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Abstract We develop a theoretical framework to assess the sustainability of fishery man-
agement strategies, when the bioeconomic dynamics are marked by uncertainty and several
conflicting objectives have to be accounted for. Stochastic viability ranks management strate-
gies according to their probability to sustain economic and ecological outcomes over time.
The approach is extended to build stochastic sustainable production possibility frontiers rep-
resenting the trade-offs between sustainability objectives at any risk level, given the current
state of the fishery. This framework is applied to a Chilean fishery faced with El Niño uncer-
tainty. We study the viability of effort and quota strategies when catch and biomass levels
have to be sustained. We show that (1) for these sustainability objectives, whatever the level
of the outcomes to be sustained, quota-based management results in a better viability prob-
ability than effort-based management, and (2) the fishery’s historical quota levels were not
sustainable given the stock levels in the early 2000s.
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1 Introduction

The analysis in this paper originates in real concerns related to the management of Chilean
fisheries. The jack-mackerel fishery is being challenged by uncertain El Niño cycles, which
increase uncertainty about the availability of the resource (Barber and Chavez 1983), making
management of the fishery more difficult (Costello et al. 1998).1 In addition to the usual
objective of maximizing profits, current management is aimed at avoiding stock collapse.
Sustainable resource management requires a framework that takes account of both economic
and ecological objectives under risk and over time.

The standard economic approach to assessing the performance of fishery management
strategies relies on the expected discounted utility framework (Clark and Kirkwood 1986;
Reed 1979; Sethi et al. 2005). This approach has the great advantage of defining a unique
value, the expected discounted utility of harvesting, which characterizes optimal strategies
and ranks alternative management strategies. However, it has some practical limits when
applied to sustainable resource management issues encompassing several dimensions and
the concern for intergenerational equity. First, accounting for ecological objectives requires
the definition of a multi-attribute social welfare function (SWF) prior to the maximization
problem. However, if uncertainties are pervasive and if the sustainability issues affectmultiple
and heterogeneous stakeholders, the task of agreeing on a common SWF can be extremely
intricate. Second, the discounted utility framework allows for intertemporal compensation
of good and bad outcomes for the system, which may raise intergenerational equity issues
(particularly if the discount rate is positive).

In practice, fishery management strategies, often defined as simple “rules of thumb,” are
evaluated in so-called “multicriteria” frameworks (Geromont et al. 1999; Oliveira and Butter-
worth 2004; Kell et al. 2005; Smith et al. 2007). These methods are based on simulations and
do not rely on an optimization framework. They provide no common metrics for conflicting
(ecological and economic) objectives and risk. Therefore, they cannot rank alternative man-
agement strategies explicitly. Thus, there is a gap in resource management between theory
and practice. Developing a practical framework based on solid theoretical grounds to assess
the sustainability of fishery management strategies under risk is a challenging task.

This paper proposes a framework which accounts for conflicting sustainability issues and
risk, and provides an explicitly ranking of alternative management strategies. This frame-
work echoes the concept of stewardship,2 which defines sustainable resource management
as a strategy that sustains economic and ecological outcomes over time, corresponding to a
“satisficing” objective à la Simon (1955). Technically, we build on the stochastic viability
approach (De Lara and Doyen 2008). Given a set of multidimensional indicators referring
to economic or ecological outcomes, viability is defined as the ability to sustain the levels
of these indicators above some thresholds characterizing sustainability objectives (e.g., min-
imal biomass, minimal profit). We assess fishery management strategies according to their
probability of achieving these objectives jointly, and at all times, over the planning horizon.

While stochastic viability has been used in previous studies as a simulation tool to examine
fisherymanagement issues (e.g., Doyen et al. 2012), the present paper differs in two important
respects, each of which constitutes theoretical novelty. First, we embed stochastic viability in
a theoretical optimization frameworkwith economic interpretations, defining a value function
for our optimization problem. This value measures the ability to sustain several outcomes

1 In some extreme cases, recruitment uncertainties and management decisions have led to the collapse of
important small pelagic stocks, such as the Peruvian anchovy in 1972–1973.
2 As discussed in the Stern review for climatic change (Stern 2006).
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over time. Second, while in viability analysis the thresholds of the viability constraints are
usually exogenously fixed parameters, we treat these sustainability thresholds as explicit
arguments of our value function. This allows us to define and build stochastic sustainable
production possibility frontiers which describe the necessary trade-offs between sustained
levels of economic and ecological outcomes and risk. Such possibility sets depend on the
current (over-)exploitation status of the fishery.

Our framework does not rely on an a priori representation of social preferences but can be
used to reveal some of these preferences. Defining actual sustainability thresholds amounts
to determining what should be sustained over time (Martinet 2012). This is a social choice
problem which is not addressed explicitly here. It corresponds to a generalized, multidi-
mensional maximin problem (Solow 1974; Martinet 2011), with low substitutability among
sustainability issues, and strong aversion to intertemporal inequality on all sustainability
dimensions. Stochastic sustainable production possibility frontiers can be used to inform
the social choice of sustainability objectives in the fishery, and to reveal social preferences
related to sustainability issues.

These theoretical novelties allow us to bridge the gap between the economic literature on
optimal resource management under risk, and the practical-oriented literature on sustainable
fisheries management. The viability probability provides a common metrics to aggregate the
outcomes of the systemwith respect to the several sustainability dimensions. It can be used to
rank alternative management strategies. Marginal analysis makes it possible to examine the
trade-offs between sustained outcomes and risk. Thus, our approach is closer to economics
than the usual multi-criteria fishery management approaches. It can be implemented if no
SWF is available.

We illustrate the implications of our approach in the case of the (small pelagic) Chilean
jack-mackerel fishery which is threatened by El Niño uncertainty. In particular, we compare
effort-based (price-like) and quota-based (quantity-like) strategies for their ability to sustain
both catch and biomass levels over time given current information on the resource stock.
While the price versus quantity issue in relation to fisheries has been debated extensively
from an economic point of view, to our knowledge, the analysis in this paper is the first
attempt to examine this issue from a sustainable management perspective.

Section 2 highlights the differences between the fishery economics literature and the fish-
erymanagement literaturewhichwere themotivation for our approach. Section 3 presents our
theoretical framework to assess risk and sustainability and compare management strategies.
In Sect. 4, we apply this framework to the Chilean jack-mackerel fishery case-study. Section 5
concludes by discussing the relevance of our results for practical fisheries management.

2 Background and Settings

Optimality in fishery economics is usually defined as maximization of the expected dis-
counted profit of the harvest. Depending on the type of uncertainty and economic specifi-
cations, optimal harvesting may correspond to very specific management strategies, and be
hard to apply in practice.3 Moreover, in a sustainability context, management objectives are
often not limited to profit maximization. Ecosystem-Based Fishery Management is aimed

3 See Reed (1979), Clark and Kirkwood (1986), Sethi et al. (2005), Nøstbakken and Conrad (2007), Nøst-
bakken (2008), McGough et al. (2009). When responding to uncertain stock fluctuations, optimality may
require strong yearly variations of the total allowable catch (TAC), pulse-fishing (Da-Rocha et al. 2014), and
even fishery closure if the stock size is too small (Nøstbakken 2006), whereas fishing industries favor stability
of catches (Charles 1998).
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at conserving resources and sustaining the socio-economic benefits from fishing (Cochrane
2000; Pikkitch et al. 2004). This increases the number of objectives and stakeholders (Fletcher
2005) with the result that fisheries are faced with unsustainable situations whenever one of
these objectives is notmet. Prioritizing social and economic objectives over ecological targets
has been identified as an important reason formanagement failure in fisheries (Hilborn 2007).
Management procedures (MP)4 should be ranked according to their capacity to yield accept-
able results with respect to all sustainability objectives while being robust to uncertainties
(Charles 1998).

Extending the economic optimization approach to account for ecological objectives is a
delicate exercise. In theory, one could define a multi-attribute SWF that would fully char-
acterize social preferences over the various dimensions of interest, prior to the optimization
problem. However, stakeholders may be unable to agree on a SWF. This form of “collec-
tive” bounded rationality results in the impossibility to define a continuous representation of
preferences over payoffs across various dimensions and risks. An alternative option would
be to add ecological constraints to the profit maximization problem. Note that setting the
levels of these constraints is a social choice problem which should not be overlooked. In the
deterministic case, the optimization problem provides the marginal cost of complying with
the constraint. This information can be used in a back-and-forth process with stakeholders to
adjust the constraints level and reveal preferences over economic and ecological outcomes.
This feature is lost in the stochastic case,5 where a theoretical and technical issue emerges,
i.e., how to interpret and handle constraints under uncertainty. It is possible to “translate” the
deterministic economic criterion into its expected value but it is more difficult to “translate” a
constraint in stochastic terms. Requiring constraint satisfaction with probability one, i.e., that
the optimal strategy satisfies the constraint in all possible states of the world, usually restricts
decisions to the extent that the optimization problem loses its interest. Another possibility
would be accepting a risk of constraint violation. This amounts to considering the perfor-
mance of the system with respect to the ecological constraint, by providing a measure of the
risk of violating it. There are then two outcomes for each strategy: the expected economic
profit, and the ecological risk.

This last option, in fact, is close to the management strategy evaluation (MSE) approach.6

MSE relies on simulations to compare the performance of given management strategies
against the conflicting objectives of limiting risk to the resource, reducing TAC variation
over time, and increasing average catches. The results are usually represented graphically, in
amap of “mean catch—risk to the resource” (see, e.g., Smith et al. 2007). Figure 1 displays the
results for the Chilean jack-mackerel fishery. “Ideal” management strategies present low risk
to the resource and high mean catches, and are depicted in the South-East of the figure. Since
there is no common metrics between objectives, the two performances cannot be aggregated,
and non-dominated strategies cannot be ranked.7

4 A MP is a set of rules which translates fishery data into a regulatory mechanism, such as TAC or maximum
fishing effort (Butterworth et al. 1997). MPs have been developed (though not always implemented) for a
number of fisheries since their development within the International Whaling Commission in the late 1980s
(Oliveira and Butterworth 2004).
5 It will be seen that our framework provides somewhat similar information to support the choice of sustain-
ability constraints in the stochastic case.
6 Various scientific tools, mainly in “multicriteria” frameworks, have been developed to support sustainable
fisheries management (Smith et al. 2007). MSE is the most developed (Butterworth et al. 1997; Charles 1998;
Geromont et al. 1999; Sainsbury et al. 2000; Oliveira and Butterworth 2004; Kell et al. 2005).
7 Moreover, the MSE approach provides no information on the opportunity cost of the ecological constraint
or the marginal gains from relaxing its level.
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Fig. 1 MSE for the Chilean Jack Mackerel fishery: performance of various management strategies in terms
of risk to the resource (measured as the probability that the stock falls below 20% of the pre-exploitation
spawning stock biomass) and expected mean annual catches (used as a proxy variable for the economic
objective). Adapted from Yepes (2004)

The problem lies mainly in the fact that the economic and ecological objectives are not
treated in the same way: the former is to maximize an outcome while the latter is to satisfy
a constraint. The economics approach to risk is usually to define preferences characterizing
value (i.e., to aggregate economic and ecological outcomes in a SWF) and to account for risk
by computing expectation of value.8 The MSE approach compares the expected economic
value with the ecological risk (probability to overshoot a given ecological threshold). The
ecological objective is defined separately from economic value, which makes it difficult to
aggregate the two outcomes.

Thus, assessing the sustainability of resource management strategies under risk is difficult
when there is no SWF describing the preferences related to different issues. To address this
challenge, we propose a theoretical framework that reflects the concept of stewardship. We
assume that intertemporal equity requires the economic and ecological performance of the
system to be sustained over time. These conditions can be represented by constraints on (eco-
logical and economic) indicators, which should be maintained above some thresholds at all
times. This issue is addressed in a stochastic viability frameworkwhich defines the (maximal)
probability of satisfying jointly several viability constraints over time in dynamic, uncertain
models. Any management strategy satisfies these viability constraints with some probability.
This viability probability provides a commonmetrics to assess and rank alternative strategies.

This approach treats all the relevant sustainability objectives as minimal outcomes to be
sustained over time. Defining the viability thresholds as arguments of the stochastic viability
value function, we build stochastic sustainable production possibility frontiers, which exhibit

8 For some types of utility functions, e.g., Constant Absolute Risk Aversion functions, preferences under risk
may be represented by means of a linear function of expected (mean) profits and a simple proxy for risk such
as variance of profits.
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the necessary trade-offs between the targeted sustained outcomes and risk. These frontiers
can be used in the social choice of sustainability objectives.

3 A Metrics for Risk and Sustainability

Let us formalize the decision problem in a general framework. The model and method
described below are appropriate for setting up any stochastic viability analysis, and therefore
can be applied to a variety of resource management situations or to environmental problems
with stocks of pollutants. We provide examples based on the fisheries case.

3.1 Modeling Framework

3.1.1 Dynamic system

Consider a resource harvesting model, which accounts for dynamics, uncertainty and
exploitation decisions. Themodel is described by the following discrete-time control dynamic
system

x(t + 1) = G
(
t, x(t), c(t), ω(t)

)
, t = t0, . . . , T − 1 , x(t0) = x0 , (1)

where

• the time index t is discrete, belonging to T = {t0, . . . , T } ⊂ N; the time period [t, t + 1[
is a year for example; t0 is the initial time ; T is the finite horizon;

• the state vector x(t) ∈ X ⊂ R
n could be a vector of abundance-at-age for one or for

several species; it could also represent abundances at different spatial patches or include
capital stocks (e.g., fishing vessels);

• the control vector c(t) ∈ C ⊂ R
p could denote catches or harvesting effort;

• ω(t) ∈ W ⊂ R
q denotes a vector of uncertainty which affects the dynamics at time

t (e.g., recruitment or mortality uncertainties in a dynamic population model, climate
fluctuations or trends, unknown technical progress, price uncertainty);

• G : T × X × C × W → X represents the dynamics of the system; it could be one of the
numerous dynamic population models, such as logistic or age-class models; it could also
include capital accumulation dynamics;

• x0 ∈ X is the given initial state for the initial time t0; it is supposed to be known.

The notation c(·) means a control trajectory c(·) = (
c(t0), . . . , c(T )

)
whereas x(·) =(

x(t0), . . . , x(T )
)
denotes a state trajectory.

3.1.2 Probability Distributions Over Scenarios

A scenario is a sequence of uncertainty vectors denoted by ω(·) = (ω(t0), . . . , ω(T − 1)).
We define the set of all possible scenarios as

� = W
T −t0 . (2)

We assume that the set of scenarios� is equippedwith a probability distributionP.9 Formally,
this probability P could be either an objective probability derived from a statistical model

9 Technically, the probability P is defined over the Borel σ -algebra of �. In what follows, we assume proper
measurability assumptions for all the functions we consider.
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using real world data (as in our case study in Sect. 4), or a subjective probability representing
the decision-maker’s beliefs.

3.1.3 Decision Rules and Management Strategies

When uncertainties affect the dynamics, closed loop or feedback controls ĉ
(
t, x(t)

)
account-

ing for the uncertain state evolution x(t) display more adaptive properties than open-loop
controls c(t) depending only on time. A (state) feedback is a decision rule which assigns a
control c = ĉ(t, x) ∈ C to any state x for any time t . Hereafter, we use the term (management)
strategies to refer to feedback decision rules. The set of all possible strategies is denoted by
C.

3.2 Stochastic Viability

3.2.1 Sustainability Objectives Described with Indicators and Thresholds

Consider K real-valued functions Ik : T × X × C → R, for k = 1, . . . , K , which represent
instantaneous indicators with economic or ecological meaning (e.g., profit, annual catches,
Spawning Stock Biomass—SSB). Thresholds τ1 ∈ R, …, τK ∈ R, measured in the same unit
as the indicators (e.g.,money, tons) define constraints formalizing sustainability objectives:10

Ik
(
t, x(t), c(t)

) ≥ τk , ∀k = 1, . . . , K , ∀t = t0, . . . , T . (3)

In the viability framework, a trajectory that does not satisfy one (ormore) of the constraints
at some time is not viable. At a given time period, the violation of some of the sustainability
constraints is not compensated by good outcomes in other sustainability dimensions. Vio-
lation of the sustainability constraints at some time periods is not compensated by good
outcomes at other time periods.11 The requirement to satisfy all constraints at all times
reflects the idea that sustainability has to encompass ecological and economic issues in an
intergenerational equity perspective.

In a stochastic framework, it is generally impossible to satisfy the constraints for all
scenarios ω(·). We use the term viable scenarios to refer to the uncertainty scenarios where
all viability constraints are satisfied at all times under a given strategy.

3.2.2 Viable Scenarios Associated with a Management Strategy

For any management strategy ĉ, initial state x0, and initial time t0, we define the set of viable
scenarios as:

�ĉ,t0,x0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω(·) ∈ �

∣∣∣∣∣∣∣∣∣∣

x(t0) = x0
x(t + 1) = G

(
t, x(t), c(t), ω(t)

)

c(t) = ĉ
(
t, x(t)

)

Ik
(
t, x(t), c(t)

) ≥ τk , k = 1, . . . , K
t = t0, . . . , T

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (4)

10 We consider sustainability “goods,” for which an ad-hoc indicator is defined. This indicator is then con-
strained to be above a certain threshold. For “bads,” such as pollution (e.g., CO2 concentration), one can take
their negative value as an indicator.
11 For given sustainability thresholds, there are no trade-offs, either among sustainability issues or among
time periods. All trade-offs occur when the thresholds are defined (Martinet 2011, 2012). We emphasize how
our framework can be used to support the definition of the thresholds.
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For a given strategy ĉ and a given scenario ω(·), the dynamics (1) produces a state trajectory
x(·) and a control trajectory c(·) once the strategy c(t) = ĉ(t, x(t)) is applied. Therefore,
a viable scenario ω(·) ∈ �ĉ,t0,x0 is one where the state and control trajectories

(
x(·), c(·))

driven by the strategy ĉ satisfy the constraints (3).
In the ideal case where a strategy ĉ exists such that �ĉ,t0,x0 coincides with �, viability

can be achieved for all scenarios by applying this strategy. If this is not the case, since � is
equipped with a probability P, we can measure the likelihood that a strategy ĉ will meet the
objectives by the probability of associated viable scenarios, P

[
�ĉ,t0,x0

]
, which is called the

viability probability associated with the management strategy ĉ, the initial time t0, and the
initial state x0.

3.2.3 Management Strategy Assessment by Stochastic Viability

For any given set of sustainability thresholds τ1, . . . , τK , a management strategy can be
assessed by its viability probability. To stress the dependency on thresholds, we introduce
the notation

�(̂c, τ1, . . . , τK ) = P

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω(·) ∈ �

∣
∣
∣∣∣∣∣∣∣∣

x(t0) = x0
x(t + 1) = G

(
t, x(t), c(t), ω(t)

)

c(t) = ĉ
(
t, x(t)

)

Ik
(
t, x(t), c(t)

) ≥ τk , k = 1, . . . , K
t = t0, . . . , T

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (5)

This viability probability is a common metrics to evaluate the consistency of a given strategy
and sustainability objectives. The higher this probability, the lower the risk of violating the
sustainability constraints.

Note that, as in the case of expected discounted utility, stochastic viability analysis depends
on the probability distribution P. In particular, since we are dealing with intertemporal issues,
we need to be cautious about how P captures temporal dependencies among uncertainties
(e.g., independent random variables, Markov chains, or time series). Investigating the sensi-
tivity of the results to the probability distribution is beyond the scope of this paper.

3.2.4 Ranking of Management Strategies

The stochastic viability approach ranks strategies according to their viability probability.
A management strategy ĉ is “more viable” than another strategy if the corresponding set
of viable scenarios has a higher probability. A most viable strategy ĉ�(τ1, . . . , τK ) is one
that maximizes the viability probability �(̂c, τ1, . . . , τK ) for a given set of sustainability
thresholds τ1, . . . , τK over all possible strategies ĉ ∈ C.

3.3 Theoretical Extension to the Stochastic Viability Framework

This paper is original in treating the viability thresholds as arguments of the viability proba-
bility. This defines a value function for our sustainability problem.

3.3.1 A “Value Function” for Sustained Outcomes

The maximal viability probability

��(τ1, . . . , τK ) = max
ĉ∈C �(̂c, τ1, . . . , τK ) (6)
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is the highest probability that objectives (τ1, . . . , τK ) are sustained. It is the value function of
the stochastic viability optimization problem. This value function depends on the threshold
levels. We use this value function to describe the trade-offs among sustainability objectives.

3.3.2 Stochastic Sustainable Production Possibility Frontiers

When the maximal viability probability function ��(τ1, . . . , τK ) varies smoothly with
respect to the threshold levels (as generally the case when the probability distribution P has a
smooth density), the marginal variation of viability probability with respect to the threshold
level τk is ∂

∂τk
��(τ1, . . . , τK ). This represents the marginal cost, in terms of viability prob-

ability, of increasing the level of this constraint. It provides information on the difficulty of
sustaining the corresponding outcome over time, given other sustainability objectives.

The value function (6) can be used to build stochastic sustainable production possibility
frontiers exhibiting the trade-offs among sustained levels of outcomes and viability proba-
bility. In particular, for any confidence level π ∈ [0, 1], it is possible to define the threshold
levels τ1, . . . , τK at which ��(τ1, . . . , τK ) = π . The marginal rate of substitution between
thresholds τi and τ j along the corresponding iso-value viability probability curve is then
defined by

∂��(τ1, . . . , τK )/∂τi

∂��(τ1, . . . , τK )/∂τ j
= ∂τ j

∂τi |��(τ1,...,τK )=π

(7)

This rate measures the necessary trade-offs between the two sustainability objectives, at a
given risk level, i.e., how much one objective must be reduced to increase the other without
changing the viability probability.

3.3.3 Suboptimal Cases

Our framework can be used also if it is not possible to identify an optimal strategy (e.g.,
because it cannot be computed). In a second-best setting, it is possible to consider subsets of
strategies C̃ ⊂ C and define the associated (sub-optimal) viability probability:

�̃(τ1, . . . , τK ) = max
ĉ∈C̃

�(̂c, τ1, . . . , τK ) (8)

While we recognize the pitfalls involved in such comparisons with an ad hoc reduced num-
ber of management strategies, this provides an analytical tool for comparing and ranking
realistic management strategies according to a well-defined yardstick that is based on the
corresponding viability probability. This ranking exercise could be used to inform stakehold-
ers in the discussion of given strategies with management relevance (e.g., effort-based or
quota-based strategies). The viability probability of the strategies then provides a metrics for
ranking them. In particular, by letting sustainability thresholds vary, it is possible to define
within which range of sustainability threshold levels one type of strategy performs better
than another.

4 A Case-study: The Chilean Jack-Mackerel Fishery

Wemodel the Chilean jack-mackerel fishery and use it as a case-study to apply the stochastic
viability approach, and in particular, the theoretical extensions described in the previous
section.
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4.1 Description of the Fishery and Management Issues

The jack-mackerel fishery has been the largest fishery in Chile for many years, in terms
of both annual catch and economic value.12 Like other small pelagic stocks, jack-mackerel
stocks are affected by the recurrences of El Niño in uncertain cycles. Since the late 1990s,
the fishery has been managed under a yearly-defined TAC and closed entry, taking particular
account of the stability of catch levels over time. Additionally, since the mid-2000s, the jack-
mackerel fishery has pioneered (in Chile) the inclusion of biology-related risk indicators in
its management practices.13 These indicators provide additional information for the policy
decision making process, with the underlying objective of capping biological (collapse) risk;
however, they are not appliedwithin a formal framework allowing trade off of this risk against
measures of economic return. Despite its management strategies, the Chilean jack-mackerel
fishery is currently in crisis.

Historical data on the jack-mackerel fishery are provided in the Appendix, Table 1. Year
2002 appears to be a turning point for two reasons: (1) biomass levels were half the peak in
the late 1980s, and recruitment was half the levels in the previous five years,14 (2) the spatial
distribution of the stock changed (Peña Torres et al. 2014), moving part of the stock outside
Chile’s Exclusive Economic Zone (EEZ), which triggered the re-opening of an international-
waters jack mackerel fishery (see Table 1 column (2)).

Despite the changes in the biology of the stock and its exploitation pattern after 2002, the
Chilean fisheries regulator decided to keep TAC levels almost constant for the Chilean fleet
targeting jack mackerel within and beyond the Chilean EEZ over the period 2000–2010 (see
Table 1 column (3)). Biomass levels began a monotonic decline, from 48% of virgin SSB
(SSBvirg)

15 in 2002, down to 16% in 2012. The management strategy changed only in 2011,
when the TAC fell by 76% between 2010 and 2011, from 1300 to 315 k-tons; in 2013 it was
around 250 k-tons.

Thus, the period 2002–2011 is of particular interest for this fishery. It covers 10 years of
management, which is the management horizon used by IFOP. It starts with a change in the
biology of the stock, and ends with a collapse of the fishery and a change in management
strategy. We model this period over a 10 year horizon, taking 2002 as the initial year of our
simulation.

This modeling exercise has two objectives. First, we assess the sustainability of some
management strategies and compare them to the fishery’s historical evolution. Second, we
build stochastic sustainable production possibility frontiers for the fishery given the 2002
stock. This allows us to determine the levels of sustainable outcomes, given the stock at the
beginning of the period.

12 Annual catch peaked at 4.4 million tons in 1995, and value generation was around US$ 400 millions of
yearly sales until the 2010s.
13 SUBPESCA, the regulatory body for Chilean fisheries, started assessing the probabilities of reducing the
SSB, relative to a historical base level, for various exogenously defined quota level. Sec SUBPESCA (2004,
pp. 26–27) and IFOP (2006, pp. 33–39).
14 This was probably related to lagged effects from the very strong 1997/98 El Niño event (Peña Torres et al.
2007, 2014).
15 The Chilean fishery research institute (IFOP) estimated this parameter at SSBvirg = 14.3 million tons. It
uses the maximum recorded SSB for this fishery (in 1988) as a proxy.
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4.2 Bioeconomic Model 16

4.2.1 Biology

We describe the dynamics of the Chilean jack-mackerel stock using an age-class model
(Quinn and Deriso 1999; Tahvonen 2009) with a Ricker recruitment function.17 Time is
measured in years. The initial year is t0 = 2002 and the final year is T = 2011. The time
index t = t0, t0 + 1, . . . , T represents the beginning of year t . Let A = 12 denote the
maximum age group, and a ∈ {1, . . . , A} be an age class index, all expressed in years. The
vector N = (Na)a=1,...,A ∈ R

A+ is a vector of abundance-at-age: for a = 1, . . . , A −1, Na(t)
is the number of individuals aged between a − 1 and a at the beginning of year t ; NA(t) is
the number of individuals older than A − 1.

The dynamics of the form of Eq. (1) is provided in the Appendix (Eqs. 11, 13 and 14).
The state vector (A + 1-dimensional) is x(t) = (

N1(t), . . . , NA(t), SSB
(
N (t − 1)

))
, where

the SSB is defined by Eq. (13). Fishing activity is represented by a fishing effort multiplier
λ(t), assumed to be applied continuously during the period t . The control then is c(t) = λ(t).
Total annual catches Y , measured in million tons, are given by the Baranov catch equation
(Eq. 12).

4.2.2 El Niño Cycles Model

The El Niño phenomenon is the result of a wide and complex system of climatic fluctuations
between the ocean and the atmosphere, whose frequency and intensity are uncertain. We
simulate the uncertain El Niño cycles using a model with a periodic part and an error term,
to produce a cycle with random shocks. Details are provided in the Appendix.

4.2.3 Economics

We make the following standard economic assumptions (Reed 1979; Clark and Kirkwood
1986; Clark 1990).

(a1) Demand is infinitely elastic. The harvest from this fishery goes mainly to fish meal, a
commoditywith high demand substitution. Therefore, this fishery is essentially a price-
taking industry, and we assume that any unit harvested is sold for a given, exogenous
price.

(a2) Per unit harvest costs are not dependent on harvest volume and vary with population
abundance. These costs increase as the size of the population decreases. This is equiv-
alent to assuming that fishing effort has a constant unit cost, and that Catches Per Unit
of Effort (CPUE) decrease if the stock decreases.

Under these assumptions, since the CPUE decreases when stock size falls, there is a minimal
stock size below which the marginal cost of fishing effort (which is constant) is higher than
the marginal revenue from fishing effort. We assume that no extra fishing effort occurs once
the marginal profit is nil. This implies that fishing effort has an upper bound.

For fisheries satisfying these assumptions, price and cost levels do not have a qualitative
effect on our results. The regulator usually observes prices but fishing costs are private

16 Data, parameters and computational details are described in the Appendix.
17 The Ricker model is frequently used for species with highly fluctuating recruitment, involving high fecun-
dity as well as high natural mortality rates (Begon and Mortimer 1986). These two features characterize small
pelagic species such as jack-mackerel.
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information and depend on factors specific to fishing vessels. Thus, profit functions are
difficult to estimate without strong assumptions related to fleet homogeneity. In practice,
the most frequent approach is to use catches to proxy for revenue, and fishing effort related
variables to proxy for costs. Since in practice quotas are defined in quantity terms, it is
reasonable to focus on harvest quantities and fishing effort to proxy for revenue and fishing
costs. This assumption is in line with, for example, Reed (1979), Clark and Kirkwood (1986)
and Sethi et al. (2005), where the expected discounted sum of harvest rather than the expected
discounted sum of profit is maximized.

4.3 Economic and Biological Sustainability Objectives

We consider the ecological objective of sustaining the SSB above some limit defined as a
percentage of SSBvirg. This objective is formalized by the constraint

SSB
(
N (t)

)

SSBvirg
≥ p , ∀t = t0, t0 + 1, . . . , T , (9)

where the threshold p denotes the desired minimum percentage of SSBvirg to be preserved
over time. In our analysis, p ∈ [0.15; 0.25], whichmeans that the constraint on the SSB(N (t))
varies between 15 and 25% of SSBvirg.

18 The constraint (9) corresponds to the following

indicator and threshold: I1(t, x(t), c(t)) = SSB
(

N (t)
)

SSBvirg
and τ1 = p.

We also consider the socio-economic objective of sustaining the annual yield above a level
ymin:

Y (N (t), λ(t)) ≥ ymin , ∀t = t0, t0 + 1, . . . , T . (10)

Theminimum level of landings to be sustained over time (ymin) can take values from0 to 2mil-
lion tons, corresponding to catch levels observed in this fishery in the first decade of 2000. The
constraint (10) corresponds to the following indicator and threshold: I2(t, x, c) = Y

(
N , λ

)

and τ2 = ymin. This constraint presumes that the fishery regulator aims at maintaining a
minimum level of fishing activity, due possibly to socioeconomic considerations.

4.4 Viability Assessment of Management Strategies

Using the stochastic viability approach, we compare management strategies for the Chilean
jack-mackerel fishery.

Although optimization approaches provide a description of “optimal” management strate-
gies, many fisheries are managed using much simpler tools.19 Constant fishing effort and
constant quotas are two basic management strategies. The former approach, known also as
fixed fishing mortality, is based on advice from biologists and results in fluctuating harvests
as stocks fluctuate. The optimal strategy may be neither of these approaches (Hannesson and
Steinshamn 1991) but these rules of thumb are still frequently proposed (and indeed used
sometimes) as potential management strategies in some fisheries. In the 1980s and 1990s,

18 In the case of South African small pelagic fisheries (sardines and anchovies) in the late 1980s and early
1990s, the fishery regulator considered p = 0.2 when applying such biological criteria (Butterworth and
Bergh 1997).
19 E.g., Singh et al. (2006) describe the Alaskan Pacific halibut stock as being managed by setting the yearly
harvest as a fixed fraction of the exploitation biomass; this constant harvest rate rule is shown to smooth catches
over time more than the optimal policy.
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Chilean fisherieswere de factomanaged under a constant effort rule (frozenmaximumeffort).
In 2000, a quota system was applied with a posteriori very small changes to TAC levels from
year to year. For example, the management strategy applied to the jack-mackerel fishery over
the studied period resembles a constant quota-type policy (see Table 1).

We focus on two different types of strategies: constant fishing effort and constant quota,
both stationary over a fixed period of 10 years.

A constant effort strategy (CES) is a strategy defined by a constant effort20 λ(t, N ) = λ.
The set of all possible CES is denoted by C̃E ⊂ C.

A constant quota strategy (CQS) is a strategy implicitly defined by a constant quota Y .
The associated fishing effort multiplier λ̂(t, N ) is such that Y

(
N , λ̂(t, N )

) = Y whenever
this is possible, i.e., if the corresponding effort level is below the upper bound for fishing
effort. If it is not, the actual catch level may be lower than the quota. The set of all possible
CQS is denoted by C̃Q ⊂ C.

For each subset of strategies C̃E and C̃Q , we compute the associated maximal viability
probability as a function of the two sustainability thresholds: For each pair (p, ymin) ∈
[0; 2]×[0.15; 0.25] of economic and ecological thresholds,21 we define,within each subset of
management strategies, the level of the policy instrument which results in the highest viability
probability (best constant quota, or best constant effort, to sustain the given objectives). The
viability probability is approximated by a frequency given by Monte Carlo simulations (over
1, 000 simulations). We compute a 95% confidence interval for its value. These viability
probabilities are displayed in Fig. 2. For each strategy (left-hand panel for CES and right
hand-side panel for CQS), we draw iso-probability curves over the two thresholds, for the
levels of maximal viability probability {0, 0.1, 0.5, 0.9, 0.99, 1}.

Both graphics in Fig. 2 represent the “stochastic viability value” of each type of strategy
as a function of the sustainability thresholds (see Eq. 5).

4.4.1 Ranking Management Strategies

For any given pair of sustainability thresholds, we can rank the alternative management
strategies using their viability probability. This allows us to identify the levels of sustainability
objectives for which a strategy is likely to perform better than the other from a viability point
of view.We determinewhether the confidence interval for the viability probability of one type
of strategy lies strictly above the confidence interval for the other strategy. Figure 3 depicts
the strategy type with the highest viability probability for each pair (p, ymin) of biological
and economic thresholds. The domain, in terms of sustainability thresholds, where CQS
performs strictly better than CES is shaded black. The gray area corresponds to the threshold
levels at which the performance of both policy types cannot be statistically distinguished
(i.e., confidence intervals intersect). This happens only for viability probabilities close to 1,
i.e., for objectives which are easily sustained. The white area corresponds to unsustainable
objectives, i.e., thresholds with a viability probability close to zero.

We conclude from this analysis that, for any sustainability objective in the studied range,
CQS perform better than CES to sustain catches and biomass levels.22

This dominance of quota-based strategies over effort-based strategies is not surprising
given the nature of the sustainability constraints considered. To explain this, let us refer

20 In our model, fishing mortality is proportional to fishing effort if the fishing technology is constant. Thus,
a CES is identical to the constant fishing mortality strategy depicted here.
21 Technically, we discretize the intervals.
22 This result is robust to the initial state of the fishery. We performed a sensitivity analysis for different initial
stocks defined as multiples of the 2002 stock (from 60 to 150%).
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0
0

15 1520 2025 25

million tons million tons

Constant Effort Strategies (CES) Constant Quota Strategies (CQS)

Fig. 2 Maximal viability probability of effort and quota strategies (1000 Monte-Carlo simulations). Isoprob-
ability curves are drawn for values {0, 0.1, 0.5, 0.9, 0.99, 1}. (Green circle at (20,0.8) corresponding to the
sustainability thresholds used for the simulations of Fig. 5). (Color figure online)

to the theoretical result in De Lara and Martinet (2009). In a general framework with an
application to fishery, they show that if the dynamics and viability constraints satisfy some
monotonicity properties, the maximal viability probability is achieved with the feedback rule
which maximizes the escapement level given that the viability constraints are satisfied at
the current time. This management strategy can be interpreted as a “precautionary rule.” It
ensures the achievement of economic objective at the present time while maximizing the
probability of economic and ecological objectives being achieved in the future.23 When the
economic constraint is a minimal catch level, the rule corresponds to a constant quota at the
level of the constraint.

Since the Ricker recruitment function is non-monotonic, with a declining part for large
stocks, the model studied here is not monotonic in the sense of De Lara and Martinet (2009).
However, the range of SSB modeled belongs to the monotonic part of the Ricker function,
whichmeans that themodel behaves as if it weremonotonic. As one of the viability constraint
is aminimal catch level, a constant quota at this level results in the highest viability probability.

The problem of determining which of the effort-based and quota-based strategies dom-
inates in fishery economics is a particular case of the “prices versus quantities” debate. A

23 Note that, for many fisheries, the International Council for the Exploration of the Sea (ICES) management
strategy is based on a rather different strategy: the catch level is set at the highest level compatible with
the biological conservation target in the following year, given a confidence interval (precautionary fishing
mortality value) (De Lara et al. 2007; Kell et al. 2005). By construction, this strategy leads the stock close to
the ecological constraint, with the risk of fishery closure in the short-medium term if the stock falls below the
biological conservation threshold. The strategymaximizing the viability probability is conservative, and results
in the resource stock kept as “far” as possible from the biological threshold, given the economic objective.
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15 16

Unsustainable objectives:
Viability probability very close to 0
for both types of strategies

Sustainability objectives for
which constant-quota strategies
have a higher viability probability
than constant-effort strategies

Equality:
Sustainability objectives achievable
with a viability probability very close to 1
for both types of strategies

17 18 19 20 21 22 23 24 25

million tons

Fig. 3 Comparison of CES and CQS policy types (1000Monte Carlo’s simulations). (Green circle at (20,0.8)
corresponding to the sustainability thresholds used for the simulations of Fig. 5). (Color figure online)

management strategy based on direct control of fishing effort has similar features to tax based
management (Danielsson 2002; Weitzman 2002). By imposing a maximal fishing effort, one
imposes a maximal marginal cost, which interrupts the fishing period before the open access
equilibrium. Controlling the effort is similar to imposing a particular landing fee (such as a
very high fee starting at some point). Landing fees are a (relatively) better solution to control
the (marginal) fishing effort (or cost) but suffer from the drawback of inability to control catch
levels. Harvest quotas, on the other hand, have the advantage that they fix the total quantity
of fish caught but suffer from the drawback of inability to control the possible excess effort
exerted to fish down a stock that is experiencing low recruitment in the fishing period. The
related literature shows that, depending on the characteristics of the fishery (i.e., its biologi-
cal dynamics and economic structure) and the type of uncertainty affecting the model (i.e.,
whether fish stock and/or economic returns are uncertain), either quota or effort tools may
perform better in terms of discounted payoffs (Hannesson and Steinshamn 1991; Quiggin
1992;Danielsson 2002; Jensen andVestergaard 2003;Hannesson andKennedy 2005;Hansen
2008). In the stochastic viability framework, the result depends not only on the characteristics
of the fishery under study but also on the nature of the sustainability objectives.

4.4.2 Stochastic Sustainable Production Possibility Frontiers

Figure 2 presents what was defined in the theoretical analysis of Sect. 3.3 as stochastic
sustainable production possibility frontiers. The lines denoting the iso-probabilities represent
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the trade-offs between sustainability thresholds (p, ymin) at various viability probability
levels, as characterized by Eq. (7). For any given viability probability level, it is necessary to
reduce one sustainability threshold to increase another. There is also a trade-off between the
sustainability thresholds and confidence in achieving sustainability. Increasing the thresholds
results in a decreased viability probability.24

These graphical representations are useful to support the social choice of sustainability
objectives. They depict the trade-offs between the policy objectives represented by the sus-
tainability thresholds, and the risk of failing to (simultaneously) achieve them.25 When no
SWF can be determined prior to the evaluation of management strategies, and the interest is
in sustaining ecological and economic outcomes over time, presenting the trade-offs over all
possible sustainability objectives to stakeholders may help to reveal their preferences.

4.4.3 Discussion

We can draw some policy-oriented conclusions from the results of our analysis. The impor-
tant contribution is not the finding of dominance of quota over effort strategies but the rep-
resentation of the trade-offs between sustainability issues by means of stochastic sustainable
production possibility frontiers.

In the early 2000s, biomass levels had been experiencing (for almost a decade) worsening
status. As a consequence, our simulation results report non-viable solutions for any threshold
pair with p ≥ 25%, either under CQS or CES, whatever the minimum catch threshold.

Over the period analyzed, the TAC was maintained at above 1.3 million tons; however,
actual catches did not match this level. Notwithstanding the ecological constraint, Fig. 2
shows that the probability of sustaining the TAC level was not high. Even the best policy
among those studied has a low viability probability (around 50%). This is illustrated in Fig. 4,
which compares simulated trajectories for the best CQS andCES for sustainability thresholds
(p, ymin) = (0, 1.3), to the historical data (dashed line). The catch level of 1.3 million tons
is sustained only in few scenarios (1 for CES, and 3 for CQS).

The main message to the Chilean regulator is that, notwithstanding the choice of instru-
ment, historical quota targets were not sustainable. The information provided by our stochas-
tic sustainable production possibility frontiers could have helped to set lower sustainability
targets. For example, Fig. 5 represents simulated trajectories for the best CQS and CES for
sustainability thresholds (p, ymin) = (0.2, 0.8), which are achievable with a higher probabil-
ity than historical levels of quotas (see the green circle at these threshold levels on Figs. 2, 3).
The viability probability for CES is quite low, close to 10%. None of the depicted trajectories
are viable. The viability probability for Constant Quota Strategies is very close to one. All
the depicted trajectories are viable.

However, these results should be interpreted with caution and political economy consid-
erations should not be underestimated. One of the basic reasons for pursuing the high quota
management strategy despite worsening biomass numbers, was that the Chilean authorities
wanted to maintain, for as long as possible, high ‘historical fishing presence’ of Chilean fleet
operating in this fishery,26 with a view to strengthening Chile’s bargaining position in case

24 The figure could be made 3-dimensional, with the viability probability as a function of the thresholds, to
emphasize these two different trade-offs.
25 Note that these trade-offs are between sustainability objectives, not different management strategies (as
was the case for the MSE in Fig. 1).
26 The drastic 2011 fall in the TAC for the Chilean fleet was related to the change of government in Chile
and the (expected) realization that biomass levels (and real catch levels) were inconsistent with previous TAC
levels.
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Fig. 4 Examples of trajectories under CQS and CES (five simulations corresponding to five different uncer-
tainty scenarios) for sustainability thresholds (p, ymin) = (0, 1.3), compared to historical data (dashed line).
The yield threshold is represented by a horizontal (green) line. Catch levels equal the threshold level if constant
quota trajectories are feasible. Viable trajectories are in blue. Non-viable trajectories are in red. (Color figure
online)

of future multi-country negotiations about the allocation of country-specific TACs for this
common-pool stock.27 Time lags were necessary to find a more reasonable (multi-country)
management solution, and those lags prompted the Chilean authorities’ decision to maintain
TAC ‘as-if constant’ (and maintain the resulting ‘high’ Chilean catches), in response to the
common-pool stock issue created by the partial redistribution of the jack mackerel stock into
open seas waters beyond Chile’s EEZ.

27 Since the early 2000s, the possibility of creating a new (multi-country) Regional Fisheries Management
Organization (RFMO) for fishing this straddling stock has been on the table. Initial formal discussions over
the establishment of a RFMO related to jack mackerel fishing in the Eastern South Pacific started in 2006
(involving Chile, Australia and New Zealand). In March 2014, 11 nations (including Chile) had ratified their
full membership of this RFMO. Enforcement of formally binding fishing management measures (including
allocation of multi-country TACs) started in 2013. (In mid-2012, another 21 nations were debating whether
or not to become members of this RFMO).
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Fig. 5 Examples of trajectories under CQS and CES (five simulations corresponding to five different uncer-
tainty scenarios) for sustainability thresholds (p, ymin) = (0.2, 0.8), compared to historical data (dashed
line). The biomass and yield thresholds are represented by a horizontal (green) line. Catch levels equal the
threshold level for all constant quota trajectories. Viable trajectories are in blue. Non-viable trajectories are in
red. (Color figure online)

5 Conclusions

Many problems related to the management of natural resources, such as fisheries, are marked
by dynamics and uncertainty. When there are conflicting economic, ecological and social
objectives at stake, multicriteria evaluation methods that take account of uncertainty are
required to rank potential management strategies. One such method is the Management
Strategy Evaluation approach, which characterizes potential management strategies using a
set of performance statistics. However, due to the absence of a commonmetrics for comparing
and trading-off conflicting issues, decision-makers are devoid of tools to rank the various
management strategies.

To contribute to policy-oriented decision making related to natural resources management
problems, we have developed a framework based on stochastic viability. A set of constraints
is used to represent the various sustainability objectives of the dynamic ecological economic
system. In this framework,management strategies are ranked according to the probability that
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the resulting intertemporal trajectory satisfies all the objectives over the planning horizon.
The viability probability ranks the various management options, defining the strategy that
results in the highest viability probability.

This approach acts to complement the traditional economic approach when it is not pos-
sible to define a multi-attribute social welfare function. The objective is to maximize the
probability of achieving the sustainability constraints. Stochastic viability provides a good
way to model decision problems involving several stakeholders interested in sustaining the
levels of various indicators. All sustainability dimensions are treated in the same way as
constraints representing the minimal rights to be guaranteed to all generations. The decision-
maker’s preferences are expressed when sustainability thresholds are defined.

The theoretical extension to stochastic viability presented in this paper should help stake-
holders to define what should be sustained. Our stochastic viability value function exhibits
trade-offs between sustainability objectives (thresholds) and viability probability. Building
stochastic sustainable production possibility frontiers allows the set of objectives that can be
sustained with some probability to be described.

The proposed stochastic viability methodology is general, and can be applied to a wide
range of problems. For example, in this paper we examined the management of a real fish-
ery, using estimated parameters. We applied numerical techniques to examine the efficiency
of effort- and quota-based management strategies for achieving sustainability objectives,
defined as constraints on biological and economic indicators. Monte Carlo simulations
were run to estimate the viability probability of each policy with respect to these objec-
tives.

The main contribution of the paper is the development of a framework which provides
a common metrics to compare management strategies and to describe the trade-offs among
sustainability objectives, in a way that complements the MSE approach. We suggest that the
proposed approach fills the gap between the theoretical economics literature on optimality,
and practical decision-making.
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Appendix

Chilean Jack-Mackerel Case Study: Data, Parameters and Model

Historical Data for the Chilean Jack-Mackerel Fishery

Table 1 details the historical values of interest for the fishery.
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Biological Model

We provide details of the model in Sect. 4.2.
Themodel is age-structured,with aRicker stock-recruitment function.Abundance dynam-

ics are given by
{

Na+1(t + 1) = exp (−(Ma + λ(t)Fa))Na(t) , a = 1, . . . , A − 2
NA(t + 1) = exp (−(MA−1 + λ(t)FA−1))NA−1(t) + exp (−(MA + λ(t)FA))NA(t)

(11)

where Ma is the natural mortality rate of individuals of age a, Fa is the mortality rate of
individuals of age a due to harvesting between t and t + 1, supposed to remain constant
during year t (the vector (Fa)a=1,...,A is termed the exploitation pattern).

Total annual catches Y , measured in million tons, are given by the Baranov catch equation
(Quinn and Deriso 1999, pp. 255–256):

Y
(
N , λ

) =
A∑

a=1

�a
λFa

λFa + Ma
(1 − exp (−(Ma + λFa))) Na , (12)

where (�a)a=1,...,A are the weights at age.
The spawning stock biomass (SSB) is given by the expression

SSB(N ) =
A∑

a=1

γa�a Na , (13)

where (γa)a=1,...,A are the proportions of mature individuals at age a (some may be zero).
Annual recruitment is a function of the SSB with a two-year delay, i.e., depending on the
spawning stock biomass of two periods earlier:28

N1(t + 1) = αSSB
(
N (t − 1)

)
exp

(
βSSB

(
N (t − 1)

) + w(t)
)

, (14)

where {w(t)} is a random process reflecting the impact of climatic factors on the stock
recruitment relationship (see below).

We use the parameter estimation proposed in Yepes (2004), which relies on official data
from the Instituto de Fomento Pesquero (IFOP).29 Parameters of the Ricker recruitment
function at expression (14) were estimated using linear time-series analysis. The estimated
parameters are α = e2.39 and β = −2.2 · 10−7 (see Yepes (2004), p. 56). The values for
parameters Ma and Fa are taken from IFOP’s officialmodel for this fishery, so that Ma is equal
to 0.23 for all a and Fa is equal to the vector of averages values of Fa during 2001–2002.30

Stochastic Model

Following the statistical analysis in Yepes (2004), we simulate El Niño uncertain cycles
using a sinusoidal function with random shocks.31 The random process w(t) supposed to

28 This 2-year delayed effect is due to the biological growth dynamics of the species.
29 Subsecretaria de Pesca, Valparaíso - Chile: Cuota Global de Captura para la Pesquería del Recurso Jurel,
Año 2001; and Instituto de Fomento Pesquero, Valparaíso - Chile: Informe Complementario Investigación
CTP Jurel, 2003: Indicadores de Reclutamiento.
30 See Subsecretaria de Pesca, Valparaíso - Chile, SUBPESCA: Pre Informe Final. Investigación Evaluation
y CTP Jurel 2006.
31 Based on Chilean marine biologists advice, Yepes (2004) calculates the occurrence of the El Niño phenom-
enon based on National Oceanic and Atmospheric Administration (NOAA) data on sea surface temperatures
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capture the effects of the El Niño phenomenon has a periodic part and an error term, w(t) =
−0.12×niño(t) + ε(t), where

• the estimated error terms {ε(t)} correspond to ε(t) = 0.71ε(t −1)−0.65ε(t −2)+μ(t),
where {μ(t)} is a sequence of i.i.d. randomvariableswithNormal distributionN (0; 0.18),

• niño(t) = 1{−1.2 sin(18.19+2π(t−1951)/3.17)>0.5} is a dummy (0 or 1) variable reflecting the
presence of El Niño phenomenon.

Simulation Process

From a theoretical point of view, it is possible to determine the strategy that maximizes
the viability probability by solving the dynamic programming equation characterizing the
viability problem (De Lara et al. 2006). It is possible to obtain a closed-form solution for
some problems (De Lara and Martinet 2009). Determining optimal strategies in dynamic
optimization problems under uncertainty is not easy. Optimization in the stochastic viability
framework is not exceptional. In particular, the curse of dimensionality can be a serious
obstacle to the computation of optimal viability strategies.

From a practical point of view, it is possible to estimate the viability probability of any
given strategy by means of Monte Carlo simulations. A random generator is used to produce
scenarios following the distribution P. For each scenario, a given management strategy is
applied. If, for the corresponding trajectory, all the viability constraints in (4) are respected
in each time period over the whole planning horizon, the scenario is viable for the applied
management strategy. When the number of scenarios tested is large, the frequency of viable
scenarios can be used as an approximation of the viability probability.
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