sample (and for many other current SN search campaigns) many SNe do not have such accurate constrains from this method.

Over the last decade several tools have been published that enable explosion epoch estimations through matching of observed SN spectra to libraries of spectral templates. Programs such as the Supernova Identification (SNID) code (Blondin and Tonry, 2007), the GEneric cLAssification TOol (Gelato) (Harutyunyan et al., 2008), and superfit (Howell et al., 2005) allow the user to estimate the type of supernova and its epoch by providing an observed spectrum. In SNID, the code classifies SN spectra using the cross correlation method, which relies on the comparison of an input spectrum with a database of template spectra, which have been deredshifted to the rest frame. It is very efficient when the redshift of the SN host galaxy is unknown. On the other hand, Gelato performs the quantitative classification of SN spectra by comparison (best match) with a large set of template spectra of various SN types at different phase. Meanwhile, Superfit uses χ^2 fitting techniques. In our analysis we used only the first two methods: SNID and Gelato. Comparing them, we find that Gelato gives a large percentage of their quality of fit to H_{α} P-Cygni profile. However, based on our analysis (see Section 3.9), the most significant changes with time are observed in the blue part of the spectra (i.e. between 4000 and 6000 Å). Besides, according to Gutiérrez et al. (2014), the H_{α} P-Cygni profile shows a wide diversity and there is no clear, consistent evolution with time, so we decided to implement the use of SNID. In addition, SNID provides the possibility of adding additional templates to improve the accuracy of explosion epoch determinations. We take advantage of this attribute in the following sections adding new templates, so we decide to do our analysis with SNID.

While for many SNe this spectral matching is required in order to obtain a reliable explosion epoch, a significant fraction of our sample do have explosion epoch constraining SN nondetections before discovery. In cases where the non-detection is < 20 days before discovery, we use that information to estimate our final values. In cases where this difference is larger than 20 days, we use the spectral matching technique. However, as a test of our methodology, for non-detection SNe we also estimate explosion epochs using spectral matching to check the latter's validity (more details below).

3.5.1 SNID implementation

As we want to constrain the explosion epoch for our sample, we compare the first spectrum of each SN II within our sample with a library of spectral templates provided by SNID and

SN	Explosion date	V-Maximum date	Reference
1999em	2451475.6(5)	2451485.5	Leonard et al. 2002a
1999gi	2451518.3(3)	2451530.0	Leonard et al. 2002b
2004et	2453270.5(3)	2453286.6	Li et al. 2005, Sahu et al. 2006
2005 cs	2453547.6 (1)	2453553.6	Pastorello et al. 2006
2006 bp	2453833.4(1)	2453842.0	Dessart et al. 2008
1988A	2447177.2(2)		This work
1990E	2447935.1(3)		This work
1999br	2451276.7(4)		This work
2003bn	2452694.5(3)		This work
2003iq	2452919.5(2)		This work
2004 er	2453271.8 (2)		This work
2004 fc	2453293.5(1)		This work
2004 fx	2453303.5 (4)		This work
2005 dz	2453619.5(4)		This work
2006bc	2453815.5 (4)		This work
2006ee	2453961.9(4)		This work
2006it	2454006.5(3)		This work
2006iw	2454010.7 (1)		This work
2006Y	2453766.5(4)		This work
2007il	2454349.8 (4)		This work
2007it	2454348.5(1)		This work
2007oc	2454388.5(3)		This work
2008il	2454825.6(3)		This work
2008in	2454825.4 (2)		This work
2009ao	2454890.7(4)		This work
2009au	2454897.5(4)		This work
2009bz	2454915.8 (4)		This work

Table 3.3 Reference SNe II

Columns: (1) SN name; (2) Julian date of the explosion epoch; (3) Julian date of the V-band maximum; (4) References. The first five SNe are included in SNID and are used as templates in this work. Their respective references are presented in the

column 4. The rest of SNe showed after the line are included as template during this work.

then, we choose the best match. For each SN we choose different matches with emphasis on the blue part (4000-6000 Å), that present the most significant changes with time. Explosion epoch errors from this spectral matching are obtained by taking the standard deviation of several good matches of the observed spectrum from our sample with those from the SNID library. H_{α} is the dominant feature in SN II spectra, however its overall diversity and evolution in time varies greatly between SNe in a manner that does not aid in the spectral matching technique. We therefore ignore the comparison between observed and template spectra at this wavelength region.

From the SNID library we use those template SNe that have well constrained explosion epochs, meaning SNe II with explosion epoch errors of less than five days (see Table 3.3). Therefore, we use SNe 1999em (Leonard et al., 2002a), SNe 1999gi (Leonard et al., 2002b), SNe 2004et (Li et al., 2005), SNe 2005cs (Pastorello et al., 2006), and SNe 2006bp (Dessart et al., 2008). In the database of SNID there are a total of 166 spectra. However, these templates do not provide a good coverage of the overall diversity of SNe II within our sample/the literature. Most of the SNe in the library are relatively 'normal', with only one sub-luminous event (SN 2005cs). This means that any non-normal event within our sample will probably have poor constraints on its explosion epoch using these templates. For this reason we decided to use some of our own well-observed SNe II to compliment the SNID database.

3.5.2 New SNID templates

CN	I .	D + 14 + 1	D (D	N. D. H. M.	D: 1	D 1 1 1	
SN	Spect. date	Best Match	Days from	Days from	Average	Explosion date	Non Detection date	Discovery date	Explosion date	Difference
	JD		maximum	explosion	(Using match)	(MJD)	(MJD)	(MJD)	(MJD)	(days)
1968L	46715.5	2006bp	$^{-2}$	7	7	46708.5(5)	46705.5	46710.5	46708.0(3)	0
		$1999 \mathrm{em}$	-4	6						
1988A	47188.5	1999em	+5	15	17	47171.5(6)	47175.5	47179.0	47177.2(2)	-6
		2006bp	+7	16						
		2004et	+4	20						
10005		1000		_						_
1990E	47945.5	1999em	-3	7	9	47936.5 (6)	47932.5	47937.7	47935.1(3)	1
		2004et	-3	13						
		1999gi	-4	8						
		2006bp	0	9						
100012	48040 5	2004at	1.99	40	19	48001 5 (6)		48027.2		
19901	48049.5	2004et	+ 40	49	40	48001.5 (0)		48037.3		
		1000.000	+ 97	27						
		1999em	+27	37						
1991al	48473.5	2006bp	+25	34	31	48442.5(8)		48453.7		
		2004et	+20	36		(-)				
		1999em	+16	26						
		2003ig		29						
		Looold		20						
1992af	48832.8	2003bn		35	34	48798.8 (8)		48802.8		
		2007il		45						
		1999gi	+19	31						
		2006bp	+20	29						
		2003iq		29						
		2004et	+20	36						
1992am	48832.9	2004et	+6	21	19	48813.9 (6)		48829.8		
		1999em	+7	17						
1992 ba	48896.9	1999em	$^{+1}$	11	12	48884.9 (7)		48896.2		
		2006it		12						
1993A	49015.7	1999em	+11	21	23	48992.7(6)	48985.5	49004.6	48995.5(9)	-3
		2004 et	+10	26						
		2006 bp	+14	23						
1993K	49098.6	2006 bp	+15	24	26	49072.6(6)	49057.5	49075.5	49065.5(9)	7
		1999em	+11	21						
		2004et	+12	28						
		2004fc		33						
10000		20001				10100 0 (*)				
1993S	49164.8	2006bp	+20	29	34	49130.8(5)		49133.7		
		2004et	+23	39						

Table 3.4 :	Explosion	epoch	estimations	comparison	

1999br	51291.5	2005cs	± 7	13	13	51278 5 (4)	51273.0	51280 5	51276 7 (4)	2
100000	01201.0	200005		10	10	01210.0 (4)	01210.0	01200.0	01210.1 (4)	2
1999ca	51304 5	2006bp	+20	29	27	512775(7)	51271.0	51296.0	51283 5 (13)	-6
100000	0100110	2003ig	120	29	2.	0121110 (1)	0121110	01200.0	0120010 (10)	0
		1999em	+16	26						
		1999øj	+19	31						
		2007.00	115	21						
		200100		21						
1999cr	51257.5	2005cs	+5	11	11	51246.5(4)		51249.7		
1999eg	51467.5	2005cs	+7	13	18	51449.5(6)		51455.5		
		1999br		18						
		2004et	+6	22						
1999em	51485.5	2004et	$^{-2}$	13	12	51473.5(5)	51472.0	51481.0	51476.5(5)	-3
		2006bp	+3	12		()				
2002ew							52490.5	52510.8	52500.6 (10)	
2002fa	52529.5	2004 et	+15	31	28	52501.5 (8)	52489.5	52510.8	52500.0 (11)	1
		1992H	+25	30						
		1999em	+11	21						
		2006bp	+20	29						
		1999gi	+19	31						
		0								
2002gd	52555.5	2005cs	-2	4	4	52551.5 (4)	52508.5	52552.7	52530.6 (22)	21
2002gw	52572.5	2009bz		24	19	52553.5 (8)	52529.5	52560.7	52545.1 (16)	8
		2005 dz		20						
		1999em	+6	16						
		2003bn		16						
2002hj	52585.5	2004 et	+12	28	27	52558.5 (10)	52556.5	52568.0	52562.5(7)	-4
		2009bz		28						
		2005 dz		29						
		1999em	+11	21						
		2006bp	+16	25						
		1999gi	+19	31						
		2003iq		29						
2002hx	52606.5	2007il		45	27	52575.5(9)	52574.0	52589.7	52582.5 (9)	-7
		2009bz		37						
		2004 fx		31						
		1999em	+16	26						
		2005cs	+10	16						
		$2006 \mathrm{bp}$	+20	29						
		2003bn		39						
		1999 br		25						
2002ig	52588.5	2004 et	+6	22	18	52570.5(5)		52576.7		
		$2006 \mathrm{bp}$	+7	16						
		1999em	+5	15						

SN210	52545.5	2004et	+40	56	59	52486.5 (6)				
		$2004 \mathrm{er}$		63						
		2006bp	+49	58						
2003B	52645 5	20071		45	32	52613 5 (11)		52645.0		
20001	02040.0	1999em	± 16	26	02	02010.0 (11)		02040.0		
		2005cs	+10	16						
		2003bn	110	39						
		2005bh 2006bp	+25	34						
2003E	52648.5	2009bz		24	19	52629.5(8)	52605.7	52645.0	52625.3(20)	4
		2004 et	+6	22						
		1999em	+5	15						
		2006bp	+7	16						
		2003bn		16						
2003T	52673.5	1999em	+9	19	22	52651.5 (6)	52645.0	52665.0	52654.5 (10)	-3
		2004 et	+10	26						
		$2006 \mathrm{bp}$	+13	22						
2003bl	52702.5	2005cs	-2	4	6	52696, 5(4)	52438 7	52701.0		
		1999em	-4	6	-					
		1999 <i>o</i> j	-4	8						
		100081	-	Ũ						
$2003 \mathrm{bn}$	52706.5	2004 et	$^{-2}$	14	12	52694.5(5)	52691.5	52698.0	52694.5(3)	0
		2006bp	+4	13						
		1999em	0	10						
2003ci	52729.5	2006bp	+16	25	26	52703.5 (5)	52704.0	52720.0	52711.5 (8)	-8
		1999em	+11	21						
		2004 et	+15	31						
2003cp	52720 5	2005cs	±4	10	19	52717.5.(4)	52706.0	52728 0	59717.0 (11)	0
200301	02129.0	1000br	T**	15	12	02111.0 (4)	52100.0	52120.0	52717.0 (11)	0
		133301		15						
2003 cx	52739.5	2009bz		24	14	52725.5 (5)	52683.0	52730.0	52706.5 (24)	19
		2006bp	+7	16						
		1999em	+5	15						
		2005cs	+4	10						
2003dq	52764.5	2006bp	+7	16	25	52739.5 (8)	52724.7	52739.7	52731.5 (8)	8
		2004et	+4	20						
		1999em	+5	15						
		2006Y		51						
2003of	52780 5	2004et	1123	30	30	52757 5 (0)	52720 7	52770 7	59745 7 (95)	19
200361	52109.5	1000eet	+23 +16	39	34	52151.5 (9)	02120.1	52110.1	02140.1 (20)	14
		1999em	+10	20 20						
		20000p	+20	29						
		1999gi 2003bn	+19	30						
		2003511 2004fc		33						
		2004ic		29						
		2000iq		40						

2003eg	52789.5	2004et 2009ao	+6	22 28	25	52764.5 (5)	52743.7	52776.7	52759.5 (17)	5
2003ej	52789.5	2004et	+4	20	15	52775.5(5)	52770.7	52779.7	52775.5 (5)	0
		2005cs	$^{+2}$	8						
		2006bp	+7	16						
2003 fb	52797.5	1999em	+11	21	25	52772.5 (10)	52591.7	52796.0		
		2005 dz		29						
		2004et	+9	25						
		2006bp	+13	22						
		2003iq		29						
2003gd	52817.5	2005cs	+57	63	62	52755.5 (9)		52803.2		
		1999em	+62	72						
		2006ee		52						
2003hd	52871.9	2004et	$^{+2}$	18	16	52855.9 (5)	52640.7	52861.0		
		2006bp	+4	13						
2003hg	52897.6	2006bp	+20	29	30	52867.6 (9)	52861.0	52870.0	52865.5 (5)	2
		2004et	+15	31						
		1999em	+16	26						
		1999gi	+19	31						
		2004fc		33						
		2003iq		29						
2003hk	52908.8	2004et	+25	41	42	52866.8 (4)	52687.5	52871.6	52679.6 (92)	
		1999gi	+24	41						
		1999em	+34	44						
2003hl	52900.8	2006bp	+25	34	33	52869.8 (5)	52863.0	52872.0	52868.5 (5)	1
		1999em	+35	45						
		2005cs	+14	20						
2003hn	52897.9	2006bp	+20	29	30	52867.9 (8)	52856.5	52877.2	52866.5 (10)	1
		2003iq		29						
		1999em	+16	26						
		2004 et	+20	36						
2003ho	52889.5	2006bp	+34	43	41	52848.5 (7)	52830.5	52851.9	52841.2 (11)	7
		2004 et	+25	41						
		2003bn		39						
2003ib	52900.6	2005cs	$^{+3}$	9	12	52888.6 (5)	52883.7	52898.7	52891.5 (8)	$^{-3}$
		2006it		12						
		2004et	$^{-1}$	15						
		1999em	+2	12						
2003ip	52928.6	2004et	+20	36	32	52896.6 (4)	52637.5	52913.7		
		$2006 \mathrm{bp}$	+25	34						
		1999em	+16	26						

2003iq	52928.5	2006bp 2004et 1999em	$^{+3}_{-3}_{-3}$	12 13 7	10	52918.5 (7)	52918.5	52921.5	52919.5 (2)	-1
		2004fc		9						
2004 dy							53238.5	53242.5	53240.5(2)	
2004ej	53262.9	1999em	+27	37	39	53223.9 (9)	53221.2	53258.5	53239.9 (19)	-16
		2006bp	+34	43						
		1999gi	+24	36						
		2004 et	+23	39						
$2004 \mathrm{er}$	53302.8	2006bp	+16	25	31	53271.8 (6)	53270.0	53274.0	53271.8 (2)	0
		1999em	+16	36						
		2004et	+15	31						
$2004 \mathrm{fb}$	53302.6	2004 et	+35	51	44	53258.6 (7)	53250.2	53286.2	53268.2 (18)	-10
		2006bp	+34	43						
		1999gi	+24	36						
		1999em	+33	43						
		2003iq		47						
$2004 \mathrm{fc}$	53302.7	$1999 \mathrm{em}$	$^{-3}$	7	10	53292.7 (5)	53285.2	53295.2	53293.5 (1)	$^{-1}$
		2004 et	$^{-3}$	13						
		2006bp	$^{+2}$	11						
		2003iq		9						
2004 fx	53326.8	2005 dz		29	26	53300.8 (8)	53301.0	53307.0	53303.5 (4)	$^{-3}$
		$1999 \mathrm{em}$	+11	21						
		1999gi	+19	31						
		2006bp	+14	23						
2005J	53405.8	$2004 \mathrm{er}$		31	26	53379.8 (7)	53026.0	53387.0		
		2004et	+15	31						
		1999em	+11	21						
		2006bp	+13	22						
2005K	53409.8	2006bp	+34	43	40	53369.8 (8)	53261.0	53386.0	53323.5 (63)	46
		2003bn		39						
		1999gi	+24	36						
		2006it		36						
		2007il		45						
2005Z	53405.7	2004 fc		9	10	53395.7 (4)	53391.0	53402.0	53396.7 (6)	-1
		2006bp	$^{+2}$	11						
		1999em	$^{-2}$	8						
		2004 et	$^{-3}$	13						
2005af	53413.8	1999em	+101	111	93	53320.8 (17)	53177.5	53409.7		
		2006ee		94						
		1999gi	+78	90						
		1987A	-7	78						

2005an	53444.8	2004et 2006bp 1999em 2006it	-1 + 4 + 0	15 13 10 12	13	53431.8 (6)	53391.0	53432.7	53411.9 (21)	20
2005dk	53639.5	2004et 2006bp 1999gi 2003bn	$+23 +25 +24 \dots$	39 34 36 42	38	53601.5 (6)	53562.0	53604.0	53583.0 (21)	18
2005dn	53639.6	2004et 2006bp	$^{+23}_{+25}$	39 34	37	53602.6 (6)	53465.7	53609.5	53537.6 (72)	65
2005dt	53639.6	1999em 2006bp 1999gi	+33 +34 +24	43 43 36	41	53598.6 (4)	53596.7	53614.7	53605.6 (9)	-7
2005dw	53648.6	2006bp 2003bn 1999em 2004et 1999gi 2004fc 2006iw	+25 +16 +23 +24 	34 42 36 39 36 33 45	38	53610.6 (8)	53594.7	53612.7	53603.6 (9)	7
2005dx	53639.8	2007il 1999em 2005cs 2003iq	$+16 +10 \dots$	40 26 16 29	28	53611.8 (7)	53424.7	53623.0	53523.9 (99)	
2005 dz	53639.7	1999em 2003bn	$^{+5}$	15 16	16	53623.7 (6)	53615.7	53623.7	53619.5 (4)	4
2005es	53648.7	1999em 2006bp 2004et 2004fc 2006iw 1999gi	$\begin{array}{c} -2 \\ +3 \\ -3 \\ \cdots \\ -4 \end{array}$	8 12 13 9 11 8	10	53638.7 (6)	53634.7	53643.7	53638.7 (5)	0
2005 gz							53645.7	53654.7	53650.2 (5)	
2005lw	53722.8	1999em 1999gi*	-4	6 6	6	53716.8 (10)	53696.0	53719.0	53707.5 (12)	9
2005me	53794.5	2004et 2006bp 2008il 2003bn 2003iq	$+58 +65 \dots \dots \dots$	74 74 63 70 70	70	53724.5 (9)	53707.5	53728.2	53717.9 (10)	7
2006Y						53766.5(4)	53763.0	53770.0	53766.5(4)	

2006ai	53799.6	2004et 2003bn 2006bp	+6 \cdots +7	22 16 16	18	53781.6 (5)	53721.2	53784.0	53752.6 (31)	29
2006bc	53846.5	1999br 2009au	····	25 41	33	53813.5 (6)	53811.0	53819.1	53815.5 (4)	$^{-2}$
2006be	53824.8	2009bz 2005dz 1999em	···· ··· +11	24 29 21	22	53802.8 (9)	53789.0	53819.0	53804.0 (15)	$^{-2}$
		2006bp 2003bn	+13	22 16						
2006bl	53848.7	2004et 1999em 2006bp 1999gi 2004er 2003iq 1990E	$+10 +11 +13 +19 \cdots$	26 21 22 31 31 29 19	26	53822.7 (10)	53763.5	53829.5	53796.5 (33)	26
2006ee	54003.8	1999em 2005cs 1999br	+35 +30 \cdots	45 36 43	41	53962.8 (7)	53958.0	53966.0	53961.9 (4)	1
2006it	54016.6	1999em 2004et 2006bp 2005cs	$^{+2}_{+1}_{+4}_{+1}$	12 17 13 7	12	54005.6 (5)	54004.7	54009.5	54006.5 (3)	-1
2006iw	54016.6	1990E 1999em 2004et 1999gi	$-3 \\ -3 \\ -5$	10 7 13 7	9	54007.6 (7)	54009.5	54011.5	54010.7 (1)	-3
2006ms	54055.5	1999em 2006bp 2005cs 1999gi	$^{+16}_{+25}_{+13}_{+19}$	26 34 19 31	27	54028.5 (6)	54021.2	54046.2	54034.0 (13)	-6
2006qr	54082.8	$\begin{array}{c} 2005 \text{cs} \\ 2004 \text{et} \\ 2006 \text{bp} \end{array}$	$^{+10}_{+10}_{+15}$	16 26 24	22	54061.8 (5)	54056.2	54070.0	54062.8 (7)	-1
2007P	54143.7	2004et 2006bp 2005dz 2006it	$\begin{array}{c} +6 \\ +8 \\ \cdots \\ \cdots \end{array}$	22 17 20 15	19	54124.7 (5)	54114.0	54124.0	54118.7 (5)	6
2007U	54143.6	2006iw 2004fc 1990E	···· ···	11 9 10	10	54133.6 (6)	54111.5	54136.5	54124.0 (13)	9

2007W	54150.8	$\begin{array}{c} 2005 \mathrm{cs} \\ 2005 \mathrm{dz} \\ 1999 \mathrm{em} \end{array}$	$^{+5}$ \cdots $^{+11}$	11 29 21	20	54130.58 (7)	54103.5	54146.5	54125.0 (22)	5
2007X	54150.8	1999em 1999gi 2004et 2006bp	$ -4 \\ -4 \\ -3 \\ -2 $		9	54143.8 (5)	53961.2	54146.5	54053.8 (93)	
2007Z	54150.6	2006bp 2004et 2003bn 2006it	+7 +1 	16 17 16	15	54135.6 (5)	54125.5	54148.7	54137.1 (12)	-2
2007aa	54150.7	1999em 1999gi 2005cs 2006bp	+11 + 19 + 9 + 20	21 31 15 29	24	54126.7 (8)	53441.7	54149.7		
2007ab	54163.9	2006bp 1999em 2004et 2006it	+34 +33 +23	43 43 39 36	42	54123.9 (10)		54150.7		
2007av	54185.8	2003iq 1999em 2004et 2006bp	$0 \\ -3 \\ +3$	47 10 13 12	12	54173.8 (5)		54180.2		
2007bf	54202.7	2003it 1999em 2004et 2006bp	-1 -3 +3	12 9 13 12	11	54191.7 (5)	54184.5	54198.5	54191.5 (7)	0
2007hm	54355.6	2004et 1999em 2006bp	$^{+9}_{+6}_{+8}$	25 16 17	19	54336.6 (6)		54343.7		
2007il	54361.9	1999em 1990E 2004fc 1999gi 2004et	$\begin{array}{c} -2\\ \cdots\\ -4\\ -2 \end{array}$		10	54351.9 (7)	54346.0	54354.0	54349.8 (4)	2
2007it	54358.5	2009bz 2009bz 2009bz 2004fc 2003iq 2006bp	-3 +3	9 13 9 9 9 9 12	10	54348.5 (4)	54347.5	54349.5	54348.5 (1)	0
2007ld	54389.5	2004et	+1	17	13	54376.5 (8)		54379.5		

		1999em	+1	11						
		2006bp	+4	13						
		2006it		12						
2007oc	54408.6	2004et	+15	31	29	54379.6 (6)	54381.5	54396.5	54388.5 (3)	-9
		2003iq		29						
		1999em	+16	26						
		$2006 \mathrm{bp}$	+20	29						
2007od	54409.6	2004et	-3	13	9	54400.6(5)	54026.5	54407.2		
		2004fc		9		0 0 0 1 0 (0)				
		1999em	-2	8						
		2005cs	0	6						
2007 sq	54452.8	2004et	+15	31	30	54422.8(6)	54413.0	54443.0	54428.0(15)	-6
		2006Бр	+20	29						
		2003iq		29						
		2004er		31						
2008F	54482.6	1999em	$^{+1}$	11	13	54469.6 (6)	54413.5	54477.5	54445.5 (32)	24
		2004 et	$^{+1}$	17						
		2006bp	+4	13						
		2006it		12						
2008H	54482.8	2006ee		42	50	54432.8 (8)	54408.0	54481.0	54444.5(37)	-12
		2004 fc		59		()			· · · ·	
		2004 et	+47	63						
		2005cs	+30	36						
		1999em	+39	49						
000017	F 4 4 0 0 0	2005	1	-	-	E 4 4 7 E Q (C)	54447 7	54401.0	F 4 4 C 4 4 (17)	11
2008K	54482.8	2005cs	-1	5	(54475.8(0)	54447.7	54481.0	54464.4(17)	11
		200410		9						
		1999gi	-4	8						
		1999em	-3	7						
2008M	54497.7	2009bz		28	25	54472.7 (9)	54462.5	54480.7	54471.7 (9)	1
		1999em	+11	21						
		2005 dz		24						
		2004 et	+10	26						
2008W	54509.8	2009ao		28	26	54483.8 (8)	54450.7	54502.7	54476.7 (26)	7
		2005cs	+7	17						
		2004 et	+15	31						
		1999em	+16	26						
		2006bp	+17	26						
		1999gi	+19	31						
2008ag	54509.9	1999em	+16	26	32	54477 9 (8)	54408 5	54499 5	54454 0 (46)	23
-000ag	01000.0	2003bn		39	02	011110 (0)	01100.0	01100.0	0110110 (10)	20
		2006bp	+25	34						
		20005p	+25	41						
		2005cs	+13	19						
			1 + 9	+ v						

		1999gi	+19	31						
2008aw	54545.8	2006Y		27	24	54522.8 (5)	54508.0	54528.0	54517.8 (10)	5
		2004et	+4	20						
2008bb	54553 7	2004et	-3	13	12	54541 7 (3)	54538 6	54549 0	54543 5 (5)	-2
20000011	0100011	2006bp	+3	12		0101111 (0)	0100010	0101010	0101010 (0)	-
		P	1.0							
2008bk	54568.9	1999br		25	28	54540.9 (8)	54468.2	54550.7	54509.4 (41)	31
		2005cs	+14	20						
		2004 fx		40						
$2008 \mathrm{bm}$	54563.8	2009au		41	41	54522.8 (6)	54497.0	54554.7	54522.5 (26)	0
2008bp	54563.7	2005cs	$^{+1}$	7	10	54553.7 (10)	54546.5	54558.7	54551.7 (6)	2
-		2004 et	-3	13		· · · ·				
		2004fc		9						
		2003iq		9						
		2006it		12						
		$1999 \mathrm{em}$	$^{+2}$	12						
$2008 \mathrm{br}$	54568.5	2005cs	+10	16	17	54551.5 (7)	54546.5	54564.2	54555.7 (9)	-4
		1999br		18						
2008bu	54578.8	2004et	$^{-2}$	14	12	54566.8 (7)	54297.7	54574.0		
		2005cs	$^{+2}$	8						
		2006it		12						
		1999em	$^{+2}$	12						
		2006bp	+4	13						
2008ga	54766.5	2006bp	+49	58	55	54711.5 (7)	54534.7	54734.0		
		2007oc		64						
		1999em	+33	43						
2008gi	54759.7	2004et	+9	25	20	54739.7 (7)	54734.0	54752.0	54742.7 (9)	-3
		1999em	+6	16						
2008gr	54793.6	1999em	+11	21	24	54769.6 (6)	54303.5	54768.7		
		2004 et	+12	28						
		2006bp	+15	24						
2008hg	54790.7	2004et	$^{+1}$	17	12	54778.7 (5)	54774.5	54785.5	54779.8 (5)	$^{-1}$
		2004 fc		9						
		2006bp	+4	13						
		1999em	+0	10						
		2006iw		11						
2008ho	54815.6	2004 fx		31	27	54788.6 (7)	54787.7	54796.5	54792.7 (5)	-4
		2009bz		37						
		2005cs	+10	16						
		$1999 \mathrm{em}$	+16	26						
2008if	54822.7	1999em	-4	6	8	54814.7 (3)	54802.7	54812.7	54807.8 (5)	7

		2004 fc		9						
		2008il		3						
		1990E		10						
		1999gi	-4	8						
		2006iw		11						
2008il	54828.6	1999em	-4	6	7	54821.6 (7)	54822.7	54827.7	54825.6(3)	-4
		1999gi	-4	8						
		2006iw		8						
2008in	54829.8	2005cs	0	6	9	54820.8 (8)	54823.5	54827.2	54825.4(2)	-5
		1999em	-3	7						
		2004fc		9						
		2004et	$^{-3}$	13						
2009A	54836.5						54813.5	54833.5	54821.5 (10)	
2009N	54870.8	2005cs	+10	16	24	54846.8 (5)	54834.5	54856.3	54845.4 (11)	1
		1999em	+16	22						
		1999br		25						
		1999gi	+19	31						
		0								
2009W	54870.9	2004fx		55	54	54816.9 (9)	54737.5	54865.0	54801.3 (64)	15
		1999br		43						
		2008il		63						
2009aj							54874.0	54887.0	54880.5 (7)	
2009ao	54918.5	2004et	+12	22	24	54894.5(7)	54887.0	54895.0	54890.7(4)	4
		1999em	+16	26						
		$2006 \mathrm{bp}$	+15	24						
2009au	54918.8	2006bc		9	9	54909.8 (6)	54894.0	54902.0	54897.5(4)	12
2009bu	54919.9	2003bn		16	18	54901.9 (8)	54827.5	54916.2	54871.8 (44)	30
		2006bp	+8	17						
		2005 dz		20						
		2006it		15						
		1999em	+6	16						
		2004et	+6	22						
2009bz	54924.8	2004 et	$^{-3}$	13	10	54914.8 (7)	54909.5	54920.0	54915.8 (4)	-1
		$1999 \mathrm{em}$	$^{-2}$	8						
		$2006 \mathrm{bp}$	+2	11						
		2005cs	+1	7						
		200000	11	•						

CHAPTER 3. SAMPLE CHARACTERIZATION

Columns: (1) SN name; (2) Reduced Julian date of the spectrum used to the match (JD - 2400000); (3) Best match obtained with SNID; (4) Days from maximum of the template used to the match; (5) Days from explosion of the template used to the match; (6) Average obtained from the days from explosion; (7) Explosion date obtained with the matching technique; (8) Non-detection date of the SN; (9) Discovery date of the SN; (10) Explosion date obtained from non-detection and discovery date; (11) Difference in days between the explosion date from matching technique and non-detection.

We created a new set of spectral templates using our own SNe II that have well constrained explosion epochs from non-detections. Well constrained is defined as events that have errors smaller than 5 days. Given this error constraint, we included 22 SNe, which show a large spectral and photometric diversity. In this manner, the new SNID templates were constructed using ~ 150 spectra and employing the *logwave* program included in the SNID packages. Adding our own template SNe to the SNID database we can now therefore use a total of 27 template SNe II for further explosion epoch constraints. Table 3.3 shows the explosion and maximum dates for the reference SNe, as well as the explosion epoch for our new templates. We note an important difference between our templates and those older events in SNID: for the newer templates explosion epochs are defined with respect to the explosion epoch, while for the older templates epochs are defined with respect to maximum light (meaning that one then has to add the "rise time" to obtain the actual explosion date).

With the inclusion of these 22 SNe to SNID we estimated the explosion epoch for our full sample. An example of the best match is shown in Figure 3.3. We can see that first spectrum of SN 2003iq (October 16th) presents similarities with SN 2006bp, SN 2004et, SN 1999em and SN 2004fc, at 3, -3, -3 days with respect to maximum (SN 2004fc does not show the maximum date) and 12, 13, 7 and 9 days from explosion, respectively. Taking the average, we conclude that the spectrum was obtained at 10 ± 7 days since explosion. Table 3.1 shows the explosion epoch for each SN as well as the method employed to derive it, while Table 3.5.2 shows all the details of spectral matching and non-detection techniques. The Appendix B shows the plots with the best matches for each SN of our sample.

To check the validity of spectral matching we compare the explosion epoch estimated with this technique and those with non-detections. While this analysis was done in Anderson et al. (2014b) with very good agreement, now with the use of new templates we improve that. Figure 3.4 shows a comparison between both methods. We can see that the mean absolute error between them diminishes from 4.2 (Anderson et al., 2014b) to 3.9 days. Also the mean offset decreases from 1.5 in Anderson et al. (2014b) to 0.5 in this work. Cases where explosion epochs have changed between Anderson et al. (2014b) and the current work are noted in Table 3.1. Nevertheless, although this method works well as a substitute for nondetections, exact constraints for any particular object are affected by any peculiarities that the observed (or indeed template) SN has. For example, differences in the colour (and therefore temperature) evolution of events can mimic differences in time evolution, while progenitor metallicity differences can delay/hasten the onset of line formation. To solve these drawbacks the inclusion of more SNe to SNID is the best option.

To obtain the new SNe II templates you can access to http://csp1.lco.cl/ and download the .tar file.

Figure 3.3 Best spectral matching of SNe 2003iq using SNID. The plots show SN 2003iq compared with SN 2006bp, SN 2004et, SN 1999em and SN 2004fc at 3, -3 and -3 around maximum and 9 days from explosion, respectively. Taking the average, this means that this spectrum is at 10 days from explosion.

Figure 3.4 Comparison between spectral matching and non-detection methods.

3.6 Sample properties

As mentioned in Section 3.3 we have 893 optical spectra of 123 SNe II, however due to low signal-to-noise (S/N) we remove around 25 spectra of 12 SNe for our analysis. We also remove one spectrum of SN 1999ca because it is in a range of 11000 to 13000 Å (and therefore of no use for our study of the diversity of optical wavelength spectra); nine spectra of SN 2005lw because they contain peculiarities that we expect are not intrinsic to the SN (most probably defects resulting from the observing procedure or data reduction); five of SN 2009A, which shows peculiar properties making comparison to the rest of our sample not useful. In total, we remove 40 spectra (~ 4.5%). Figure 3.5 shows the epoch distribution of our spectra since explosion to 370 days. One can see that the majority of the spectra were observed between 0 and 100 days since explosion, with a total of 738 spectra. Our earliest spectrum corresponds to SN 2008il at 3 ± 3 and SN 2008gr at 3 ± 6 days from explosion, while the oldest spectrum is at 363 ± 9 days for SN 1993K. Before 50 days there are 53% of the spectra, 3.8% of which were observed before 10 days for 23 SNe. Between ~ 30 to 84 days there are 441 spectra of 114 SNe. There are 115 spectra older than 100 days and 27 older than 200 days, corresponding to 45 and 4 SNe,

respectively. The average of this distribution is 60 days, while its median is 46 days.

Figure 3.5 Distribution of the number of spectra as a function of epoch from explosion. The inset on the right shows the same distribution between 100 and 370 days.

Figure 3.6 shows the epoch distribution of the first and last spectrum for each SN in our sample. The majority of SNe have their first spectra before 40 days since explosion. There are 31 SNe with their first spectra around 10 days (the peak of the distribution). On the other hand, the peak of the distribution of the last spectrum is around 100 days. Almost all SNe have their last spectra between 30 and 120 days, i.e., in the photospheric phase. There are 11 SNe with their last spectra after 140 days, while only 4 SNe (SN 1993K, 2003B, SN 2007it, SN 2008bk) have their last spectrum in the nebular phase (≥ 200 days).

The photometric behaviour of our sample in terms of their plateau decline rate (s_2) in the V band is shown in Figure 3.7. For 116 SNe we have a s_2 value between -0.58 and 3.39, however there are two outliers, SN 2004dy and SN 2008H with a value of 6.55 and -1.67, respectively. Smaller s_2 values mean that the SN light curve has a more pronounced plateau, meanwhile fast declining SNe II display higher s_2 values. We can see a continuum in the s_2 distribution, which shows that the majority of the SNe (85) have a s_2 value between 0 and 2. There are 9 objects with s_2 values smaller than 0, while 6 SNe show a value larger than 3. The average of s_2 in our sample

Figure 3.6 *Top:* Epoch from explosion of first spectrum. *Bottom:* Epoch from explosion of last spectrum.

is 1.22. We are unable to estimate the s_2 value for 5 SNe as there is insufficient information from their light-curves. The photometric information in the V-band and its analysis can be found in Anderson et al. (2014b), Galbany et al. (2016). However, the complete photometric information will be published in upcoming paper by Anderson et al. (in prep).

3.7 Spectral line identification

We identified 20 absorption features within our photospheric spectra, within the observed wavelength range of 3800 to 9500 Å. Early spectra exhibit lines of $H_{\alpha} \lambda 6563$, $H_{\beta} \lambda 4861$, $H_{\gamma} \lambda 4341$, $H_{\delta} \lambda 4102$, and He I $\lambda 5876$, with the latter disappearing at ~ 20-25 days from explosion. An extra absorption component on the blue side of H_{α} (hereafter "Cachito"⁶ is present in many SNe). That line has previously been attributed to high velocity (HV) features of hydrogen or Si II $\lambda 6533$. Figure 3.8 shows the main lines in early spectra of SNe II at 3 and 7 days from explosion. We can see that SN 2008il shows the Balmer lines and He I, while SN 2007X, in

⁶Cachito is a Latin American word that means small piece of something. We use this name to refer to the small absorption components blue ward of H_{α} , giving its (until now) previously ambiguous nature.

Figure 3.7 Distribution of the plateau decline " s_2 " for 111 SNe of our sample.

addition to these lines, also shows the Cachito on the blue side of H_{α} .

In Figures 3.9 and 3.10 we label the lines present in the spectra of SNe II during the photospheric phase at 31, 70 and 72 days from explosion. Later than ~ 15 days the iron group lines start to appear and to dominate the region between 4000 and 6000 Å. We can see Fe-group blends near λ 4554, and between 5200 and 5450 Å (hereafter "Fe II blend"). Strong features such as Fe II λ 4924, Fe II λ 5018, Fe II λ 5169, Sc II/Fe II λ 5531, Sc II multiplet λ 5663 (hereafter "Sc II M"), Ba II λ 6142, Sc II λ 6247, O I λ 7774, O I λ 9263 and the Ca II triplet λ 8498, 8662 (λ 8579) are also present from ~ 20 days to the end of the plateau. At 31 days, SN 2003hn shows all these lines, except Ba II, while at 70 and 72 days, SN 2003bn and SN 2007W show all the lines. Unlike SN 2003bn, SN 2007W shows Cachito and the "Fe line forest"⁷. The Fe lines forest is visible in a small fraction of SNe from 25-30 days (see the analysis in section 3.9). As we can see there are big differences between two different SNe at almost the same epoch. These differences can be due to the explosion mechanism and/or the progenitor properties.

⁷We label "Fe line forest" to that region around H_{β} where a series of Fe-group (e.g. Fe II λ 4629, Sc II λ 4670, Fe II λ 4924) absorption lines emerge.

Figure 3.8 Line identification in the early spectra of SN 2008il (top) and SN 2007X (bottom).

The identification of photospheric lines was performed using the Atomic Spectra Database⁸

 $^{^{8}}$ http://physics.nist.gov/asd3

and theoretical models (e.g. Dessart and Hillier, 2005, 2006).

Figure 3.9 Line identification in the photospheric phase for SNe II 2003hn at 31 days.

In the nebular phase, later than 200 days post explosion, the forbidden lines [Ca II] $\lambda\lambda$ 7291, 7323, [O I] $\lambda\lambda$ 6300, 6364 and [Fe II] λ 7155 emerge in the spectra. At this epoch H_{α}, H_{β}, Na I D, the Ca II triplet, O I and the Fe group lines between 4800 and 5500, and 6000-6500 Å are also present. Figure 3.11 shows a nebular spectrum of SN 2007it at 250 days from explosion.

3.7.1 The H_{α} P-Cygni profile

 $H_{\alpha} \lambda 6563$ is the dominant spectral feature in SNe II. It is usually used to distinguish different SN types at the discovery moment. This line is present in the 100% of SNe II from explosion until nebular phases, showing, in the majority of cases, a P-Cygni profile. Although the P-Cygni profile has an absorption and emission characteristic, SNe display a huge diversity in the absorption component.

Gutiérrez et al. (2014) showed that SNe with little absorption of H_{α} (smaller absorption to emission (a/e) values) appear to have higher velocities, faster declining light-curves and are

Figure 3.10 Line identification in the photospheric phase for SN 2003bn at 70 days (top) and 2007W at 72 days (bottom).

Figure 3.11 Line identification in the nebular spectrum of SN II 2007 it at 250 days from explosion.

brighter. They also showed that H_{α} displays a large range of velocities in the photospheric phase, from 9500 km s⁻¹ to 1500 km s⁻¹ at 50 days (see the first two panels in Figure 3.19, which correspond to the H_{α} velocity derived from the FWHM and from the minimum flux absorption).

The diversity of H_{α} in the photospheric phase is also observed through the blueshifted offset in the emission peaks in early times (Dessart and Hillier, 2008, Anderson et al., 2014a) and the boxy profile (Inserra et al., 2011, 2012). The former is associated with differing density distributions of the ejecta, while the latter with an interaction of the ejecta with a dense CSM. In the nebular phase this shift in H_{α} emission peak and the boxy profile have been interpreted as evidence of dust production in the SN ejecta. Despite the fact that this is an important issue in SNe II, only a few studies (e.g Sahu et al., 2006, Kotak et al., 2009, Fabbri et al., 2011) have focussed on these features.

In Figure 3.12 we show an example of the evolution of H_{α} P-Cygni profile in SN 1992ba. We can see in early phases a normal profile which evolves to a complicated profile around 65 days. Cachito on the blue side of H_{α} is present from 65 to 183 days.

Figure 3.12 H_{α} P-Cygni profile evolution in SN 1992ba. The epochs are labeled on the right.

3.7.2 H_{β} , H_{γ} and H_{δ} absorption features

 $H_{\beta} \lambda 4861$, $H_{\gamma} \lambda 4341$ and $H_{\delta} \lambda 4102$ like H_{α} are present from the first epochs. In earlier phases, these lines show a visible P-Cygni profile, however, from ~ 15 days the spectra only display the absorption component, giving space to Fe group lines. The range of velocities of H_{β} , H_{γ} and H_{δ} at 50 days post explosion vary from 8000 to 1000 km s⁻¹ (see Figure 3.19), which is similar to those found in H_{α} , although offset to lower values (in general by around ~ 1500 km s⁻¹).

Although H_{δ} is a common line in SNe II, we do not include a detailed analysis of this line because in many cases the spectra are noisy where the line is placed. Besides, like other lines on the blue part of the spectrum, this line is blended with Fe-group lines later than 30 days.

Around 30 days from explosion H_{γ} starts to blend with other lines, such as Ti II, Fe II. Meanwhile in a few SNe, the H_{β} absorption feature is surrounded by the Fe lines forest. Our later analysis shows that SNe displaying this behaviour are generally dimmer and lower velocity events (see Section 3.9 for more details).

3.7.3 He I λ 5876 and Na I D λ 5893

He I λ 5876 is present in very early phases when the temperature of the ejecta is high enough. As the temperature decreases, the He I line starts to disappear due to the recombination of He I ions (around 15 days; Roy et al. 2011). At ~ 30 days the Na I D λ 5893 absorption feature arises in the spectrum at a similar position where He I was located. This new line evolves with time to a strong P-Cygni profile, displaying velocities between 8000 km s⁻¹ to 1500 km s⁻¹ at 50 days from explosion (Figure 3.19).

In many SNe II (or indeed SNe of all types), at these wavelengths one often also observes narrow absorption features arising from slow-moving line of sight material from the ISM (or possibly from CSM material). Such material can constrain the amount of foreground reddening suffered by SNe, however we do not discuss this in any detail here.

3.7.4 Fe-group lines

When the SN ejecta has cooled sufficiently, Fe II features start to dominate SNe II spectra between 4000 to 6500 Å. The first line that appears is Fe II λ 5169 on the emission component of H_{β}. With time Fe II λ 5018 and λ 4924 emerge between H_{β} and Fe II λ 5169. Fe II λ 5169 can to be affected by a Fe II blend later than ~ 30 – 40 days. At ~ 50 days the 4000-5500 Å region is completely filled with these lines and the continuum is diminished due to Fe II line-blanketing. The H_{γ} and H_{δ} absorption features are blended with Fe-group lines, such as, Fe II, Ti II, Sc II and Sr II. Between ~ 5400 and 6500 Å other metal lines appear in the spectra. Lines such as Sc II/Fe II λ 5531, Sc II M, Ba II λ 6142 and Sc II λ 6247 begin to get strong with time.

As we can see in Figure 3.19, the Fe-group lines show a range of velocities between 7000 km s⁻¹ to 500 km s⁻¹ at 50 days. The peak of the Fe II group lines velocities is around 4000 km s⁻¹. In the case of Ba II, the peak is lower (around 3000 km s⁻¹).

Although Fe II lines affect H_{β} in late phases, a few SNe show the iron lines forest at 30 days. This behaviour happens earlier in low velocity/luminosity SNe (See section 3.9).

3.7.5 The Ca II IR triplet

The Ca II IR triplet is a strong feature in the spectra of SNe II. This line appears at ~ 20 - 30 days as an absorption feature, but with time it starts to show an emission component, obtaining the appearance of a P-Cygni profile. The Ca II IR triplet is composed of two members, a blend of λ 8498 and λ 8542 in the bluer part and a separate component in λ 8662. In SNe II with higher velocities these lines are merged and we can see in the spectra a broad absorption and emission profile, however in low velocity SNe we can see two absorption components and one emission in the red part. The range of velocities of the Ca II IR triplet is between 9000 to 1000 km s⁻¹ at 50 days. In the nebular phase the Ca II IR triplet is also present, however at this epoch it only exhibits the emission component which comes from both the inner and outer ejecta (Dessart and Hillier, 2011).

Although in the majority of our spectra we can not see Ca II H & K λ 3945, due to the bad signal to noise in this region, this line is present in the photospheric phase of SNe II.

While the Ca II IR triplet is a prominent feature in SNe II, we do not include its analysis in the subsequent discussion, given that the overlap of lines make a consistent comparison of velocities and pseudo-equivalent widths (pEWs) difficult.

3.7.6 O I lines

The O I $\lambda\lambda$ 7772, 7775 doublet (hereafter O I λ 7774) and O I λ 9263 are the most evident oxygen lines in the optical spectra of SNe II. These lines are mainly driven by recombination and they appear when the temperature decreases sufficiently. The O I λ 7774 line is relatively strong and emerges around 20 days from explosion, however in the majority of cases it is contaminated by the telluric A-band absorption (~ 7600 - 7630 Å), which hinders detailed analysis. Meanwhile, O I λ 9263 is weaker and appears one month later than O I λ 7774. These lines are present until the nebular phase and their expansion velocity at 50 days post explosion goes from ~ 7000 km s⁻¹ to 500 km s⁻¹, as can be seen in Figure 3.19.

3.7.7 Cachito: Hydrogen High Velocity (HV) Features or the Si II $\lambda 6355$ line?

The extra absorption component on the blue side of H_{α} P-Cygni profile, called here "Cachito", is normally seen in early phases in some SNe (e.g. SN 2005cs Pastorello et al. 2006) as well as in the plateau phase (e.g. SN 1999em Leonard et al. 2002a). However, its shape and strength is completely different in both epochs and its evolution is not permanent with time. Baron et al. (2000) assigned the term "complicated P-Cygni profle" to explain the presence of this component on the blue side of He I λ 5876 and the Balmer series. They concluded that these features are due to two velocity regions in the expanding ejecta of the SNe II. A few years later, Pooley et al. (2002) and Chugai et al. (2007) argued that this extra component might originate from ejecta – circumstellar (CS) interactions, meanwhile Pastorello et al. (2006) earmark this feature as Si II λ 6355.

In early phases Cachito appears at around 5-7 days between 6100 and 6300 Å, and disappears at ~ 35 days. Later than 40 days the Cachito feature emerges closer to H_{α} (between 6250-6450 Å) and it can be seen until 100-120 days. Figure 3.13 shows this component in SN 2007X. In early phases this feature is marked with letter A and later with letter B. As we can see, both components have different velocities with respect to H_{α} , 18000 to 12000 km s⁻¹ and 10000 km s⁻¹, respectively. A detailed analysis of this feature is presented in 3.9.4.

3.7.8 Nebular Features

As we mentioned above, H_{α} , H_{β} , the Ca II IR triplet, Na I D, O I and Fe II are also present in the nebular phase (later than 200 days since explosion), however in the case of the Ca II IR triplet,

Figure 3.13 H_{α} P-Cygni profile of the SN 2007X. The epochs are labeled on the right. The dashed lines indicate the velocities for the A and B features.

its appearance changes, passing from absorption and emission components to only emission components when the nebular phase starts. The rest of the lines have the same behaviour but at much later epochs. The emergence of forbidden emission lines in this phase is a clear evidence that the outer ejecta has become transparent and we can see in deeper. Lines such as [Ca II] $\lambda\lambda$ 7291, 7323, [O I] $\lambda\lambda$ 6300, 6364 and [Fe II] λ 7155, 7172 are the strongest features visible in the spectra.

[O I] $\lambda\lambda 6300$, 6364 are the most important diagnostic lines of the helium-core mass, due to most of the oxygen is synthesized during hydrostatic helium and carbon burning, with little creation or destruction in the explosive process (Jerkstrand et al., 2014). Usually they are blended, however in SNe with low velocities these lines can be resolved (see SN 2008bk). Meanwhile, [Fe II] λ 7155 is easily detectable, but in most cases it is blended with [Ca II] $\lambda\lambda$ 7291, 7323 and He I λ 7065, which may hinder their analysis. In Figure 3.14 we can see the diversity found in transitional spectra (from photospheric to nebular phase) and the nebular spectra in our sample.

Figure 3.14 Nebular spectral of seven different SNe of our sample. The spectra are organized according to epoch.

3.8 Spectral measurements

As discussed previously, SNe II spectra evolve from having a blue continuum with a few lines (Balmer series and He I) to redder spectra with many lines: Fe II, Ca II, Na I D, Sc II, Ba II, and O I. To analyse the spectral properties of SNe II, we measure the expansion velocities and pEWs of eleven features in the photospheric phase and four in the nebular epochs (see in Table 3.5 the features used), the ratio of absorption to emission (a/e) of H_{α} P-Cygni profile before 120 days, and the velocity decline rate of H_{β}.

3.8.1 Expansion velocities

The expansion velocities of the ejecta are commonly derived from the minimum flux of the absorption component of the P-Cygni line profile. Using the Doppler equation⁹ and the rest wavelength of each line, we can derive the velocity. To obtain the minimum flux line

⁹We use in our analysis the non-relativistic equation, however we compared both relativistic and non-relativistic results and the maximum difference is of ~ 500 km s-1.

phases			
Feature name	Rest wavelength * [Å]	Blue-ward limit range \clubsuit [Å]	Red-ward limit range \clubsuit [Å]
H_{α}	6563	6000 - 6300	6900 - 7100
${ m H}_eta$	4861	4400 - 4700	4800 - 4900
Fe II	4924	4800 - 4900	4900 - 4950
Fe II	5018	4900 - 4500	5000 - 5050
Fe II	5169	5000 - 5050	5100 - 5300
Na I	5893	5500 - 6000	5800 - 6000
Sc II	5531	5400 - 5450	5500- 5550
$\rm Sc~II/Fe~II$	5663	5500 - 5550	5600 - 5700
Ba II	6142	6000 - 6050	6100 - 6150
Sc II	6247	6150 - 6170	6250 - 6270
ΟI	7774	7630 - 7650	7750 - 7780
[O] I] doublet	6300, 6364	6100 - 6250	6350 - 6400
[Fe II] doublet	7155,7172	6350 - 6450	6750 - 6800
[Ca II] doublet	7291,7323	7200 - 6230	7500 - 7600
Ca II IR triplet	8498, 8662	8400 - 8430	8750 - 8850

Table 3.5 Spectral features used to the statistical analysis in the photospheric and nebular phases

* The rest wavelengths are weighted averages of the strongest spectral lines that give rise to each absorption feature.

• These limits are necessary in order to account for variations in spectral feature width and expansion velocity among SNe.

position, a Gaussian fitting was employed, which was performed with IRAF¹⁰ using the *splot* package. As the absorption component presents a wide diversity (e.g. asymmetries, flat shape, extra absorption components) we reproduce the process many times, and the mean of the measurements were take as the minimum flux. As our measurement error we take the standard deviation on the mean. This error is added in quadrature to errors arising from the spectral resolution of our observations and from peculiar velocities of host galaxies with respect to the Hubble flow (200 km s⁻¹). This means that, in addition to the standard deviation error, which realizes the width of the line and signal-to-noise, we take into account the spectral resolution, which in our case is the most dominant parameter to determine the error.

The particular case of the H_{α} velocity was explored as part of this thesis. As few SNe have little or extremely weak absorption component that complicates measuring the minimum, we also employ the full width at half maximum (FWHM) of emission line for its estimation. In this analysis we derive the expansion velocity of H_{α} using both techniques: the minimum flux of the absorption component and the FWHM of the emission component.

The case of O I 7174 where the telluric lines can affect its absorption, and, of course, the measurements, we only use the SNe with a clear separation between both components. This

¹⁰IRAF is distributed by the National Optical Astronomy Observatories (NOAO), which are operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.

means that the amount of SNe with O I measurements in significantly less (only 47 SNe).

3.8.2 Velocity decline rate

To calculate the rate of change of the expansion velocity in SNe II, we select the H_{β} absorption line. Its presence from the first days since explosion, its easy identification and its relatively isolated position in the spectra, make it the ideal line to quantify this property. To analyze quantitatively our sample, we introduce the $\Delta v(H_{\beta})$ as the the mean velocity decline rate in a fixed phase range $[t_0,t_1]$:

$$\Delta v(\mathbf{H}_{\beta}) = \frac{\Delta v_{abs}}{\Delta t} = \frac{v_{abs}(t_1) - v_{abs}(t_0)}{t_1 - t_0}.$$

We measure this parameter over the interval $15 \le t \le 30d$, $15 \le t \le 50d$, $30 \le t \le 50d$, $30 \le t \le 80$ d, and $50 \le t \le 80$ days.

3.8.3 Pseudo-equivalent widths

To quantify the spectral properties of SNe II, another avenue for investigation is the measurement and characterization of spectral line pEWs. The prefix "pseudo" is used to indicate that the reference continuum level adopted is generally not the actual continuum emission. The pEW basically defines the strength of any given line (with respect to the continuum), at any given time. The most simple and used method is to trace a straight line along the absorption feature to mimic the continuum flux. Figure 3.15 shows an example of this technique applied to SN 2003bn. We do not include analysis of spectra where it is difficult to define the continuum level, due to complicated line morphology, such as significant blending between lines. For example, later than 20 - 25 days, all absorption features on the blue part of H_{β} are produced by blends of Fe-group lines plus other strong lines, such as Ca II H & K and H_{γ} . Meanwhile, the Ca II IR triplet λ 8498, 8662 shows a profile that depends on the SN velocity (higher velocity SNe show a single broad absorption, while low velocity SNe show two absorption characteristics). These attributes make a consistent analysis between SNe difficult, and therefore we do not include the analysis of this line in this work.

Grounded on the study of Gutiérrez et al. (2014), we measure the ratio of absorption to emission (a/e) in H_{α} . Unlike Gutiérrez et al. (2014), here, we estimate a/e in all available phases until 120 days. In the same way that we estimate the pEWs of the absorption lines, we evaluate the pEWs for the emission in H_{α} , thus we have:

$$a/e = \frac{pEW(H_{\alpha(abs)})}{pEW(H_{\alpha(emis)})}.$$

3.9 Line Evolution analysis

Here, we present an analysis of when different lines form within different SNe, and make a comparison of those SNe with/without specific lines at different epochs. For all lines included

Figure 3.15 Examples of pEWs used in this work for eleven features in the photospheric phase.

in our analysis, we search for their presence in each observed spectrum. Then, at any given epoch we obtain the percentage of SNe that display each line. This enables an analysis of the overall line evolution of our sample, affording an analysis of whether the speed of this evolution changes between different SNe of different light-curve, spectral, and environment (metallicity) characteristics. In Figure 3.16 we show the percentage of SNe displaying all measured spectral parameters as a function of time. In Table 3.6 are presented all the results obtained with the Kolmogorov-Smirnov (KS) test used to analyze the SNe with/without each line (Fe II line forest, H_{γ} blended, He I, Ca II, Fe II 4924, Fe II 5018, Fe II λ 5169, Fe II blended, Sc II/Fe II, Sc II multiplet, Ba II, and Sc II) as a function of a/e and H_{α} velocity at $t_{tran+10}$, M_{max} , s_2 , and metallicity (M13 N2 diagnostic; Marino et al. 2013) in a particular epoch. The values of the first four parameters can be found in Table 2.1, while the metallicity information was obtained of Anderson et al. (2016).

Figure 3.16 Appearance of different lines in SNe II between explosion and 100 days. Left: from the observed spectra. Right: from synthetic spectra.

Feature name	$v(\mathbf{H}_{\alpha})$	a/e	M_{max}	s_2	M13N2	Epoch [days]
Fe II line forest	5.19	9.80	2.17	3.73×10^{-4}	4.38	0 - 100
H_{γ} blended	29.75	58.33	31.21	55.32	16.10	23 - 27
He I 5876	18.62	1.91	30.94	25.73	46.18	18 - 22
Ca II IR triplet	87.73	91.97	94.47	53.30	98.82	18 - 22
Fe II 4924	2.82	16.84	1.09	4.80	99.40	28 - 32
Fe II 5018	15.68	90.80	99.02	68.84	61.53	18 - 22
Fe II 5169	60.76	35.15	74.88	50.83	20.30	13 - 17
Fe II multiplet	21.38	26.75	1.00	0.25	99.28	33 - 37
Sc II/Fe II 5531	75.60	89.60	30.34	45.20	1.84	38 - 42
Sc II multiplet 5663	63.54	63.54	30.34	80.10	0.79	38 - 42
Ba II 6142	45.75	83.58	1.90	57.43	1.29	38 - 42
Sc II 6247	45.76	83.58	1.89	57.42	0.52	38 - 42

Table 3.6 KS-Test values

Percentage obtained using a KS Test to verify if two distributions (with and without each line) are drawn from the same parent population as a function of $v(H_{\alpha})$, a/e, M_{max} , s_2 , and M13N2 in an particular epoch. This epoch is shown in the last column of the table.

As we said in previous sections, H_{α} and H_{β} are present in the SNe II spectra from the first days, so we do not include them in the plot. We can see that:

- He I/Na I D are present in all epochs, however around 15-25 days less SNe show the line. We suggest that in this epoch the transition from He I to Na I D happens. Therefore, after 30 days we refer to this line as Na I D. It is present in the 96% of the spectra from ~ 35 days. Later than 43 days it is present in all spectra. Using a KS test, we analyze the SNe with and without the He I line between 18 and 22 days. We find that the line is present in SNe with smaller a/e values. No significant differences were found with other spectral and photometric parameters.
- The Ca II IR triplet is present in 50% of the sample at ~ 20 days. Before 20 days it is present in ~ 12% of the sample, while later than 25 days is visible in all the sample, however at 38 days only one spectrum does not show the line. The spectrum corresponds to SN 2009aj, which shows signs of CS interaction in the early phases. With the KS test between 18 and 22 days we find that there are no significant difference between SNe with the Ca II IR triplet and without it.
- The H_{γ} line starts to be blended with Fe-group lines from ~ 20 days, growing dramatically at 35-45 days. Only one spectrum at ~ 46 days does not have the blend (SN 2008bp). Meanwhile, a few spectra show H_{β} surrounded by the Fe II line forest. Using a KS test to find the difference between the distributions with/without the Fe II line forest, we find that faster declining (larger s₂ values) SNe do not show it. There is only ~ $3.73 \times 10^{-4}\%$ chance that they are drawn from the same parent distribution. In general, the Fe II

line forest is present in dimmer SNe (low velocities) and/or SNe in higher metallicity environments.

• The Fe-group lines start to appear around 10 days (see Figure 3.16). The first line that emerges is Fe II λ 5169. We can see that few SNe exhibit the absorption feature before 15 days, however later at 15 days around 50% of SNe show the line and at 30 days all spectra have it. The next line that arises is Fe II 5018. This line is seen from 15 days, being present in all SNe later than 40 days. Meanwhile, Fe II 4924 is seen in one spectrum at 13 days (SN 2008br). From 30 days it is visible in more than 50% of the spectra. The Sc II/Fe II 5531, Sc II multiplet 5668, Ba II 6142 and Sc II 6246 are detectable later than 30 days. The emergence of the Sc II/Fe II 5531 and Sc II multiplet 5668 happens at similar epochs, as well as Ba II 6142 and Sc II 6246. Using a KS test between 38 and 42 days, we find less than 2% chance probability that SNe with Sc II and Ba II lines are drawn from the same metallicity environments as those SNe without them. This suggest the possibility to use these lines as metallicity indicators. Ba II 6142 and Sc II 6246 are also present in low luminosity SNe.

Table 3.7 Model properties

Model	\mathbf{Z}	M_{final}	R_*	E_{kin}
	$[\mathrm{Z}_{\odot}]$	$[{ m M}_{\odot}]$	$[\mathrm{R}_{\odot}]$	[B]
m15z2m3	0.1	14.92	524	1.35
m15z8m3	0.4	14.76	611	1.27
m15z8m3	1.0	14.09	768	1.27
m15z4m2	2.0	12.60	804	1.24
m15mlt1	1.0	14.01	1107	1.24
m15mlt3	1.0	14.08	501	1.34
m12mlt3	1.0	10.50	500	0.25

Summary of model properties used in this work.

Columns: (1) Model name; (2) Metallicity; (3) Progenitor mass; (4) Progenitor radius; (5) Kinetic energy

This analysis was also performed with synthetic spectra for seven different models, which have been presented by Dessart and Hillier (2005), Dessart et al. (2013a). The synthetic spectra used here present the characteristics showing in Table 3.7. In general, the synthetic spectra show the same behaviour that observed spectra. The transition between He I to Na I D is more evident, and it happens between 18 and 40 days. This implies that the transition in synthetic spectra is a little bit later than in observed ones. This could be due to the models only present limited variations in some parameters such as the explosion energy, the radius of the progenitor or the hydrogen envelope mass at the explosion. In the nature a big range of these parameters may cause a huge diversity, as we can see in our sample and its analysis. The Na I D is visible 100% of the sample after 50 days, only 5 days later than the observed spectra. Ca II shows the same behaviour in both synthetic and observed spectra, however H_{γ} is blended in all of the sample later than 90 days, unlike the observed spectra that show it from 45 days. On the other hand, the Fe II line forest is visible from 55 days, in contradiction to the observed spectra that show this characteristic from 30 days. This behaviour is only present in the spectra of higher metallicity model (2 times solar) and in the lower explosion energy model. The iron lines (Fe II λ 4924, Fe II λ 5018, Fe II λ 5169, and the Fe II blended) are present from ~ 15 days, however Fe II λ 5169 is visible in 50% of the spectra, while Fe II λ 4924 is only visible in less than 10%. From 30 days Fe II λ 5169 is present in all the synthetic spectra, which is also seen in the observed ones. The behaviour of Fe II λ 5018 and Fe II λ 4924 is similar in both synthetic and observed spectra. We can see differences in the Fe II blend, which is visible in 100% of the sample from 50 days in the models, however in the observed spectra that never happens. More differences are also appreciable between models and observation in Sc II/Fe II λ 5531, the Sc II multiplet λ 5668, Ba II λ 6142 and Sc II λ 6246. These lines in models arise from 20 days, but in the observations it occurs from 38-40 days. Nevertheless, the evolution of the distribution is similar from 50 days. Although the observed and synthetic spectra have a similar behaviour, we can observe small differences, thus suggesting that the explosion mechanism is related with many different parameters which are not reproduced by the current models.

3.9.1 Expansion velocity evolution

Figure 3.17 shows the velocity evolution of eleven spectral features as a function of time. The first two panels of the plot show the expansion velocity of the H_{α} feature: on the left the velocity derived from the FWHM and on the right that derived from the minimum absorption flux. As we can see, the behaviour is similar, however the velocity obtained from the minimum absorption flux is offset between 1000 and 2000 km s⁻¹ to higher velocities. Figure 3.18 shows this shift at 50 days. Velocities obtained from the minimum absorption flux are higher, with a peak in 8000 km s^{-1} , while the velocity derived from the FWHM shows its peak in 7000 km s^{-1} , and two outliers (extreme cases, the lowest and highest value). Figure 3.19 shows the velocity distribution for the eleven features at 50 days post explosion. We can see that H_{α} shows higher velocities than the other lines, followed by H_{β} . The lowest velocities are presented by the iron-group lines. In Figure 3.17 is possible to see that the H_{β} expansion velocity shows the typical evolution for a homologous expansion and like H_{α} , is possible to see it from early phases. The iron lines display lower velocities than the Balmer lines. According to that, the highest velocity in SNe II is found in H_{α} , which implies that it is formed in the outer layers of the SN ejecta. Meanwhile, based on the lower velocities, the iron-group lines form in the inner part, closer to the photosphere. The O I line does not show a strong evolution. As we can see, its velocity evolution is almost flat.

The lowest velocities are found in SN 2008bm, SN 2009aj and SN 2009au. However, these SNe are distinct from the rest of the population. Unlike sub-luminous SNe II (such as SN 2008bk

Figure 3.17 Expansion velocity evolution for H_{α} (from minimum flux absorption and the FWHM of emission), H_{β} , Fe II λ 4924, Fe II λ 5018, Fe II λ 5169, Sc II/Fe II, Sc II multiplet, Na I D, Ba II, Sc II and O I from explosion to 120 days.

and SN 1999br) – that also display low expansion velocities – these events are relatively bright. They also show early signs of CS interactions, e.g., narrow emission lines. SNe showing the highest velocity depend on which line is being studied. However, in general terms SN 2007ab, SN 2008if, SN 2005Z have larger velocities.

3.9.2 Velocity decline rate of H_{β} analysis

The velocity decline rate of SNe II with time has not been previously analyzed. We estimate the $\Delta v(H_{\beta})$ in five different epochs (which was detailed before) in order to understand their behaviour. We compare them against each other and they show a very strong correlation with each other. This correlation shows that SNe with a higher decline rate at early times keep this conduct at later epochs.

3.9.3 pEWs evolution

The temporal evolution of pEWs for each of the eleven spectral features is shown in Figure 3.20. In general the pEWs increase faster at early times but later, their evolution starts to be quasiconstant. The first two panels show the pEW evolution of H_{α} . On the left is displayed the

Figure 3.18 Distribution of the H_{α} velocity at at 50 days post explosion, obtained form the FWHM of the emission and from the minimum of the absorption.

absorption, while on the right the emission component. The absorption component has values from 0 increasing to ~ 120, however in a few SNe its evolution is different: from 70 days the pEW decreases significantly. This behaviour is observed in low and intermediate velocity SNe (e.g., SN 2003bl, SN 2006ee, SN 2007W, SN 2008bk, SN 2008in, SN 2009N). Generally, these SNe show a very narrow H_{α} P-cygni profile, and at around 70 days from explosion Ba II 6497 appears in the spectra as a dominant feature (see Roy et al. 2011 for more details). As H_{α} and Ba II 6497 are located almost at the same place in the spectrum, and at later time we see more deeper in the ejecta, Ba II grows up. In Figure 3.21 we can see the H_{α} P-Cygni profile with the presence of Ba II 6497, and the HV feature of hydrogen line (see section 3.9.4 for more details) on the blue side of Ba II.

Figure 3.20 also shows the H_{α} emission component evolution. An increment in the majority of SNe is appreciable. There are a couple cases (e.g. SN 2006Y) that display a quasi-constant evolution. The range of pEW of H_{α} emission goes up 400. In the case of H_{β} , we can see that from 60 days there are few SNe with lower pEW values, which show a quasi-constant evolution. SNe with this behaviour are those that show the Fe II line forest. The remaining SNe shows

Figure 3.19 Distribution of the expansion ejecta velocities for 11 optical features at 50 days. The first two panels show the H_{α} velocity obtained from the FWHM and from the minimum absorption flux.

an increase. The pEWs of iron-group lines grow with time, however there is an evident number of SNe with pEW= 0. This indicates that one specific SN does not have the line yet. For Sc II/Fe II, the Sc II multiplet, Ba II, and Sc II this is more obvious. On the other hand, the O I shows an almost constant behaviour and Na I D a steady increase. Comparing the values, we can see that the absorption of H_{α} , H_{β} and Na I D have the highest values (from 0 to ~ 120), while Fe II 4924, Fe II 5018, Sc II/Fe II, the Sc II multiplet, Ba II, Sc II and O I have the lowest ones (from 0 to ~ 50).

The a/e evolution is displayed in Figure 3.22. One can see an increase until ~ 60 days and then, a constant or decreasing behaviour.

3.9.4 Cachito: Hydrogen HV features or the Si II $\lambda 6355$ line?

The nature of Cachito has been studied in the last years. Its presence on the blue side of H_{α} has given rise to multiple interpretations, such as HV features of hydrogen (e.g. Leonard et al., 2002a, Baron et al., 2000, Chugai et al., 2007) or Si II 6355 (e.g. Pastorello et al., 2006). Seventy-two SNe from our sample show the Cachito in the photospheric phase, between 7 and 120 days post-explosion, however its behaviour, shape and evolution is different according to the epoch.

Figure 3.20 pEWs evolution for H_{α} absorption, H_{α} emission, H_{β} , Fe II λ 4924, Fe II λ 5018, Fe II λ 5169, Sc II/Fe II, Sc II multiplet, Na I D, Ba II, Sc II and O I from explosion to 120 days.

In early phases (before 40 days) we detect the line in 55 SNe, while later than 40 days it is visible in 34 SNe. As we said, the Cachito could be due to HV features, Si II λ 6355, or Ba II λ 6497. However, in early phases the presence of Ba II is discarded because the temperature is too hot to produce the line. If Cachito is produced by Si II, its velocity should be similar to those presented by the metal lines. Comparing the Cachito velocities with those obtained by Fe II λ 5018 and Fe II λ 5169, we find that 24% of SNe present a good match, which could favour the Si II interpretation. However, 28 SNe have the Cachito velocity much higher than Fe II lines¹¹. This suggests the presence of HV hydrogen features. In Figure 3.23 we present the velocity comparison, where a good agreement is found between Cachito, assumed as Si II λ 6355 (blue), and the iron lines, Fe II λ 5018 (green) and Fe II λ 5169 (red). SNe with Cachito related to Si II show the line before 35 days, only 3 SNe display it later. Using a KS test we analyze the *a/e* parameter in SNe II with/without Si II and we find that there is only 4% chance that these SNe II are drawn from the same underlying population. SNe II with Si II have smaller *a/e* values in comparison with those SNe that do not have the line.

¹¹Four SNe show a good match with Si II in very early phases, but later than 30 days they do not show it. They also show a different shape between both characteristics (Si II and HV features of hydrogen).

Figure 3.21 H_{α} P-Cygni profile of low and intermediate velocity SNe II: 2003bl, 2006ee, 2007W, 2008bk, 2008in and 2009N around 95 days post-explosion.

According to Chugai et al. (2007), the interaction between the SN ejecta and the RSG wind should result in the emergence of these HV absorption features on the blue side of H_{α} and He I λ 10830. They argue that the existence of a shallow absorption feature is the result of the enhanced excitation of the outer unshocked ejecta. As in the H_{β} line the optical depth is low, the HV feature is not expected in this line, however in H_{α} it could increase with the wind density. Analyzing the Cachito as a HV feature of hydrogen for these 28 SNe (before 40 days), we find a velocity range between 8500 and 15800 km s⁻¹. Investigating the full sample in detail, we have 37 SNe with this shallow feature, between 20 and 80 days. Our result is consistent with those

Figure 3.22 Evolution of a/e between explosion and 120 days.

presented by Chugai et al. (2007) for SN 1999em.

Later than 40 days we detect the presence of Cachito as a narrow and deeper absorption, both on the blue side of H_{α} and H_{β} (see an example in Figure 3.25, where both features are shown). Chugai et al. (2007) argue that in addition to the HV shallow absorption (explained above), a HV notch is formed in the cool dense shell (CDS) behind the reverse shock (similar to the one we detected). We measure the velocities for the Cachito as HV features, both in H_{α} and H_{β} . We find that the HV H_{α} and HV H_{β} are consistent, which favours the hypothesis of CS interaction. The HV H I is found in 30 SNe, however in the low velocity/luminosity SNe, it is only present in H_{α} . This may be because after 50 days the blue part of the spectrum (<5000 Å) is dominated by the metal lines (see the previous analysis), which may hinder its detection in H_{β} . Nonetheless, we argue that these are HV features because the low velocity/luminosity SN, e.g. SN 2006ee shows in spectra at around 50 days both components, in H_{α} and H_{β} at similar velocities. As we do not have sufficient data for the other low velocity/luminosity SNe at similar epochs, we only see the feature in H_{α} . This analysis is displayed in Figure 3.24, where the H_{α} (red), HV H_{α} (blue), H_{β} (cyan), and HV H_{β} (green) velocity evolution is presented for 20 SNe.

Summarizing, Cachito is originated by two different effects: Si II before 40 days, and HV

Figure 3.23 Velocity evolution of Cachito (blue) at early phases compared with Fe II λ 5018 (green) and Fe II λ 5169 (red).

hydrogen features, as shallow absorption later than 30 days, and as deeper and narrow absorption after 40 days.

Figure 3.24 Velocity evolution of Cachito in the plateau phase compared with the Balmer lines. In green: HV of H_{α} , in cyan: HV of H_{β} , in blue: the H_{α} velocity and in red the H_{β} velocity.

3.9.5 Ο Ι λ7774

Faran et al. (2014b) suggested that O I λ 7774 can be used as proxy for a helium rich ejecta. They argue that fast declining SNe are more helium rich, and hence hydrogen poor. This conclusion is based on the higher pEW values of O I relative to H_{α}. As we said in previous sections (see section 3.7.6), O I is contaminated by the telluric A-band absorption, and its analysis is more complicated by this fact. In spite of this, we analyse the line in those SNe where the telluric line is clearly separated from O I. Thus, the analysis was possible in 49 SNe II (~ 40% of our sample).

Figure 3.25 Spectral evolution of H_{α} and H_{β} lines of SN 2004fc. The dotted lines correspond to the HV features seen on the blue side of H_{α} and H_{β} from 50 to 120 days. We can see that the HV features show a velocity evolution from ~ 9000 to ~ 8000 km s⁻¹.

Reproducing Figure 14 from Faran et al. (2014b), but at 35 days since explosion, we find the same behaviour. Faster declining SNe show higher pEW(O I)/pEW(H_{α} abs). Figure 3.26 shows this relation. Using the Pearson Correlation test, we find a moderate correlation of 0.52. However, we note that this correlation is biased by H_{α} absorption measurement. According to Gutiérrez et al. (2014), fast declining SNe show smaller pEW of the H_{α} absorption component, thus, this parameter that could control the ratio. Despite this, we check the relation between the pEW of O I and s₂ and we find a weak correlation (0.39). In order to analyze if faster declining SNe have the O I line stronger than plateau ones, we divide our sample in fast declining SNe (s₂ >1.5) and plateau SNe. A KS-test gives 35.4% probability that the two distribution are drawn from the same parent population, which implies that the oxygen abundance does no affect the light curve behaviour. In fact, according to the radiative-transfer simulations, when the main sequence mass increases, the atmosphere should be more nitrogen rich and more oxygen poor, so O I is not a diagnostic of He I abundance (private communication with Luc Dessart). This

result contradicts the conclusions of Faran et al. (2014b).

Figure 3.26 Correlation between pEW(O I)/pEW(H_{α} abs) and s₂ at 35 days since explosion.

3.10 Conclusions

In this work we have presented the optical spectra of 123 nearby SNe II observed between 1986 and 2009. A total of 893 spectra ranging between 3 and 363 days post explosion have been analysed. A statistical analysis of the spectral matching technique was discussed as an alternative to non-detection constraints for estimating SN explosion epochs.

In order to quantify the diversity of the spectra we analyse the appearance of the photospheric lines and their time evolution in terms of the a/e and H_{α} velocity at $t_{tran+10}$, M_{max} , s_2 , and metallicity (M13 N2). We analysed the velocity decline rate of H_{β} , the a/e evolution, the expansion ejecta velocities and the pEWs for eleven features: H_{α} , H_{β} , He I/Na I D, Fe II λ 4924, Fe II λ 5018, Fe II λ 5169, Fe II blended, Sc II/Fe II, Sc II multiplet, Ba II, Sc II, and O I. We find a large range in velocities and pEWs, which can be related with a diversity in the explosion energy, radius of the progenitor, and metallicity. In addition, we analysed the nature of Cachito during the photospheric phase. We used and analysed 7 spectral models with different explosion properties with the aim of understanding the spectral evolution with time. The evolution in both, observed and synthetic spectra shows few differences, probability due to the lack of more diverse models.

The main results obtained with our analysis are summarizing as follows:

- The H I lines are present in the SNe II spectra from the first days until the nebular phase. However, at around 20 days, H_{γ} and H_{δ} start to be blended with the Fe II-group lines.
- In early phases (before than 20 days), SNe II show the He I 5876 feature. Between 15 and 25 days the transition between He I and Na I D happens. Therefore, later than 30 days the feature presented in the spectra is associated to Na I D.
- Around of 18% of our sample display the Fe II line forest. These absorption features around H_{β} emerge at ~ 30 days post-explosion. Using KS test we find that fast declining SNe do not show the forest. The Fe II line forest is present in dimmer SNe II with low velocities and/or in high metallicity environments. Comparing this result with the synthetic spectra, we find that the forest is visible from 55 days and it is only present in higher metallicity (2 times solar) and lower explosion energy models, which is consistent with our observed results.
- The Ca II IR triplet is present in the SNe II spectra from 20 days. Its appearance happens almost at the same time that Fe II 5018.
- The Fe II-group lines start to appear at around 10 days. The first line that emerges is Fe II λ 5169, followed by Fe II λ 5018 and Fe II λ 4924. Fe II blend, Sc II/Fe II, Sc II multiplet, Ba II, Sc II are visible from 30 days post-explosion. A KS test shows that the Sc II and Ba II lines are more sensitive to metallicity than Fe II lines.
- Around of 60% of our SNe II show the Cachito feature between 7 and 120 days since explosion. Cachito at early phases is associated with Si II λ 6355 and it could be related with higher temperatures. This feature shows similar velocities to those presented by metal lines, such as Fe II λ 5169 and Fe II λ 5018 (between 10000 and 2000 km s⁻¹). SNe with Si II show, in general, a weak H_{α} absorption component. In the recombination phase, Cachito is associated with the HV features of hydrogen lines. Its presence later than ~ 25 days could imply signs of interaction between the SNe ejecta and the RSG wind. Fiftythree SNe of our sample display the line, however based on their shape we divided them into two groups: SNe with a shallow absorption and SNe with a notch absorption.
- In early phases (before 25 days), SNe II with a weak H_{α} absorption component present the He I λ 5876 and the Si II λ 6355 features. We speculate that these SNe have higher temperatures at this epoch.
- SNe II display a huge variety of velocities. The H_{α} line shows the highest velocity, followed by H_{β} , while the lowest velocities are presented by the Fe II-group. The velocities evolution

are well fitted with power laws, however for O I line its velocity evolution is almost constant.

- The H_{α} velocities derived from the minimum absorption flux show a shift to higher velocities of ~ 1000 km s⁻¹ compared to those obtained from the FWHM of the emission component. However, their behaviour and evolution with time are similar.
- O I λ 7774 absorption relative to H_{α} shows stronger values in fast declining SNe II, as Faran et al. (2014b) showed. However, we conclude that O I is not a good proxy for a helium-rich envelope.
- Three SNe in our sample (SN 2008bm, SN 2009aj and SN 2009au) show the lowest velocities, nevertheless unlike sub-luminous SNe II that also present low velocities, they are relatively bright. We found that these SNe have early signs of CS interactions.
- SNe II with a higher velocity decline rate at early times present the same behaviour at late epochs.
- In SNe II, the pEWs temporal evolution presents an increase faster in the early times but later, their evolution start to be quasi-constant. This behaviour is seen in H I and Fe II-group lines, however in Na I D, it is steady increase.
- We find that six low and intermediate velocity SNe (e.g., SN 2003bl, SN 2006ee, SN 2007W, SN 2008bk, SN 2008in, SN 2009N) show a complex H_{α} P-cygni profile: a small and narrow absorption associated to H_{α} feature and an extra broad and strong absorption component corresponding to Ba II λ 6497.

All data analysed in this work are available on http://csp1.lco.cl/, as well as the additional SNID templates (22 SNe), for the SNe II comparison.

Chapter 4

Type II supernova spectral diversity. Paper II: Spectroscopic and photometric correlations

4.1 Abstract

We present an analysis of correlations between various of spectral and photometric parameters of more than 100 type II supernovae. Looking for correlations at three different epochs (30, 50 and 80 days from explosion), we find that they are stronger at 50 days. We speculate that this happens because at this epoch all the SNe II are in the recombination phase and probably they have similar physical conditions. Analyzing these correlations, we find that supernovae with higher velocities are brighter, have more rapidly declining light curves, shorter optically thick duration phases and shorter plateau durations, and higher ⁵⁶Ni mass. Trying to relate the observed parameters of the SN with the physical properties of the progenitor star and explosion, we conclude that the plateau duration (Pd) is the best hydrogen mass indicator. We also find that the hydrogen mass does not affect the expansion velocities observed, while neither does the explosion energy significantly affect the plateau duration. A relation between SNe II with the Si II $\lambda 6355$ line and the decline rates in the light curve are found. We suggest that these SNe have progenitor stars with larger radius.

4.2 Introduction

It is commonly accepted that Core-Collapse Supernovae (CC-SNe) are produced by the explosion of massive (> 8 M_{\odot}) stars, which collapse when they have spent their nuclear fuel. CC-SNe display a wide spectral and photometric variety that leads to their classification. One of the most commonly applied SN type classifications is based on the presence or absence of hydrogen within SN spectra. SNe where hydrogen is clearly visible are called SNe II, while those without these features correspond to SNe Ib/c (Minkowski, 1941, Filippenko, 1997).

Initially, SNe II were classified according to the shape of the light curve: SNe with a faster decline rate are called SNe IIL, while SNe with almost constant luminosity for several months were called SNe IIP (Barbon et al., 1979). However, years later, two new classes of SNe II emerged: SNe IIn and SNe IIb. SNe IIn show narrow emission lines in their spectra, possibly due to interaction with a circumstellar medium (CSM) (Schlegel, 1990), while SNe IIb are thought to be transitional events between SNe II and SNe Ib (Filippenko et al., 1993). The overall properties of SNe IIn and SNe IIb are sufficiently distinct from 'normal' SNe II, that we do not include them for study, and they are no longer discussed in this paper.

With ever increasing numbers of SNe, new sub-classes have appeared. Menzies et al. (1987), Catchpole et al. (1987, 1988) presented the analysis of SN 1987A, an object that exhibited typical characteristics of the SN II spectra, but a peculiar light curve. With this SN the 87A-like objects were introduced. Examples of these SNe can be found in Pastorello et al. (2005), and Taddia et al. (2013)¹. Later, Pastorello et al. (2004) and more recently Spiro et al. (2014) studied the properties of low luminosity SNe II, which have narrow spectral lines (indicating low expansion velocities) and low luminosities. On the other hand, Inserra et al. (2013) analyzed a group of luminous SNe II. Lately, intermediate luminosity SNe (e.g. Roy et al., 2011, Takáts et al., 2014) have been also studied, supporting the wide diversity in SNe II.

Red Super-Giant (RSG) stars with zero-age main-sequence mass $\geq 8 \, M_{\odot}$ have generally been assumed as the progenitors of SNe II, with hydrodynamical modelling supporting this hypothesis (Chevalier, 1976). In recent years, a significant number of direct identifications of the progenitor stars of nearby SNe IIP (e.g. Van Dyk et al., 2003, Smartt et al., 2004, 2009, Maund and Smartt, 2005, Smartt, 2015) suggest that Red Supergiant (RSG) stars with masses of 8 - 20 M_{\odot} are their progenitors, supporting initial assumptions. There is weak evidence of the range of mass of SNe IIL because only two direct identifications have been obtained (Elias-Rosa et al. 2010, 2011, but see Maund et al. 2015), however these do give some evidence in favor of higher mass progenitors. However, a recent analysis by Valenti et al. (2016) did not find any evidence for progenitor mass differences between SNe II of different decline rates.

While direct detections of progenitors have constrained a relatively narrow mass range for SNe II, the same SNe show significant differences in their final explosive displays (e.g. SN 2008bk, a low luminosity event, and SN 2004et, a normal SNe II). It must therefore be the case that differences in stellar evolutionary processes leave the progenitors in different final states (e.g. the extent of the hydrogen envelope, the progenitor radius at explosion) or explode with e.g. different energies, in order to produce the diversity we observe.

Theoretical studies have suggested that progenitors that explode with smaller hydrogen envelope masses produce faster declining light curves (SNe IIL), together with shorter or non-existent 'plateaus' (Litvinova and Nadezhin, 1983, Popov, 1993, Moriya et al., 2016). An

¹As the SN 87A-like objects have different progenitor properties than 'normal' SNe II, we also exclude them from our analysis.

alternative study presented by Kasen and Woosley (2009) shows that a change in the explosion energy leads to a range of luminosities, velocities, and light curve durations. That is to say, higher explosion energies result in brighter events with higher expansion velocities and shorter plateaus. They also found that an increasing synthesised ⁵⁶Ni mass extends the length of the plateau (see also Bersten 2013). Meanwhile, Dessart et al. (2013b) using radiative-transfer models explored the properties of SNe II changing the physical parameters (e.g. metallicity, explosion energy, radius). They found that the radius has an influence in the temperature evolution (more compact objects evolve faster) and in the plateau brightness, while a variation in the explosion energy leads in a variation of the plateau brightness and the plateau duration, which is consistent with the Kasen and Woosley (2009) predictions.

To quantify the spectral and photometric diversity, a few statistical studies of SNe II have been published. Patat et al. (1994) characterized the properties of 57 SNe II using the maximum *B*-band magnitude, the color at maximum and the ratio of emission to absorption (e/a) in H_{α}. They concluded that faster declining events are more luminous, have shallower P-Cygni profiles (larger e/a values) and are bluer than SNe IIP. After this work, the majority of more recent studies are focused on SNe IIP. Hamuy et al. (2002) analyzed 17 SNe IIP and found that SNe with brighter plateaus have higher expansion velocities. Hamuy (2003) concluded that more massive SNe IIP progenitors produce more energetic explosions and in turn produce more nickel. Similar results were found by Pastorello et al. (2003) and more recently by Faran et al. (2014a). The only exception to these works about SNe IIP was published by Faran et al. (2014b), whom analyzed a sample of SNe IIL.

Most recently Gutiérrez et al. (2014), Anderson et al. (2014a) with large samples analyzed the dominant line in SNe II, the H_{α} P-Cygni profile. Gutiérrez et al. (2014) working with 52 SNe II concluded that the differences in the ratio of absorption to emission (a/e) on H_{α} are mainly related with the mass of the H envelope at the moment of the explosion. This shows that SNe with less pronounced absorption are brighter and have fast declining light curves. Meanwhile, Anderson et al. (2014a) analyzed the blueshifted offset in the emission peaks of H_{α} of 95 SNe II. Through comparison to spectral modelling (Dessart et al., 2013a), they argue that this behaviour is a natural consequence of the distinct density distribution found in SN ejecta.

With the analysis of 117 SNe II, Anderson et al. (2014b) studied the light curve diversity of these objects. They found that SNe II with shorter plateau duration (Pd) exhibit faster decline rates (s₂ in their nomenclature). They concluded that the envelope mass at the epoch of explosion is the dominant physical parameter that explains this observed diversity. Similar results were found by Sanders et al. (2014) and Valenti et al. (2016). They also found that SNe IIP and SNe IIL show a continuum in their photometric properties and it is not possible separate into two different types.

In addition to these results, Anderson et al. (2014b) found relatively high radioactive decline rates (s_3) values for a significant number of SNe. As s_3 is related with ⁵⁶Co decay, and the expected decline rate value for full trapping of gamma-ray photons is 0.98 mag per 100 days, a higher decline rate implies lower ejecta mass where full trapping is not achieved. As we can see, the relation between observed parameters and physical properties are limited only to few parameters (e.g. hydrogen envelope mass, explosion energy), however, more links between observed and physical properties have not been established until now, which encourages us to further investigate them.

While there is now an abundance of literature on individual SNe II, together with much recent work on photometric diversity within this class, large scale studies focussing on the spectral diversity of SNe II are still lacking. This motivates our current work where we study a sample of almost 1000 optical-wavelength spectra of > 100 SNe II. To that aim, we divide the analysis into two chapters. In chapter 3 we present the full description of the observations, data reduction techniques, and the spectral properties. We discuss also the spectral matching technique to estimate the explosion epochs, the analysis of the spectral line evolution and the nature of the extra absorption component on the blue side of H_{α} .

Here, in chapter 4 we present an analysis of correlations between different spectral parameters defined to explore the diversity of SNe II, together with their correlation with previously defined photometric parameters. Expansion velocities, pseudo-equivalent widths (pEWs), the ratio of absorption to emission (a/e) of the H_{α} P-Cygni profile, and velocity decline rates are used to search for correlations with photometric parameters and between other spectral properties. We analyze the spectral correlations and we determine the most important properties to compare them with the photometric parameters. Our overall aim is to search for trends between different measured parameters, and then attempt to link these to the underlying physical properties of SN II progenitors.

The chapter is organized as follows. Section 4.3 briefly describes the data employed to this analysis. In Section 4.4 we describe the measurements techniques. The observed parameters and their physical implications are explained in Section 4.5. The full analysis is presented in Section 4.6, while the discussion is in Section 4.7 and conclusions in Section 4.8.

4.3 Data

The data used in this analysis were published in Gutiérrez et al. (2016) and Anderson et al. (2014b). The details of the spectroscopic and photometric observations and reductions can be found in the mentioned studies. On average we have 7 spectra per SN and their V-band light-curve evolution. Details of these SNe are available in Anderson et al. (2014b), Anderson et al. (2014a), Gutiérrez et al. (2014), Galbany et al. (2016), Gutiérrez et al. (2016).

A small number of SNe presented in Gutiérrez et al. (2016) are excluded from this work: SN 2009A shows atypical spectra and weird behavior that complicates their analysis. SNe 1988A, 1990E, 1992ad, 1992am, 1993A, 1999eg, 2002ew, 2003dq, 2004dy, 2005dw, 2005es, 2005K, 2005me, 2006bc, 2007Z, 2008F, 2009W are not used in the current analysis as they have insufficient spectral and/or photometric data to be useful.

4.4 Measurements

SN II evolution with time can be studied according to both spectral and photometric behaviour. At early phases the spectra exhibit the Balmer lines (H_{α} , H_{β} , H_{γ} , H_{δ}), and He I λ 5876 Å. With time, the iron group lines start to appear and to dominate the region between 4000 and 6000 Å. The Ca II triplet, Na I D, and O I also emerge. The light curve at the beginning shows a slight decline, which is powered by the shock wave. Around ~ 30 days post-explosion a plateau arises. It is powered by the recombination of hydrogen in the SN ejecta. When the recombination phase ends (around 80-120 days post explosion), the transition to the nebular phase starts and the light curve drops. Once this happens, the radioactive tail phase starts. This phase is powered by the radioactive decay of ⁵⁶Co to ⁵⁶Fe. Later than ~ 200 days, the spectra are dominated by forbidden lines, which are formed in the inner part of the ejecta. Both spectral and photometric diversity have been observed, which suggest differences in the explosion and progenitor star.

To study the diversity within SNe II we use the spectral and photometric parameters defined in Gutiérrez et al. (2014) and Anderson et al. (2014b). We also define a number of additional parameters below. These measurements are chosen to enable a full characterisation of the diversity of SN II V-band light-curve and optical wavelength spectra.

4.4.1 Spectral measurements

Before proceeding with our spectral analysis, below we summarise the parameters we will use, as defined in Gutiérrez et al. (2016):

- *vel*: corresponds to the expansion ejecta velocity. It is derived from the minimum flux of the absorption component of P-Cygni line profile. In this analysis we measure this parameter for eleven features in the photospheric phase: H_{α} , H_{β} , Fe II 4924, Fe II 5018, Fe II 5169, Sc II/Fe II 5531, Sc II M, Na I D, Ba II 6142, Sc II 6247, and O I 7774. In the case of H_{α} , the velocity was also derived using the full width at half maximum (FWHM) of the emission component.
- $\Delta v(H_{\beta})$: defined as the rate of change of the expansion velocity of the H_{β} feature. This parameter was measured at 5 distinct intervals (see Gutiérrez et al. 2016), however here we only use the interval 50 $\leq t \leq$ 80 days, as this shows the highest correlation with other parameters.
- Δvel : defined as the velocity difference between H_{\alpha} and Fe II 5018, and Na I D and Fe II 5018.
- pEW: corresponds to the absorption/emission strength of a particular line. Here, we measure the absolute value of pEW for the same features shown above.
- a/e: defined as the flux ratio of the emission to absorption component of H_{α} P-Cygni profile.
Although the spectroscopic measurements (velocities and pEWs) were done in all phases where data were available, to characterize our sample we choose a common epoch with respect to the explosion date. Thus, we use values at 30, 50 and 80 days from explosion. Interpolation and extrapolation is used to obtain parameter values at these epochs. The values obtained by the interpolation are used when two available spectra are present ± 15 days around the common epoch, while the values from the extrapolation are used at ± 10 days. These intervals were chosen as they increase the strength of observed correlations. Using bigger intervals causes a drop of correlations because the polynomial does not produce reliable results in some cases (particularly for the pEW). At ± 15 and ± 10 days for interpolation and extrapolation, respectively, the results do not show a significant change comparing with those obtained using a smaller interval. Hence, our choice intervals is justified. To estimate the velocity at a common epoch, we do an interpolation/extrapolation using a power law fit, while for the pEW we use a low order (first or second) polynomial fit. Power law fits were found to produce satisfactory results in the case of velocity measurements, however for pEWs we found that low-order polynomials were required. For this parameter we used a low order polynomial and the best fit was determined by the lower normalized rms. The errors of each measurement were obtained with the rms error fit. In summary, we are able to use spectral parameter values in in 88, 78, and 59 SNe at 30, 50 and 80 days, respectively.

4.4.2 Photometric measurements

Historical separation of SNe II into distinct classes has been achieved through photometric differences in e.g. decline rates and absolute magnitudes. Hence it is essential to include photometric parameters in our analysis for a full understanding of observed correlations and their implications for SN II physics. Here, we use the V-band photometric parameters already defined (and measured) in Anderson et al. (2014b), which we now summarise:

- t₀: corresponds to the explosion epoch (see Gutiérrez et al. 2016 for more details of their estimation.)
- t_{tran} : determined as the transition between the initial decline (s_1) and the plateau decline (s_2) .
- t_{end}: corresponds to the end of the optically thick phase.
- t_{PT} : is the mid point of the transition from 'plateau' to radioactive tail.
- OPTd: is the optically thick duration phase, defined between t_0 and t_{end} .
- Pd: is the plateau duration, defined between t_{tran} and t_{end} .
- M_{max} : defined as the initial peak in the V-band light-curve.
- M_{end} : defined as the absolute V-band magnitude measured 30 days before t_{PT} .

- M_{tail} : defined as the absolute V-band magnitude measured 30 days after t_{PT} .
- s₁: defined as the decline rate in magnitudes per 100 days of the initial, steeper slope of the light-curve.
- s_2 : defined as the decline rate (V-band magnitudes per 100 days) of the second, shallower slope in the light curve.
- s_3 : defined as the linear decline rate (V-band magnitudes per 100 days) of the slope reached after its transition from the previous 'plateau' phase.
- ⁵⁶Ni mass: corresponds to the mass of nickel synthesised in the explosion (see Anderson et al. 2014b for exact details of how this was estimated).

Values for these parameters can be found in Table 5 in Anderson et al. (2014b). However, it should be noted that in this work some of these parameters were updated: t_{tran} , Pd, M_{max} , M_{end} , M_{tail} , s_1 and s_2 . In the case of the magnitudes, we found that ignoring host galaxy extinction corrections actually produced higher correlations than including them. This suggests that a) in the vast majority of cases host galaxy extinction is relatively small, and b) when we do make extinction corrections (using the absorption Na I D in Anderson et al. 2014b), such corrections are not particularly accurate. Therefore, all magnitudes are being used without host galaxy extinction corrections. For t_{tran} we used the F-test to decide whether the fit was better or not (Anderson et al. 2014b used the BIC criterion. For more details about the F-test, see Galbany et al., in prep.). This method increases the number of SNe with t_{tran} available. This then increases the number of SNe for which we can define s_1 and Pd. All values used in the current analysis are listed in Table 4.2.

Besides the parameters defined by Anderson et al. (2014b) we include two more parameters:

- $\Delta E(B-V)$: defined as the color gradient. We defined this parameter in three different range: $10 \le t \le 20d$, $10 \le t \le 30d$, and $20 \le t \le 50d$.
- Cd: corresponds to the cooling phase durations (Cd), defined between t₀ and t_{tran}.

4.5 Observed parameters and their physical implications

The basic properties of the progenitor stars and explosion that have a significant influence on SN II diversity are the explosion energy (E), ejecta mass (M_{ej}) , pre-supernova radius (R_0) , the ⁵⁶Ni mass, and metallicity. Theoretical works (e.g. Young, 2004, Kasen and Woosley, 2009, Dessart et al., 2013a) have studied how variations of these parameters influence their light-curves and spectra. They found that luminosity, expansion velocities and plateau duration depend on these parameters.

The most commonly used parameter to link observed SN properties to progenitor

characteristics has been the duration of the plateau. It has been associated to the hydrogen envelope mass of the progenitor at the moment of the explosion. Theoretical models (e.g. Litvinova and Nadezhin, 1983, Popov, 1993) have shown that the plateau duration is more sensitive to the H envelope mass, which implies that the mass of the envelopes are higher in SNe with extended plateaus. And erson et al. (2014b) compared the OPTd and Pd parameters with the decline rates of the light curves and concluded that faster declining SNe II display shorter Pd and OPTd values. However, Anderson et al. (2014b) and more recently Valenti et al. (2016) have used the OPTd parameter as the indicator of the H envelope mass. Although there is a close relationship between *OPTd* and *Pd*, they are associated with different physical parameters. Pd is directly related with the H envelope mass, while OPTd mixes physics from the radius and the amount of hydrogen mass. As we explained before, OPTd is defined between the explosion and the end of the plateau. In this range of time, the light curve shows different behaviours: an initial rise to peak brightness and a steeper decline powered by the shock cooling. Later, when the temperature at the photosphere decreases to ~ 5500 K, the hydrogen recombination phase starts and the light curve displays a plateau. According to Young (2004), the progenitor radius has the largest effect on the early light curve, when the shock wave hits the surface. On the other hand, the hydrogen envelope mass has a more significant impact in the length of the plateau. All this suggests that the association of *OPTd* with the H mass has been misinterpreted.

Another observational parameter that has a direct association to the ejecta mass is the radioactive tail decline, s_3 . Based on (Woosley et al., 1989), the expected decay rate of s_3 is 0.98 mag per 100 days, assuming full trapping of gamma-ray photons from the decay of ⁵⁶Co. However, Anderson et al. (2014b) found that 10 SNe in their sample have values higher values for s_3 , which suggests that in these cases, the ejecta mass is too low for full trapping of the gamma-ray emission. Although they found this relation, the low amount of SNe with Pd and s_3 did not allow to confirm this relationship.

The expansion velocity and luminosity of SNe II are both set by the explosion energy (Kasen and Woosley, 2009): more energetic explosions produce higher photospheric velocities, and in turn, brighter events. These results have been showed in an observational way by Hamuy and Pinto (2002), Hamuy (2003).

More recently, Dessart et al. (2010); Dessart et al. (2013a) showed that in SNe with small radii, the recombination phase starts faster. This would imply that the phase between the explosion and t_{tran} (cooling duration phase, Cd) is shorter in these SNe. Based on that, we could suggest that Cd would have a relationship with the radius of the progenitor.

In summary we have that the hydrogen envelope mass is directly related with Pd, s₃; the explosion energy with the expansion ejecta velocities (*vel*), and the luminosities (M_{max}, M_{end}); the radius of the progenitor would have some influence in Cd.

4.6 Results

In this section we investigate the spectral and photometric diversity of SNe II through correlations. Here we present the statistics of these correlations and their respective figures. As stated above, the spectral measurements were performed in the phases where the data were available, however to characterize this diversity, the analysis is done at 30, 50 and 80 days with respect the explosion epoch. In Table 4.1 we can see the average of the correlations for each parameter at 30, 50 and 80 days. The mean of these correlations shows a value of 0.299, 0.357 and 0.362 for each epoch, which implies that the correlations are a little stronger at 80 days. As at 80 days there are fewer spectral measurements available (59) compared to those at 50 days (78), and the mean is similar, the following analysis is performed at 50 days. In Table 4.3, and 4.4 are listed the measured spectral parameters, while in Table 4.2 is presented the photometric ones.

Table 4.1 Average of correlations

Parameter	Average at 30 days	Average at 50 days	Average at 80 days
Pd	0.267	0.305	0.289
OPTd	0.249	0.297	0.312
Cd	0.196	0.197	0.233
M_{max}	0.399	0.418	0.381
M_{end}	0.331	0.357	0.378
M_{tail}	0.396	0.454	0.519
s_1	0.321	0.392	0.373
s_2	0.317	0.345	0.324
S3	0.341	0.360	0.365
⁵⁶ Ni	0.355	0.505	0.549
$\Delta C_{(10-30)}$	0.204	0.218	0.190
$V(H_{lpha})$	0.363	0.477	0.489
$ m V(H_{eta}$	0.419	0.482	0.469
V(Fe II 5018)	0.398	0.447	0.427
V(Fe II 5169)	0.401	0.472	0.463
V(Na I D)	0.401	0.521	0.530
$pEW(H_{lpha})_a$	0.271	0.274	0.281
$\mathrm{pEW}(\mathrm{H}_{lpha})_{e}$	0.166	0.347	0.423
pEW(Fe II 5018)	0.321	0.348	0.257
pEW(Fe II 5169)	0.198	0.215	0.180
pEW(Na I D)	0.198	0.238	0.316
a/e	0.291	0.304	0.317
$\Delta vel(\mathrm{H}_{\alpha} - \mathrm{Fe~II~5018})$	0.152	0.313	0.423
Δvel (Na I D - Fe II 5018)	0.283	0.424	0.421
$\Delta v(\mathrm{H}_{eta})$	0.244	0.211	0.163

In the first column the SN II parameter is listed (described in 4.4, measurements by the average of the correlations at 30, 50 and 80 days since explosion.

4.6.1 Spectral correlations in the photospheric phase

Figure 4.1 Correlation matrix of the individual velocity measurements at 50 days. Colors indicate the absolute Pearson correlation coefficient ρ . The diagonal middle line shows the name of the parameter: H_{α} from FWHM and from the minimum absorption flux, H_{β} , Fe II 4924, Fe II 5018, Fe II 5169, Sc II/Fe II 5531, Sc II M, Na I D, Ba II 6142, Sc II 6247, and O I) 7774 velocities.

We analyze the spectral properties of SNe II, focusing on correlations between pEWs, expansion velocities, velocity decline rate, and velocity differences. Figure 4.1 shows the correlation matrix of the velocity measurements at 50 days obtained by estimating the Pearson correlation. Correlation coefficients are displayed in colors: darkest colors (green and purple) represent the highest correlation found with the Pearson correlation test (-1 and 1, respectively), while white colors (0) mean no correlations. These colors are presented in the lower triangle, while the upper triangle shows the Pearson correlation value (ρ). It is generally considered that correlation coefficients between 0 and 0.19 represent close to zero correlation, 2-0.39 weak, 0.4-0.59 moderate, 0.6-0.89 strong, and 0.8-1 very strong. We will use these descriptions for the following discussion. As shown in Figure 4.1, all velocities strongly correlate positively with each other, as we would expect for an homologous expansion ($v \propto r$). Taking an average, v(Sc II)6247, v(O I) 7774 and v(Fe II) 5018 show the highest correlations with the other parameters, with a value of 0.892, 0.887 and 0.887, respectively, while Fe II 4924 shows the lowest (0.794). The Sc II 6247 line velocities correlate strongly with Fe II 5018 and Sc II/Fe II 5531, with a value of $\rho = 0.95$. It is important to note that while the velocities all correlate, they are offset. In general, the differences in the velocities are related with the optical depth for each line and the proximity to the photosphere. As H_{α} displays the highest velocities, it is mostly formed in the outer shell of the ejecta and its optical depth is much larger than the Fe II lines, which are forming near to the photosphere. More details about that, can be found in Gutiérrez et al. (2016).

Figure 4.2 Correlation matrix of the individual pEW measurements at 50 days. Colors indicate the absolute Pearson correlation coefficient ρ . The diagonal middle line shows the name of the parameter: pEW(H_{α}) of absorption component, pEW(H_{α}) of emission component, pEW(H_{β}), pEW(Fe II 4924), pEW(Fe II 5018), pEW(Fe II 5169), pEW(Sc II/Fe II 5531), pEW(Sc II M), pEW(Na I D), pEW(Ba II 6142), pEW(Sc II 6247), pEW(O I 7774) and a/e.

Figure 4.2 shows the correlation matrix of the pEWs measurements at 50 days. Searching for correlations of pEWs with each other, we find that Sc II/Fe II 5531 seems to be the dominant parameter to correlate with all the other pEWs (on average 0.404), while the pEW of H_{α} absorption component shows very weak correlations with other pEWs. The strongest correlations are displayed by the iron-group lines with each other. We can see moderate correlations between the pEW of O I 7774 and H_{β} . In the case of a/e we find a moderate correlation only with Fe II 4924 ($\rho = 0.43$) and anticorrelation with pEW of H_{α} emission ($\rho = -0.43$). While H_{β} shows a weak correlation with H_{α} absorption component ($\rho = 0.3$), the correlation with H_{α} emission

component is strong, with a $\rho = 0.78$. This could be due to the optical depth of H_{α} is much larger, and/or H_{β} is overlapping with Fe II, Sc II, Ba II lines.

Figure 4.3 Relations between H_{α} velocities and the pEWs of H_{α} of absorption and emission component, H_{β} , Fe II 4924, Fe II 5018, Fe II 5169, Sc II/Fe II 5531, Sc II multiplet, Na I D, Ba II 6142, Sc II 6247, and O I 7774. On the top left of each panel the spectral feature name is displayed, together with the Pearson correlation value.

Figures 4.3, 4.4, and 4.5, show the relations between the H_{α} , Fe II 5169, and Na I D velocities and the pEWs for the 11 features explained above. Checking these correlations we see that velocities correlate positively with Balmer and Na I D lines, but negatively with Fe II lines. For H_{α} we present the pEW of the absorption and emission component. In the three figures are shown that there are five objects with the lowest velocities and smallest pEW values. Three of these SNe show signs of interaction at early phases (SN 2008bm, 2009au and 2009bu). The other two SNe are SN 2008br and SN 2002gd. In those panels plotting pEWs of Fe II 4924, Sc II/Fe II 5531, Sc II M, Ba II 6142, and Sc II 6247, one can see that there are many SNe with pEW = 0. In these spectra we do not detect these lines.

In Figure 4.3 we can see that the H_{α} velocities do not show correlation with pEW(Fe II 5169), pEW(Na I D), and pEW(Sc II 6247). The strongest correlations are shown with pEW of H_{α} (emission component), H_{β} , and anticorrelations with Fe II 4924, and Fe II 5018. Figures 4.4 and 4.5 show that Fe II 5169 and Na I D velocities present more scatter in their relations than

those shown by H_{α} velocities. Both Fe II 5169 and Na I D velocities have correlations with pEW of H_{α} (emission component), H_{β} , and anticorrelations with Fe II 4924, and Fe II 5018. There are no correlations with the rest of the pEWs (except for pEW(Na I D) with Na I D velocities).

Figure 4.4 Same as Figure 4.3 but for Fe II 5169 velocities.

The expansion ejecta velocities with $\Delta v(H_{\beta})$ show anticorrelations, which are stronger at late epochs (between 50 and 80 days) than at early phases (15 to 30 days, 15 to 50 days, and 30 to 50 days). Meanwhile, $\Delta vel(H_{\alpha}-Fe \text{ II 5018})$ and $\Delta vel(\text{Na I D}-Fe \text{ II 5018})$ show correlations with the expansion velocities at 50 days (see Figure 4.6).

4.6.2 Spectroscopic and photometric properties

Here we present a comparison of spectroscopic and photometric properties of SNe II. While we have defined and measured 31 spectroscopic and 13 photometric parameters, here we choose a smaller number of parameters to focus on and search for correlations between them. Thus, we employ 14 spectral and the 11 photometric parameters: $v(H_{\alpha})$ obtained from the FWHM of the emission component, $v(H_{\beta})$, v(Fe II 5018), v(Fe II 5169), v(Na I D), $pEW(H_{\alpha(abs)})$, $pEW(H_{\alpha(emis)})$, $pEW(H_{\beta})$, pEW(Fe II 5018), pEW(Fe II 5169), pEW(Na I D), a/e, $\Delta v(H_{\beta})$ in a range of $50 \leq t \leq 80d$, $\Delta vel(H_{\alpha}-Fe \text{ II 5018})$, $\Delta vel(Na \text{ I D}-Fe \text{ II 5018})$, OPTd, Pd, Cd,

Figure 4.5 Same as Figure 4.3 but for Na I D velocities.

 M_{max} , M_{end} , M_{tail} , s_1 , s_2 , s_3 , $\Delta C_{(B-V)}$ in a range of $10 \le t \le 30$ d, and the ⁵⁶Ni.

Figure 4.6 shows the correlation matrix of the spectroscopic and photometric parameters obtained at 50 days from explosion. Although photometric correlations have been shown in previous works (e.g. Anderson et al., 2014b, Valenti et al., 2016), the incorporation of numerous spectral parameters can aid in furthering our understanding of the link between observed parameters and underlying SN II physics. As in the previous matrix of correlation, darkest color indicate higher correlation and white colors, no correlation.

Focusing on the photometric correlations, one can see that many of these correlations are stronger than in Anderson et al. (2014b). As discussed previously, this is because some parameters have been remeasured with new techniques. Interestingly, Pd and s_3 shows an increase in the available points, from 4 in Anderson et al. (2014b) to 11 in this work. As we explained above, both parameters can give us an idea of the amount of hydrogen envelope mass at the moment of the explosion, thus some relation is expected. Figure 4.7 shows an evident trend between both parameters, with a correlation coefficient of $\rho = -0.71$. This results in that SNe with shorter Pd values have higher s_3 slopes, which shows that the variations in the hydrogen envelope mass could derive in the observed diversity in the light curve. The strong correlation found here supports the hypothesis that both Pd and s_3 are related to the hydrogen

98	0.69	-0.14	0.4	0.38	0.37	-0.46	-0.47	-0.71	-0.29	0.21	-0.3	-0.24	-0.27	-0.3	-0.35	0.45	-0.24	0.45	-0.065	0.086	0.58	-0.072	-0.33	-0.11		1.0
	0810	0.6	0.21	0.3	0.58	-0.47	-0.49	-0.55	-0.64	0.4	0.084	0.049	0.12	0.095	-0.052	0.37	0.06	0.31	0.26	0.12	0.39	0.11	-0.33	-0.18		
		୬	0.078	0.082	0.55	-0.35	-0.12	-0.071	-0.52	0.22	0.14	0.18	0.25	0.28	0.093	0.16	0.006	-0.089	0.23	-0.18	0.074	0.035	-0.2	0.08		0.8
			Manar	0.81	0.71	-0.51	-0.43	-0.4	-0.82	0.13	-0.48	-0.5	-0.48	-0.52	-0.64	0.34	-0.29	0.54	0.059	-0.11	0.52	-0.23	-0.57	0.14		
				Mend	0.84	-0.12	-0.18	-0.32	-0.79	0.076	-0.41	-0.44	-0.4	-0.45	-0.52	0.093	-0.23	0.36	0.076	-0.039	0.42	-0.26	-0.45	0.29		
					Musil	-0.52	-0.27	-0.24	-0.95	0.15	-0.58	-0.67	-0.56	-0.6	-0.69	0.15	-0.2	0.44	-0.019	-0.23	0.29	-0.34	-0.59	0.35		0.6
						51	0.7	0.81	0.38	-0.4	0.32	0.3	0.27	0.32	0.5	-0.69	0.15	-0.39	-0.09	0.31	-0.62	0.19	0.65	0.033		
							634	0.52	0.36	-0.17	0.41	0.44	0.46	0.37	0.58	-0.44	0.28	-0.42	0.22	0.29	-0.36	0.035	0.47	-0.087		0.4
								43	0.27	-0.29	0.49	0.38	0.52	0.59	0.51	-0.52	0.14	-0.62	-0.0004	-0.078	-0.56	0.13	0.24	-0.26		
									14150	0.27	0.73	0.77	0.69	0.73	0.77	0.52	0.29	-0.41	-0.14	0.32	0.015	0.65	0.77	0.11		0.2
										861030	-0.11	-0.13	-0.026	-0.12	-0.13	0.32	-0.13	0.33	0.38	0.038	0.35	-0.22	-0.25	0.12		0.2
											JHat	0.9	0.89	0.91	0.88	0.083	0.73	-0.41	0.34	0.33	-0.34	0.57	0.41	-0.49		
												JHD	0.87	0.91	0.92	0.092	0.66	-0.42	0.32	0.31	-0.3	0.61	0.53	-0.39		0.0
													Jres	0.91	0.89	0.017	0.64	-0.34	0.5	0.28	-0.35	0.29	0.25	-0.47		
														JFeb	0.91	0.046	0.62	-0.38	0.31	0.28	-0.37	0.51	0.42	-0.38		-0.2
															NNS	-0.1	0.66	-0.45	0.32	0.43	-0.43	0.47	0.66	-0.33		
																433	0.21	0.4	0.22	0.077	0.28	0.42	-0.25	-0.3		
																	Hae	-0.099	0.5	0.43	-0.43	0.46	0.35	-0.35		-0.4
																		EWFeb	0.37	0.18	0.31	-0.28	-0.4	0.058		
																			EWFeb	0.47	-0.0026	-0.13	-0.14	-0.31		-0.6
																				ENNYS	-0.12	0.23	0.44	-0.14		
																					2/e	-0.1	-0.34	-0.078		-0.8
																						dHafes	0.52	-0.33	ĺ	
																							anafe's	0.064	ĺ	
																								845080	ĺ	-1.0

Figure 4.6 Correlation matrix of the individual spectral and photometric parameters at 50 days. Colors indicate the absolute Pearson correlation coefficient ρ .

envelope mass at the epoch of explosion.

From Figure 4.6 we also can see that Pd has a weak correlation with velocities. This suggests that the explosion energy of SNe II does not significantly affect the plateau duration, and hence that the two parameters, explosion energy and H envelope mass, change somewhat independently from SN to SN. In addition, Pd does not show any significant correlation with the synthesised ⁵⁶Ni mass.

On the other hand, Pd has a moderate correlation with pEW(H_{α}) emission component and a/e. The correlation coefficients are $\rho = 0.45$ and $\rho = 0.58$, respectively. In Figure 4.8 we present these correlations. The trend shows that SNe with longer Pd values have longer OPTd phases, higher pEW(H_{$\alpha(abs)$}) and a/e values. In the last two relations, we can see more scatter, however, they are consistent with the idea of SNe with shorter Pd values have a weaker absorption component of H_{α} P-Cygni profile.

Figure 4.7 Correlations between Pd vs. s₃. The dashed horizontal red line shows the expected decline rate on the radioactive tail, assuming full trapping of gamma-rays from ⁵⁶Co to ⁵⁶Fe decay.

Figure 4.9 shows how s₃ correlates with other parameters. As we can see, s₃ presents a strong and moderate with s₁ and s₂, respectively, suggesting that a fast decliner at one epoch is usually a fast decliner at other epochs. Although the correlation of s₃ and M_{max} is moderate, it is driven by an outlier event, SNe 2006Y. As Anderson et al. (2014b) noted, this SN presents an atypical behaviour in photometry, but here we confirm their strange behaviour in the spectra. If we remove this SN from the analysis, the correlations decrease significantly. The correlations between s₃ and the velocities are moderate. This shows that faster declining SNe II have higher expansion ejecta velocities. In the last panel of Figure 4.9 is presented the correlation between s₃ and the pEW(Fe II 5018) which, like M_{max} is driven by SN 2006Y. Summarizing, s₃ has weak correlations with the pEWs and the magnitudes.

The expansion ejecta velocities show a strong correlation with 56 Ni mass (see Figure 4.10). This suggests that more energetic explosions produce more 56 Ni, which supports the results obtained by Hamuy (2003). The correlations between the velocities and the luminosities are moderate, but they are a little bit stronger with Na I D velocity. As we said previously, they

Figure 4.8 Correlations between Pd and six different parameters: M_{max} , s_2 , ⁵⁶Ni mass, H_{α} velocity, pEW of H_{α} absorption component, a/e.

Figure 4.9 Correlations between s_3 and five different parameters: s_1 , s_2 , M_{max} , H_{α} velocity, pEW(Fe II λ 5018).

are associated with the explosion energy, and these correlations support it. Figure 4.11 (top) shows the correlation between M_{max} and the expansion velocities of H_{α} , Fe II 5018, and Na I D. In the three plots it is possible to see that two brightest objects present very low velocities, (the opposite to the rest of the sample). Analysing their spectra, we note that they are SNe with signs of circumstellar interaction at the early phases. We also remark that their spectral evolution is different, since the appearance of the lines is much later (see Gutiérrez et al. 2016).

Looking at the correlations with the luminosities, we find a very strong correlation with the

Figure 4.10 Correlations between ⁵⁶Ni and the expansion velocities.

⁵⁶Ni mass, as we expected. The remaining correlations can be seen in Figure 4.6.

Figure 4.11 (bottom) presents the correlations between M_{max} and the pEWs of H_{α} , Fe II 5018, and Na I D. We can observe a weak correlation with the pEW(H_{α}) absorption component, a moderate ($\rho = 0.54$) correlation with pEW(Fe II 5018), and no correlations with pEW(Na I D).

4.7 Discussion

Using numerous defined spectral and photometric parameters we have searched for correlations between different observed properties of SNe II. We have argued that Pd is a better parameter than OPTd for constraining the H envelope mass at the epoch of explosion, given that the latter includes information from the early-time light curve, which is more likely associated with progenitor radii differences. Our analysis shows a strong correlation between Pd and s_3 , arguing that both of these parameters are strongly linked to the H envelope mass/ejecta mass. Assuming that the explosion energy is related to the expansion ejecta velocities and the luminosities, we find moderate correlations between these parameters. However, the velocities and luminosities show weak correlations with Pd, suggesting that they do not influence the plateau duration, as well as the H envelope mass do not influence the expansion ejecta velocities and luminosities.

Here we compare our results with those found in previous studies, both observational and theoretical. Finally we discuss the results in terms of the physical properties to explain the diversity of SNe II.

4.7.1 H_{α} P-Cygni diversity

A large diversity in the H_{α} P-Cygni profile had been shown by Patat et al. (1994), Gutiérrez et al. (2014). They found that SNe II with smaller a/e values are brighter, and have higher velocities and steeper decline rates. With our analysis at 50 days, we confirm these results, however the correlations presented here are weaker than Gutiérrez et al. (2014). They performed the measurements in different epochs around t_{tran} and they found that the

Figure 4.11 **Top panel:** Correlations between M_{max} and the expansion velocities. **Bottom panel:** Correlations between M_{max} and the pEWs

correlations are stronger at $t_{tran+10}$. Comparing the results, the magnitude is almost the same, however for the H_{α} velocity the correlation decreases from -0.60 to -0.34, and for the slope declines, the correlation decreases significantly with s₂, from -0.65 to -0.36. This could be due to some SNe (e.g. SN 1992af, SN 2006Y, SN 2008bu, SN 2009ao) at 50 days are finishing the recombination phase, so their physical conditions are different. This behaviour also affects to s₁ and s₃, so their correlations also decrease. Gutiérrez et al. (2014) also compared a/e with *OPTd* and found a correlation value of 0.56. Here we find 0.39, however, the correlation with *Pd* is 0.58.

A moderate correlation is found between the absorption component of H_{α} and Pd. SNe II displaying longer Pd values in general have stronger H_{α} absorption, suggesting that the latter may also be related to the extent of the hydrogen envelope (as discussed in Gutiérrez et al. 2016.) Based on the results by Schlegel (1996), one of the possible explanations for this behaviour in the H_{α} P-Cygni profile is related with the low hydrogen mass envelope. If this possibility is true, three different observed parameters (Pd, s₃ and the H_{α} absorption component) could give us an idea of the amount of hydrogen envelope mass at the moment of the explosion.

4.7.2 The Si II λ 6355 line

As we show in Gutiérrez et al. (2016), Cachito at early phase is related to Si II 6355, which is present in SNe II with a weak H_{α} absorption component. The Si II 6355 line emerges at higher temperatures and all SNe II should show this line. However, as the radius has an influence in the temperature evolution (compact objects evolve faster; Dessart et al. 2013a), the possibility to detect the Si II line in compact objects is lower. Using a KS test to find the difference between the distributions with/without Si II 6355, we find that there is no influence of Pd (i.e. with the H envelope mass) or *vel* (i.e. the explosion energy) in the appearance of this line. However, we found that faster declining SNe II have Si II 6355 in their spectra. According to (Blinnikov and Bartunov, 1993), faster declining SNe II (known as SNe IIL) should have larger radii. Our results on the SN types where the Si II 6355 line is observed, suggests that faster declining SNe also arise from SNe with larger radii that stay bluer for longer, hence increasing the possibility of detecting Si II.

Pd as hydrogen envelope mass indicator

According to theoretical models (e.g Popov, 1993, Litvinova and Nadezhin, 1983, Moriya et al., 2016) faster declining SNe II can be explained by the explosion of stars with low hydrogen envelope mass, which would have an influence in the plateau duration. This is because the plateau is powered by the recombination of hydrogen in the ejecta, shorter plateau durations imply less mass to travel back through. Recent observational works (e.g. Anderson et al., 2014b, Valenti et al., 2016) have concluded that the phase between the explosion date and the end of the plateau (usually known as the optically thick duration phase, OPTd) give us an idea of hydrogen mass. However, as we explained above, besides the H mass, OPTd is also related with the radius, hence, it would not be a primary indicator of that parameter. Here we argue that instead of OPTd we must use Pd. Pd shows correlations with the decline rates, indicating that faster declining SNe II have shorter plateaus. These correlations are stronger with s₃ (Figure 4.7). The simpler explanation leads to think that the full trapping of gamma-ray emission in SNe II with low H mass is inefficient, and therefore the slope in the radioactive tail is steeper.

4.7.3 Other comparisons

As Patat et al. (1994), Anderson et al. (2014b) and more recently Valenti et al. (2016), we find that faster declining SNe II are brighter events (see Figure 4.8). In addition, we also find that

SNe II with brighter luminosities have greater expansion velocities and produce more ⁵⁶Ni. In Figure 4.10 and 4.11 we show a few examples of these correlations. Similar results were found by several authors in observational (e.g. Hamuy, 2003, Spiro et al., 2014, Valenti et al., 2016) and theoretical (e.g. Kasen and Woosley, 2009) works.

While theoretical models (e.g. Kasen and Woosley, 2009, Nakar et al., 2016) show that the presence of ⁵⁶Ni mass extends the plateau duration, we do not find such correlation. In fact, there is an opposite behaviour, but not very strong. Many authors have claimed (e.g. Dessart and Hillier, 2011) that the color evolution could be related with the radius of the progenitor star. Although we include the color gradient ($\Delta E(B - V)$) between 10–30 days post-explosion in our analysis, we do not find significant correlations associated to this parameter. Like $\Delta E(B - V)$, Cd does not show an important relation with any parameter. In previous sections we linked this parameter with the radius as some models predict it (e.g. Dessart et al., 2013a), however we can not prove its influence.

Dessart et al. (2014) showed that differences in metallicity can be evident in the SN II spectra, more precisely in the strength of the iron lines. Anderson et al. (2016) supported this result showing a correlation between the strength of Fe II λ 5018 with the oxygen abundance of the host H II regions. They showed that SNe II exploding in lower metallicity regions have less iron absorption. Looking for relations with the pEW(Fe II 5018), we find a correlation of 0.45 with the Pd (See Figure 4.12). Assuming that the pEW(Fe II 5018) gives an idea of the metallicity where the SN explode, this correlation would mean that higher metallicity produce SNe with a longer plateau, which is in the opposite direction of the predictions (e.g. Dessart et al., 2013a). However, when we correlate Pd with the oxygen abundance determined by Anderson et al. (2016), we do not find any relation. This could suggest that pEW(Fe II 5018) also can give us information about other physical parameters, such as the temperature, and it is not the same for all SNe in the recombination phase.

4.8 Conclusions

In this work we have presented an analysis of correlations between a range of spectral and photometric parameters of 123 SNe II, with the purpose of understanding their diversity. To study this diversity, we use the expansion ejecta velocities and pseudo-equivalent widths for eleven features in the photospheric phase (from explosion to ~ 120 days): H_{α} , H_{β} , Fe II 4924, Fe II 5018, Fe II 5169, Sc II/Fe II 5531, Sc II M, Na I D, Ba II 6142, Sc II 6247, and O I 7774; the ratio absorption to emission (a/e) of the H_{α} P-Cigni profile; the velocity decline rate of H_{β} $(\Delta v(H_{\beta}))$ and the velocity difference between H_{α} and Fe II 5018, and Na I D and Fe II 5018 (Δvel) . From the light curves we employed three magnitude measurements at different epochs $(M_{max}, M_{end}, M_{tail})$; three decline rates (s_1, s_2, s_3) ; three time durations (OPTd, Pd, Cd); the ⁵⁶Ni mass, and the color gradient, $\Delta E(B - V)$. We searched for correlations at 30, 50 and 80 days and we found that the correlations are stronger at 50 days post-explosion. We speculate that this happens because at 50 days all the SNe II are in the recombination phase and probably

Figure 4.12 Correlations between pEW(Fe II λ 5018) and Pd.

they have the same physical conditions. At 30 and 80 days not all SNe II are in the same stage, some are in the cooling (at early phases) and some are in the transition to the nebular phase (at the end of the plateau).

The main results obtained with our analysis are summarized as follows:

- The spectral and photometric diversity in SNe II can not be explained with only one observed/physical property. Although there are observed parameters that dominate the correlations, this diversity is not explained for only one parameter. The differences in SNe II could be due to the masses of their pre-explosion hydrogen envelopes, radius and explosion energy.
- We find that Pd is the best hydrogen mass indicator in SNe II. We rule out the use of OPTd (Anderson et al., 2014b) and t_{PT} (Valenti et al., 2016) due to the fact that both parameters are affected by physical properties in addition to the the amount of hydrogen mass, such as the radius.
- We suggest that SNe II showing the Si II line in the early phases, have progenitor stars

with larger radii.

- We found that the H envelope mass does not significantly affect the expansion velocities observed, while neither does the explosion energy significantly affect the plateau duration.
- As expected, expansion velocities measured from different spectral lines all strongly correlate with each other, although different lines are offset to different velocities.
- Contrary to the theoretical works, we find that the mass of ⁵⁶Ni has no influence in the plateau duration.

Table 4.2: Photometric parameters

SN	Pd	OPTd	Cd	M_{max}	M_{end}	M_{tail}	\mathbf{s}_1	s_2	\mathbf{s}_3	56 Ni mass	ΔC_{10-30}
1986L	54.4 ± 3.09	92.24 ± 6.71	37.9 ± 0.87	-18.19 ± 0.20	-14.37 ± 0.20	2.97 ± 0.11	1.18 ± 0.04	3.79 ± 0.08		$0.0598 \pm 0.009^*$	26
1988A							0.11 ± 0.45	1.15 ± 0.4			
1990E							-0.57 ± 0.12	0.96 ± 0.06			
1990K							2.35 ± 0.1	1.33 ± 0.02			
1991al				-17.51 ± 0.15	-14.71 ± 0.15		1.57 ± 0.04	1.37 ± 0.2	0.0666 ± 0.0159	0.0666 ± 0.0159	37
1992ad				-16.98 ± 0.80			2.23 ± 0.04				
1992af		54.03 ± 6.71		-17.33 ± 0.12	-15.06 ± 0.12		0.45 ± 0.07	1.1 ± 0.06	0.0789 ± 0.0184	0.0789 ± 0.0184	19
1992am				-18.06 ± 0.05			1.14 ± 0.02				
1992ba	76.3 ± 6.5	103.97 ± 8.54	27.7 ± 3.81	-15.34 ± 0.80	-12.34 ± 0.80	1.59 ± 0.45	0.54 ± 0.06	0.9 ± 0.04	0.0113 ± 0.0064	0.0113 ± 0.0064	28
1993A				-16.44 ± 0.07			0.74 ± 0.04				30
1993K				-17.92 ± 0.23			2.26 ± 0.25				18
1993S			39.5 ± 2.9	-17.52 ± 0.07		3.3 ± 0.18	2.02 ± 0.19				36
1999br				-13.77 ± 0.40			0.15 ± 0.01	1.13 ± 2.39		$0.0021 \pm 0.001 *$	36
1999ca	40.1 ± 3.11	80.48 ± 7.62	40.4 ± 0.74	-17.48 ± 0.21	-13.78 ± 0.21	3.46 ± 0.13	1.66 ± 0.05	1.69 ± 0.3		$0.0474 \pm 0.003^{*}$	
1999cr	38.2 ± 3.27	78.06 ± 7.62	39.8 ± 1.71	-16.90 ± 0.10		1.76 ± 0.07	0.47 ± 0.1				18
1999eg				-16.86 ± 0.10			1.93 ± 0.07				
1999em		92.86 ± 5.83		-16.76 ± 0.07	-13.93 ± 0.07		0.29 ± 0.02	0.97 ± 0.01	0.0495 ± 0.0075	0.0495 ± 0.0075	31
S0210		90.57 ± 9.49		-16.21 ± 0.04			1.78 ± 0.15				
2002 ew			32 ± 1.07	-17.42 ± 0.08		9.42 ± 1.65	2.9 ± 0.24				
2002 fa		67.29 ± 7.62		-16.95 ± 0.04			1.62 ± 0.08			$0.0657 \pm 0.004^*$	
2002 gd			27.2 ± 0.54	-15.43 ± 0.28		3.21 ± 0.3	0.46 ± 0.03				32
2002 gw	53.30 ± 3.9	82.33 ± 5.83	29.1 ± 2.11	-15.76 ± 0.23	-13.07 ± 0.23	1 ± 0.27	-0.1 ± 0.15	0.73 ± 0.04	0.0122 ± 0.003	0.0122 ± 0.003	25
2002hj		90.24 ± 7.62		-16.91 ± 0.10	-13.59 ± 0.10		1.88 ± 0.03	0.89 ± 0.42		$0.0257 \pm 0.004^*$	
2002hx		68.03 ± 9.49		-17.00 ± 0.07	-14.60 ± 0.07		1.63 ± 0.03	1.29 ± 0.04	0.0537 ± 0.016	0.0537 ± 0.016	23
2002ig				-17.66 ± 0.03			2.72 ± 0.1				24
2003B		83.19 ± 11.40		-15.36 ± 0.28	-12.77 ± 0.28		0.6 ± 0.04	1.06 ± 0.01	0.0166 ± 0.0057	0.0166 ± 0.0057	
2003bl	52.6 ± 8.01	92.81 ± 4.24	40.2 ± 1.22	-15.35 ± 0.14		1.05 ± 0.35	0.24 ± 0.04				28
2003bn	52.7 ± 3.96	92.97 ± 4.24	40.2 ± 2.54	-16.80 ± 0.16	-13.72 ± 0.16	0.91 ± 0.06	0.23 ± 0.04			$0.0413 \pm 0.002 *$	29
2003ci	48.3 ± 4.00	92.53 ± 8.54	44.2 ± 3.28	-16.83 ± 0.07		2.42 ± 0.16	1.42 ± 0.12				
2003cn	46.6 ± 5.20	67.80 ± 5.00	21.2 ± 3.39	-16.26 ± 0.11		3.03 ± 1.22	1.36 ± 0.06				27
2003cx		87.82 ± 5.83		-16.79 ± 0.06	-14.32 ± 0.06		0.66 ± 0.05	1.75 ± 0.62		$0.0512 \pm 0.007 ^{*}$	19
2003 dq				-16.69 ± 0.06			2.86 ± 0.11				
2003E	48.7 ± 4.8	97.42 ± 7.62	48.7 ± 5.02	-15.70 ± 0.15		0.41 ± 0.29	-0.26 ± 0.07				15
2003ef		90.93 ± 9.49		-16.72 ± 0.14			0.82 ± 0.02				28
2003eg			29.2 ± 0.85	-17.81 ± 0.13		6.76 ± 0.37	2.3 ± 0.06				14
2003ej		68.97 ± 5.83		-17.66 ± 0.12			3.39 ± 0.04				30
2003 fb		84.27 ± 6.71		-15.56 ± 0.12	-13.10 ± 0.12		0.42 ± 0.07	1.52 ± 0.22		$0.0166 \pm 0.005^*$	
2003 gd					-12.58 ± 0.40		1.7 ± 0.11	1.01 ± 0.01	0.0122 ± 0.006	0.0122 ± 0.006	
2003hd		82.39 ± 5.83		-17.29 ± 0.06	-13.85 ± 0.06		1.16 ± 0.05	0.65 ± 0.44	0.0294 ± 0.0068	0.0294 ± 0.0068	28
2003hg	61.2 ± 3.22	108.50 ± 5.83	47.3 ± 1.33	-16.38 ± 0.16		1.46 ± 0.04	0.41 ± 0.05				30
2003hk	59.1 ± 4.6	86.00 ± 5.00	26.9 ± 2.11	-17.02 ± 0.10	-13.14 ± 0.10	3.46 ± 0.23	1.81 ± 0.05	0.58 ± 0.84		$0.0166 \pm 0.007 ^{*}$	
2003hl		108.92 ± 5.83		-15.91 ± 0.30			0.75 ± 0.01				29
2003hn	49 ± 5.2	90.10 ± 10.44	41.1 ± 1.27	-16.74 ± 0.10	-13.27 ± 0.10	1.9 ± 0.06	1.05 ± 0.05	1.1 ± 0.05	0.0347 ± 0.0083	0.0347 ± 0.0083	29
2003ho					-12.00 ± 0.16		1.45 ± 0.24	1.75 ± 0.3		$0.0049 \pm 0.003^*$	
2003ib				-17.10 ± 0.09			1.71 ± 0.04				12
2003ip		80.74 ± 5.00		-17.75 ± 0.13			2.07 ± 0.03				23
2003iq		84.91 ± 3.61		-16.69 ± 0.30			0.84 ± 0.01				24

2003T		90.59 ± 10.44		-16.54 ± 0.08	-13.67 ± 0.08		0.82 ± 0.02	2.07 ± 0.21		$0.0295 \pm 0.01^*$	27
2004 dv				-16.03 ± 0.07			6.55 ± 0.17				
2004ej		96.14 ± 8.54		-16.62 ± 0.21	-12.92 ± 0.21		1.09 ± 0.04	0.97 ± 0.04	0.0185 ± 0.0052	0.0185 ± 0.0052	
2004er	60.6 ± 3.22	120.15 ± 5.00	59.6 ± 1.12	-16.74 ± 0.16		1.31 ± 0.03	0.41 ± 0.03				21
$2004 \mathrm{fb}$				-16.19 ± 0.11			1.24 ± 0.07				
2004 fc	67.4 ± 6.3	106.06 ± 3.16	38.6 ± 2.64	-16.21 ± 0.31		1.12 ± 0.03	0.54 ± 0.05				29
2004 fx		68.41 ± 5.00		-15.58 ± 0.24	-12.87 ± 0.24		-0.01 ± 0.03	0.95 ± 0.06	0.0144 ± 0.0042	0.0144 ± 0.0042	15
2005af		104.01 ± 15.30			-13.41 ± 0.36		0 ± 0.08	1.24 ± 0.02	0.0264 ± 0.0116	0.0264 ± 0.0116	
2005an	39.2 ± 3.06	77.71 ± 5.00	38.5 ± 0.6	-17.07 ± 0.18		3.32 ± 0.05	1.89 ± 0.05				29
2005 dk	39.4 ± 3.37	84.22 ± 6.71	44.8 ± 1.54	-17.52 ± 0.14		2.26 ± 0.08	1.18 ± 0.07				
2005dn	47 ± 3.5	79.76 ± 6.71	32.8 ± 2.88	-17.01 ± 0.24		2.04 ± 0.23	1.45 ± 0.04				
2005dt		112.86 ± 9.49		-16.39 ± 0.09			0.73 ± 0.06				
2005dw	56.2 ± 3.3	92.59 ± 9.49	36.4 ± 2.24	-16.49 ± 0.13	-13.21 ± 0.13	2.31 ± 0.22	0.99 ± 0.08			$0.0211 \pm 0.009^{*}$	
2005dx	37.6 ± 3.6	85.59 ± 7.62	48 ± 5.58	-16.05 ± 0.08	-12.12 ± 0.08	1.8 ± 0.12	0.63 ± 0.27	1.24 ± 2.15		$0.007 \pm 0.005^{*}$	32
2005dz	37.3 ± 3.69	81.86 ± 5.00	44.6 ± 2.22	-16.57 ± 0.12	-13.42 ± 0.12	1.28 ± 0.07	0.48 ± 0.1			$0.0213 \pm 0.01^*$	23
2005es				-16.98 ± 0.06			1.23 ± 0.05				40
2005J	53.7 ± 3.10	94.03 ± 7.62	40.4 ± 0.78	-17.28 ± 0.14		2.1 ± 0.06	0.96 ± 0.02				29
2005K				-16.57 ± 0.08	-13.22 ± 0.08		1.63 ± 0.12	1.51 ± 0.83		$0.0155 \pm 0.006^{*}$	22
2005lw		107.23 ± 10.44		-17.07 ± 0.08			2.11 ± 0.04				29
2005me	38.3 ± 3.36	76.91 ± 6.71	38.6 ± 1.52	-16.83 ± 0.10		2.98 ± 0.11	1.55 ± 0.1				28
2005Z		78.84 ± 6.71		-17.17 ± 0.11			1.82 ± 0.01				30
2006ai	35 ± 3.04	63.26 ± 5.83	28.3 ± 0.52	-18.06 ± 0.14	-14.53 ± 0.14	4.52 ± 0.08	1.65 ± 0.09	1.86 ± 0.32		$0.05 \pm 0.01^{*}$	20
2006bc			23.3 ± 0.74	-15.18 ± 0.26		1.78 ± 0.13	-0.58 ± 0.04				22
2006be	40 ± 3.25	72.89 ± 6.71	32.9 ± 1.26	-16.47 ± 0.29		1.76 ± 0.18 1.26 ± 0.08	0.66 ± 0.02				30
2006bl	10 ± 0.20	12:00 ± 0:11	15.7 ± 1.20	-18.23 ± 0.07		3.42 ± 0.38	2.55 ± 0.02				22
2006ee	577 + 42	85.17 ± 5.00	27.4 ± 2.43	-16.28 ± 0.15		12 ± 0.30	0.1 ± 0.04				25
2006it				-16.20 ± 0.15		1.2 ± 0.0	1.25 ± 0.1				40
200010 2006iw				-16.89 ± 0.07			1.20 ± 0.11 1.2 ± 0.06				20
20001w 2006ms			31.8 ± 3.17	-16.18 ± 0.15		1.95 ± 0.2	0.11 ± 0.00			$0.0564 \pm 0.013*$	41
2000ms		96.85 ± 7.62	01.0 ± 0.11	-15.99 ± 0.14		1.00 ± 0.2	1.46 ± 0.01			0.0004 ± 0.010	20
2000q1 2006Y	27.1 ± 3.03	47.49 ± 5.00	20.4 ± 0.35	-17.97 ± 0.06	-14.26 ± 0.06	8.66 ± 0.49	1.40 ± 0.01 1.99 ± 0.12	3.26 ± 1.5		$0.0338 \pm 0.02*$	15
2007aa	2111 ± 0100	11110 ± 0100	2011 ± 0.00	-16.32 ± 0.27	11120 ± 0100	0.00 ± 0.10	-0.03 ± 0.01	0.20 ± 1.0		0.0000 ± 0.02	
2007ab		71.30 ± 10.44		-16.98 ± 0.09	-1422 ± 0.09		339 ± 0.07	1.56 ± 0.63		$0.0397 \pm 0.01*$	
2007av			23.4 ± 8.86	-16.27 ± 0.22	11122 ± 0.000	1.29 ± 0.4	0.96 ± 0.06			$0.0149 \pm 0.01*$	22
2007bf			2011 ± 0.000	10121 ± 0122		1120 ± 011	0.00 ± 0.00			010110 ± 0101	
2007br				-16.47 ± 0.09			1.44 ± 0.03			$0.045 \pm 0.011*$	14
20071111		103.43 ± 5.00		-16.78 ± 0.11			0.36 ± 0.01			0.040 ± 0.011	22
200711 2007it		100.40 ± 0.00	14 ± 0.77	-17.55 ± 0.50	-14.83 ± 0.50	3.71 ± 0.35	1.35 ± 0.05	1 ± 0	0.0721 ± 0.021	0.0721 ± 0.031	22
20071d			25.7 ± 1.45	-17.30 ± 0.09	14.00 ± 0.00	3.19 ± 0.00	1.00 ± 0.00 1.12 ± 0.16	1 1 0	0.0121 ± 0.021	0.0121 ± 0.001	21
200710	40.7 ± 3.8	71.62 ± 5.83	20.7 ± 1.40 30.9 ± 0.55	-16.68 ± 0.15		2.91 ± 0.08	1.12 ± 0.10 1.68 ± 0.02				
20070C	40.1 ± 0.0	11.02 ± 0.00	22.9 ± 0.69	-17.87 ± 0.80		2.31 ± 0.05 2.37 ± 0.05	1.55 ± 0.02				24
200704 2007P	58.6 ± 6.2	88.33 ± 5.83	22.3 ± 0.03 29.8 \pm 2.04	-17.96 ± 0.05		3.48 ± 0.22	1.05 ± 0.01 1.95 ± 0.12				24
20071 2007sg	42.7 ± 5.7	88.34 ± 5.00	45.6 ± 1.82	-15.33 ± 0.13		25 ± 0.22	0.92 ± 0.12				
20075Q 2007U	42.1 ± 0.1	00.04 ± 0.00	48.8 ± 1.81	-17.87 ± 0.08		2.0 ± 0.20 2.97 ± 0.15	1.18 ± 0.13				26
2007 0 2007 W	485 ± 54	77.29 ± 7.62	28.8 ± 1.61	-15.80 ± 0.20		0.82 ± 0.13	0.04 ± 0.05				20
2007X	52.3 ± 3.20	97.71 ± 5.83	45.4 ± 1.03	-17.84 ± 0.20		2.43 ± 0.06	1.37 ± 0.03			$0.082 \pm 0.021*$	36
20077	52.5 ± 5.20	31.11 ± 0.00	40.4 ± 1.11	-17.04 ± 0.21		2.43 ± 0.00	1.57 ± 0.05			0.002 ± 0.021	50
20072		102.05 ± 6.71		-16.96 ± 0.15			0.16 ± 0.01				
2008ag	20.8 ± 3.12	152.30 ± 0.71 75.83 ± 10.44	46 ± 0.585	-17.71 ± 0.10	-14.04 ± 0.10	3.27 ± 0.06	2.10 ± 0.01 2.25 ± 0.02	1.97 ± 0.00		$0.0491 \pm 0.015*$	20
2000aw	23.0 ± 3.13	10.00 ± 10.44	40 ± 0.000 40.5 ± 0.61	-16.06 ± 0.14	-14.04 ± 0.19	3.27 ± 0.00 3 ± 0.07	1.25 ± 0.03 1.2 ± 0.04	1.37 ± 0.09		0.0491 T 0.019.	- <u>4</u> 9 00
2008bk	43 ± 3.0	104.83 ± 6.71	43.0 ± 2.01	-14.86 ± 0.05	-11.98 ± 0.05	5 ± 0.27	1.2 ± 0.04 0.11 ± 0.02	1.18 ± 0.02	0.0074 ± 0.001	0.0074 ± 0.001	
2008bm	42.1 ± 3.3	104.00 ± 0.11 87 04 \pm 26 17	45 ± 2.55	-18.12 ± 0.07	-12.67 ± 0.07		2.74 ± 0.02	1.10 ± 0.02		0.014 ± 0.001	
200000m		01.04 ± 40.17	40 ± 4.00	10.12 1 0.07	12.01 ± 0.01		au a T 0.00			2.014 T 0.000	

$2008 \mathrm{bp}$		58.62 ± 9.49		-14.00 ± 0.21			3.17 ± 0.18				18
$2008 \mathrm{br}$			17.5 ± 0.51	-15.30 ± 0.20		4.25 ± 1.26	0.08 ± 0.11			$0.0261 \pm 0.012^*$	22
2008bu		44.75 ± 7.62		-17.14 ± 0.10	-13.71 ± 0.10		2.6 ± 0.17	2.31 ± 0.53		$0.0197 \pm 0.008^*$	30
2008F			40 ± 3.1	-15.67 ± 0.12		1.21 ± 0.16	-1.67 ± 1				30
2008 ga		72.79 ± 5.00		-16.45 ± 0.14			0.86 ± 0.09				
2008gi				-17.31 ± 0.09			3.13 ± 0.07				25
2008gr				-17.95 ± 0.10			2.01 ± 0.01				25
2008H											
2008hg				-15.43 ± 0.12			-0.44 ± 0.05				33
2008ho				-15.11 ± 0.23			0.3 ± 0.05				24
2008if	50.3 ± 3.02	75.85 ± 5.83	25.6 ± 0.35	-17.94 ± 0.17	-14.46 ± 0.17	4.03 ± 0.07	2.2 ± 0.02	2.92 ± 0.16		$0.0625 \pm 0.02^*$	18
2008il				-16.61 ± 0.11			1.03 ± 0.04				24
2008in	67.19 ± 3.40	92.20 ± 6.71	25 ± 4	-15.40 ± 0.47			0.74 ± 0.01	0.88 ± 0.01			30
2008K	41 ± 3.9	87.11 ± 5.00	46.1 ± 3.23	-17.45 ± 0.08	-13.40 ± 0.08	3.08 ± 0.06	2.12 ± 0.17	1.71 ± 0.3		$0.0123 \pm 0.01^*$	26
2008M	57.8 ± 0.5	75.34 ± 9.49	17.6 ± 0.28	-16.75 ± 0.28	-13.41 ± 0.28	5.07 ± 0.27	1.02 ± 0.02	1.14 ± 0.12	0.0197 ± 0.0067	0.0197 ± 0.0067	18
2008W		83.86 ± 6.71		-16.60 ± 0.11			1.12 ± 0.04				
2009aj				-18.07 ± 0.20		2.44 ± 0.09	0.75 ± 0.04				
2009ao		41.71 ± 5.00		-15.79 ± 0.20			2.15 ± 0.09				17
2009au				-16.34 ± 0.21			3.04 ± 0.02				20
2009bu			37.8 ± 1.79	-16.05 ± 0.19		1.03 ± 0.14	0.18 ± 0.04				
2009bz			36.1 ± 1.72	-16.46 ± 0.19		1.04 ± 0.1	0.21 ± 0.05				21
2009N	58.2 ± 2.25	89.50 ± 5.83	31.3 ± 2.25	-15.25 ± 0.40		0.45 ± 0.11	-0.36 ± 0.18	0.9 ± 0.14			35
2009W											

 \ast SNe with explosion epochs different to that published.

Table 4.3:	Velocity	values	at	50	days

SN	$vel(H_{\alpha})$	$vel(H_{\alpha})$	$vel(H_{\beta})$	vel(Fe II 4924)	vel(Fe II 5018)	vel(Fe II 5169)	vel(Fe II/Sc II)	vel(Sc II Mult.)	vel(Na I D)	vel(Ba II)	vel(ScII)
1986L	6141 ± 710	7610 ± 476	6647 ± 434	4907 ± 245	4278 ± 672	4373 ± 411	4739 ± 456	4283 ± 336	5455 ± 486		
1988A											
1990E											
1990K	6879 ± 432	7741 ± 426	6492 ± 381		4406 ± 298	3916 ± 204	4844 ± 450	4568 ± 239	6297 ± 391	4434 ± 312	4109 ± 238
1991al	7846 ± 496	8768 ± 615	7689 ± 634	4880 ± 244	4751 ± 588	4940 ± 548	5214 ± 261	4540 ± 227	7728 ± 1176	5643 ± 282	4120 ± 206
1992ad											
1992af											
1992am											
1992 ba	4524 ± 665	6209 ± 439	5056 ± 374	3143 ± 157	3368 ± 487	3443 ± 483	3458 ± 173	3304 ± 165	4299 ± 847	3026 ± 151	3044 ± 152
1993A											
1993K	7067 ± 551	7016 ± 358	6260 ± 444	4863 ± 269	3488 ± 1390	4358 ± 218	4445 ± 222	3742 ± 270	5437 ± 520	3971 ± 199	4024 ± 420
1993S											
1999br	3065 ± 588	3590 ± 265	3175 ± 243	1507 ± 258	1749 ± 223	1740 ± 305	2092 ± 272	1527 ± 443	1515 ± 759	1225 ± 61	1885 ± 94
1999ca	6957 ± 348	7285 ± 364	6763 ± 338		5565 ± 278	5147 ± 257	6042 ± 302	5673 ± 284	6749 ± 337	5778 ± 289	5001 ± 250
1999cr	5428 ± 361	5901 ± 323	4892 ± 478		3474 ± 195	3632 ± 212		3883 ± 194	4470 ± 224		
1999eg											
1999em	5540 ± 622	5963 ± 595	5656 ± 626	3744 ± 187	3319 ± 394	3444 ± 365	3362 ± 168	2977 ± 149	3769 ± 451	3032 ± 152	3089 ± 154
S0210	8088 ± 492	7851 ± 762	6970 ± 619		6770 ± 424	4956 ± 326	6210 ± 311	5325 ± 550	6735 ± 455		
2002 ew											
2002 fa	6121 ± 649	7553 ± 435	6292 ± 410	3545 ± 268	3807 ± 337	4104 ± 260	4134 ± 207	3581 ± 179	5687 ± 663		
2002 gd	3693 ± 563	4109 ± 266	3394 ± 703	2248 ± 196	2716 ± 204	2437 ± 236	3147 ± 297	2988 ± 409	3382 ± 273	2097 ± 177	2404 ± 325
2002 gw	5403 ± 474	6600 ± 487	5252 ± 518	3234 ± 329	3277 ± 494	3600 ± 357	3203 ± 345	3215 ± 247	3865 ± 304	3021 ± 211	2961 ± 185
2002hj	6469 ± 661	7830 ± 532	6377 ± 451	3411 ± 579	3762 ± 338	4162 ± 405	4609 ± 230	3571 ± 220	5193 ± 345		
2002hx	5667 ± 434	7964 ± 504	6386 ± 554	3237 ± 337	3485 ± 215	3781 ± 284	3005 ± 157	3600 ± 200	5360 ± 477	2522 ± 160	3197 ± 302
2002ig											
2003B	4565 ± 339	6190 ± 622	5474 ± 478	3186 ± 575	3437 ± 297	3488 ± 251	3621 ± 260	3502 ± 307	4024 ± 228	3323 ± 265	3104 ± 188
2003bl	3650 ± 481	3928 ± 435	3825 ± 326	2050 ± 255	2332 ± 213	2085 ± 190	2440 ± 263	2445 ± 207	2700 ± 582	2766 ± 426	2256 ± 184
2003bn	5827 ± 638	6812 ± 545	5630 ± 471	3616 ± 265	3588 ± 607	3588 ± 530	3437 ± 302	3236 ± 327	4048 ± 397	3278 ± 300	3118 ± 178
2003ci	5594 ± 280	7133 ± 357	5857 ± 293	2991 ± 150	3806 ± 190	3653 ± 183	4724 ± 236	4416 ± 483	5849 ± 292	3125 ± 156	4222 ± 211
2003cn	4192 ± 293	5361 ± 501	4488 ± 946	2388 ± 119	2764 ± 138	2685 ± 197	2947 ± 147	2522 ± 126	3809 ± 695	2804 ± 140	2965 ± 148
2003cx											
2003 dq											
2003E				•••		•••	•••				
2003ef	6349 ± 367	7606 ± 610	4230 ± 494	3904 ± 364	4092 ± 534	4087 ± 516	4016 ± 575	3714 ± 395	4284 ± 484	3561 ± 299	3615 ± 181
2003eg	7525 ± 725	8440 ± 675	6632 ± 418		4630 ± 405	4691 ± 456	4137 ± 207	4204 ± 210	6912 ± 468	3100 ± 320	3390 ± 410
2003ej											
2003fb	6628 ± 561	7507 ± 625	5535 ± 854	4021 ± 754	4125 ± 738	3974 ± 722	4122 ± 704	3655 ± 677	4734 ± 668	4547 ± 649	3566 ± 627
2003gd											
2003hd	6732 ± 519	7750 ± 539	5899 ± 717	3838 ± 192	3930 ± 260	3997 ± 289	3754 ± 188	3373 ± 169	4688 ± 234		
2003hg	•••			•••	•••	•••	• • •				
2003hk	6980 ± 349	6550 ± 328	5628 ± 281	4026 ± 201	4114 ± 206	4131 ± 207			5712 ± 286		
2003hl	5569 ± 738	6508 ± 462	4515 ± 439	3934 ± 382	3873 ± 287	3795 ± 402	3762 ± 329	3758 ± 283	4492 ± 318	3257 ± 252	3480 ± 244
2003hn	6521 ± 387	6935 ± 462	5288 ± 442	3433 ± 281	3404 ± 249	3462 ± 379	3445 ± 286	3129 ± 293	4437 ± 339	3573 ± 189	3020 ± 375
2003ho	7367 ± 755	8200 ± 520	6041 ± 302	3442 ± 172	3715 ± 186	3963 ± 198	4278 ± 214	3943 ± 197	4969 ± 248		
2003ib											
2003ip	7953 ± 486	8508 ± 533	6736 ± 388		5342 ± 341	4501 ± 309	5717 ± 286	5015 ± 251	6432 ± 413	4818 ± 241	5289 ± 264
2003iq	5893 ± 741	7389 ± 386	5432 ± 350	4223 ± 211	4183 ± 225	4297 ± 216	4142 ± 207	3909 ± 195	5080 ± 360	3720 ± 186	3894 ± 195

2003T	5933 ± 403	6873 ± 634	4010 ± 226	3941 ± 341	3783 ± 218	3870 ± 276	3754 ± 190	3370 ± 222	3968 ± 292	4193 ± 257	4012 ± 240
2004 dy											
2004 ej	5471 ± 501	6291 ± 429	5340 ± 600	3513 ± 505	3419 ± 307	3282 ± 221	3534 ± 536	3272 ± 319	3978 ± 326	2866 ± 191	3160 ± 223
$2004 \mathrm{er}$	8210 ± 582	9508 ± 549	7774 ± 600	5980 ± 427	5349 ± 386	5174 ± 436	5451 ± 311	3353 ± 470	5716 ± 506	5243 ± 634	5259 ± 475
2004 fb	6604 ± 636	7602 ± 444	5827 ± 435	3900 ± 283	4198 ± 425	4149 ± 300	4335 ± 217	3726 ± 186	4760 ± 340	5217 ± 261	3780 ± 410
2004 fc	5584 ± 645	6269 ± 976	4027 ± 329	3667 ± 236	3652 ± 291	3559 ± 256	3736 ± 270	3569 ± 261	4165 ± 541	3178 ± 229	3373 ± 266
2004 fx	4816 ± 525	5671 ± 446	4164 ± 318	2375 ± 206	2687 ± 209	2772 ± 401	2986 ± 177	3367 ± 168	2870 ± 389	3162 ± 158	2449 ± 133
2005af											
2005an	8212 ± 888	7561 ± 494	5295 ± 1497	4324 ± 219	4301 ± 325	3985 ± 303	4716 ± 289	4517 ± 293	4698 ± 1106		3563 ± 178
2005 dk	6808 ± 531	7823 ± 470	6805 ± 359	4506 ± 312	4500 ± 289	4567 ± 306	4384 ± 311	3911 ± 329	6251 ± 709	5067 ± 457	4012 ± 256
2005dn	8304 ± 672	9353 ± 576	7518 ± 484	2351 ± 118	5690 ± 1511	4674 ± 434		4818 ± 241	6448 ± 627		
2005 dt											
2005 dw											
2005 dx											
2005 dz	6112 ± 595	7496 ± 434	5873 ± 430		3901 ± 499	4072 ± 310					
2005es											
2005J	6285 ± 755	8317 ± 668	6311 ± 404	4204 ± 273	4099 ± 406	4192 ± 437	4122 ± 402	4159 ± 265	4953 ± 386	4069 ± 297	4548 ± 272
2005K											
2005lw	9900 ± 785	9645 ± 830	8270 ± 750		7294 ± 630	6150 ± 700	7100 ± 520	5985 ± 540	7430 ± 570	6200 ± 550	6770 ± 710
2005 me											
2005Z	8419 ± 661	9332 ± 582	7777 ± 843	5620 ± 281	5593 ± 384	5151 ± 411	5581 ± 489	5387 ± 359	7417 ± 560		
2006ai	6871 ± 821	7388 ± 559	6235 ± 560	4104 ± 353	4390 ± 427	4587 ± 340	4363 ± 258	3358 ± 526	6120 ± 434		
2006bc											
2006be	6857 ± 474	7531 ± 625	5925 ± 755	3763 ± 742	3851 ± 738	4031 ± 722	3907 ± 694	3337 ± 677	4378 ± 668	4933 ± 620	
2006bl											
2006ee	5323 ± 426	5164 ± 675	3004 ± 619	3195 ± 254	3108 ± 194	3008 ± 255	3085 ± 299	2695 ± 316	3221 ± 267	2721 ± 262	2725 ± 202
2006it											
2006iw	6857 ± 671	7531 ± 566	6172694	4630 ± 687	4310 ± 678	4389 ± 722	3898 ± 688	3451 ± 682	5196 ± 724		
2006 ms											
2006qr	5507 ± 419	6432 ± 487	5060285	3147 ± 872	3571 ± 221	3621 ± 200	3756 ± 188	3508 ± 175	4804 ± 954	3770 ± 188	2917 ± 146
2006Y	7671 ± 619	8876 ± 589	6879464	3724 ± 186	4904 ± 731	5033 ± 546			6922 ± 613		
2007aa	5057 ± 539	5925 ± 550	4233374	3131 ± 398	3161 ± 378	3131 ± 396	3082 ± 324	2865 ± 266	3839 ± 321	2685 ± 187	2893 ± 267
2007ab	8378 ± 505	9614 ± 600	8094405		7056 ± 353	4737 ± 237	6878 ± 344	6350 ± 318	7198 ± 404	6743 ± 337	5949 ± 614
2007 av	6007 ± 338	7146 ± 402	5320311	3641 ± 182	3849 ± 192	3821 ± 191	3822 ± 191	3691 ± 185	3935 ± 605	3638 ± 182	3432 ± 172
$2007 \mathrm{bf}$											
2007 hm	6132 ± 383	8126 ± 544	6336432	4258 ± 213	4012 ± 201	4371 ± 515	4796 ± 240	3322 ± 166	5232 ± 262		
2007il	7298 ± 809	7917 ± 482	5855505	4189 ± 281	4071 ± 481	4250 ± 383			4759 ± 769		
2007it											
2007ld											
2007oc	6990 ± 492	6675 ± 435	5193 ± 436	2265 ± 198	3262 ± 315	3670 ± 343	4158 ± 480	3832 ± 378	4977 ± 450	2872 ± 218	3247 ± 291
2007 od	7080 ± 655	7087 ± 428	6623 ± 545		5143 ± 363	3838 ± 300		3851 ± 193	6139 ± 427	5100 ± 525	4806 ± 240
2007P											
2007 sq	8293 ± 1243	8186 ± 437	7319 ± 366	5270 ± 390	5203 ± 260	5301 ± 265	4937 ± 247	4107 ± 205	5609 ± 280		
2007U	7308 ± 1137	7932 ± 516	6831 ± 721		5489 ± 274	5388 ± 550	5864 ± 293	5379 ± 269	6410 ± 340		
2007W	4093 ± 935	4712 ± 558	3182 ± 269	2333 ± 182	2600 ± 337	2426 ± 454	2531 ± 156	2494 ± 164	2606 ± 186	2078 ± 104	2473 ± 124
2007X	8301 ± 675	8476 ± 537	6609 ± 601		5416 ± 383	4585 ± 762	6272 ± 399	5503 ± 354	6107 ± 1008	5115 ± 427	4978 ± 496
2007Z											
2008ag	6218 ± 463	6826 ± 426	4546 ± 473	4017 ± 292	3924 ± 324	3912 ± 311	3837 ± 326	3500 ± 283	4185 ± 426	3205 ± 230	3478 ± 233
2008aw	7684 ± 621	8145 ± 1011	6567 ± 530	4689 ± 376	4684 ± 526	4497 ± 654	4983 ± 458	4395 ± 372	6366 ± 478	4508 ± 394	4424 ± 271
$2008 \mathrm{bh}$	7177 ± 688	7724 ± 430	6232 ± 375	4205 ± 210	4308 ± 232	4163 ± 637	4295 ± 215	4150 ± 207	4648 ± 378	4433 ± 222	3963 ± 198
2008bk	3294 ± 390	4086 ± 707	2390 ± 224	1860 ± 133	2247 ± 153	2896 ± 460	2256 ± 276	2426 ± 310	2011 ± 171	1840 ± 137	1991 ± 180
$2008 \mathrm{bm}$	1115 ± 56	1760 ± 88	1382 ± 69	1555 ± 78	1644 ± 82	1274 ± 64			1756 ± 88		

$2008 \mathrm{bp}$											
2008 br	3659 ± 491	4043 ± 258	2474 ± 169	1659 ± 178	1826 ± 142	1628 ± 218	2152 ± 108	2535 ± 127	1915 ± 96	1382 ± 69	1666 ± 83
2008bu											
2008F											
2008 ga	6400 ± 589	7313 ± 653	5357 ± 768	3307 ± 754	3390 ± 732	3253 ± 757	4665 ± 694	3179 ± 677	4785 ± 663		
2008gi											
2008 gr	8247 ± 752	8705 ± 435	7454 ± 385		5364 ± 268	4971 ± 249	5860 ± 293	5521 ± 276	7393 ± 708		
2008H	6811 ± 790	6537 ± 703	5308 ± 941	3838 ± 420	3766 ± 360	3714 ± 350	3797 ± 400	3655 ± 783	4633 ± 760	3370 ± 325	3410 ± 410
2008hg											
2008ho											
2008if	8588 ± 1126	8415 ± 549	7137 ± 642	3182 ± 200	4887 ± 298	4718 ± 398	5018 ± 272	4745 ± 251	7309 ± 633	3789 ± 189	4582 ± 234
2008il											
2008in	4384 ± 721	4245 ± 768	3210 ± 310	2754 ± 259	2824 ± 373	2817 ± 455	2666 ± 283	2667 ± 251	2907 ± 1581	2368 ± 203	2562 ± 227
2008K	7882 ± 619	7784 ± 793	6791 ± 701		6134 ± 352	5311 ± 437		5491 ± 301	6984 ± 501		
2008M	6058 ± 862	6793 ± 631	5654 ± 474	3487 ± 214	3436 ± 345	3622 ± 458	3748 ± 271	3593 ± 198	4754 ± 1056	3368 ± 217	3486 ± 275
2008W	5955 ± 665	6932 ± 435	5815 ± 435	3435 ± 335	3719 ± 233	3820 ± 297	3710 ± 224	3487 ± 278	5197 ± 470	3078 ± 255	3296 ± 185
2009aj	2787 ± 455	3095 ± 183	2800 ± 470	2082 ± 161	2421 ± 197	2834 ± 315			3011 ± 240		
2009ao	6678 ± 859	5920 ± 544	5194 ± 471	3767 ± 334	3672 ± 256	3575 ± 210	4126 ± 206	3745 ± 230	4650 ± 335		3396 ± 170
2009au	2601 ± 524	2575 ± 215	1978 ± 165	1613 ± 113	1727 ± 161	1470 ± 175	1769 ± 237	1912 ± 296	1943 ± 118	1285 ± 64	1698 ± 85
2009bu	6363 ± 596	7316 ± 1521	5522 ± 1304	3969 ± 267	3948 ± 436	4007 ± 456	4204 ± 210	3440 ± 172	4448 ± 308		
2009bz											
2009N	4039 ± 377	4475 ± 909	2799 ± 259	2515 ± 282	2638 ± 299	2588 ± 439	2537 ± 238	2489 ± 195	2692 ± 186	2289 ± 206	2387 ± 156
2009W											

Columns: (1) SN name; (2) Velocity of H_{α} absorption component; (3) Velocity of H_{α} emission component; (4) Velocity of H_{β} ; (5) Velocity of Fe II 4924; (6) Velocity of Fe II 5018; (7) Velocity of Fe II 5169; (8) Velocity of Fe II/Sc II; (9) Velocity of Sc II Multiplet; (10) Velocity of Na I D; (11) Velocity of Ba II; (12) Velocity of ScII

Table 4.4: pEW values at 50 days

SN	(H_{α})	(H_{α})	(H_{β})	(Fe II 4924)	(Fe II 5018)	(Fe II 5169)	(Fe II/Sc II)	(Sc II Mult.)	(Na I D)	(Ba II)	(ScII)	a/e
1986L	32.8 ± 4.1	144.2 ± 34.2	48.2 ± 5.6	1.2 ± 0.6	14.7 ± 3.8	36.7 ± 11.8	7.6 ± 2.9	10.4 ± 3.1	29.2 ± 7.7	0.0 ± 0.0	0.0 ± 0.0	0.23 ± 0.08
1988A												
1990E												
1990K	42.7 ± 4.8	206.2 ± 27.4	71.9 ± 4.4	0.0 ± 0.0	10.9 ± 0.7	38.8 ± 3.1	8.9 ± 0.7	13.2 ± 1.6	50.3 ± 7.5	6.4 ± 0.4	5.9 ± 0.9	0.21 ± 0.05
1991al	62.1 ± 9.8	214.2 ± 25.8	67.5 ± 10.2	4.8 ± 2.7	13.0 ± 1.7	27.2 ± 4.8	4.3 ± 1.9	6.5 ± 3.1	20.4 ± 3.2	6.4 ± 2.9	4.1 ± 2.2	0.29 ± 0.08
1992ad												
1992af												
1992am												
1992ba	61.9 ± 8.2	119.3 ± 19.7	47.0 ± 8.9	7.6 ± 3.5	20.2 ± 5.5	30.1 ± 8.9	9.9 ± 1.5	13.7 ± 2.7	34.2 ± 13.7	7.9 ± 1.3	7.1 ± 1.3	0.52 ± 0.15
1993A												
1993K	27.8 ± 4.8	126.1 ± 25.3	42.8 ± 2.7	6.4 ± 2.4	18.9 ± 9.8	28.7 ± 1.9	5.2 ± 1.2	7.3 ± 1.4	27.1 ± 1.9	3.8 ± 1	3.8 ± 1.4	0.22 ± 0.08
1993S												
1999br	56.0 ± 4.1	14.6 ± 10.6	33.8 ± 7.8	15.0 ± 1.7	25.2 ± 2.5	43.1 ± 9.1	15.1 ± 2.9	20.8 ± 3	20.7 ± 2.9	12.9 ± 1.6	14.2 ± 1.4	3.84 ± 3.06
1999ca	48.3 ± 2.7	169.4 ± 13.6	78.9 ± 5.9	0.0 ± 0.0	17.6 ± 1.3	64.1 ± 3.9	11.1 ± 1.1	19.6 ± 1.7	33.7 ± 2.1	5.4 ± 0.4	11.6 ± 0.8	0.29 ± 0.03
1999cr	31.7 ± 11.2	137.5 ± 22.9	37.6 ± 7.1	0.0 ± 0.0	12.4 ± 5.7	24.9 ± 6.8	0.0 ± 0.0	6.4 ± 1.1	9.3 ± 2.2	0.0 ± 0.0	0.0 ± 0.0	0.23 ± 0.12
1999eg												
1999em	75.8 ± 15	141.2 ± 40.2	40.3 ± 5.6	9.9 ± 1.6	23.8 ± 1.8	43.6 ± 7.5	11.7 ± 1.8	13.4 ± 3	30.6 ± 7.8	6.7 ± 1.0	7.5 ± 1.2	0.54 ± 0.25
S0210	36 ± 11.9	287.4 ± 42.3	83.5 ± 4.9	0.0 ± 0.0	30.4 ± 3.5	70.1 ± 19.5	7.8 ± 1.2	40.4 ± 3.3	49.2 ± 13.2	0.0 ± 0.0	0.0 ± 0.0	0.13 ± 0.06
2002ew												
2002fa	45.4 ± 10.9	125.1 ± 43.6	52.4 ± 17.2	6.1 ± 1.1	15.5 ± 4.1	36.5 ± 2.4	9.7 ± 3.4	13.1 ± 2.4	42.4 ± 12.4	0.0 ± 0.0	0.0 ± 0.0	0.36 ± 0.21
2002gd	21.7 ± 4.3	106.8 ± 23.8	39.8 ± 13.3	5.8 ± 2.2	24.9 ± 5.5	59.3 ± 12.7	16.2 ± 3.8	26.9 ± 5.6	27.1 ± 5.1	3.8 ± 2.6	11.0 ± 5.1	0.20 ± 0.08
2002gw	61.4 ± 14.6	205.5 ± 29.5	58.4 ± 10.6	6.9 ± 1.6	182 ± 21	31.3 ± 4.7	55 ± 17	58 ± 2.0	135 ± 33	3.1 ± 1.1	38 ± 15	0.30 ± 0.11
2002bi	70.1 ± 12.3	207.5 ± 34.1	71.7 ± 5.5	2.8 ± 1.6	16.5 ± 3.9	40.8 ± 4.2	43 ± 25	10.2 ± 4.4	18.6 ± 4.9	0.0 ± 0.0	0.0 ± 0.0	0.34 ± 0.11
2002hx	88.8 ± 11.1	135.6 ± 18.1	73.8 ± 11.8	9.8 ± 2.2	20.8 ± 2.2	35.5 ± 6.0	75 ± 11	17.9 ± 2.7	53.1 ± 24.1	86 ± 22	1.3 ± 4.1	0.65 ± 0.16
2002ig					2010 ± 212						0.0 ± 0.0	
2003B	60.1 ± 5.3	148.6 ± 27.6	53.0 ± 6.5	10.5 ± 1.8	23.4 ± 2.5	38.1 ± 3.3	142 ± 14	20.3 ± 2.4	28.6 ± 2.2	39 ± 09	8.8 ± 1.5	0.40 ± 0.11
2003bl	58.0 ± 7.3	116.5 ± 19.1	37.1 ± 2.1	15.0 ± 1.0 15.1 ± 2.8	26.1 ± 2.0 26.5 ± 3.5	38.3 ± 3.8	10.9 ± 3.9	17.0 ± 6.6	19.3 ± 5.6	11.7 ± 5.4	9.0 ± 1.0 9.1 ± 3.9	0.51 ± 0.14
2003bn	77.7 ± 16.4	144.4 ± 66.6	55.3 ± 16.5	71 ± 2.0	17.3 ± 6.6	36.0 ± 10.1	83 ± 31	91 ± 41	16.1 ± 12.3	32 ± 20	2.5 ± 2.1	0.54 ± 0.36
2003ci	50.6 ± 2.5	166.2 ± 8.3	64.6 ± 3.2	1.3 ± 0.1	15.8 ± 0.8	46.2 ± 3.6	10.4 ± 0.5	20.7 ± 1.0	55.1 ± 2.8	7.7 ± 0.4	42 ± 0.2	0.31 ± 0.03
2003cn	43.7 ± 2.9	141.6 ± 18.4	52.0 ± 0.2 52.0 ± 0.7	12.6 ± 2.1	21.1 ± 3.4	40.2 ± 0.0 35.1 ± 3.9	9.2 ± 1.8	17.2 ± 3.1	18.2 ± 4.7	7.4 ± 1.5	7.1 ± 1.2	0.31 ± 0.06
2003cx	40.1 ± 2.5	141.0 ± 10.4		12.0 ± 2.1			J.2 ± 1.0		10.2 ± 4.1			0.01 ± 0.00
2003da												
2003E												
2003ef	91.4 ± 10.3	130.5 ± 14.3	27.9 ± 6.2	9.8 ± 1.3	20.4 ± 1.7	28.3 ± 9.4	10.8 ± 4.9	9.4 ± 6.2	24.2 ± 13	1.9 ± 5.3	9.6 ± 3.2	0.70 ± 0.15
2003eg	94 ± 111	$244\ 2+24\ 5$	60.6 ± 4.4	0.0 ± 0.0	14.4 ± 1.5	38.6 ± 11.1	10.5 ± 3.4	142 ± 37	58.4 ± 6.3	7.1 ± 2.1	6.5 ± 2.8	0.04 ± 0.01
2003ei							1010 ± 011				0.0 ± 2.0	
2003fb	737 ± 63	185.1 ± 13.4	55.1 ± 4.2	8.1 ± 0.8	18.1 ± 0.8	40 ± 2.6	79 ± 15	9.0 ± 1.4	25.0 ± 1.6	9.0 ± 1.8	71 ± 12	0.4 ± 0.06
2003rd					1011 ± 010	10 ± 2.0			2010 ± 110			
2003hd	78.1 ± 11.2	119.1 ± 30.9	56.8 ± 9.4	49 ± 11	16.1 ± 3.1	33 910	4.6 ± 2.8	79 ± 45	154 ± 33	0.0 ± 0.0	0.0 ± 0.0	0.65 ± 0.26
2003hg		110.1 ± 00.0		4.5 ± 1.1	10.1 ± 0.1		4.0 ± 2.0	1.0 1 4.0	10.4 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.00 ± 0.20
2003hk	32.6 ± 18.4	123.2 ± 12.4	30.2 ± 3.7	0.3 ± 3.0	17.6 ± 2.3	34.6 ± 3.6	0.0 ± 0.0	0.0 ± 0.0	44.3 ± 6.1	0.0 ± 0.0	0.0 ± 0.0	0.26 ± 0.18
2003hl	50.4 ± 6.1	123.2 ± 12.4 118.3 ± 22.1	32.6 ± 0.0	5.5 ± 5.9 6.8 ± 2.4	22.1 ± 3.0	39.5 ± 4.1	15.4 ± 2.0	19.2 ± 2.6	35.9 ± 5.5	5.0 ± 0.0 5.6 ± 2.6	1.1 ± 2.0	0.43 ± 0.13
2003hp	61.4 ± 5.0	178.7 ± 22.1	60.0 ± 5.9	0.0 ± 2.4 7 9 \pm 1 1	175 ± 15	39.0 ± 4.1 39.1 ± 5.7	10.4 ± 2.9 10.2 ± 1.8	13.2 ± 2.0 13.3 ± 1.5	31.5 ± 5.6	43 ± 0.0	5.3 ± 0.8	0.43 ± 0.13 0.34 ± 0.07
2003hc	68.4 ± 0.9	10.1 ± 22.4 260.8 ± 51.0	60.0 ± 3.4	1.4 ± 1.1 5 1 ± 1.2	16.0 ± 1.0	33.1 ± 3.7	10.2 ± 1.0 7.0 ± 1.8	13.3 ± 1.3 8.3 ± 0.7	31.0 ± 0.0 36.1 ± 2.0	4.3 ± 0.9	0.0 ± 0.0	0.34 ± 0.07 0.25 ± 0.08
200310	00.4 1 9.0	203.0 ± 34.9	03.1 ± 4.0	0.4 1 1.0	10.3 ± 1.3	42.1 ± 3.2	1.3 ± 1.0	0.0 ± 0.7	50.1 ± 2.9	0.0 ± 0.0	0.0 ± 0.0	0.25 ± 0.08
200310	60.9 ± 5.2	191.4 ± 18.1	71.2 ± 10.9	0.0 ± 0.0	93+52	43 ± 0.7	65 ± 1.4	12.0 ± 1.0	33.2 ± 3.6	49+06	5.9 ± 2.1	0.32 ± 0.05
2003ip	30.3 ± 3.2	157.4 ± 10.1 157.0 ± 14.4	16.2 ± 10.0	78 ± 31	3.5 ± 0.2 21.3 ± 1.9	377 ± 4.1	0.0 ± 1.4 10 4 \pm 3 6	12.0 ± 1.0 10.7 ± 3.5	33.2 ± 3.0 32.3 ± 6.0	4.0 ± 0.0 3.4 ± 1.0	5.3 ± 2.1 6.0 ± 2.0	0.52 ± 0.03 0.52 ± 0.12
200314	04.4 ± 10.0	101.9 ± 14.4	40.4 ± 1.4	1.0 ± 3.1	21.0 ± 1.0	31.1 ± 4.1	10.4 ± 3.0	10.7 ± 3.5	52.5 ± 0.9	0.4 ± 1.2	0.0 ± 2.0	0.03 ± 0.13

2003T	58.5 ± 21	153.6 ± 29.6	27.6 ± 10.1	11.5 ± 4.7	22.9 ± 2.9	38.2 ± 7.6	14.0 ± 2.9	14.9 ± 3.3	35.1 ± 5.5	18.7 ± 6.7	10.2 ± 2.2	0.38 ± 0.21
2004 dy												
2004ej	57.1 ± 9.8	114.6 ± 20.3	48.6 ± 9.7	9.1 ± 6.1	20.7 ± 1.7	44.0 ± 8.3	14.7 ± 4.3	21.8 ± 4.9	37.2 ± 6.1	6.4 ± 4.6	5.9 ± 3.7	0.50 ± 0.17
2004er	74.4 ± 10.7	154.3 ± 23.7	59.2 ± 14.7	3.2 ± 1.5	10.7 ± 2.3	34.3 ± 5.2	3.6 ± 0.7	6.4 ± 2.4	16.2 ± 3.3	0.4 ± 4.6	2.6 ± 0.7	0.48 ± 0.14
2004 fb	70.1 ± 37.2	165.5 ± 26.1	59.1 ± 17.4	6.9 ± 0.5	18.7 ± 2.1	46.9 ± 20.4	$11.6 \pm 2 - 1$	16.8 ± 5.1	41.6 ± 26.8	10.8 ± 2.0	10.4 ± 1.2	0.42 ± 0.29
2004 fc	34.8 ± 16.2	85.6 ± 37.9	16.2 ± 9.8	7.9 ± 2.1	18.7 ± 3.8	28.2 ± 6.1	10.2 ± 2.9	14.4 ± 5.7	23.1 ± 9.3	5.0 ± 2.1	6.6 ± 1.8	0.41 ± 0.36
2004 fx	70.6 ± 11.7	168.9 ± 35.7	55.7 ± 8.3	8.6 ± 3.3	18.6 ± 4.1	30.7 ± 5.0	7.2 ± 4.1	4.4 ± 5.6	11.3 ± 4.2	2.7 ± 1.2	4.8 ± 5.4	0.42 ± 0.15
2005af												
2005an	51.9 ± 7.8	210.8 ± 27.1	74.4 ± 12.7	4.1 ± 0.4	15.4 ± 2.6	42.8 ± 5.9	12.1 ± 2.1	22.2 ± 3.5	18.4 ± 2.8	0.0 ± 0.0	10.5 ± 0.9	0.25 ± 0.06
2005 dk	49.0 ± 8.3	166.6 ± 19.0	57.6 ± 4.5	5.4 ± 0.7	13.4 ± 1.2	32.7 ± 3.2	8.9 ± 2.7	11.1 ± 1.3	32.1 ± 14.6	4.2 ± 1.9	4.6 ± 1.9	0.29 ± 0.08
2005dn	66.6 ± 7.1	238.9 ± 54.3	77.9 ± 9.5	1.1 ± 2.2	3.9 ± 1.1	$48.0 \pm 10.$	0.0 ± 0.0	10.5 ± 1.2	30.7 ± 10.4	0.0 ± 0.0	0.0 ± 0.0	0.28 ± 0.09
2005dt												
2005dw												
2005 dx												
2005dz	77.2 ± 13.4	205 ± 41.1	50.4 ± 14.1	0.0 ± 0.0	20.3 ± 2.3	34.4 ± 4.8	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.38 ± 0.141
2005es												
2005J	77.2 ± 9.5	133.7 ± 30.3	64.0 ± 6.5	5.5 ± 1.8	15.9 ± 3.1	36.6 ± 4.4	8.6 ± 2.3	12.2 ± 3.1	23.2 ± 6.4	4.8 ± 2.7	3.9 ± 1.3	0.58 ± 0.201
2005K												
2005lw	45.1 ± 7.2	210.0 ± 15.2	50.1 ± 5.4	0.0 ± 0.0	9.2 ± 1.5	60.0 ± 6.1	6.1 ± 1.9	7.0 ± 1.7	26.0 ± 4.1	3.5 ± 1.2	4.9 ± 1.6	0.21 ± 0.17
2005me												
2005Z	65.9 ± 10.4	192.1 ± 35.7	56.8 ± 17.3	6.9 ± 1.5	12.7 ± 2.6	36.1 ± 13.7	10.4 ± 2.2	13.9 ± 4.6	49.2 ± 10.6	0.0 ± 0.0	0.0 ± 0.0	0.34 ± 0.118
2006ai	15.4 ± 4.6	173.2 ± 22.5	38.5 ± 4.4	3.2 ± 1.2	15.0 ± 2.5	36.8 ± 4.6	6.5 ± 2.9	7.8 ± 1.7	35.4 ± 3.1	0.0 ± 0.0	0.0 ± 0.0	0.09 ± 0.038
2006bc												
2006be	62.2 ± 4.3	180.5 ± 7	68.1 ± 4.0	5.6 ± 1.3	15.1 ± 0.7	26.0 ± 2.1	8.0 ± 1.2	12.0 ± 1.2	20.0 ± 1.2	5.3 ± 1.0	0.0 ± 0.0	0.34 ± 0.037
2006bl						2010 ± 211			2010 ± 112	0.0 ± 1.0		
2006ee	62.6 ± 16.2	122.1 ± 22.5	24.5 ± 10.5	152 ± 32	26.6 ± 3.9	42.4 ± 9.8	14.6 ± 2.8	18.1 ± 5.2	39.1 ± 7.8	13.1 ± 5.4	14.1 ± 3.2	0.51 ± 0.227
2006it			2110 ± 1010	1012 ± 012	2010 ± 010							
2006iw	40.6 ± 4.2	94.7 ± 12.2	38.1 ± 4.3	35 ± 16	10.0 ± 1.2	16.0 ± 1.6	5.0 ± 0.8	67 ± 12	12.1 ± 2	0.0 ± 0.0	0.0 ± 0.0	0.43 ± 0.097
2006ms					1010 ± 112	1010 ± 110				0.0 ± 0.0		
2006ar	69.7 ± 20.6	133.1 ± 15.1	61.9 ± 11.3	11.5 ± 0.6	22.1 ± 4.9	44.0 ± 5.2	16.3 ± 4.1	20.2 ± 4.6	33.6 ± 9.4	88 + 49	12.6 ± 3.2	0.52 ± 0.214
2006Y	10.4 ± 2.9	123.7 ± 27.3	25.5 ± 2.8	1.6 ± 0.5	6.7 ± 1.8	16.3 ± 6.1	0.0 ± 0.0	0.0 ± 0.0	15.8 ± 6	0.0 ± 0.0	0.0 ± 0.0	0.08 ± 0.042
2007aa	74.5 ± 10.5	119.7 ± 11.0	52.5 ± 5.8	9.6 ± 1.1	20.7 ± 1.8	35.1 ± 3.1	10.7 ± 2.1	13.1 ± 2.1	31.8 ± 5.9	11 ± 22	5.7 ± 1.6	0.62 ± 0.145
2007ab	72.4 ± 11.1	232.1 ± 26.4	84.6 ± 9.4	0.0 ± 0.0	17.5 ± 3.6	77.2 ± 13.4	6.6 ± 3.6	23.0 ± 4.4	32.9 ± 2	8.0 ± 2.1	12.0 ± 3.3	0.31 ± 0.083
2007av	97 ± 6.6	164.9 ± 22.2	46.4 ± 3.3	8.6 ± 1.5	21.8 ± 1.4	43.9 ± 3.5	10.9 ± 3.8	12.3 ± 1.8	29.4 ± 5.2	7.6 ± 2.9	8.3 ± 2.5	0.59 ± 0.119
2007bf												
2007hm	44.1 ± 10.3	180.7 ± 36.8	56.2 ± 9.9	8.3 ± 0.7	16.6 ± 4.3	29.1 ± 16.3	9.8 ± 2.6	143 ± 34	22.3 ± 4.2	0.0 ± 0.0	0.0 ± 0.0	0.24 ± 0.105
2007il	63.9 ± 9.4	190.2 ± 36.5	66.4 ± 7.2	2.8 ± 2.1	13.4 ± 3.5	28.2 ± 6.3	0.0 ± 0.0	0.0 ± 0.0	15.6 ± 6.1	0.0 ± 0.0	0.0 ± 0.0	0.34 ± 0.114
2007it												
2007ld												
200706	35.5 ± 2.8	267.1 ± 22.4	70.1 ± 6.9	45 ± 15	8.0 ± 1.9	46.5 ± 8.6	43 ± 26	144 + 39	43.6 ± 4.8	35 ± 15	2.9 ± 1.0	0.13 ± 0.022
2007od	32.9 ± 3.1	184.0 ± 22.5	65.2 ± 5.1	0.0 ± 0.0	147 ± 27	36.0 ± 6.8	0.0 ± 0.0	152 ± 27	16.4 ± 1.9	3.5 ± 0.6	5.3 ± 1.6	0.18 ± 0.022 0.18 ± 0.039
2007P										0.0 ± 0.0		
2007sg	37.5 ± 10.2	125.9 ± 36.4	48.3 ± 14	4.52	6.8 ± 2.9	31.8 ± 7.5	5.1 ± 2.3	7.7 ± 3.3	22.4 ± 8.9	0.0 ± 0.0	0.0 ± 0.0	0.30 ± 0.167
2007U	31.1 ± 4.2	142.8 ± 32.4	54.3 ± 9.2	0.0 ± 0.0	12.0 ± 2.0	40.9 ± 4.3	10.0 ± 2.5	15.6 ± 2.5	17.1 ± 5.7	0.0 ± 0.0	0.0 ± 0.0	0.22 ± 0.079
2007W	67.2 ± 5.6	131.2 ± 21.7	38.1 ± 11.9	11 52	21.7 ± 2.6	36.5 ± 4.8	10.2 ± 3.6	16.0 ± 2.0 16.0 ± 4.8	13.5 ± 3.2	4.6 ± 2.3	4.1 ± 2.3	0.51 ± 0.127
2007X	45.2 ± 6.8	223.8 ± 32.8	77.1 ± 10.7	0.0 ± 0.0	13.9 ± 2.9	49.4 ± 6.1	10.2 ± 3.0 10.3 ± 3.2	16.4 ± 3.6	22.9 ± 9.2	5.6 ± 1.9	9.1 ± 2.0 9.1 ± 2.4	0.20 ± 0.06
2007Z	-0.2 ± 0.0				-0.0 ± 2.0		1010 ± 012					
2008ag	60.6 ± 8.2	185.2 ± 15.8	39.3 ± 12.2	10.7 ± 4.1	22.3 ± 1.7	38.9 ± 5.6	10.1 ± 1.9	14.6 ± 2.3	38.4 ± 5.1	33 ± 28	55 ± 22	0.33 ± 0.072
2008aw	17.8 ± 7.3	175.8 ± 18.8	47.1 ± 6.6	31 ± 13	12.0 ± 1.7 12.4 ± 1.4	37.8 ± 4.4	64 ± 12	82 ± 16	38.8 ± 9.9	3.6 ± 1.6	3.6 ± 1.2	0.10 ± 0.072
2008bh	55.8 ± 11.9	216.8 ± 41.7	54.4 ± 5.6	4.7 ± 1.3	16.2 ± 2.0	36.2 ± 11.1	8.3 ± 2.2	9.8 ± 2.0	16.7 ± 7.9	5.2 ± 0.9	5.2 ± 0.8	0.26 ± 0.001
2008bk	57.5 ± 7.8	94.3 ± 12.0	31.9 ± 10.9	16.3 ± 1.2	24.6 ± 2.1	43.7 ± 3.5	14.8 ± 1.7	21.8 ± 3.1	20.1 ± 3.7	11.8 ± 1.2	10.5 ± 1.1	0.61 ± 0.16
2008bm	4.6 ± 0.2	16.1 ± 0.8	19.2 ± 1.3	9.1 ± 0.5	11.6 ± 0.6	19.8 ± 2.1	0.0 ± 0.0	0.0 ± 0.0	3.4 ± 0.2	0.0 ± 0.0	0.0 ± 0.0	0.29 ± 0.027

$2008 \mathrm{bp}$												
2008 br	15.8 ± 5.0	23.3 ± 17.9	22.3 ± 8.2	7.1 ± 1.8	7.2 ± 4.1	9.7 ± 7.8	8.8 ± 1.9	12.9 ± 1.1	12.4 ± 3.7	9.4 ± 2.1	6.7 ± 2.5	0.69 ± 0.752
2008bu												
2008F												
2008 ga	85 ± 5.7	234.1 ± 13.2	60.0 ± 3.3	6.8 ± 1.5	17.0 ± 2.3	35.1 ± 2.1	7.1 ± 1.8	15.0 ± 1.7	55.0 ± 2.1	0.0 ± 0.0	0.0 ± 0.0	0.36 ± 0.045
2008gi												
2008 gr	35.5 ± 10.5	186.4 ± 41.5	56.6 ± 8.6	0.0 ± 0.0	7.3 ± 0.9	34.1 ± 2.6	4.7 ± 1.8	7.8 ± 3.0	30.9 ± 2.5	0.0 ± 0.0	0.0 ± 0.0	0.19 ± 0.099
2008H	63.3 ± 11.1	150.2 ± 21.0	33.0 ± 3.1	10.0 ± 2.1	22.2 ± 2.4	51.0 ± 5.2	14 ± 1.9	20.0 ± 2.1	54.1 ± 3.4	15.0 ± 2.2	14.0 ± 1.8	0.42 ± 0.132
2008hg												
2008ho												
2008if	26.1 ± 8.3	239.2 ± 58.9	61.8 ± 9.7	2.4 ± 1.1	9.3 ± 1.8	30.2 ± 5.3	4.7 ± 1.2	6.9 ± 1.3	48.3 ± 10.6	1.2 ± 0.5	3.7 ± 0.9	0.11 ± 0.06
2008il												
2008in	54.8 ± 17.3	157.6 ± 49.6	36.6 ± 20.1	14.5 ± 3.4	26.9 ± 3.3	42.9 ± 5.7	14.7 ± 2.6	18.3 ± 4.2	38.8 ± 11.9	6.4 ± 3.4	8.3 ± 2.3	0.35 ± 0.22
2008K	40.5 ± 11.5	250.8 ± 44.5	80.4 ± 15.2	0.0 ± 0.0	17.4 ± 5.6	62.8 ± 19.1	0.0 ± 0.0	19.1 ± 6.8	41.5 ± 9.1	0.0 ± 0.0	0.0 ± 0.0	0.16 ± 0.07
2008M	54.0 ± 6.5	208.7 ± 27.7	72.9 ± 15.8	5.3 ± 2.1	20.2 ± 5.4	34.0 ± 8.1	4.9 ± 2.1	7.5 ± 2.4	30.3 ± 13.8	2.5 ± 0.9	1.6 ± 1.1	0.26 ± 0.06
2008W	46.7 ± 10.2	200.2 ± 21.9	60.4 ± 9.4	5.1 ± 1.9	16.4 ± 3.9	36.9 ± 5.8	7.7 ± 1.9	12.7 ± 4.1	45.9 ± 7.7	3.5 ± 1.4	4.6 ± 1.7	0.23 ± 0.08
2009aj	8.1 ± 1.6	46.7 ± 6.1	13 ± 2.2	6.2 ± 1.6	8.5 ± 1.9	13.9 ± 3.1	0.0 ± 0.0	0.0 ± 0.0	1.7 ± 0.6	0.0 ± 0.0	0.0 ± 0.0	0.17 ± 0.06
2009ao	40.2 ± 3.1	148.6 ± 11	54.5 ± 10.4	5.8 ± 6.2	18.5 ± 1.4	41.8 ± 5.7	9.3 ± 3.2	19.4 ± 2.6	24.2 ± 4.6	0.0 ± 0.0	9.1 ± 2.8	0.27 ± 0.04
2009au	5.9 ± 1.4	34.3 ± 11.1	12.8 ± 5.7	8.8 ± 2.8	11.9 ± 4.7	17.2 ± 7.5	6.1 ± 2.8	7.3 ± 3.3	7.9 ± 3.5	3.3 ± 0.6	5.6 ± 1.3	0.17 ± 0.09
2009bu	84.6 ± 7.3	146.5 ± 23.3	55.9 ± 5.1	3.6 ± 1.1	14.2 ± 2.6	26.4 ± 9.8	5.7 ± 2.2	6.1 ± 2.5	15.1 ± 1.5	0.0 ± 0.0	0.0 ± 0.0	0.58 ± 0.14
2009bz												
2009N	75.7 ± 13.1	118.5 ± 20.7	39.1 ± 7.9	15.2 ± 1.9	25.4 ± 2.3	34.4 ± 6.8	13.7 ± 1.1	20.8 ± 4.1	24.5 ± 3.2	10.3 ± 2.1	9.6 ± 1.1	0.64 ± 0.22
2009W											•••	

Columns: (1) SN name; (2) pEW of H_{α} absorption component; (3) pEW of H_{α} emission component; (4) pEW of H_{β} ; (5) pEW of Fe II 4924; (6) pEW of Fe II 5018; (7) pEW of Fe II 5169; (8) pEW of Fe II/Sc II; (9) pEW of Sc II Multiplet; (10) pEW of Na I D; (11) pEW of Ba II; (12) pEW of ScII; (13) Ratio of absorption to emission (a/e) of H_{α} P-Cygni profile.

Chapter 5

Summary

In this thesis, I have presented a spectroscopic and photometric analysis of type II Supernovae (SNe II) obtained by the Carnegie Supernova Project (CSP) plus previous campaigns between 1986 and 2009. A total of 123 SNe II with ~ 900 spectra were analysed and correlated with photometric parameters. The expansion velocity of the ejecta in the photospheric phase, the pseudo-equivalent width, the ratio of absorption to emission of H_{α} and the velocity decline rate of H_{β} were measured at different epochs. To that aim, I estimated the explosion epochs. Pre-explosion images and the spectral matching technique were used with very good agreements.

In the first part of this work, I used 52 SNe II with available spectra around t_{tran} to study the diversity of the H_{α} P-Cygni profile. I found that supernovae with greater ejecta velocities have smaller $H_{\alpha} a/e$ (absorption over emission ratios), more rapidly declining light curves from maximum, during the plateau and radioactive tail phase, are brighter at all phases, have shorter optically thick phase durations. I discussed possible explanations of these results in terms of physical properties of SNe II, speculating that the most likely parameters which influence in H_{α} diversity are the mass and density profile of the hydrogen envelope, together with additional emission components due to circumstellar interaction.

In the second part, I expanded the analysis to the full coverage of the spectra. Here, I used the entire sample. I worked on a statistical analysis of the appearance of lines in SNe II with time. I found that the He I line disappears around one week post explosion, when the irongroup lines appear. Fe II, Sc II and Ba II lines appear faster in SNe with lower velocities. I also found that SNe with higher velocities are brighter, have smaller pseudo-equivalent widths, faster declining light curves, shorter optically thick duration phases and plateau durations, and higher Ni mass. Discussion is presented on the physical meaning of all of our defined observational spectral and photometric parameters. Thus, I speculate that the plateau duration is related with the hydrogen envelope mass at the moment of the explosion, the initial light-curve decline rate is related with the radius of the progenitor, and the expansion ejecta velocities with the explosion energy. Also, a statistical processing reveals a continuum in spectral and photometric parameters. I speculate that this suggests a continuum in the underlying progenitor population. I also studied the nature of the extra absorption component on the blue side of H_{α} P-Cygni profile. I concluded that this component in early spectra (before 35 days) is associated with Si II λ 6355, while in the plateau phase is related with high velocity features (HVFs) of hydrogen lines. I speculate that the detection of Si II λ 6355 is related to the radius of the progenitor star, and the HV features with an interaction between the SN ejecta and circumstellar material.

Bibliography

- Allington-Smith, J., Breare, M., Ellis, R., Gellatly, D., Glazebrook, K., Jorden, P., Maclean, J., Oates, P., Shaw, G., Tanvir, N., Taylor, K., Taylor, P., Webster, J., Worswick, S., Sep. 1994. A low-dispersion survey spectrograph (LDSS-2) for the William Herschel Telescope. PASP106, 983–991.
- Anderson, J. P., Dessart, L., Gutierrez, C. P., Hamuy, M., Morrell, N. I., Phillips, M., Folatelli, G., Stritzinger, M. D., Freedman, W. L., González-Gaitán, S., McCarthy, P., Suntzeff, N., Thomas-Osip, J., Jun. 2014a. Analysis of blueshifted emission peaks in Type II supernovae. MNRAS441, 671–680.
- Anderson, J. P., Gutiérrez, C. P., Dessart, L., Hamuy, M., Galbany, L., Morrell, N. I., Stritzinger, M. D., Phillips, M. M., Folatelli, G., Boffin, H. M. J., de Jaeger, T., Kuncarayakti, H., Prieto, J. L., May 2016. Type II supernovae as probes of environment metallicity: observations of host H II regions. A&A589, A110.
- Anderson, J. P., et al., May 2014b. Characterizing the V-band Light-curves of Hydrogen-rich Type II Supernovae. ApJ786, 67.
- Andrews, J. E., Gallagher, J. S., Clayton, G. C., Sugerman, B. E. K., Chatelain, J. P., Clem, J., Welch, D. L., Barlow, M. J., Ercolano, B., Fabbri, J., Wesson, R., Meixner, M., May 2010. SN 2007od: A Type IIP Supernova with Circumstellar Interaction. ApJ715, 541–549.
- Arcavi, I., Gal-Yam, A., Cenko, S. B., Fox, D. B., Leonard, D. C., Moon, D.-S., Sand, D. J., Soderberg, A. M., Kiewe, M., Yaron, O., Becker, A. B., Scheps, R., Birenbaum, G., Chamudot, D., Zhou, J., Sep. 2012. Caltech Core-Collapse Project (CCCP) Observations of Type II Supernovae: Evidence for Three Distinct Photometric Subtypes. ApJ756, L30.
- Arnett, W. D., May 1979. On the theory of Type I supernovae. ApJ230, L37–L40.
- Barbon, R., Buondí, V., Cappellaro, E., Turatto, M., Nov. 1999. The Asiago Supernova Catalogue - 10 years after. A&AS139, 531–536.
- Barbon, R., Cappellaro, E., Turatto, M., Jun. 1984. Radioactive decays and supernova light curves. A&A135, 27–31.

- Barbon, R., Ciatti, F., Rosino, L., Feb. 1979. Photometric properties of type II supernovae. A&A72, 287–292.
- Baron, E., Branch, D., Hauschildt, P. H., Filippenko, A. V., Kirshner, R. P., Challis, P. M., Jha, S., Chevalier, R., Fransson, C., Lundqvist, P., Garnavich, P., Leibundgut, B., McCray, R., Michael, E., Panagia, N., Phillips, M. M., Pun, C. S. J., Schmidt, B., Sonneborn, G., Suntzeff, N. B., Wang, L., Wheeler, J. C., Dec. 2000. Preliminary Spectral Analysis of the Type II Supernova 1999EM. ApJ545, 444–448.
- Bersten, M. C., Mar. 2013. Comparing Hydrodynamic Models with Observations of Type II Plateau Supernovae. ArXiv e-prints.
- Blinnikov, S. I., Bartunov, O. S., Jun. 1993. Non-Equilibrium Radiative Transfer in Supernova Theory - Models of Linear Type-II Supernovae. A&A273, 106.
- Blondin, S., Tonry, J. L., Sep. 2007. Determining the Type, Redshift, and Age of a Supernova Spectrum. ApJ666, 1024–1047.
- Branch, D., Falk, S. W., Uomoto, A. K., Wills, B. J., McCall, M. L., Rybski, P., Mar. 1981. The type II supernova 1979c in M100 and the distance to the Virgo cluster. ApJ244, 780–804.
- Buta, R. J., Jun. 1982. Photometric observations of the bright Type II supernova 1980K in NGC 6946. PASP94, 578–585.
- Buzzoni, B., Delabre, B., Dekker, H., Dodorico, S., Enard, D., Focardi, P., Gustafsson, B., Nees, W., Paureau, J., Reiss, R., Dec. 1984. The ESO Faint Object Spectrograph and Camera (EFOSC). The Messenger 38, 9–13.
- Cappellaro, E., Danziger, I. J., della Valle, M., Gouiffes, C., Turatto, M., Jan. 1995a. The bright linear type II SN 1990K. A&A293, 723–732.
- Cappellaro, E., Danziger, I. J., Turatto, M., Nov. 1995b. SN 1986E eight years after outburst: a link to SN 1957D? MNRAS277, 106–112.
- Catchpole, R. M., Menzies, J. W., Monk, A. S., Wargau, W. F., Pollaco, D., Carter, B. S., Whitelock, P. A., Marang, F., Laney, C. D., Balona, L. A., Feast, M. W., Lloyd Evans, T. H. H., Sekiguchi, K., Laing, J. D., Kilkenny, D. M., Spencer Jones, J., Roberts, G., Cousins, A. W. J., van Vuuren, G., Winkler, H., Nov. 1987. Spectroscopic and photometric observations of SN 1987a. II - Days 51 to 134. MNRAS229, 15P–25P.
- Catchpole, R. M., Whitelock, P. A., Feast, M. W., Menzies, J. M., Glass, I. S., Marang, F., Laing, J. D., Spencer Jones, J. H., Roberts, G., Balona, L. A., Carter, B. S., Laney, C. D., Evans, L. T., Sekiguchi, K., Hutchinson, G. G., Maddison, R., Albinson, J., Evans, A., Allen, F. A.,

Winkler, H., Fairall, A., Corbally, C., Davies, J. K., Parker, Q. A., Apr. 1988. Spectroscopic and photometric observations of SN 1987A. III - Days 135 to 260. MNRAS231, 75p–89p.

- Chevalier, R. A., Aug. 1976. The hydrodynamics of Type II supernovae. ApJ207, 872–887.
- Chugai, N. N., Chevalier, R. A., Utrobin, V. P., Jun. 2007. Optical Signatures of Circumstellar Interaction in Type IIP Supernovae. ApJ662, 1136–1147.
- Clocchiatti, A., Benetti, S., Wheeler, J. C., Wren, W., Boisseau, J., Cappellaro, E., Turatto, M., Patat, F., Swartz, D. A., Harkness, R. P., Brotherton, M. S., Wills, B., Hemenway, P., Cornell, M., Frueh, M., Kaiser, M. B., Mar. 1996. A Study of SN 1992H in NGC 5377. AJ111, 1286.
- Contreras, C., Hamuy, M., Phillips, M. M., Folatelli, G., Suntzeff, N. B., Persson, S. E., Stritzinger, M., Boldt, L., González, S., Krzeminski, W., Morrell, N., Roth, M., Salgado, F., José Maureira, M., Burns, C. R., Freedman, W. L., Madore, B. F., Murphy, D., Wyatt, P., Li, W., Filippenko, A. V., Feb. 2010. The Carnegie Supernova Project: First Photometry Data Release of Low-Redshift Type Ia Supernovae. AJ139, 519–539.
- Dekker, H., Delabre, B., Dodorico, S., Jan. 1986. ESO's Multimode Instrument for the Nasmyth focus of the 3.5 M New Technology Telescope. In: Crawford, D. L. (Ed.), Instrumentation in astronomy VI. Vol. 627 of Proc. SPIE. pp. 339–348.
- Dessart, L., Blondin, S., Brown, P. J., Hicken, M., Hillier, D. J., Holland, S. T., Immler, S., Kirshner, R. P., Milne, P., Modjaz, M., Roming, P. W. A., Mar. 2008. Using Quantitative Spectroscopic Analysis to Determine the Properties and Distances of Type II Plateau Supernovae: SN 2005cs and SN 2006bp. ApJ675, 644–669.
- Dessart, L., Gutierrez, C. P., Hamuy, M., Hillier, D. J., Lanz, T., Anderson, J. P., Folatelli, G., Freedman, W. L., Ley, F., Morrell, N., Persson, S. E., Phillips, M. M., Stritzinger, M., Suntzeff, N. B., May 2014. Type II Plateau supernovae as metallicity probes of the Universe. MNRAS440, 1856–1864.
- Dessart, L., Hillier, D. J., Jul. 2005. Quantitative spectroscopy of photospheric-phase type II supernovae. A&A437, 667–685.
- Dessart, L., Hillier, D. J., Feb. 2006. Quantitative spectroscopic analysis of and distance to SN1999em. A&A447, 691–707.
- Dessart, L., Hillier, D. J., Jan. 2008. Time-dependent effects in photospheric-phase Type II supernova spectra. MNRAS383, 57–74.
- Dessart, L., Hillier, D. J., Jan. 2011. Non-LTE time-dependent spectroscopic modelling of Type II-plateau supernovae from the photospheric to the nebular phase: case study for 15 and 25 M_{\odot} progenitor stars. MNRAS410, 1739–1760.

- Dessart, L., Hillier, D. J., Waldman, R., Livne, E., Aug. 2013a. Type II-Plateau supernova radiation: dependences on progenitor and explosion properties. MNRAS433, 1745–1763.
- Dessart, L., Livne, E., Waldman, R., Jul. 2010. Shock-heating of stellar envelopes: a possible common mechanism at the origin of explosions and eruptions in massive stars. MNRAS405, 2113–2131.
- Dessart, L., Waldman, R., Livne, E., Hillier, D. J., Blondin, S., Feb. 2013b. Radiative properties of pair-instability supernova explosions. MNRAS428, 3227–3251.
- Dressler, A., Bigelow, B., Hare, T., Sutin, B., Thompson, I., Burley, G., Epps, H., Oemler, A., Bagish, A., Birk, C., Clardy, K., Gunnels, S., Kelson, D., Shectman, S., Osip, D., Mar. 2011. IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade. PASP123, 288–332.
- Dwek, E., Nov. 1983. The infrared echo of a type II supernova with a circumstellar dust shell Applications to SN 1979c and SN 1980k. ApJ274, 175–183.
- Elias-Rosa, N., Van Dyk, S. D., Li, W., Miller, A. A., Silverman, J. M., Ganeshalingam, M., Boden, A. F., Kasliwal, M. M., Vinkó, J., Cuillandre, J.-C., Filippenko, A. V., Steele, T. N., Bloom, J. S., Griffith, C. V., Kleiser, I. K. W., Foley, R. J., May 2010. The Massive Progenitor of the Type II-linear Supernova 2009kr. ApJ714, L254–L259.
- Elias-Rosa, N., Van Dyk, S. D., Li, W., Silverman, J. M., Foley, R. J., Ganeshalingam, M., Mauerhan, J. C., Kankare, E., Jha, S., Filippenko, A. V., Beckman, J. E., Berger, E., Cuillandre, J.-C., Smith, N., Nov. 2011. The Massive Progenitor of the Possible Type II-Linear Supernova 2009hd in Messier 66. ApJ742, 6.
- Fabbri, J., Otsuka, M., Barlow, M. J., Gallagher, J. S., Wesson, R., Sugerman, B. E. K., Clayton, G. C., Meixner, M., Andrews, J. E., Welch, D. L., Ercolano, B., Dec. 2011. The effects of dust on the optical and infrared evolution of SN 2004et. MNRAS418, 1285–1307.
- Faran, T., Poznanski, D., Filippenko, A. V., Chornock, R., Foley, R. J., Ganeshalingam, M., Leonard, D. C., Li, W., Modjaz, M., Nakar, E., Serduke, F. J. D., Silverman, J. M., Jul. 2014a. Photometric and spectroscopic properties of Type II-P supernovae. MNRAS442, 844–861.
- Faran, T., Poznanski, D., Filippenko, A. V., Chornock, R., Foley, R. J., Ganeshalingam, M., Leonard, D. C., Li, W., Modjaz, M., Serduke, F. J. D., Silverman, J. M., Nov. 2014b. A sample of Type II-L supernovae. MNRAS445, 554–569.
- Fesen, R. A., Gerardy, C. L., Filippenko, A. V., Matheson, T., Chevalier, R. A., Kirshner, R. P., Schmidt, B. P., Challis, P., Fransson, C., Leibundgut, B., van Dyk, S. D., Feb. 1999. Late-Time Optical and Ultraviolet Spectra of SN 1979C and SN 1980K. AJ117, 725–735.

Filippenko, A. V., 1997. Optical Spectra of Supernovae. ARA&A35, 309-355.

- Filippenko, A. V., Matheson, T., Ho, L. C., Oct. 1993. The "Type IIb" Supernova 1993J in M81: A Close Relative of Type Ib Supernovae. ApJ415, L103.
- Folatelli, G., Morrell, N., Phillips, M. M., Hsiao, E., Campillay, A., Contreras, C., Castellón, S., Hamuy, M., Krzeminski, W., Roth, M., Stritzinger, M., Burns, C. R., Freedman, W. L., Madore, B. F., Murphy, D., Persson, S. E., Prieto, J. L., Suntzeff, N. B., Krisciunas, K., Anderson, J. P., Förster, F., Maza, J., Pignata, G., Rojas, P. A., Boldt, L., Salgado, F., Wyatt, P., Olivares E., F., Gal-Yam, A., Sako, M., Aug. 2013. Spectroscopy of Type Ia Supernovae by the Carnegie Supernova Project. ApJ773, 53.
- Folatelli, G., Phillips, M. M., Burns, C. R., Contreras, C., Hamuy, M., Freedman, W. L., Persson, S. E., Stritzinger, M., Suntzeff, N. B., Krisciunas, K., Boldt, L., González, S., Krzeminski, W., Morrell, N., Roth, M., Salgado, F., Madore, B. F., Murphy, D., Wyatt, P., Li, W., Filippenko, A. V., Miller, N., Jan. 2010. The Carnegie Supernova Project: Analysis of the First Sample of Low-Redshift Type-Ia Supernovae. AJ139, 120–144.
- Galbany, L., Hamuy, M., Phillips, M. M., Suntzeff, N. B., Maza, J., de Jaeger, T., Moraga, T., González-Gaitán, S., Krisciunas, K., Morrell, N. I., Thomas-Osip, J., Krzeminski, W., González, L., Antezana, R., Wishnjewski, M., McCarthy, P., Anderson, J. P., Gutiérrez, C. P., Stritzinger, M., Folatelli, G., Anguita, C., Galaz, G., Green, E. M., Impey, C., Kim, Y.-C., Kirhakos, S., Malkan, M. A., Mulchaey, J. S., Phillips, A. C., Pizzella, A., Prosser, C. F., Schmidt, B. P., Schommer, R. A., Sherry, W., Strolger, L.-G., Wells, L. A., Williger, G. M., Feb. 2016. UBVRIz Light Curves of 51 Type II Supernovae. AJ151, 33.
- Gutiérrez, C. P., et al., May 2014. H_{α} Spectral Diversity of Type II Supernovae: Correlations with Photometric Properties. ApJ786, L15.
- Gutiérrez, C. P., et al., 2016. "spectral diversity of type ii supernovae paper i: Obervations, sample characterization and spectral lines evolution". in preparation.
- Hamuy, M., Jan. 2003. Observed and Physical Properties of Core-Collapse Supernovae. ApJ582, 905–914.
- Hamuy, M., Folatelli, G., Morrell, N. I., Phillips, M. M., Suntzeff, N. B., Persson, S. E., Roth, M., Gonzalez, S., Krzeminski, W., Contreras, C., Freedman, W. L., Murphy, D. C., Madore, B. F., Wyatt, P., Maza, J., Filippenko, A. V., Li, W., Pinto, P. A., Jan. 2006. The Carnegie Supernova Project: The Low-Redshift Survey. PASP118, 2–20.
- Hamuy, M., Maza, J., Phillips, M. M., Suntzeff, N. B., Wischnjewsky, M., Smith, R. C., Antezana, R., Wells, L. A., Gonzalez, L. E., Gigoux, P., Navarrete, M., Barrientos, F., Lamontagne, R., della Valle, M., Elias, J. E., Phillips, A. C., Odewahn, S. C., Baldwin, J. A.,

Walker, A. R., Williams, T., Sturch, C. R., Baganoff, F. K., Chaboyer, B. C., Schommer, R. A., Tirado, H., Hernandez, M., Ugarte, P., Guhathakurta, P., Howell, S. B., Szkody, P., Schmidtke, P. C., Roth, J., Dec. 1993. The 1990 Calan/Tololo Supernova Search. AJ106, 2392–2407.

- Hamuy, M., Maza, J., Pinto, P. A., Phillips, M. M., Suntzeff, N. B., Blum, R. D., Olsen, K. A. G., Pinfield, D. J., Ivanov, V. D., Augusteijn, T., Brillant, S., Chadid, M., Cuby, J.-G., Doublier, V., Hainaut, O. R., Le Floc'h, E., Lidman, C., Petr-Gotzens, M. G., Pompei, E., Vanzi, L., Jul. 2002. Optical and Infrared Spectroscopy of SN 1999ee and SN 1999ex. AJ124, 417–429.
- Hamuy, M., Phillips, M. M., Suntzeff, N. B., Schommer, R. A., Maza, J., Smith, R. C., Lira, P., Aviles, R., Dec. 1996. The Morphology of Type IA Supernovae Light Curves. AJ112, 2438.
- Hamuy, M., Pinto, P. A., Feb. 2002. Type II Supernovae as Standardized Candles. ApJ566, L63–L65.
- Hamuy, M., Pinto, P. A., Maza, J., Suntzeff, N. B., Phillips, M. M., Eastman, R. G., Smith, R. C., Corbally, C. J., Burstein, D., Li, Y., Ivanov, V., Moro-Martin, A., Strolger, L. G., de Souza, R. E., dos Anjos, S., Green, E. M., Pickering, T. E., González, L., Antezana, R., Wischnjewsky, M., Galaz, G., Roth, M., Persson, S. E., Schommer, R. A., Sep. 2001. The Distance to SN 1999em from the Expanding Photosphere Method. ApJ558, 615–642.
- Hamuy, M. A., 2001. Type II supernovae as distance indicators. Ph.D. thesis, The University of Arizona.
- Harutyunyan, A. H., et al., Sep. 2008. ESC supernova spectroscopy of non-ESC targets. A&A488, 383–399.
- Howell, D. A., et al., Dec. 2005. Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification. ApJ634, 1190–1201.
- Hoyle, F., Fowler, W. A., Nov. 1960. Nucleosynthesis in Supernovae. ApJ132, 565.
- Iben, Jr., I., Tutukov, A. V., Feb. 1984. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M not greater than about 9 solar masses). ApJS54, 335–372.
- Immler, S., Fesen, R. A., Van Dyk, S. D., Weiler, K. W., Petre, R., Lewin, W. H. G., Pooley, D., Pietsch, W., Aschenbach, B., Hammell, M. C., Rudie, G. C., Oct. 2005. Late-Time X-Ray, UV, and Optical Monitoring of Supernova 1979C. ApJ632, 283–293.
- Inserra, C., Pastorello, A., Turatto, M., Pumo, M. L., Benetti, S., Cappellaro, E., Botticella, M. T., Bufano, F., Elias-Rosa, N., Harutyunyan, A., Taubenberger, S., Valenti, S., Zampieri, L., Jul. 2013. Moderately luminous Type II supernovae. A&A555, A142.

- Inserra, C., Turatto, M., Pastorello, A., Benetti, S., Cappellaro, E., Pumo, M. L., Zampieri, L., Agnoletto, I., Bufano, F., Botticella, M. T., Della Valle, M., Elias Rosa, N., Iijima, T., Spiro, S., Valenti, S., Oct. 2011. The Type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase. MNRAS417, 261–279.
- Inserra, C., Turatto, M., Pastorello, A., Pumo, M. L., Baron, E., Benetti, S., Cappellaro, E., Taubenberger, S., Bufano, F., Elias-Rosa, N., Zampieri, L., Harutyunyan, A., Moskvitin, A. S., Nissinen, M., Stanishev, V., Tsvetkov, D. Y., Hentunen, V. P., Komarova, V. N., Pavlyuk, N. N., Sokolov, V. V., Sokolova, T. N., May 2012. The bright Type IIP SN 2009bw, showing signs of interaction. MNRAS422, 1122–1139.
- Jerkstrand, A., Smartt, S. J., Fraser, M., Fransson, C., Sollerman, J., Taddia, F., Kotak, R., Apr. 2014. The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines. MNRAS439, 3694–3703.
- Jones, M. I., Hamuy, M., Lira, P., Maza, J., Clocchiatti, A., Phillips, M., Morrell, N., Roth, M., Suntzeff, N. B., Matheson, T., Filippenko, A. V., Foley, R. J., Leonard, D. C., May 2009. Distance Determination to 12 Type II Supernovae Using the Expanding Photosphere Method. ApJ696, 1176–1194.
- Kasen, D., Woosley, S. E., Oct. 2009. Type II Supernovae: Model Light Curves and Standard Candle Relationships. ApJ703, 2205–2216.
- Kotak, R., Meikle, W. P. S., Farrah, D., Gerardy, C. L., Foley, R. J., Van Dyk, S. D., Fransson, C., Lundqvist, P., Sollerman, J., Fesen, R., Filippenko, A. V., Mattila, S., Silverman, J. M., Andersen, A. C., Höflich, P. A., Pozzo, M., Wheeler, J. C., Oct. 2009. Dust and The Type II-Plateau Supernova 2004et. ApJ704, 306–323.
- Kromer, M., Sim, S. A., Fink, M., Röpke, F. K., Seitenzahl, I. R., Hillebrandt, W., Aug. 2010. Double-detonation Sub-Chandrasekhar Supernovae: Synthetic Observables for Minimum Helium Shell Mass Models. ApJ719, 1067–1082.
- Leonard, D. C., Filippenko, A. V., Ardila, D. R., Brotherton, M. S., Jun. 2001. Is It Round? Spectropolarimetry of the Type II-p Supernova 1999EM. ApJ553, 861–885.
- Leonard, D. C., Filippenko, A. V., Gates, E. L., Li, W., Eastman, R. G., Barth, A. J., Bus, S. J., Chornock, R., Coil, A. L., Frink, S., Grady, C. A., Harris, A. W., Malkan, M. A., Matheson, T., Quirrenbach, A., Treffers, R. R., Jan. 2002a. The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method. PASP114, 35–64.
- Leonard, D. C., Filippenko, A. V., Li, W., Matheson, T., Kirshner, R. P., Chornock, R., Van Dyk, S. D., Berlind, P., Calkins, M. L., Challis, P. M., Garnavich, P. M., Jha, S., Mahdavi, A., Nov. 2002b. A Study of the Type II-Plateau Supernova 1999gi and the Distance to its Host Galaxy, NGC 3184. AJ124, 2490–2505.
- Li, W., Van Dyk, S. D., Filippenko, A. V., Cuillandre, J.-C., Feb. 2005. On the Progenitor of the Type II Supernova 2004et in NGC 6946. PASP117, 121–131.
- Li, W., et al., Dec. 2011. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature480, 348–350.
- Litvinova, I. I., Nadezhin, D. K., Jan. 1983. Hydrodynamical models of type II supernovae. Ap&SS89, 89–113.
- Litvinova, I. Y., Nadezhin, D. K., May 1985. Determination of Integrated Parameters for Type-II Supernovae. Soviet Astronomy Letters 11, 145–147.
- Maguire, K., Di Carlo, E., Smartt, S. J., Pastorello, A., Tsvetkov, D. Y., Benetti, S., Spiro, S., Arkharov, A. A., Beccari, G., Botticella, M. T., Cappellaro, E., Cristallo, S., Dolci, M., Elias-Rosa, N., Fiaschi, M., Gorshanov, D., Harutyunyan, A., Larionov, V. M., Navasardyan, H., Pietrinferni, A., Raimondo, G., di Rico, G., Valenti, S., Valentini, G., Zampieri, L., May 2010. Optical and near-infrared coverage of SN 2004et: physical parameters and comparison with other Type IIP supernovae. MNRAS404, 981–1004.
- Marino, R. A., Rosales-Ortega, F. F., Sánchez, S. F., Gil de Paz, A., Vílchez, J., Miralles-Caballero, D., Kehrig, C., Pérez-Montero, E., Stanishev, V., Iglesias-Páramo, J., Díaz, A. I., Castillo-Morales, A., Kennicutt, R., López-Sánchez, A. R., Galbany, L., García-Benito, R., Mast, D., Mendez-Abreu, J., Monreal-Ibero, A., Husemann, B., Walcher, C. J., García-Lorenzo, B., Masegosa, J., Del Olmo Orozco, A., Mourão, A. M., Ziegler, B., Mollá, M., Papaderos, P., Sánchez-Blázquez, P., González Delgado, R. M., Falcón-Barroso, J., Roth, M. M., van de Ven, G., Califa Team, Nov. 2013. The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and T_e-based literature data. A&A559, A114.
- Maund, J. R., Fraser, M., Reilly, E., Ergon, M., Mattila, S., Mar. 2015. Whatever happened to the progenitors of supernovae 2008cn, 2009kr and 2009md? MNRAS447, 3207–3217.
- Maund, J. R., Smartt, S. J., Jun. 2005. Hubble Space Telescope imaging of the progenitor sites of six nearby core-collapse supernovae. MNRAS360, 288–304.
- Menzies, J. W., Catchpole, R. M., van Vuuren, G., Winkler, H., Laney, C. D., Whitelock, P. A., Cousins, A. W. J., Carter, B. S., Marang, F., Lloyd Evans, T. H. H., Roberts, G., Kilkenny, D., Spencer Jones, J., Sekiguchi, K., Fairall, A. P., Wolstencroft, R. D., Aug. 1987. Spectroscopic and photometric observations of SN 1987a - The first 50 days. MNRAS227, 39P-49P.
- Milisavljevic, D., Fesen, R. A., Kirshner, R. P., Challis, P., Feb. 2009. The Evolution of Late-Time Optical Emission from SN 1979C. ApJ692, 839–843.

Minkowski, R., Aug. 1941. Spectra of Supernovae. PASP53, 224.

- Misra, K., et al., Oct. 2007. Type IIP supernova SN 2004et: a multiwavelength study in X-ray, optical and radio. MNRAS381, 280–292.
- Moriya, T. J., Pruzhinskaya, M. V., Ergon, M., Blinnikov, S. I., Jan. 2016. On the nature of rapidly fading Type II supernovae. MNRAS455, 423–430.
- Nakar, E., Poznanski, D., Katz, B., Jun. 2016. The Importance of ⁵⁶Ni in Shaping the Light Curves of Type II Supernovae. ApJ823, 127.
- Nomoto, K., Feb. 1982. Accreting white dwarf models for type I supernovae. I Presupernova evolution and triggering mechanisms. ApJ253, 798–810.
- Nomoto, K., Iwamoto, K., Suzuki, T., Pols, O. R., Yamaoka, H., Hashimoto, M., Hoflich, P., van den Heuvel, E. P. J., 1996. The Origin of Type Ib-Ic-IIb-IIL Supernovae and Binary Star Evolution. In: van Paradijs, J., van den Heuvel, E. P. J., Kuulkers, E. (Eds.), Compact Stars in Binaries. Vol. 165 of IAU Symposium. p. 119.
- Olivares, F., Oct. 2008. The Standard Candle Method for Type II-Plateau Supernovae. ArXiv e-prints.
- Pakmor, R., Kromer, M., Taubenberger, S., Sim, S. A., Röpke, F. K., Hillebrandt, W., Mar. 2012. Normal Type Ia Supernovae from Violent Mergers of White Dwarf Binaries. ApJ747, L10.
- Pastorello, A., Baron, E., Branch, D., Zampieri, L., Turatto, M., Ramina, M., Benetti, S., Cappellaro, E., Salvo, M., Patat, F., Piemonte, A., Sollerman, J., Leibundgut, B., Altavilla, G., Jul. 2005. SN 1998A: explosion of a blue supergiant. MNRAS360, 950–962.
- Pastorello, A., Ramina, M., Zampieri, L., Navasardyan, H., Salvo, M., Fiaschi, M., Oct. 2003. Observational Properties of Type II Plateau Supernovae. ArXiv Astrophysics e-prints.
- Pastorello, A., Sauer, D., Taubenberger, S., Mazzali, P. A., Nomoto, K., Kawabata, K. S., Benetti, S., Elias-Rosa, N., Harutyunyan, A., Navasardyan, H., Zampieri, L., Iijima, T., Botticella, M. T., di Rico, G., Del Principe, M., Dolci, M., Gagliardi, S., Ragni, M., Valentini, G., Aug. 2006. SN 2005cs in M51 - I. The first month of evolution of a subluminous SN II plateau. MNRAS370, 1752–1762.
- Pastorello, A., Valenti, S., Zampieri, L., Navasardyan, H., Taubenberger, S., Smartt, S. J., Arkharov, A. A., Bärnbantner, O., Barwig, H., Benetti, S., Birtwhistle, P., Botticella, M. T., Cappellaro, E., Del Principe, M., di Mille, F., di Rico, G., Dolci, M., Elias-Rosa, N., Efimova, N. V., Fiedler, M., Harutyunyan, A., Höflich, P. A., Kloehr, W., Larionov, V. M., Lorenzi, V., Maund, J. R., Napoleone, N., Ragni, M., Richmond, M., Ries, C., Spiro, S., Temporin,

S., Turatto, M., Wheeler, J. C., Apr. 2009. SN 2005cs in M51 - II. Complete evolution in the optical and the near-infrared. MNRAS394, 2266–2282.

- Pastorello, A., Zampieri, L., Turatto, M., Cappellaro, E., Meikle, W. P. S., Benetti, S., Branch, D., Baron, E., Patat, F., Armstrong, M., Altavilla, G., Salvo, M., Riello, M., Jan. 2004. Low-luminosity Type II supernovae: spectroscopic and photometric evolution. MNRAS347, 74–94.
- Patat, F., Barbon, R., Cappellaro, E., Turatto, M., Feb. 1994. Light curves of type II supernovae.2: The analysis. A&A282, 731–741.
- Podsiadlowski, P., Joss, P. C., Hsu, J. J. L., May 1992. Presupernova evolution in massive interacting binaries. ApJ391, 246–264.
- Pooley, D., Lewin, W. H. G., Fox, D. W., Miller, J. M., Lacey, C. K., Van Dyk, S. D., Weiler, K. W., Sramek, R. A., Filippenko, A. V., Leonard, D. C., Immler, S., Chevalier, R. A., Fabian, A. C., Fransson, C., Nomoto, K., Jun. 2002. X-Ray, Optical, and Radio Observations of the Type II Supernovae 1999em and 1998S. ApJ572, 932–943.
- Popov, D. V., Sep. 1993. An analytical model for the plateau stage of Type II supernovae. ApJ414, 712–716.
- Raskin, C., Timmes, F. X., Scannapieco, E., Diehl, S., Fryer, C., Oct. 2009. On Type Ia supernovae from the collisions of two white dwarfs. MNRAS399, L156–L159.
- Roy, R., Kumar, B., Benetti, S., Pastorello, A., Yuan, F., Brown, P. J., Immler, S., Fatkhullin, T. A., Moskvitin, A. S., Maund, J., Akerlof, C. W., Wheeler, J. C., Sokolov, V. V., Quimby, R. M., Bufano, F., Kumar, B., Misra, K., Pandey, S. B., Elias-Rosa, N., Roming, P. W. A., Sagar, R., Aug. 2011. SN 2008inBridging the Gap between Normal and Faint Supernovae of Type IIP. ApJ736, 76.
- Sahu, D. K., Anupama, G. C., Srividya, S., Muneer, S., Nov. 2006. Photometric and spectroscopic evolution of the Type IIP supernova SN 2004et. MNRAS372, 1315–1324.
- Sanders, N. E., Soderberg, A. M., Gezari, S., Betancourt, M., Chornock, R., Berger, E., Foley,
 R. J., Challis, P., Drout, M., Kirshner, R. P., Lunnan, R., Marion, G. H., Margutti, R.,
 McKinnon, R., Milisavljevic, D., Narayan, G., Rest, A., Kankare, E., Mattila, S., Smartt,
 S. J., Huber, M. E., Burgett, W. S., Draper, P. W., Hodapp, K. W., Kaiser, N., Kudritzki,
 R. P., Magnier, E. A., Metcalfe, N., Morgan, J. S., Price, P. A., Tonry, J. L., Wainscoat,
 R. J., Waters, C., Apr. 2014. Towards Characterization of the Type IIP Supernova Progenitor
 Population: a Statistical Sample of Light Curves from Pan-STARRS1. ArXiv e-prints.
- Schlafly, E. F., Finkbeiner, D. P., Aug. 2011. Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD. ApJ737, 103.

- Schlegel, E. M., May 1990. A new subclass of Type II supernovae? MNRAS244, 269-271.
- Schlegel, E. M., Apr. 1996. On the Early Spectroscopic Distinction of Type II Supernovae. AJ111, 1660.
- Schmidt, B. P., Kirshner, R. P., Schild, R., Leibundgut, B., Jeffery, D., Willner, S. P., Peletier, R., Zabludoff, A. I., Phillips, M. M., Suntzeff, N. B., Hamuy, M., Wells, L. A., Smith, R. C., Baldwin, J. A., Weller, W. G., Navarette, M., Gonzalez, L., Filippenko, A. V., Shields, J. C., Steidel, C. C., Perlmutter, S., Pennypacker, C., Smith, C. K., Porter, A. C., Boroson, T. A., Stathakis, R., Cannon, R., Peters, J., Horine, E., Freeman, K. C., Womble, D. S., Stone, R. P. S., Marschall, L. A., Phillips, A. C., Saha, A., Bond, H. E., Jun. 1993. Photometric and spectroscopic observations of SN 1990E in NGC 1035 Observational constraints for models of type II supernovae. AJ105, 2236–2250.
- Sim, S. A., Fink, M., Kromer, M., Röpke, F. K., Ruiter, A. J., Hillebrandt, W., Mar. 2012. 2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs. MNRAS420, 3003–3016.
- Smartt, S. J., Sep. 2009. Progenitors of Core-Collapse Supernovae. ARA&A47, 63–106.
- Smartt, S. J., Apr. 2015. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars. 32, e016.
- Smartt, S. J., Eldridge, J. J., Crockett, R. M., Maund, J. R., May 2009. The death of massive stars - I. Observational constraints on the progenitors of Type II-P supernovae. MNRAS395, 1409–1437.
- Smartt, S. J., Maund, J. R., Hendry, M. A., Tout, C. A., Gilmore, G. F., Mattila, S., Benn, C. R., Jan. 2004. Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova. Science 303, 499–503.
- Spiro, S., Pastorello, A., Pumo, M. L., Zampieri, L., Turatto, M., Smartt, S. J., Benetti, S., Cappellaro, E., Valenti, S., Agnoletto, I., Altavilla, G., Aoki, T., Brocato, E., Corsini, E. M., Di Cianno, A., Elias-Rosa, N., Hamuy, M., Enya, K., Fiaschi, M., Folatelli, G., Desidera, S., Harutyunyan, A., Howell, D. A., Kawka, A., Kobayashi, Y., Leibundgut, B., Minezaki, T., Navasardyan, H., Nomoto, K., Mattila, S., Pietrinferni, A., Pignata, G., Raimondo, G., Salvo, M., Schmidt, B. P., Sollerman, J., Spyromilio, J., Taubenberger, S., Valentini, G., Vennes, S., Yoshii, Y., Jan. 2014. Underluminous Type II Plateau Supernovae: II. Pointing towards moderate mass precursors. ArXiv e-prints.
- Stritzinger, M. D., et al., Nov. 2011. The Carnegie Supernova Project: Second Photometry Data Release of Low-redshift Type Ia Supernovae. AJ142, 156.

- Taddia, F., Stritzinger, M. D., Sollerman, J., Phillips, M. M., Anderson, J. P., Ergon, M., Folatelli, G., Fransson, C., Freedman, W., Hamuy, M., Morrell, N., Pastorello, A., Persson, S. E., Gonzalez, S., Jan. 2012. The Type II supernovae 2006V and 2006au: two SN 1987A-like events. A&A537, A140.
- Taddia, F., et al., Jul. 2013. Carnegie Supernova Project: Observations of Type IIn supernovae. A&A555, A10.
- Takáts, K., Pumo, M. L., Elias-Rosa, N., Pastorello, A., Pignata, G., Paillas, E., Zampieri, L., Anderson, J. P., Vinkó, J., Benetti, S., Botticella, M.-T., Bufano, F., Campillay, A., Cartier, R., Ergon, M., Folatelli, G., Foley, R. J., Förster, F., Hamuy, M., Hentunen, V.-P., Kankare, E., Leloudas, G., Morrell, N., Nissinen, M., Phillips, M. M., Smartt, S. J., Stritzinger, M., Taubenberger, S., Valenti, S., Van Dyk, S. D., Haislip, J. B., LaCluyze, A. P., Moore, J. P., Reichart, D., Feb. 2014. SN 2009N: linking normal and subluminous Type II-P SNe. MNRAS438, 368–387.
- Turatto, M., 2003. Classification of Supernovae. In: Weiler, K. (Ed.), Supernovae and Gamma-Ray Bursters. Vol. 598 of Lecture Notes in Physics, Berlin Springer Verlag. pp. 21–36.
- Turatto, M., Cappellaro, E., Benetti, S., Danziger, I. J., Nov. 1993. Observations of Type-II Plateau Supernovae - Supernova 1988A Supernova 1988H and Supernova 1989C. MNRAS265, 471.
- Turatto, M., Mazzali, P. A., Young, T. R., Nomoto, K., Iwamoto, K., Benetti, S., Cappellaro, E., Danziger, I. J., de Mello, D. F., Phillips, M. M., Suntzeff, N. B., Clocchiatti, A., Piemonte, A., Leibundgut, B., Covarrubias, R., Maza, J., Sollerman, J., May 1998. The Peculiar Type II Supernova 1997D: A Case for a Very Low 56Ni Mass. ApJ498, L129.
- Valenti, S., Howell, D. A., Stritzinger, M. D., Graham, M. L., Hosseinzadeh, G., Arcavi, I., Bildsten, L., Jerkstrand, A., McCully, C., Pastorello, A., Piro, A. L., Sand, D., Smartt, S. J., Terreran, G., Baltay, C., Benetti, S., Brown, P., Filippenko, A. V., Fraser, M., Rabinowitz, D., Sullivan, M., Yuan, F., Mar. 2016. The Diversity of Type II Supernova vs. The Similarity in Their Progenitors. ArXiv e-prints.
- Van Dyk, S. D., Li, W., Filippenko, A. V., Nov. 2003. On the Progenitor of the Type II-Plateau Supernova 2003gd in M74. PASP115, 1289–1295.
- Webbink, R. F., Feb. 1984. Double white dwarfs as progenitors of R Coronae Borealis stars and Type I supernovae. ApJ277, 355–360.
- Woosley, S. E., Hartmann, D., Pinto, P. A., Nov. 1989. Hard emission at late times from SN 1987A. ApJ346, 395–404.

- Yoon, S.-C., Woosley, S. E., Langer, N., Dec. 2010. Type Ib/c Supernovae in Binary Systems. I. Evolution and Properties of the Progenitor Stars. ApJ725, 940–954.
- Young, T. R., Dec. 2004. A Parameter Study of Type II Supernova Light Curves Using 6 M_{solar} He Cores. ApJ617, 1233–1250.
- Zhang, J., Wang, X., Mazzali, P. A., Bai, J., Zhang, T., Bersier, D., Huang, F., Fan, Y., Mo, J., Wang, J., Yi, W., Wang, C., Xin, Y., Liangchang, Zhang, X., Lun, B., Wang, X., He, S., Walker, E. S., Dec. 2014. Optical and Ultraviolet Observations of a Low-velocity Type II Plateau Supernova 2013am in M65. ApJ797, 5.

Appendix A SNe II spectral series

Here I present the SN II spectral series for a sample of 123 SNe.

Figure A.1 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.2 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.3 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.4 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.5 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.6 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.7 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.8 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.9 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.10 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.11 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.12 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.13 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.14 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.15 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.16 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.17 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.18 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.19 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.20 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Figure A.21 SN II spectral series. The wavelength axis is corrected for the recession velocity of the host galaxy.

Appendix B SNe II spectral matching technique

Here I present the SN II spectral matching technique.

Figure B.1 Best spectral matching of SN 1986L using SNID.

Figure B.2 Best spectral matching of SN 1988A using SNID.

Figure B.3 Best spectral matching of SN 1990E using SNID.

Figure B.4 Best spectral matching of SN 1990K using SNID.

Figure B.5 Best spectral matching of SN 1991al using SNID.

Figure B.6 Best spectral matching of SN 1992af using SNID.

Figure B.7 Best spectral matching of SN 1992am using SNID.

Figure B.8 Best spectral matching of SN 1992ba using SNID.

Figure B.9 Best spectral matching of SN 1993A using SNID.

Figure B.10 Best spectral matching of SN 1993K using SNID.

Figure B.11 Best spectral matching of SN 1993S using SNID.

Figure B.12 Best spectral matching of SN 1999br using SNID.

Figure B.13 Best spectral matching of SN 1999ca using SNID.

Figure B.14 Best spectral matching of SN 1999cr using SNID.

Figure B.15 Best spectral matching of SN 1999eg using SNID.

Figure B.16 Best spectral matching of SN 1999em using SNID.

Figure B.17 Best spectral matching of SN 2002fa using SNID.

Figure B.18 Best spectral matching of SN 2002gd using SNID.

Figure B.19 Best spectral matching of SN 2002gw using SNID.

Figure B.20 Best spectral matching of SN 2002hj using SNID.

Figure B.21 Best spectral matching of SN 2002hx using SNID.

Figure B.22 Best spectral matching of SN 2002ig using SNID.

Figure B.23 Best spectral matching of SN 210 using SNID.

Figure B.24 Best spectral matching of SN 2003B using SNID.

Figure B.25 Best spectral matching of SN 2003E using SNID.

Figure B.26 Best spectral matching of SN 2003T using SNID.

Figure B.27 Best spectral matching of SN 2003bl using SNID.

Figure B.28 Best spectral matching of SN 2003bn using SNID.

Figure B.29 Best spectral matching of SN 2003ci using SNID.

Figure B.30 Best spectral matching of SN 2003cn using SNID.

Figure B.31 Best spectral matching of SN 2003cx using SNID.

Figure B.32 Best spectral matching of SN 2003dq using SNID.

Figure B.33 Best spectral matching of SN 2003ef using SNID.

Figure B.34 Best spectral matching of SN 2003eg using SNID.

Figure B.35 Best spectral matching of SN 2003ej using SNID.

Figure B.36 Best spectral matching of SN 2003fb using SNID.

Figure B.37 Best spectral matching of SN 2003gd using SNID.

Figure B.38 Best spectral matching of SN 2003hd using SNID.

Figure B.39 Best spectral matching of SN 2003hg using SNID.

Figure B.40 Best spectral matching of SN 2003hk using SNID.

Figure B.41 Best spectral matching of SN 2003hl using SNID.

Figure B.42 Best spectral matching of SN 2003hn using SNID.

Figure B.43 Best spectral matching of SN 2003ho using SNID.

Figure B.44 Best spectral matching of SN 2003ib using SNID.

Figure B.45 Best spectral matching of SN 2003ip using SNID.

Figure B.46 Best spectral matching of SN 2003iq using SNID.

Figure B.47 Best spectral matching of SN 2004ej using SNID.

Figure B.48 Best spectral matching of SN 2004er using SNID.

Figure B.49 Best spectral matching of SN 2004fb using SNID.

Figure B.50 Best spectral matching of SN 2004fc using SNID.

Figure B.51 Best spectral matching of SN 2004fx using SNID.

Figure B.52 Best spectral matching of SN 2005J using SNID.

Figure B.53 Best spectral matching of SN 2005K using SNID.

Figure B.54 Best spectral matching of SN 2005Z using SNID.

Figure B.55 Best spectral matching of SN 2005af using SNID.

Figure B.56 Best spectral matching of SN 2005an using SNID.

Figure B.57 Best spectral matching of SN 2005dk using SNID.

Figure B.58 Best spectral matching of SN 2005dn using SNID.

Figure B.59 Best spectral matching of SN 2005dt using SNID.

Figure B.60 Best spectral matching of SN 2005dw using SNID.

Figure B.61 Best spectral matching of SN 2005dx using SNID.

Figure B.62 Best spectral matching of SN 2005dz using SNID.

Figure B.63 Best spectral matching of SN 2005es using SNID.

Figure B.64 Best spectral matching of SN 2005me using SNID.

Figure B.65 Best spectral matching of SN 2006ai using SNID.

Figure B.66 Best spectral matching of SN 2006bc using SNID.

Figure B.67 Best spectral matching of SN 2006be using SNID.

Figure B.68 Best spectral matching of SN 2006bl using SNID.

Figure B.69 Best spectral matching of SN 2006ee using SNID.

Figure B.70 Best spectral matching of SN 2006it using SNID.

Figure B.71 Best spectral matching of SN 2006iw using SNID.

Figure B.72 Best spectral matching of SN 2006ms using SNID.

Figure B.73 Best spectral matching of SN 2006qr using SNID.

Figure B.74 Best spectral matching of SN 2007P using SNID.

Figure B.75 Best spectral matching of SN 2007U using SNID.

Figure B.76 Best spectral matching of SN 2007W using SNID.

Figure B.77 Best spectral matching of SN 2007X using SNID.

Figure B.78 Best spectral matching of SN 2007Z using SNID.

Figure B.79 Best spectral matching of SN 2007aa using SNID.

Figure B.80 Best spectral matching of SN 2007ab using SNID.

Figure B.81 Best spectral matching of SN 2007av using SNID.

Figure B.82 Best spectral matching of SN 2007bf using SNID.

Figure B.83 Best spectral matching of SN 2007hm using SNID.

Figure B.84 Best spectral matching of SN 2007il using SNID.

Figure B.85 Best spectral matching of SN 2007 it using SNID.

Figure B.86 Best spectral matching of SN 2007ld using SNID.

Figure B.87 Best spectral matching of SN 2007oc using SNID.

Figure B.88 Best spectral matching of SN 2007od using SNID.

Figure B.89 Best spectral matching of SN 2007sq using SNID.

Figure B.90 Best spectral matching of SN 2008F using SNID.

Figure B.91 Best spectral matching of SN 2008H using SNID.

Figure B.92 Best spectral matching of SN 2008K using SNID.

Figure B.93 Best spectral matching of SN 2008M using SNID.

Figure B.94 Best spectral matching of SN 2008W using SNID.

Figure B.95 Best spectral matching of SN 2008ag using SNID.

Figure B.96 Best spectral matching of SN 2008aw using SNID.

Figure B.97 Best spectral matching of SN 2008bh using SNID.

Figure B.98 Best spectral matching of SN 2008bk using SNID.

Figure B.99 Best spectral matching of SN 2008bm using SNID.

Figure B.100 Best spectral matching of SN 2008bp using SNID.

Figure B.101 Best spectral matching of SN 2008br using SNID.

Figure B.102 Best spectral matching of SN 2008bu using SNID.

Figure B.103 Best spectral matching of SN 2008ga using SNID.

Figure B.104 Best spectral matching of SN 2008gi using SNID.

Figure B.105 Best spectral matching of SN 2008gr using SNID.

Figure B.106 Best spectral matching of SN 2008hg using SNID.

Figure B.107 Best spectral matching of SN 2008ho using SNID.

Figure B.108 Best spectral matching of SN 2008 if using SNID.

Figure B.109 Best spectral matching of SN 2008il using SNID.

Figure B.110 Best spectral matching of SN 2008 in using SNID.

Figure B.111 Best spectral matching of SN 2009N using SNID.

Figure B.112 Best spectral matching of SN 2009W using SNID.

Figure B.113 Best spectral matching of SN 2009ao using SNID.

Figure B.114 Best spectral matching of SN 2009au using SNID.

Figure B.115 Best spectral matching of SN 2009bu using SNID.

Figure B.116 Best spectral matching of SN 2009bz using SNID.