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a b s t r a c t

A repetition-free Longest Common Subsequence (LCS) of two sequences x and y is an LCS of
x and ywhere each symbolmay appear atmost once. Let R denote the length of a repetition-
free LCS of two sequences of n symbols each one chosen randomly, uniformly, and
independently over a k-ary alphabet.We study the asymptotic, in n and k, behavior of R and
establish that there are three distinct regimes, depending on the relative speed of growth
of n and k. For each regime we establish the limiting behavior of R. In fact, we do more,
since we actually establish tail bounds for large deviations of R from its limiting behavior.

Our study is motivated by the so called exemplar model proposed by Sankoff (1999)
and the related similarity measure introduced by Adi et al. (2010). A natural question that
arises in this context, which as we show is related to long standing open problems in the
area of probabilistic combinatorics, is to understand the asymptotic, in n and k, behavior of
parameter R.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Several of the genome similarity measures considered in the literature either assume that the genomes do not contain
gene duplicates, or work efficiently only under this assumption. However, several known genomes do contain a significant
amount of duplicates. (See the review on gene and genome duplication by Sankoff [19] for specific information and
references.) One can find in the literature proposals to address this issue. Some of these proposals suggest to filter the
genomes, throwing away part or all of the duplicates, and then applying the desired similarity measure to the filtered
genomes. (See [2] for a description of different similarity measures and filtering models for addressing duplicates.)

Sankoff [18], trying to take into account gene duplication in genome rearrangement, proposed the so called exemplar
model, which is one of the filtering schemes mentioned above. In this model, one searches, for each family of duplicated
genes, an exemplar representative in each genome. Once the representative genes are selected, the other genes are disre-
garded, and the part of the genomes with only the representative genes is submitted to the similarity measure. In this case,
the filtered genomes do not contain duplicates, therefore several of the similarity measures (efficiently) apply. Of course,
the selection of the exemplar representative of each gene family might affect the result of the similarity measure. Following
the parsimony principle, one wishes to select the representatives in such a way that the resulting similarity is as good as
possible. Therefore, each similarity measure induces an optimization problem: how to select exemplar representatives of
each gene family that result in the best similarity according to that specific measure.
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The length of a Longest Common Subsequence (LCS) is a well-known measure of similarity between sequences. In
particular, in genomics, the length of an LCS is directly related to the so called edit distance between two sequences
when only insertions and deletions are allowed, but no substitution. This similarity measure can be computed efficiently
in the presence of duplicates (the classical dynamic programming solution to the LCS problem takes quadratic time,
however, improved algorithms are known, specially when additional complexity parameters are taken into account — for a
comprehensive comparison of well-known algorithms for the LCS problem, see [4]). Inspired by the exemplar model above,
some variants of the LCS similaritymeasure have been proposed in the literature. One of them, the so called exemplar LCS [6],
uses the concept of mandatory and optional symbols, and searches for an LCS containing all mandatory symbols. A second
one is the so called repetition-free LCS [1], that requires each symbol to appear at most once in the subsequence. Some other
extensions of these two measures were considered under the name of constrained LCS and doubly-constrained LCS [7]. All of
these variants were shown to be hard to compute [1,5–7], so some heuristics and approximation algorithms for them were
proposed and experimentally tested [1,6,14,10].

Specifically, the notion of repetition-free LCS was formalized by Adi et al. [1] as follows. They consider finite sets, called
alphabets, whose elements are referred to as symbols, and then they define the RFLCS problem as: Given two sequences
x and y, find a repetition-free LCS of x and y. We write RFLCS (x, y) to refer to the RFLCS problem for a generic instance
consisting of a pair (x, y), and we denote by Opt(RFLCS(x, y)) the length of an optimal solution of RFLCS (x, y). In their
paper, Adi et al. showed that RFLCS is MAX SNP-hard, proposed three approximation algorithms for RFLCS, and presented
an experimental evaluation of their proposed algorithms, using for the sake of comparison an exact (computationally
expensive) algorithm for RFLCS based on an integer linear programming formulation of the problem.

Whenever a problem such as the RFLCS is considered, a very natural question arises: What is the expected value of
Opt(RFLCS(x, y))? (where expectation is taken over the appropriate distribution over the instances (x, y) one is interested
in). It is often the case that one has little knowledge of the distribution of problem instances, exceptmaybe for the size of the
instances. Thus, an evenmore basic and often relevant issue is to determine the expected value taken byOpt(RFLCS(x, y)) for
uniformly distributed choices of x and y over all strings of a given length over some fixed size alphabet (say each sequence
has n symbols randomly, uniformly, and independently chosen over a k-ary alphabet Σ). Knowledge of such an average
case behavior is a first step in the understanding of whether a specific value of Opt(RFLCS(x, y)) is of relevance or could
be simply explained by random noise. The determination of this latter average case behavior in the asymptotic regime
(when the length n of the sequences x and y go to infinity) is the main problem we undertake in this article. Specifically, let
Rn = Rn(x, y) denote the length of a repetition-free LCS of two sequences x and y of n symbols randomly, uniformly, and
independently chosen over a k-ary alphabet. Note that the random variable Rn is simply the value of Opt(RFLCS(x, y)). We
are interested in determining (approximately) the value of E


Rn


as a function of n and k, for very large values of n.

One of the results established in this article is that the behavior of E

Rn


depends on theway inwhich n and k are related.

In fact, if k is fixed, it is easy to see thatE

Rn


tends to kwhen n goes to infinity (simply because any fix permutation of a k-ary

alphabet will appear in a sufficiently large sequence of uniformly and independently chosen symbols from the alphabet).
Thus, the interesting cases arise when k = k(n) tends to infinity with n. However, the speed at which k(n) goes to infinity
is of crucial relevance in the study of the behavior of E


Rn


. We identify three distinct growth regimes depending on the

asymptotic dependency between n and k
√
k. Specifically, we establish the next result1:

Theorem 1. The following holds:

• If n = ω(
√
k) and n = o(k

√
k), then limn→∞

E

Rn


n/

√
k(n)

= 2.

• If n =
1
2ρk

√
k for ρ > 0, then lim infn→∞

E

Rn


k(n) ≥ 1 − e−ρ . (By definition Rn ≤ k(n).)

Moreover, if n = ω(k
√
k), then limn→∞

E

Rn


k(n) = 1.

The main results of this article are obtained by relating the asymptotic average case behavior of E

Rn


with that of the

length Ln = Ln(x, y) of a Longest Common Subsequence (LCS) of two sequences x and y of n symbols chosen randomly,
uniformly, and independently over a k-ary alphabet. A simple (well-known) fact concerning Ln is that E


Ln


/n tends to a

constant, say γk, when n goes to infinity. The constant γk is known as the Chvátal–Sankoff constant. A long standing open
problem is to determine the exact value of γk for any fixed k ≥ 2. However, Kiwi, Loebl, and Matoušek [17] proved that
γk

√
k → 2 as k → ∞ (which positively settled a conjecture due to Sankoff and Mainville [20]).

We now give an informal and intuitive justification for each of the claims stated in Theorem 1. As pointed out above,
in [17], it was shown that, under some conditions on the speed of growth of k = k(n), the expected length of an LCS of
two length n sequences randomly, uniformly, and independently chosen over a k-ary alphabet, is roughly 2n/

√
k. When

n = ω(
√
k) ∩ o(k

√
k), we see that 2n/

√
k = ω(1) ∩ o(k). If the k-ary symbols that belong to an LCS show up more or

1 Adhering to standard notation, for functions f and g defined over the non-negative integers, g always non-zero, we say that f (n) = ω(g(n)) if
|f (n)|/|g(n)| tends to infinity when n → ∞.
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less with the same frequency, then one expects that there will be few repetitions in an LCS of size o(k), and thus expects
a repetition-free LCS of size 2n/

√
k. In contrast, when n =

1
2ρk

√
k, ρ > 0, we have that 2n/

√
k = ρk. Under the same

foregoing assumption concerning the frequency of occurrence of symbols in an LCS, we should expect some repetition of
symbols. If one keeps one of each symbol occurrence of the roughly ρk length LCS, one would be left with a repetition-
free LCS. A coupon collector type argument suggests that the length of such repetition-free LCS will be at least (1 − e−ρ)k.
Finally, it is natural for the remaining n = ω(k

√
k) case to be well approximated by the n =

1
2ρk

√
k case for very large ρ,

thus suggesting that an LCSwill end up being of size k.
It is worth mentioning that the above discussion refers to sequences randomly, uniformly, and independently chosen

over an alphabet. Genome sequences might not be characterized well by those, as duplications are evolutionary events, and
occur in several different levels, such as duplication of single genes or of an entire chromosome. See [22, Chaps. 7 and 8] for
a more complete discussion on this.

Coming back to the description of this article’s main contributions, for each of the three different regimes of Theorem 1,
we also establish so called large deviation bounds which capture how unlikely it is for Rn to deviate too much from its
expected value. Specifically, we establish the following:

Theorem 2. The following holds:

• If n = ω(
√
k) and n = o(k

√
k), then for every 0 < ξ ≤ 1 there is a constant k0 = k0(ξ) such that, for all k > k0,

P

Rn ≤ (1 − ξ)2n/

√
k


≤ 2e−
1
10 ξ22n/

√
k.

• Let ρ > 0 and 0 < ξ < 1. If n =
1
2ρk

√
k, then there is a constant k0 = k0(ρ, ξ) such that, for all k > k0,

P

Rn ≤ (1 − ξ)k(1 − e−ρ)


≤ 2e−

ξ2
32(1+ξ/12) k(1−e−ρ )

≤ 2e−
1
35 ξ2k(1−e−ρ ).

• If n = ( 1
2 + ξ)k

√
k ln k for some ξ > 0, then there is a constant k0 = k0(ξ) such that, for all k > k0,

P

Rn ≠ k


≤

2
kξ

.

The preceding stated result is stronger than the one derived by standard concentration type inequalities. Indeed, an
application of Azuma’s inequality [21, Theorem 1.3.1] in exactly the same way as applied to obtain large deviation bounds
for the length of an LCS of two randomly and uniformly chosen equal length sequences (see for example [21, Section 1.3])
yields, for t > 0,

P
Rn − E


Rn

 ≥ t


≤ 2e−t2/8n.

By Theorem 1 we then get that the probability that Rn ≤ (1 − ξ)E

Rn


is at most e−O(1)ξ2n/k when n = ω(

√
k) ∩ o(k

√
k),

and at most e−O(1)ξ2
√
k(1−e−ρ )2/ρ when n =

1
2ρk

√
k. In both cases, Theorem 2 gives a sharper lower tail deviation bound.

Throughout this article we build upon [17], and draw connections with another intensively studied problem concerning
Longest Increasing Subsequences (LIS) of randomly chosen permutations (also known as Ulam’s problem). Probably even
more significant is the fact that our analysis partly elicits a typical structure of one of the large repetition-free common
subsequences of two length n sequences randomly, uniformly, and independently chosen over a k-ary alphabet.

In order to formalize some aspects of our preceding discussion and rigorously state and derive our claims, we first need
to introduce terminology, some background material, and establish some basic facts. We start by describing the road-map
followed throughout this manuscript.
Organization: This article is organized as follows. In Section 2, we review some classical probabilistic so called urn models
and, for the sake of completeness, summarize some of their known basic properties, as well as establish a few others. As our
results build upon those of Kiwi, Loebl, and Matoušek [17], we review them in Section 3, and also take the opportunity to
introduce some relevant terminology. In Section 4, we formalize the notion of ‘‘canonical’’ repetition-free LCS and show that
conditioning on its size, the distribution of the set of its symbols is uniform (among all appropriate size subsets of symbols).
Although simple to establish, this result is key to our approach since it allows us to relate the probabilistic analysis of the
length of repetition-free LCSs to one concerning urn models. Finally, in Section 5, we establish large deviation type bounds
from which Theorem 1 easily follows.

2. Background on urn models

The probabilistic study of repetition-free LCSs we will undertake will rely on the understanding of random phenomena
that arises in so called urn models. In these models, there is a collection of urns where balls are randomly placed. Different
ways of distributing the balls in the urns, as well as considerations about the (in)distinguishability of urns/balls, give rise to
distinct models, often referred to in the literature as occupancy problems (for a classical treatment see [13]). In this section,
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we describe those urnmodels wewill later encounter, associate to them parameters of interest, and state some basic results
concerning their probabilistic behavior.

Henceforth, let k and s be positive integers, and s⃗ = (s1, . . . , sb) denote a b-dimensional nonnegative integer vector
whose coordinates sum up to s, i.e.,

b
i=1 si = s. For a positive integerm, we denote the set {1, . . . ,m} by [m].

Consider the following two processes where s indistinguishable balls are randomly distributed among k distinguishable
urns.

• Grouped Urn (k, s⃗)-model: Randomly distribute s balls over k urns, placing a ball in urn j if j ∈ Si, where S1, . . . , Sb ⊆ [k]
are chosen randomly and independently so that Si is uniformly distributed among all subsets of [k] of size si.

• Classical Urn (k, s)-model: Randomly distribute s balls over k urns, so that the ith ball, i ∈ [k], is placed in an urn
uniformly chosen among the k urns, and independently of where the other balls are placed.2

Henceforth, let X (k,s⃗) be the number of empty urns left when the Grouped Urn (k, s⃗)-process ends. Furthermore, let X (k,s⃗)
j

be the indicator of the event that the jth urn ends up empty. Obviously, X (k,s⃗)
=

k
j=1 X

(k,s⃗)
j . Similarly, define Y (k,s) and

Y (k,s)
1 , . . . , Y (k,s)

k but with respect to the Classical Urn (k, s)-process. Intuitively, one expects that fewer urns will end up
empty in the Grouped Urn process in comparison with the Classical Urn process. This intuition is formalized through the
following result.

Lemma 3. Let s⃗ = (s1, . . . , sb) ∈ Nb and s =
b

i=1 si. Then, the random variable X (k,s⃗) dominates Y (k,s), i.e., for every t ≥ 0,

P

X (k,s⃗)

≥ t


≤ P

Y (k,s)

≥ t

.

Proof. First observe that if s⃗ = (1, . . . , 1) ∈ Ns, then X (k,s⃗) and Y (k,s) have the same distribution, thence the claimed result
trivially holds for such s⃗. For s⃗ = (s1, . . . , sb) ∈ Nb with

b
i=1 si = s and sj ≥ 2 for some j ∈ [b], let s⃗′ = (s′1, . . . , s

′

b, 1)
∈ Nb+1 be such that

s⃗′ = (s1, . . . , sj−1, sj − 1, sj+1, . . . , sb, 1).

Note that
b+1

i=1 s′i = s and observe that, to establish the claimed result, it will be enough to inductively show that, for every
t ≥ 0,

P

X (k,s⃗)

≥ t


≤ P

X (k,s⃗′)

≥ t

. (1)

To prove this last inequality, consider the following experiment. Randomly choose S1, . . . , Sb as in the Grouped Urn (k, s⃗)-
model described above, and distribute s balls in k urns as suggested in themodel’s description. Recall that X (k,s⃗) is the number
of empty urns left when the process ends. Now, randomly and uniformly choose one of the balls placed in an urn of index
in Sj. With probability k−(sj−1)

k , leave it where it is and, with probability sj−1
k , move it to a distinct urn of index in Sj chosen

randomly and uniformly. Observe that the number of empty urns cannot decrease. Moreover, note that the experiment
just described is equivalent to the Grouped Urn (k, s⃗′)-model, thence the number of empty urns when the process ends is
distributed according to X (k,s⃗′). It follows that (1) holds, thus concluding the proof of the claimed result. �

We will later need upper bounds on the probability that a random variable distributed as X (k,s⃗) is bounded away (from
below) from its expectation, i.e., on so called upper tail bounds for X (k,s⃗). The relevance of Lemma 3 is that it allows us to
concentrate on the rather more manageable random variable Y (k,s), since any upper bound on the probability that Y (k,s)

≥ t
will also be valid for theprobability thatX (k,s⃗)

≥ t . The behavior ofY (k,s) is a classical thoroughly studied subject. In particular,
there are well-known tail bounds that apply to it. A key fact used in the derivation of such tail bounds is that Y (k,s) is the sum
of the negatively related 0–1 random variables Y (k,s)

1 , . . . , Y (k,s)
k (for the definition of negatively related random variables,

see [15], and the discussion in [15, Example 1]). For convenience of future reference, the next result summarizes the tail
bounds that we will use.

Proposition 4. For all positive integers k and s,

λ
def
= E


Y (k,s)

= k

1 −

1
k

s
. (2)

Moreover, the following hold:

1. If p def
= λ/k and q def

= 1 − p, then for all a ≥ 0,

P

Y (k,s)

≥ λ + a


≤ exp

−

a2

2(kpq + a/3)


.

2 Note that this model is a particular case of the Grouped Urn model where b = s and s1 = · · · = sb = 1.
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Fig. 1. Graph obtained from Σ(K4,3; 3) for the choice of symbols associated (shown close to) each node.

2. Let ξ ≥ 0 and s = (1 + ξ)k ln k, then

P

Y (k,s)

≠ 0


≤
1
kξ

.

3. For all a > 0,

P

k − Y (k,s)

≤ s − a


≤


es2

ka

a

.

Proof. Since the probability that a ball uniformly distributed over k urns lands in urn j is 1/k, the probability that none of s
balls lands in urn j (equivalently, that Y (k,s)

= 1) is exactly (1− 1/k)s. By linearity of expectation, to establish (2), it suffices
to observe that E


Y (k,s)


=

k
j=1 P


Y (k,s)
j = 1


.

Part 1 is just a re-statement of the second bound in (1.4) of [15] taking into account the comments in [15, Example 1].
Part 2 is a folklore result that follows easily from an application of the union bound. For completeness, we sketch the

proof. Note that Y (k,s)
≠ 0 if and only if Y (k,s)

j ≠ 0 for some j ∈ [k]. Hence, by a union bound and since 1 − x ≤ e−x for all x,

P

Y (k,s)

≠ 0


≤


j∈[k]

P

Y (k,s)
j ≠ 0


= k


1 −

1
k

s
≤ ke−s/k

=
1
kξ

.

Finally, let us establish Part 3. Observe that k − Y (k,s) is the number of urns that end up nonempty in the Classical Urn
(k, s)-model. Thus, assuming that balls are sequentially thrown, one by one, if k − Y (k,s)

≤ s − a, then there must be a size
a subset S ⊆ [s] of balls that fall in an urn where a previously thrown ball has already landed. The probability that a ball in
S ends up in a previously occupied urn, is at most s/k (given that at any moment at most s of the k urns are occupied). So
the probability that all balls in S end up in previously occupied urns is at most (s/k)a. Thus, by a union bound, some algebra,
and the standard bound on binomial coefficients


µ

ν


≤ (eµ/ν)ν ,

P

k − Y (k,s)

≤ s − a


≤


S⊆[s]:|S|=a

 s
k

a
≤


s
a

 s
k

a
≤

 es2

ka

a
. �

3. Some background on the expected length of an LCS

In [17], pairs of sequences (x, y) are associated to plane embeddings of bipartite graphs, and a common subsequence
of x and y to a special class of matching of the associated bipartite graph. Adopting this perspective will also be useful in
what follows. In this section, besides reviewing and restating some of the results of [17], we will introduce some of the
terminology we shall adhere in what follows.

The random word model Σ(Kr,s; k),3 as introduced in [17], consists of the following (for an illustration, see Fig. 1): the
distribution over the set of subgraphs G of Kr,s obtained by uniformly and independently assigning to each vertex of Kr,s
one of k symbols and keeping in G only those edges whose endpoints are associated to the same symbol. In particular, two
nodes u and v belonging to distinct bipartition classes of Kr,s end in the same connected component of G if and only if they
are assigned the same symbol. That is, G consists of isolated vertices and complete bipartite disjoint subgraphs. Formally,
if we let c(G) denote the number of connected components of G, then the probability that G is obtained from Σ(Kr,s; k) is
k(k − 1) · · · (k − c(G) + 1)/kr+s if G is a subgraph of Kr,s which is a collection of c(G) complete bipartite graphs with no
isolated vertices. If G is not a collection of isolated vertices and complete bipartite graphs, then it occurs with probability 0.
Otherwise, G is comprised of both isolated vertices and complete bipartite graphs. The probability of its occurrence is given
by a more complicated expression which we omit.

Following [17], two distinct edges ab and a′b′ of G are said to be noncrossing if a and a′ are in the same order as b and b′.
In other words, if a < a′ and b < b′, or a′ < a and b′ < b. A matching of G is called noncrossing if every distinct pair of its
edges is noncrossing.

3 Remember that Kr,s denotes the complete bipartite graph with two bipartition classes, one of size r and the other of size s.
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Henceforth, for a bipartite graph G, we denote by L(G) the number of edges in a maximum size (largest) noncrossing
matching of G. To G chosen according to Σ(Kn,n; k) we can associate two sequences of length n, say x(G) and y(G), one
for each of the bipartition sides of G, consisting of the symbols associated to the vertices of Kn,n. Note that x(G) and y(G)
are uniformly and independently distributed sequences of n symbols over a k-ary alphabet. Observe that, if G is chosen
according to Σ(Kn,n; k), then L(G) is precisely the length of an LCS of its two associated sequences x(G) and y(G), and vice
versa. Formally, L(G) = Ln(x(G), y(G)), where Ln(·, ·) is as defined in the introductory section.

Among other things, in [17], it is shown that L(Σ(Kn,n; k))
√
k/n is approximately equal to 2 when n and k are very large,

provided that n is ‘‘sufficiently large’’ compared to k. This result is formalized in the following:

Theorem 5 (Kiwi, Loebl, and Matoušek [17]). For every ϵ > 0, there exist k0 and C such that, for all k > k0 and all n with
n > C

√
k,

(1 − ϵ) ·
2n
√
k

≤ E

L(Σ(Kn,n; k))


≤ (1 + ϵ) ·

2n
√
k
. (3)

Moreover, there is an exponentially small tail bound; namely, for every ϵ > 0, there exists c > 0 such that, for k and n as above,

P
L(Σ(Kn,n; k)) −

2n
√
k

 ≥ ϵ
2n
√
k


≤ e−cn/

√
k.

Observe now that a graph G chosen according to Σ(Kn,n; k) has symbols, from a k-ary alphabet, implicitly associated to
each of its nodes (to the jth node of each side of G the jth symbol of the corresponding sequence x(G) or y(G)). Furthermore,
the endpoints of an edge e of Gmust, by construction, be associated to the same symbol, henceforth referred to the symbol
associated to e.We say that a noncrossingmatching ofG is repetition-free if the symbols associated to its edges are all distinct,
and we denote by R(G) the number of edges in a maximum size (largest) repetition-free noncrossing matching of G. If G is
chosen according to Σ(Kn,n; k), then R(G) is precisely the length of a repetition-free LCS of its two associated sequences
x(G) and y(G), and vice versa. Formally, R(G) = Rn(x(G), y(G)), where again Rn(·, ·) is as defined in the introductory section.
Summarizing, we have reformulated the repetition-free LCS problem as an equivalent one, but concerning repetition-free
noncrossing matchings. This justifies why, from now on, we will speak interchangeably about repetition-free LCSs and
repetition-free noncrossing matchings.

Clearly, for every G in the support of Σ(Kn,n; k) we always have that R(G) ≤ L(G). So, the upper bound in (3) for
E

L(Σ(Kn,n; k))


and the upper tail bound for L(Σ(Kn,n; k)) of Theorem 5 are valid replacing L(Σ(Kn,n; k)) by R(Σ(Kn,n; k)).

This explains why from now on we concentrate exclusively on the derivation of lower bounds such as those of Theorem 5
but concerning R(·).

Our approach partly builds on [17], so to help the reader follow the rest of this article, it will be convenient to have a high
level understanding of the proofs of the lower bounds in Theorem 5. We next provide such a general overview. For precise
statements and detailed proofs, see [17].

The proof of the lower bound in (3) has two parts, both of which consider a graph G chosen according toΣ(Kn,n; k)whose
sides, say A and B, are partitioned into segments A1, A2, . . . and B1, B2, . . . , respectively, of roughly the same appropriately
chosen sizen = n(k). For each i, one considers the subgraph of G induced by Ai ∪ Bi, say Gi, and observes that the union of
noncrossingmatchings, one for each Gi, is a noncrossingmatching of G. The first part of the proof argument is a lower bound
on the expected length of a largest noncrossing matching of Gi. The other part of the proof is a lower bound on the expected
length of a largest noncrossing matching of G which follows simply by summing the lower bounds from the first part and
observing that, by ‘‘sub-additivity’’,


i L(Gi) ≤ L(G).

Since the size of the segments A1, A2, . . . and B1, B2, . . . isn, there are n/n such segments in A and in B. An edge of Kn,n
is in G with probability 1/k. So the expected number of edges in Gi isn2/k. The value ofn is chosen so that, for each i, the
expected number of edges of Gi is large, and the expected degree of each vertex of Gi is much smaller than 1. Let G′

i be the
graph obtained from Gi by removing isolated vertices and the edges incident to vertices of degree greater than 1. By the
choice ofn, almost all nonisolated vertices of Gi have degree 1. So G′

i has ‘‘almost’’ the same expected number of edges as Gi,
i.e.,n2/k edges. Also, note that G′

i is just a perfect matching (every node has degree exactly 1). This perfect matching, of size
say t , defines a permutation of [t]— in fact, by symmetry arguments it is easy to see that, conditioning on t , the permutation is
uniformly distributed among all permutations of [t]. Observe that a noncrossingmatching of G′

i corresponds to an increasing
sequence in the aforementioned permutation, and vice versa. So a largest noncrossing matching of G′

i is given by a Longest
Increasing Sequence (LIS) of the permutation. There are precise results (by Baik et al. [3]) on the distribution of the length of a
LIS of a randomly chosen permutation of [t]. The expected length of a LIS for such a random permutation is 2

√
t . So a largest

noncrossing matching in G′

i has expected length almost 2
n2/k = 2n/√k. As the number of i’s is n/n, we obtain a lower

bound of almost (n/n)2n/√k = 2n/
√
k for the expected length of a largest noncrossing matching of G. The same reasoning

(although technically significantly more involved) yields a lower tail bound for the deviation of


i L(G
′

i) ≤


i L(Gi) ≤ L(G)

from 2n/
√
k. This concludes our overview of the proof arguments of [17] for deriving the lower bounds of Theorem 5.

We now stress one important aspect of the preceding paragraph discussion. Namely, that by constructionG′

i is a subgraph
of Gi whose vertices all have degree one, and, moreover, G′

i is in fact an induced subgraph of G. Since G is generated
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according to Σ(Kn,n; k), it must necessarily be the case that the symbols associated to the edges of G′

i are all distinct. Hence,
a noncrossing matching of G′

i is also a repetition-free noncrossing matching of G′

i , thence also of Gi. In other words, it holds
that L(G′

i) = R(G′

i) ≤ R(Gi). Thus, a lower tail bound for the deviation of L(G′

i) from 2n/√k is also a lower tail bound for the
deviation of R(Gi) from 2n/√k. Unfortunately, R(·) is not sub-additive as L(·) above (so now


i R(Gi) is not necessarily a

lower bound for R(G)). Indeed, the union of repetition-free noncrossing matchings Mi of the Gi’s is certainly a noncrossing
matching, but is not necessarily repetition-free. This happens because although the symbols associated to the edges of each
Mi must be distinct, it might happen that the same symbol is associated to several edges of differentMi’s. However, if we can
estimate (bound) the number of ‘‘symbol overlaps’’ between edges of distinct Mi’s, then we can potentially translate lower
tail bounds for the deviation of L(G′

i) = R(G′

i) from some given value, to lower tail bounds for the deviation of R(G) from a
properly chosen factor of the given value. This is the approach we will develop in detail in the following sections. However,
we still need a lower tail bound for R(Gi) whenn = n(k) is appropriately chosen in terms of k and Gi is randomly chosen
as above. From the previous discussion, it should be clear that such a tail bound is implicitly established in [17]. The formal
result of [17] related to Gi, addresses the distribution of L(Σ(Kr,s; k)) for r = s = n, as expressed in their Proposition 6 in
[17, p. 486]. One can verify that the same result holds, with the same proof, observing that each Gi is distributed according
to Σ(Kn,n; k) and replacing L(·) by R(·). For the sake of future reference, we re-state the claimed result but with respect to
the parameter R(·) and the case r = s =nwe are interested in.

Theorem 6. For every δ > 0, there exists C = C(δ) such that, if n is an integer and C
√
k ≤ n ≤ δk/12 then, with mu =

2(1 + δ)n/√k and ml = 2(1 − δ)n/√k, for all t ≥ 0,

P

R(Σ(Kn,n; k)) ≤ ml − t


≤ 2 e−t2/8mu .

4. Distribution of symbols in repetition-free LCSs

One expects that any symbol is equally likely to show up in a repetition-free LCS of two randomly chosen sequences.
Intuitively, this follows from the fact that there is a symmetry between symbols. In fact, one expects something stronger
to hold; conditioning on the largest repetition-free LCS being of size ℓ, any subset of ℓ symbols among the k symbols of
the alphabet should be equally likely. Making this intuition precise is somewhat tricky due to the fact that there might be
more than one repetition-free LCS for a given pair of sequences. The purpose of this section is to formalize the preceding
discussion.

First, note that if G is in the support of Σ(Kn,n; k), then each of its connected components is either an isolated node or a
complete bipartite graph. Hence, each connected component of G is in one-to-one correspondence with a symbol from the
k-ary alphabet.

Now, consider some total ordering, denoted ≼, on the noncrossing matchings of Kn,n. For ℓ ∈ [k], let Gℓ be the collection
of all graphs G in the support ofΣ(Kn,n; k) such that R(G) = ℓ. Given G inGℓ letCℓ(G) ⊆ [k] denote the collection of symbols
assigned to the nodes of the smallest (with respect to the ordering ≼) repetition-free noncrossing matchingM of G of size ℓ.
Clearly, the cardinality of Cℓ(G) is ℓ. For G in the support of Σ(Kn,n; k) we say that M is the canonical matching of G if M is
the smallest, with respect to the ordering ≼, among all largest repetition-free noncrossing matching of G. We claim that,
for G chosen according to Σ(Kn,n; k), conditioned on R(G) = ℓ, the set of symbols associated to the edges of the canonical
matchingM of G is uniformly distributed over all size ℓ subsets of [k]. Formally, we establish the following result.

Lemma 7. For all ℓ ∈ [k] and S ⊆ [k] with |S| = ℓ,

P

Cℓ(G) = S | R(G) = ℓ


=

1k
ℓ

 ,

where the probability is taken over the choices of G distributed according to Σ(Kn,n; k).

Proof. For a subset E of edges of Kn,n, define Pℓ(E) as the set of elements of Gℓ whose edge set is exactly E. Let Eℓ be the
collection of all E’s such that Pℓ(E) is nonempty and let Pℓ be the collection of Pℓ(E)’s where E ranges over subsets of Eℓ.
Observe that Pℓ is a partition of Gℓ. Hence,

E∈Eℓ

P

E(G) = E | R(G) = ℓ


=


E∈Eℓ

P

G ∈ Pℓ(E) | R(G) = ℓ


= P


G ∈ Gℓ | R(G) = ℓ


= 1.

Moreover,

P

Cℓ(G) = S | R(G) = ℓ


=


E∈Eℓ

P

Cℓ(G) = S | E(G) = E


P

E(G) = E | R(G) = ℓ


.

Thus, the desired conclusion will follow once we show that P

Cℓ(G) = S | E(G) = E


= 1/

k
ℓ


for all E ∈ Eℓ. Indeed, let

E ∈ Eℓ and observe that the condition E(G) = E uniquely determines the canonical noncrossing matching of G of size ℓ,



82 C.G. Fernandes, M. Kiwi / Discrete Applied Mathematics 210 (2016) 75–87

sayM = M(G). Moreover, note that any choice of distinct ℓ symbols to each of the ℓ distinct components of G to which the
edges of M belong is equally likely. Since there are

k
ℓ


possible choices of ℓ-symbol subsets of [k], the desired conclusion

follows. �

The preceding result will be useful in the next section in order to address the following issue. For G and G1, . . . ,Gb as de-
fined in Section 3, suppose thatM1, . . . ,Mb are the largest repetition-free noncrossingmatchings ofG1, . . . ,Gb, respectively.
As mentioned before, the unionM of theMi’s is a noncrossing matching of G, but not necessarily repetition-free. Obviously,
we can remove edges fromM , keeping one edge for each symbol associated to the edges ofM , and thus obtain a repetition-
free noncrossingmatchingM ′ contained inM , and thence also inG. Clearly, it is of interest to determine the expected number
of edges that are removed from M to obtain M ′, i.e., |M \ M ′

|, and in particular whether this number is small. Lemma 7 is
motivated, and will be useful, in this context. The reason being that, conditioning on the size si of the largest repetition-free
noncrossing matching in each Gi, it specifies the distribution of the set of symbols Csi(Gi) associated to the edges of the
canonical noncrossing matching of Gi. The latter helps in the determination of the sought-after expected value, since

|M \ M ′
| =

b
i=1

Csi(Gi)
 −

∪b
i=1 Csi(Gi)

 .
5. Tail bounds

In this section we derive bounds on the probability that R(G) is bounded away from its expected value when G is cho-
sen according to Σ(Kn,n; k). We will ignore the case where n = O(

√
k) due to its limited interest and the impossibility of

deriving meaningful asymptotic results. Indeed, if n ≤ C
√
k for some positive constant C and sufficiently large k, then the

expected number of edges of a graph G chosen according to Σ(Kn,n; k) is n2/k ≤ C2 (just observe that there are n2 potential
edges and that each one occurs in G with probability 1/k). Since 0 ≤ R(G) ≤ |E(G)|, when n = O(

√
k), the expected length

of a repetition-free LCS will be constant — hence, not well suited for an asymptotic study. Thus, we henceforth assume that
n = ω(

√
k). If in addition n = o(k), then Theorem 6 already provides the type of tail bounds we are looking for. Hence, we

need only consider the case where n = Ω(k). We will show that three different regimes arise. The first one corresponds to
n = o(k

√
k). For this case we show that the length of a repetition-free LCS is concentrated around its expected value, which

in fact is roughly 2n/
√
k (i.e., the same magnitude as that of the length of a standard LCS). The second one corresponds to

n = Θ(k
√
k). For this regime we show that the length of a repetition-free LCS cannot be much smaller than a fraction of k,

and we relate the constant of proportionality with the constant hidden in the asymptotic dependency n = Θ(k
√
k). The last

regime corresponds to n = (1+Ω(1))k
√
k ln k. For this latter case we show that with high probability a repetition-free LCS

is of size k.
Throughout this section, n and k are positive integers,G is a bipartite graph chosen according toΣ(Kn,n; k), andG1, . . . ,Gb

are as defined in Section 3,where b is an integer approximately equal ton/n. Note in particular thatGi is distributed according
to Σ(Kn,n; k).

This section’s first formal claim is motivated by an obvious fact; if r = R(G) is ‘‘relatively small’’, then at least one of the
two following situations must happen:

• For some i ∈ [b], the value of ri = R(Gi) is ‘‘relatively small’’.
• The sets of symbols, Cri(Gi), associated to the edges of the canonical largest noncrossing matching of Gi, for i ∈ [b], have

a ‘‘relatively large’’ overlap, more precisely, the cardinality of Cr(G) is ‘‘relatively small’’ compared to the sum, for i ∈ [b],
of the cardinalities of Cri(Gi).

The next result formalizes the preceding observation. In particular, it establishes that the probability that R(G) is ‘‘relatively
small’’ is bounded by the probability that one of the two aforementioned cases occurs (and also gives a precise interpretation
to the terms ‘‘relatively large/small’’).

Lemma 8. Let b be a positive integer. For a ≥ 0 and r ≥ t ≥ 0, let

P1 = P1(r, t)
def
=


r1,...,rb≥0

r1+···+rb=⌊r−t⌋

P

R(Gi) ≤ ri, ∀i ∈ [b]


, (Definition of P1)

P2 = P2(a, r, t)
def
= P


R(G) ≤ r − a,

b
i=1

R(Gi) ≥ r − t


. (Definition of P2.)

Then,

P

R(G) ≤ r − a


≤ P1 + P2.
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Proof. Just note that

P

R(G) ≤ r − a


= P


R(G) ≤ r − a,

b
i=1

R(Gi) < ⌈r − t⌉


+ P

R(G) ≤ r − a,

b
i=1

R(Gi) ≥ ⌈r − t⌉


≤ P
 b

i=1

R(Gi) < r − t


+ P

R(G) ≤ r − a,

b
i=1

R(Gi) ≥ r − t


.

The desired conclusion follows observing that the two last terms in the preceding displayed expression are equal to P1 and
P2, respectively. �

The following lemma will be useful in bounding the terms in P1, i.e., the probability that R(Gi) is ‘‘relatively small’’ for
some i. Henceforth, for the sake of clarity of exposition, we will ignore the issue of integrality of quantities (since we are
interested in the case where n is large, ignoring integrality issues should have a negligible and vanishing impact in the
following calculations).

Lemma 9. Let δ > 0 andn = n(k) be such that it satisfies the hypothesis of Theorem 6 and let ml = (1 − δ)2n/√k. Let
b = b(k) def

= n/n. Then, for every t ≥ 0

P1 = P1(bml, t) ≤ (2e(ml + 1))b exp

−

t2

16(1 + δ)n/
√
k


.

Proof. Observe that, by independence of the R(Gi)’s and Theorem 6, for mu = (1 + δ)2n/√k,

P

R(Gi) ≤ ri, ∀i ∈ [b]


= P


R(Gi) ≤ ml − (ml − ri), ∀i ∈ [b]


≤

b
i=1

(2e−max{0,ml−ri}2/8mu) = 2be
−

b
i=1

max{0,ml−ri}2/8mu
.

By Cauchy–Schwarz, since max{0, x} + max{0, y} ≥ max{0, x + y}, and assuming that for some given t ≥ 0 it holds thatb
i=1 ri = ⌊bml − t⌋,

b
i=1

max{0,ml − ri}2 ≥
1
b

 b
i=1

max{0,ml − ri}
2

≥
1
b
t2.

Recalling that there are
M+b−1

b−1


≤

M+b
b


ways in which b nonnegative summands can add up to M ∈ N, and that


µ

ν


≤

(eµ/ν)ν ,

P1 ≤


r1,...,rb≥0

r1+···+rb=⌊bml−t⌋

2be−t2/8bmu ≤


⌊bml − t⌋ + b

b


2be−t2/8bmu ≤ (2e(ml + 1))be−t2/8bmu .

Sincemu = (1 + δ)2n/√k and bn = n, the desired conclusion follows immediately. �

The next lemma will be useful in bounding P2, i.e., the probability that the sets of symbols associated to the edges of the
canonical largest noncrossing Gi’s matchings have a ‘‘relatively large’’ overlap. The result in fact shows how to translate tail
bounds for an urn occupancy model into bounds for P2.

Lemma 10. If b is a positive integer, a ≥ 0, r ≥ t ≥ 0, and s = ⌈r − t⌉, then

P2 = P2(a, r, t) ≤ P

k − Y (k,s)

≤ r − a

.

Proof. Clearly,

P2 =


s1,...,sb≥0

s1+···+sb≥r−t

P

R(G) ≤ r − a | R(Gi) = si, ∀i ∈ [b]


P

R(Gi) = si, ∀i ∈ [b]


.

Let Cℓ(·) be as defined in Section 4. Note that if we take the union of noncrossing matchings, one Mi for each Gi, we get
a noncrossing matching M = ∪i Mi of G. However, the edges of M do not necessarily have distinct associated symbols. By
throwing away all but one of the edges ofM associated to a given symbol, one obtains a repetition-free noncrossingmatching
of G. It follows that, conditioning on R(Gi) = si for all i ∈ [b],

R(G) ≥

 b
i=1

Csi(Gi)

.
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Thus,

P

R(G) ≤ r − a | R(Gi) = si, ∀i ∈ [b]


≤ P

 b
i=1

Csi(Gi)

 ≤ r − a | R(Gi) = si, ∀i ∈ [b]


= P
 b

i=1

Csi(Gi)

 ≤ r − a
 Csi(Gi)

 = si, ∀i ∈ [b]


.

Let s⃗ = (s1, . . . , sb). We claim that
 b

i=1 Csi(Gi)
 conditioned on

Csi(Gi)
 = si, for all i ∈ [b], is distributed exactly as the

number of nonempty urns left when the Grouped Urn (k, s⃗)-model (as defined in Section 2) ends, i.e., is distributed as the
random variable k − X (k,s⃗) (where X (k,s⃗) is as defined in Section 2). Indeed, it suffices to note that by Proposition 4, condi-
tioned on

Csi(Gi)
 = si, the set Si = Csi(Gi) is a randomly and uniformly chosen subset of [k] of size si, and that k − X (k,s⃗) is

distributed exactly as
 b

i=1 Csi(Gi)
. It follows, from the forgoing discussion and Lemma 3, that

P

R(G) ≤ r − a | R(Gi) = si, ∀i ∈ [b]


= P


k − X (k,s⃗)

≤ r − a


≤ P

k − Y (k,s)

≤ r − a

. �

The next result establishes the first of the announced tail bounds, for the first of the three regimes indicated at the start of
this section. An interesting aspect, that is not evident from the theorem’s statement, is the following fact that is implicit in its
proof; if the speed of growth of n as a function of k is not too fast, then wemay choose b as a function of k so that

b
i=1 R(Gi)

is roughly (with high probability) equal to R(G). In particular, the proof argument rests on the fact that, for an appropriate
choice of parameters, the canonical largest noncrossing matching of Gi is of size approximately 2(n/b)/

√
k, and with high

probability there is very little overlap between the symbols associated to the edges of the canonical largest noncrossing
matchings of distinct Gi’s.

Proposition 11. If n = o(k
√
k), then for every 0 < ξ ≤ 1 there is a constant k0 = k0(ξ) such that, for all k > k0,

P

R(G) ≤ (1 − ξ)2n/

√
k


≤ 2e−
1
10 ξ22n/

√
k.

Proof. Let c > 1 be large enough so (1 − 1/c)2 ≥ (9/10)(1 + ξ/c). Let δ = ξ/c and t = (1 − 1/c)ξ2n/
√
k. Now, choosen =n(k) = k3/4 (instead of 3/4, any exponent strictly between 1/2 and 1 suffices). Note that one can choosek0 (depending

on ξ through δ) so that for all k ≥k0 the conditions onn of Theorem 6 are satisfied. Letml andmu be as in Theorem 6. Note
that ml = (1 − ξ/c)2ñ/

√
k = Θ(k1/4), b = n/ñ = n/k3/4, and bmu = (1 + ξ/c)2n/

√
k. Hence, by Lemma 9,

P1 ≤ exp

b ln(2e(ml + 1)) −

t2

8bmu


= exp

 n
√
k
Θ


k−1/4 ln k


−

(1 − 1/c)2ξ 22n/
√
k

8(1 + ξ/c)


.

Since k−1/4 ln k = o(1) and (1 − 1/c)2 ≥ (9/10)(1 + ξ/c), it follows that for a sufficiently large k′

0 ≥k0 it holds that for all
k ≥ k′

0,

P1 ≤ exp

−

(1 − 1/c)2ξ 22n/
√
k

9(1 + ξ/c)


≤ exp


−

1
10

ξ 22n/
√
k

.

On the other hand, since t = (1 − 1/c)ξ2n/
√
k, if we fix a = ξ2n/

√
k, then we have that t − a = −(ξ/c)2n/

√
k. Taking

s = bml − t = (1 − ξ)2n/
√
k ≤ 2n/

√
k, as ξ ≤ 1, by Lemma 10 and Proposition 4, Part 3,

P2 ≤ P

k − Y (k,s)

≤ bml − a


= P

k − Y (k,s)

≤ s + t − a


≤ P

k − Y (k,s)

≤ s −
ξ2n

c
√
k


≤

 2cen

ξk
√
k

(ξ/c)2n/
√
k
.

Let k′′

0 be sufficiently large (depending on ξ ) so that 2cen/(ξk
√
k) ≤ e−cξ/10 for all k ≥ k′′

0 (such a k′′

0 exists because n =

o(k
√
k)). It follows that for k ≥ k′′

0 we can upper bound P2 by exp

−

1
10ξ

22n/
√
k

.

Since by Lemma 8 we know that P

R(G) ≤ (1 − ξ)2n/

√
k


≤ P1 + P2, it follows that for k ≥ k0 = k0(ξ)
def
= max{k′

0, k
′′

0}

we get the claimed bound. �

Next, we consider a second regime, but first we establish an inequality that we will soon apply.

Claim 12. For every 0 ≤ x ≤ 1 and ρ ≥ 0,

e−ρ(1−x)
− e−ρ

− x(1 − e−ρ) ≤ 0.
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Proof. Since 0 ≤ x ≤ 1, it holds that 0 ≤ xn ≤ x for all n ∈ N \ {0}. Then, since ey =


n∈N yn/n! and performing some basic
arithmetic,

eρx
− 1 − x(eρ

− 1) =


n≥1

ρn

n!
(xn − x) ≤ 0.

Multiplying by e−ρ , the claimed result immediately follows. �

Proposition 13. Let ρ > 0 and 0 < ξ < 1. If n =
1
2ρk

√
k, then there is a sufficiently large constant k0 = k0(ρ, ξ) such that,

for all k > k0,

P

R(G) ≤ (1 − ξ)k(1 − e−ρ)


≤ 2e−

ξ2
32(1+ξ/12) k(1−e−ρ )

≤ 2e−
1
35 ξ2k(1−e−ρ ).

Proof. Since ξ < 1, the second stated inequality follows immediately from the first one. We thus focus on establishing the
first stated inequality.

Let δ = ξ/12. Now, choose ñ = k3/4 (instead of 3/4, any exponent strictly between 1/2 and 1 suffices) and set b = n/n.
Note that one can choose k′

0 (depending on ξ through δ) so that for all k > k′

0 the conditions on ñ = ñ(k) of Theorem 6 are
satisfied. Let ml = (1 − δ)2n/√k and observe that bml = (1 − δ)2n/

√
k = (1 − ξ/12)ρk. Choose t = (2ξ/3)ρk and note

that s = bml − t = (1 − 3ξ/4)ρk. Let λ = E

Y (k,s)


= k(1 − 1/k)s be as in Proposition 4. We claim that, for 0 < ξ < 1,

λ ≤ ke−ρ
+ (3ξ/4)k(1 − e−ρ). (4)

Indeed, since 1 + x ≤ ex we have that λ = k(1 − 1/k)s ≤ ke−ρ(1−3ξ/4), so to prove (4) it suffices to recall that by Claim 12
we have that e−ρ(1−3ξ/4)

≤ e−ρ
+ (3ξ/4)(1 − e−ρ).

Now, fix ã and a so ã = ξk(1 − e−ρ) and a = bml − k(1 − e−ρ) + ã. By Lemma 10 and (4),

P2 ≤ P

k − Y (k,s)

≤ bml − a


= P

Y (k,s)

≥ ke−ρ
+ ã


≤ P


Y (k,s)

≥ λ + (ξ/4)k(1 − e−ρ)

.

Hence, taking p = λ/k ≤ 1, q = 1 − p, and applying Proposition 4, Part 1,

P2 ≤ exp

−

ξ 2(1 − e−ρ)2k
32(pq + (ξ/12)(1 − e−ρ))


≤ exp


−

ξ 2(1 − e−ρ)2k
32(q + (ξ/12)(1 − e−ρ))


.

Again by Proposition 4, we know that λ = k(1 − 1/k)s. Thus, recalling that by our choice of parameters s = (1 − 3ξ/4)ρk
and since (1 − 1/k)s = (1 − 1/k)ρ(1−3ξ/4)k converges to e−ρ(1−3ξ/4) > e−ρ when k goes to ∞, it follows that q = 1 − p =

1− (1− 1/k)s can be upper bounded by 1− e−ρ for all k > k′′

0 and some sufficiently large k′′

0 > k′

0 (depending on ξ ). Hence,
for k > k′′

0 it holds that q + (ξ/12)(1 − e−ρ) ≤ (1 + ξ/12)(1 − e−ρ), and

P2 ≤ exp

−

ξ 2

32(1 + ξ/12)
k(1 − e−ρ)


.

We will now upper bound P1. Note that, by our choice forn and the hypothesis on n, we have ml = (1 − ξ/12)2ñ/
√
k =

(1−ξ/12)k1/4 ≤ k, b = n/ñ ≤ ρk3/4, and bmu = (1+ξ/12)2n/
√
k = (1+ξ/12)ρk. Recalling that we fixed t = (2ξ/3)ρk,

by Lemma 9,

P1 ≤ exp

b ln(2e(ml + 1)) −

t2

8bmu


≤ exp


ρk3/4 ln(2e(k + 1)) −

ξ 2ρk
18(1 + ξ/12)


.

Since k3/4 ln(2e(k+1)) = o(k) and because 1−e−ρ
≤ ρ, it follows that for a sufficiently large k′′′

0 it holds that, for all k > k′′′

0 ,

P1 ≤ exp

−

ξ 2

19(1 + ξ/12)
ρk


≤ exp


−

ξ 2

19(1 + ξ/12)
k(1 − e−ρ)


.

Since P

R(G) ≤ (1 − ξ)k(1 − e−ρ)


≤ P1 + P2 for k > k0 = k0(ρ, ξ)

def
= max{k′′

0, k
′′′

0 }, we get the claimed bound. �

Our next result establishes that if n is sufficiently large with respect to k, then with high probability a repetition-free LCS
is of size k, i.e., it is a permutation of the underlying alphabet. Moreover, the theorem’s proof implicitly shows something
stronger; if the speed of growth of n as a function of k is fast enough, thenwemay choose b as a function of k so thatwith high
probability every symbol of the k-ary alphabet shows up in association to an edge of a canonical maximum size matching
of some Gi — chosen such edges, one obtains a noncrossing repetition free matching of G of the maximum possible size k.

Proposition 14. If n = ( 1
2 + ξ)k

√
k ln k for some ξ > 0, then there is a constant k0 = k0(ξ) such that, for all k > k0,

P

R(G) ≠ k


≤

2
kξ

.

Proof. Let δ = δ(ξ) > 0 be such that (1 − δ)(1 + 2ξ) = 1 + 3ξ/2. Now, letn = k3/4 (instead of 3/4, any exponent
strictly between 1/2 and 1 suffices) and set b = n/n. Note that one can choose k′

0 (depending on ξ through δ) so that for



86 C.G. Fernandes, M. Kiwi / Discrete Applied Mathematics 210 (2016) 75–87

all k > k′

0 the conditions onn = n(k) of Theorem 6 are satisfied. Let ml = (1 − δ)2n/√k be as in Theorem 6. Observe that
bml = (1−δ)2n/

√
k = (1+3ξ/2)k ln k. Choose t = (ξ/2)k ln k so that s = bml− t = (1+ξ)k ln k. Fix a so k−bml+a = 1.

By Lemma 10 and Proposition 4, Part 2,

P2 ≤ P

Y (k,s)

≥ k − bml + a


= P

Y (k,s)

≠ 0


≤
1
kξ

.

By the hypothesis on n and the choice ofn, we have that b = n/ñ = ( 1
2 + ξ)k3/4 ln k, so recalling thatml = (1− δ)2n/√k =

(1 − δ)2k1/4,

b ln(2e(ml + 1)) = O(k3/4 ln2 k) = o(k ln k).

Furthermore, letmu = (1 + δ)2n/√k be as in Theorem 6. Thus,

t2

16(1 + δ)n/
√
k

=
t2

8bmu
=

ξ 2k ln k
32(1 + δ)(1 + 2ξ)

.

Hence, by Lemma 9, for a sufficiently large constant k′′

0 (again depending on ξ through δ), we can guarantee that, for all
k > k′′

0 ,

P1 ≤ (2e(ml + 1))be−t2/8bmu = exp

b ln(2e(ml + 1)) −

t2

8bmu


≤

1
kξ

.

Summarizing, for k > k0 = k0(ξ)
def
= max{k′

0, k
′′

0}, we get that P

R(G) ≠ k


≤ P1 + P2 ≤ 2/kξ . �

From the lower tail bounds for R(G) obtained above, one can easily derive lower bounds on the expected value of R(G)
via the following well-known trick.

Lemma 15. If X is a nonnegative random variable and x > 0, then E

X


≥ x(1 − P

X ≤ x


).

Proof. Let IA denote the indicator of the event A occurring. Just observe that

E

X


= E

XI{X≤x}


+ E


XI{X>x}


≥ xE


I{X>x}


= x


1 − P


X ≤ x


. �

Theorem 2 encompasses Propositions 11, 13 and 14. Theorem 1 follows as a direct consequence of Theorem 2, the
preceding lemma, and the fact that R(G) ≤ k.

6. Final comments

Before concluding, we discuss a byproduct of our analysis. To do so, we note that the computational experiments
presented by Adi et al. [1] considered problem instances where sequences of n symbols where randomly, uniformly, and
independently chosen over a k-ary alphabet. The experimental findings are consistent with our estimates of E


Rn


(recall

Rn was defined in the introduction). Our results thus have the added bonus, at least when n and k are large, that they allow
to perform comparative studies, as the aforementioned one, but replacing the (expensive) exact computation of Rn by our
estimated value. Our analysis also suggests that additional experimental evaluation of proposed heuristics, over test cases
generated as in so called planted random models, might help to further validate the usefulness of proposed algorithmic
approaches. Specifically, for the RFLCS problem, according to the planted random model, one way to generate test cases
would be as described next. First, for some fixed ℓ ≤ k, choose a repetition-free sequence z of length ℓ < n over a k-ary
alphabet. Next, generate a sequence x′ of n symbols randomly, uniformly, and independently over the k-ary alphabet. Finally,
uniformly at random choose a size ℓ collection s1, . . . , sℓ ⊆ {1, . . . , n} of distinct positions of x′ and replace the sith symbol
of x′ by the ith symbol of z, thus ‘‘planting’’ z in x′. Let x be the length n sequence thus obtained. Repeat the same procedure
again for a second sequence y′ also of n randomly chosen symbols but with the same sequence z, and obtain a new sequence
y. The resulting sequences x and y are such that RFLCS(x, y) ≥ ℓ. The parameter ℓ can be chosen to be larger than the
value our study predicts for Rn. This allows to efficiently generate ‘‘non typical’’ problem instances over which to try out the
heuristics, as well as a lower bound certificate for the problem optimum (although, not a matching upper bound). For more
details on the planted randommodel the interested reader is referred to Bui, Chaudhuri, Leighton, and Sipser [9], where (to
the best of our knowledge) the model first appeared, and to follow up work by Boppana [8], Jerrum and Sorkin [16], Condon
and Karp [12], and the more recent paper of Coja-Oghlan [11].
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