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Abstract A notion called norm subdifferential local uniform convexity (NSLUC) is
introduced and studied. It is shown that the property holds for all subsets of a Banach
space whenever the norm is either locally uniformly convex or k-fully convex. The
property is also valid for all subsets of the Banach space if the norm is Kadec-Klee
and its dual norm is Gâteaux differentiable off zero. The NSLUC concept allows us to
obtain new properties of the Klee envelope, for example a connection between attain-
ment sets of the Klee envelope of a function and its convex hull. It is also proved that
the Klee envelope with unit power plus an appropriate distance function is equal to
some constant on an open convex subset as large as we need. As a consequence of
obtained results, the subdifferential properties of the Klee envelope can be inherited
from subdifferential properties of the opposite of the distance function to the comple-
ment of the bounded convex open set. Moreover the problem of singleton property of
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sets with unique farthest point is reduced to the problem of convexity of Chebyshev
sets.

Mathematics Subject Classification Primary 49J52 · 46B20; Secondary 52A41 ·
41A50

1 Introduction

Let (X, ‖ · ‖) be a real normed vector space. At the beginning of thirties of tweentieth
century S. Mazur considered the following property:

Every closed bounded convex subset of X, say D, is the intersection of closed balls
containing it,
See [28]. There are several papers where this is investigated. We refer to [3,8] for
surveys on achievements and historical information of the property, which is called
nowadays the Mazur Intersection Property, MIP for short. In other words, denoting
by B[x, r ] [resp. B(x, r)] the closed (resp. open) ball centered at x with radius r > 0,
we can express the Mazur Intersection Property as follows

D =
⋂

x∈X,r>0,D⊂B[x,r ]
B[x, r ].

Moreover we expect that D ∩ (B[x, r ]\B(x, r)) �= ∅ for every ball with the smallest
radius in the right-hand side of the equality. With this geometry we can relate an
analytic reasoning. Namely, for every bounded subset S ⊂ X we can define the
farthest distance function from the set S (also called antidistance function)

�S(x) := sup
y∈S

‖x − y‖

and the set QS(x) of farthest points from S to x , that is,

QS(x) := {y ∈ S : ‖x − y‖ = �S(x)}.

Using the notions defined above the Mazur Intersection Property can be rewritten
in the form

D =
⋂

x∈X

B[x,�D(x)].

The nonemptiness of the intersection D∩(B[x, r ]\B(x, r)) �= ∅with r = �D(x) is in
fact a question on nonemptiness of the set of farthest points. The above consideration
can be embedded into a more general set up. Namely we can use the Klee envelope
instead of the farthest distance function, that is, for λ > 0, p ≥ 1 and an extended
real-valued function f : X → R ∪ {+∞} we put
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The NSLUC property and Klee envelope 925

κλ,p f (x) := sup
y∈X

(
1

pλ
‖x − y‖p − f (y)

)
. (1)

Then the associated attainment set is denoted by Qλ,p f (x), that is,

Qλ,p f (x) :=
{

y ∈ X : 1

pλ
‖x − y‖p − f (y) = κλ,p f (x)

}
. (2)

Of course, the Klee function with p = 1 and λ = 1 coincides with the farthest
distance function, that is, κ1,1(ψS)(x) = �S(x) and Qλ,p(ψS)(x) coincides with
QS(x), whenever f is the indicator function ψS of a subset S of X , that is, ψS(x) = 0
if x ∈ S and ψS(x) = +∞ otherwise.

We shall see that results on the Klee envelope add new knowledge to the old
problems recalled below concerning sets of farthest points. Let us also point out
that using this set up we do not take care about the convexity of the set S, more
generally about the convexity of the function f that we transform through the Klee
envelope. However, it is worth considering whether the convexity is important or not
in Definitions (1) and (2). On the one hand, we show that it does not matter if we take
f or co f in (1), we get the same value, see Proposition 7. On the other hand, in some
spaces we have also the following implication

d ∈ Qλ,p(co f )(x) �⇒ d ∈ co(Qλ,p f (x) ∩ (x + span(d − x))),

which entails the inclusions

Qλ,p f (x) ⊂ Qλ,p(co f )(x) ⊂ co Qλ,p f (x), (3)

See Theorem 2. Thus the convex hull of the associated attainment set for co f can be
recovered as the convex hull from the associated attainment set for f . When f is the
indicator function ψS , we obtain the equality

QS(x) = QcoS(x),

in several important cases increasing the range of its use, see Sect. 5 and Theorem 2.
Of course, if QS(x) is single-valued, then QcoS(x) is single-valued too in this case.
So, natural is the question: Which sets and points have this property? There is also
the old question posed by V. Klee (see [26] or [23]), closely related to this question,
namely:

Klee’s question: Suppose that QS(x) is a singleton for every x ∈ X . Must S consist
of a single point?

In fact, if we look carefully at [26, Theorem1.2]we notice that an affirmative answer
to the above question by V. Klee implies the convexity of Chebyshev sets and vice
versa, whenever X is a real Hilbert space; we recall that a set S is called Chebyshev
provided that every point of the space X admits a unique nearest point in S. So far, both
questions are unsolved inHilbert spaces, see for example [23]. Let us also point out that
not always investigating farthest points froma set S can be changed into finding farthest
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926 A. Jourani et al.

points from its closed convex hull. For example, if X := c0, x := (1, 2−1, 3−1, . . .),
si := (i−1, 0, . . . , 0, 1, 0, . . . )with 1 being the i th component for every i = 2, 3, . . . ,
S := {s2, s3, . . .}, then QS(x) = ∅ but QcoS(x) = {0} since 0 ∈ clw(c0,�1)S ⊂ co S.
This example realizes the need of finding a large class of spaces and sets for which (3)
holds true. For this reason we propose a new notion, called norm subdifferential local
uniform convexity (NSLUC), see Definition 1, which allows us to get in particular (3)
in several cases, for example:

1. The norm of X has the LURproperty (that is, the local uniform rotundity/convexity
property);

2. The norm of X is fully k−convex;
3. The norm of X is strictly convex and has the Kadec-Klee property, and S is rela-

tively weakly sequentially compact;
4. X is a Banach space whose norm has the Kadec-Klee property and the dual norm

is Gâteaux differentiable off the origin;
5. The norm of X is strictly convex and S is relatively norm-compact,

See Sect. 5 for details on relations among NSLUC properties and properties of the
norm, and Theorem 3 where (3) is established in the listed cases. As an example of
application of obtained results we relate the Klee envelope with a distance function,
namely the sum of these two functions is constant on some open convex set, see The-
orem 4. The two obvious consequence of the relationship between the Klee envelope
and the distance functions are: (1) Subdifferential properties of one function can be
inherited from subdifferential properties of the other one; (2) Another proof of theKlee
idea (that is, the Klee question is in fact a question on the convexity of Chebyshev
sets) is obtained, see Theorem 5 and Remark 10.

For some results concerning differential properties of Klee envelopes we refer to
the paper [38] in the finite dimensional setting, and to [9] under the strong attainment.

2 Background

Throughout we shall assume that (X, ‖ · ‖) is a (real) normed vector space, X∗ is its
topological dual and 〈·, ·〉 is the pairing between X and X∗. We denote by BX , SX and
B[x, r ] (resp. B(x, r)) the closed unit ball, the unit sphere and the closed (resp. open)
ball of X centered at x with radius r > 0. By co and co, we denote the convex hull
and the closed convex hull.

The metric projection mapping on a subset S of X is defined by

PS(x) := {s ∈ S : d(x, S) = ‖x − s‖}, ∀x ∈ X, (4)

where d(·, S) is the distance function from the set S, that is,

d(x, S) := inf
y∈S

‖x − y‖.

Let f : X → R ∪ {+∞} be an extended real-valued function. We recall that the
Legendre-Fenchel conjugate of f is the function f ∗ : X∗ → R ∪ {−∞,+∞} with
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The NSLUC property and Klee envelope 927

f ∗(x∗) := sup
y∈X

(
〈x∗, y〉 − f (y)

)
for all x∗ ∈ X∗.

The subdifferential in the sense of convex analysis of f at a point x ∈ X where f
is finite is defined by

∂ f (x) := {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ f (y) − f (x), ∀y ∈ X}.

If f is finite at x , then x∗ ∈ ∂ f (x) if and only if

f (x) + f ∗(x∗) = 〈x∗, x〉;

so if the function f : X → R ∪ {+∞} is convex and lower semicontinuous, one has

x∗ ∈ ∂ f (x) ⇐⇒ x ∈ ∂ f ∗(x∗), (5)

since under that condition f coincideswith the restriction of ( f ∗)∗ to X . If f is convex,
the nonvacuity of ∂ f (x) at any point x where f is both finite and continuous is well
known and this will be frequently used in the paper.

The Fréchet subdifferential of f at the point x where f is finite is given by

∂F f (x) :=
{

x∗ ∈ X∗ : lim inf
h→0

f (x + h) − f (x) − 〈x∗, h〉
‖ h ‖ ≥ 0

}
.

We adopt the convention ∂F f (x) = ∅ when f (x) = +∞. Again with f (x) finite, the
lower Dini directional derivative of f at x is given by

d− f (x; h) := lim inf
w→h;t↓0

t−1( f (x + tw) − f (x)
)

and when f is Lipschitz continuous near x we obviously have for all h ∈ X

d− f (x; h) = lim inf
t↓0 t−1( f (x + th) − f (x)

)
.

The Dini subdifferential of f at x is then the set

∂− f (x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d− f (x; h), ∀h ∈ X}

for x ∈ dom f and ∂− f (x) = ∅ if x /∈ dom f, where dom f := {u ∈ X : f (u) <

+∞} denotes the effective domain of f . When the set dom f is nonempty, one says
that the function f is proper.

Given any set-valued mapping M : X ⇒ Y (which can be PS, ∂ f, ∂F f, ∂− f ), it
will be convenient as usual to denote by Dom M its (effective) domain and by Rge M
its range, that is,

DomM := {x ∈ X : M(x) �= ∅} and RgeM :=
⋃

x∈X

M(x).

123



928 A. Jourani et al.

The graph of M is the set

gph M := {(x, y) ∈ X × Y : y ∈ M(x)}.

3 Properties of the Klee envelope

Let f : X → R ∪ {+∞} be an extended real-valued function. We recall that for any
reals λ > 0 and p ≥ 1, the Klee envelope of f with index λ and power p was defined
in (1) and the associated attainment set Qλ,p f (x) in (2). If κλ,p f ≡ +∞ the study
of κλ,p f and Qλ,p f is trivial. It is also worth pointing out that if κλ,p f (x0) is finite
for some x0, then there is some real β such that

1

p2p−1λ
‖y‖p − β ≤ f (y) for all y ∈ X. (6)

Indeed, putting μ := κλ,p f (x0) (so,
1

pλ
‖y − x0‖p − μ ≤ f (y)) and noting that

‖y‖p ≤ (‖y − x0‖ + ‖x0‖
)p ≤ 2p−1‖y − x0‖p + 2p−1‖x0‖p,

we see that for all y ∈ X

1

p2p−1λ
‖y‖p − 1

pλ
‖x0‖p − μ ≤ 1

pλ
‖y − x0‖p − μ ≤ f (y).

The Klee envelope is a particular important case of supremal convolutions. Given
functions gi : X → R∪{−∞}with i = 1, . . . , n, the (Moreau) supremal convolution
(or sup-convolution) of g1, . . . , gn is the function (see [32])

x �→ ϕ(x) := sup{g1(x1) + · · · + gn(xn) : x1 + · · · + xn = x},
where the supremum is taken over all n- tuples (n-vectors) (x1, . . . , xn) in Xn such
that x1 + · · · + xn = x ; so the Klee envelope κλ,p f is the supremal convolution of
− f with the kernel function 1

pλ
‖ · ‖p. If at least one of the functions g1, . . . , gn , say

g1, is convex, then ϕ is convex since the equality

ϕ(x) = sup
(u2,··· ,un)∈Xn−1

(
g1(x − u2 − · · · − un) + g2(u2) + · · · + gn(un)

)

ensures that ϕ is the pointwise supremumof a family of convex functions. In particular,
the Klee envelope κλ,p f is always convex.

For every real ε ≥ 0, it will be convenient to put

Qε
λ,p f (x) :=

{
y ∈ X : κλ,p f (x) − ε ≤ 1

pλ
‖x − y‖p − f (y)

}
,

so Qε
λ,p f (x) �= ∅ whenever κλ,p f (x) is finite and ε > 0.
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The NSLUC property and Klee envelope 929

If f is finite at some point, say ȳ, then the inequality 1
pλ

‖x− ȳ‖p− f (ȳ) ≤ κλ,p f (x)

tells us that κλ,p f is coercive in the sense that

κλ,p f (x) → +∞ as ‖x‖ → +∞. (7)

In addition to that coercivity property, the next proposition establishes the local bound-
edness of the set-valued mapping Qε

λ,p f and some Lipschitz property of the function
κλ,p f . In view of the proof of the proposition, we must recall (and this is not difficult
to verify) that the subdifferential of the convex function (1/p)‖ · ‖p is described for
any x ∈ X by

∂

(
1

p
‖ · ‖p

)
(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖ ‖x‖ and

‖x∗‖ = ‖x‖p−1} if p > 1,

(8)

and with p = 1

∂‖ · ‖(x) = {x∗ ∈ X∗ : ‖x∗‖ ≤ 1 and 〈x∗, x〉 = ‖x‖}. (9)

The latter means that ∂‖ · ‖(0) = BX∗ and ∂‖ · ‖(x) = {x∗ ∈ SX∗ : 〈x∗, x〉 = ‖x‖}
for all x �= 0.

Proposition 1 Let (X, ‖ · ‖) be a normed vector space and f : X −→ R∪ {+∞} be
a proper function for which there exist two real numbers α, β with α > 0 such that

α‖x‖p − β ≤ f (x) for all x ∈ X. (10)

The following hold:

(a) With p = 1 and λ ≥ 1/α the function κλ,1 f is finite-valued and globally Lipschitz
on X with 1/λ as a Lipschitz constant.

(b) If p > 1 and λ > 1/(pα), the function κλ,p f is finite-valued on X and Lipschitz
continuous on each ball rBX of X with some Lipschitz contant L ≥ r p−1/λ

therein.
(c) With p ≥ 1 and λ > 1/(pα), for each pair of reals ε ≥ 0 and r > 0, the

set-valued mapping Qε
λ,p(·) is bounded over the ball rBX .

Proof Let α, β be as given in the statement.
First, assume that p = 1 and λ ≥ 1/α. Fixing x ∈ X , we have for all y ∈ X ,

1

λ
‖x − y‖ − f (y) ≤ 1

λ
‖x‖ + 1

λ
‖y‖ − α‖y‖ + β ≤ 1

λ
‖x‖ + β,

so κλ,1 f (x) is finite. Further, with x, x ′ ∈ X taking the supremum over y ∈ X in the
inequality
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930 A. Jourani et al.

1

λ
‖x − y‖ − f (y) ≤ 1

λ
‖x − x ′‖ +

(
1

λ
‖x ′ − y‖ − f (y)

)

gives κλ,1 f (x) ≤ κλ,1 f (x ′) + λ−1‖x − x ′‖, hence κλ,1 f is Lipschitz on X with λ−1

as a Lipschitz constant.
Now assume that p ≥ 1 and λ > 1/(pα). Take any x ∈ X and write, for every

y ∈ X ,
1

pλ
‖x − y‖p − f (y) ≤ 1

pλ
‖x − y‖p − α‖y‖p + β. (11)

On the one hand, observing that 1
pλ

‖x − y‖p − α‖y‖p + β → −∞ as ‖y‖ → +∞
since 1

pλ
− α < 0, it results that 1

pλ
‖x − ·‖p − α‖ · ‖p + β is bounded from above

over X . From (11) the function 1
pλ

‖x −·‖p − f (·) is also bounded from above over X
and finite at some point according to the properness of f , hence κλ,p f is finite-valued
over X .

On the other hand, fixing any reals ε ≥ 0 and r > 0, we note by (11) that, for all
x ∈ X and y ∈ Qε

λ,p f (x),

κλ,p f (x) − ε ≤ 1

pλ
‖x − y‖p − α‖y‖p + β.

Choose some element y0 ∈ X with f (y0) finite and consider any x ∈ rBX and
y ∈ Qε

λ,p f (x), that is, κλ,p f (x) − ε ≤ 1
pλ

‖x − y‖p − f (y). We have

− f (y0) ≤ 1

pλ
‖x − y0‖p − f (y0) ≤ κλ,p f (x) ≤ 1

pλ
‖x − y‖p − α‖y‖p + β + ε,

so choosing some y∗ ∈ ∂
( 1

p ‖ · ‖p
)
(y − x) we obtain by (8)

− f (y0) ≤
(

1

pλ
− α

)
‖y‖p + 1

pλ
(‖y − x‖p − ‖y‖p) + β + ε

≤
(

1

pλ
− α

)
‖y‖p + 1

λ
〈y∗,−x〉 + β + ε

≤
(

1

pλ
− α

)
‖y‖p + 1

λ
‖y − x‖p−1‖x‖ + β + ε,

and this entails

− f (y0) ≤
(

1

pλ
− α

)
‖y‖p + r

λ
(‖y‖ + r)p−1 + β + ε,

or equivalently

(
α − 1

pλ

)
‖y‖p − r

λ
(‖y‖ + r)p−1 ≤ β + f (y0) + ε,
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The NSLUC property and Klee envelope 931

with α − 1
pλ

> 0. It ensues that there exists some real γ > 0 depending only on λ, r, ε
such that‖y‖ ≤ γ for all y ∈ Qε

λ,p(x) (since otherwise for a sequence (yi )i of elements
of Qε

λ,p(x) with ‖yi‖ → +∞ as i → +∞, the first member of the latter inequality
would tend to∞, contradicting the inequality). This means that Qε

λ,p(x) ⊂ γBX , and
the set-valued mapping Qε

λ,p f (·) is bounded on rBX as desired.
Finally, assume that p > 1 and λ > 1/(pα). Fix ε > 0 and r > 0, and let γ > 0

given as above. Take any x, x ′ ∈ rBX . Considering any y ∈ γBX and choosing
x∗ ∈ ∂

( 1
p ‖ · ‖p

)
(x − y) we see from (8) again that

1

pλ
‖x − y‖p − 1

pλ
‖x ′ − y‖p ≤ 1

λ
〈x∗, x − x ′〉

≤ 1

λ
‖x∗‖ ‖x ′ − x‖

= 1

λ
‖x − y‖p−1‖x ′ − x‖.

Consequently,

1

pλ
‖x − y‖p − 1

pλ
‖x ′ − y‖p ≤ (r + γ )p−1

λ
‖x − x ′‖,

then for every y ∈ γBX ,

1

pλ
‖x − y‖p − f (y) ≤ (r + γ )p−1

λ
‖x − x ′‖ +

(
1

pλ
‖x ′ − y‖p − f (y)

)
.

Taking the supremum over all y ∈ γBX and noting by what precedes that

κλ,p f (u) = sup
y∈γBX

(
1

pλ
‖u − y‖p − f (y)

)
for all u ∈ rBX ,

we obtain κλ,p f (x) ≤ κλ,p f (x ′) + (r+γ )p−1

λ
‖x − x ′‖. This finishes the proof. ��

Remark 1 (a) If κλ0,p f (x0) is finite for some λ0 > 0 and x0 ∈ X , then by (6) there is
some real β such that

1

p2p−1λ0
‖y‖p − β ≤ f (y) for all y ∈ X,

so the inequality assumption (10) in the proposition is fulfilled.
In particular, the Klee envelope κλ,1 f is finite-valued and (1/λ)-Lipschitz on X if

and only it is finite at some point in X .
(b) If dom f is bounded and f is bounded from below, then for any real α > 0

there exists some β ∈ R such that (10) is satisfied. Indeed, considering a lower bound
γ of f and putting μ := sup

u∈dom f
‖u‖, we see that
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932 A. Jourani et al.

α‖x‖p + γ − αμp ≤ γ + ψdom f (x) ≤ f (x) for all x ∈ X.

(c) For a nonempty subset S of the normed space (X, ‖ · ‖), the existence of α > 0
and β ∈ R such that α‖x‖p − β ≤ ψS(x) for all x ∈ X amounts to requiring that the
set S is bounded, which in turn is equivalent the property that, for each real α > 0,
there exists some β ∈ R such that (10) holds true with f = ψS . Indeed, under the
minorization assumption (10) for f = ψS with some α > 0 and β ∈ R, for all x ∈ S
we have ‖x‖p ≤ βα−1, hence S is bounded. On the other hand, by (b) the boundedness
of S is equivalent to the fact that, for each real α > 0, there exists β ∈ R such that
α‖x‖p − β ≤ ψS(x) for all x ∈ X . ��

The set-valued mapping Q(·)
λ,p f (·) satisfies a closedness property.

Proposition 2 Let (X, ‖ · ‖) be a normed vector space and f : X −→ R∪ {+∞} be
a proper lower semicontinuous function for which there exist two real numbers α, β

with α > 0 such that (10) is fulfilled. Assume either p = 1 and λ ≥ 1/α or p > 1
and λ > 1/(pα). Then the graph

gph Q(·)
λ,p f (·) := {(ε, x, y) ∈ [0,+∞[×X × X : y ∈ Qε

λ,p f (x)}

in [0,+∞[×X × X of the set-valued mapping (ε, x) �→ Qε
λ,p f (x) defined on

[0,+∞[×X is closed in [0,+∞[×X × X.

Proof Let (εi , xi , yi )i be a sequence of elements of [0,+∞[×X × X converging to
(ε, x, y) with yi ∈ Qεi

λ,p f (xi ). Then for every i ∈ N,

κλ,p f (xi ) − εi ≤ 1

pλ
‖xi − yi‖p − f (yi ),

so from the lower semicontinuity of f and the continuity of κλ,p f (see the previous
proposition) we obtain

κλ,p f (x) − ε ≤ 1

pλ
‖x − y‖p − f (y).

This means that y ∈ Qε
λ,p f (x) as required. ��

The following lemma prepares the next result related to the behavior of Qλ,p f
when both the norm ‖ · ‖ and its dual norm are differentiable.

Lemma 1 Let (X, ‖ · ‖) be a normed space, let gi : X → R ∪ {−∞}, i = 1, . . . , n,
be extended real-valued functions and let ϕ be their supremal convolution, that is,

ϕ(x) = sup{g1(x1) + · · · + gn(xn) : x1 + · · · + xn = x}.

Assume that ϕ(x̄) is finite and attained at (x̄1, . . . , x̄n), that is, ϕ(x̄) = g1(x̄1)+· · ·+
gn(x̄n) with x̄1 + · · · + x̄n = x̄ . Then

co
(
∂Dg1(x̄1) ∪ · · · ∪ ∂Dgn(x̄n)

) ⊂ ∂Dϕ(x̄),
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The NSLUC property and Klee envelope 933

and

co
(
∂F g1(x̄1) ∪ · · · ∪ ∂F gn(x̄n)

) ⊂ ∂Fϕ(x̄),

where co denotes the norm-closure in X∗ of the convex hull.

Proof Fix any x∗ ∈ ∂F g1(x̄1) and consider any real ε > 0. There exists some real
δ > 0 such that 〈x∗, u〉 − ε‖u‖ ≤ g1(x̄1 + u) − g1(x̄1), for all u ∈ δBX . Since
ϕ(x̄) = g1(x̄1) + · · · + gn(x̄n), it follows that

〈x∗, u〉 − ε‖u‖ ≤ ϕ(x̄ + u) − ϕ(x̄) ∀u ∈ δBX ,

thus x∗ ∈ ∂Fϕ(x̄). It results that (repeating the reasoning with i = 2, . . . , n)

∂F g1(x̄1) ∪ · · · ∪ ∂F gn(x̄n) ⊂ ∂Fϕ(x̄),

and the latter entails the required inclusion since the Fréchet subdifferential of a func-
tion at any point of X is known to be convex and norm closed in X∗ (see, e.g., [30,
Definition 1.83 and comments]).

The inclusion concerning the Dini subdifferential is obtained in a similar and easier
way. ��
Remark 2 With the same arguments, the first inclusion also holds with several other
subdifferentials, for example with proximal subdifferential (see, e.g., [37, Definition
9.1.1 (b)]) in place of the Dini subdifferential. ��

Below Lemma 1 is applied to get relations between subdifferentials of the norm in
power p ≥ 1 and the Klee envelope at points where the Klee envelope is attained. The
assertions (b)–(c) involve the Gâteaux derivative Dϕ of a function, see, e.g., [11, p. 2]
for the definition and properties. The case p = 2 was first obtained in [9, Proposition
8].

Proposition 3 Let (X, ‖ · ‖) be a normed vector space and f : X −→ R∪ {+∞} be
a proper function, and let p ∈ [1,+∞[. For any x ∈ X such that κλ,p f (x) is finite,
the following hold:

(a) For every y ∈ Qλ,p f (x), one has

1

λ
∂

(
1

p
‖ · ‖p

)
(x − y) ⊂ ∂κλ,p f (x).

(b) If κλ,p f is Gâteaux differentiable at x and Qλ,p f (x) �= ∅, then for all y ∈
Qλ,p f (x)

〈D
(
κλ,p f

)
(x), x − y〉 = 1

λ
‖x − y‖p.
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934 A. Jourani et al.

(c) If κλ,1 f is Gâteaux differentiable at x and Qλ,1 f (x) �= ∅, then

‖D
(
κλ,1 f

)
(x)‖ = 1/λ.

(d) If p > 1 and both the norm ‖ · ‖ and its dual norm are Gâteaux differentiable off
zero, then at any x ∈ X where κλ,p f is Gâteaux differentiable, the set Qλ,p f (x)

is at most a singleton.

Proof The inclusion in (a) follows directly from the above lemma and (b) is a conse-
quence of (a) and the descriptions (8) and (9).

Concerning (c) with p = 1, the assumption on Qλ,1 f (x) allows us to choose some
y ∈ Qλ,1 f (x). It follows from (9) and the Gâteaux differentiability of κλ,1 f at x that
y �= x . Using this in the equality in (b) and noting that ‖D

(
κλ,1 f

)
(x)‖ ≤ 1/λ because

of the (1/λ)-Lipschitz property of κλ,1 f , see Proposition 1 and Remark 1, we see that
‖D

(
κλ,1 f

)
(x)‖ = 1/λ as required.

Now to justify (d), suppose that both the norm ‖ · ‖ and its dual norm are Gâteaux
differentiable off zero. Then ∂

( 1
p ‖ · ‖p

)
(x) is a singleton for every x ∈ X , say

{Jp(x)} = ∂
( 1

p ‖ · ‖p
)
(x), and the mapping Jp : X → X∗ is one-to-one. Conse-

quently at any x ∈ X where κλ,p f is Gâteaux differentiable, we have λ−1 Jp(x − y) =
D

(
κλ,p f

)
(x)whenever y ∈ Qλ,p f (x). Since Jp is one-to-one, Qλ,p f (x) is at most a

singleton. ��
The result of [20, Theorem 2.9] says that the differentiability of the farthest distance

function at a point x entails the same differentiability of the norm at an appropriate
point. The next proposition extends the result to the function κλ,p f . We refer also to
[29] for some results on differentiability of the farthest distance function.

Proposition 4 Let (X, ‖ · ‖) be a normed space and f : X → R∪ {+∞} be a proper
function with κλ,p f finite at some point. Assume that x ∈ X is a point where κλ,p f is
Gâteaux (resp. Fréchet) differentiable. Then for any y ∈ Qλ,p f (x), the function ‖ ·‖p

is Gâteaux (resp. Fréchet) differentiable at x − y with pλD
(
κλ,p f

)
(x) as derivative

at x − y.

Proof Suppose that κλ,p f is Gâteaux (resp. Fréchet) differentiable at x and denote
ζ ∗ := D

(
κλ,p f

)
(x). Suppose also that Qλ,p f (x) is nonempty. Put q := (1/pλ)‖·‖p.

Fix any y ∈ Qλ,p f (x) and take x∗ ∈ ∂q(x − y). For any real t > 0 and any h ∈ X ,
we have

q(x − y + th) − q(x − y) = (q(x − y + th) − f (y)) − (q(x − y) − f (y))

≤ κλ,p f (x + th) − κλ,p f (x),

hence we see through the inclusion x∗ ∈ ∂q(x − y) that

〈x∗, h〉 ≤ t−1(q(x − y + th) − q(x − y)) ≤ t−1(κλ,p f (x + th) − κλ,p f (x)). (12)

Since the last member tends to 〈ζ ∗, h〉 as t ↓ 0, it ensues that 〈x∗, h〉 ≤ 〈ζ ∗, h〉, for
all h ∈ X , thus x∗ = ζ ∗. Replacing x∗ by ζ ∗ in the first member of (12) yields
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The NSLUC property and Klee envelope 935

0 ≤ t−1(q(x − y + th) − q(x − y) − t〈ζ ∗, h〉)
≤ t−1(κλ,p f (x + th) − κλ,p f (x) − t〈ζ ∗, h〉).

Since the last member tends to zero (resp. tends to zero uniformly with respect to
h ∈ BX ), we conclude that q is Gâteaux (resp. Fréchet) differentiable at x − y with
D

(
κλ,p f

)
(x) as derivative there. ��

Our next aim is to show that the set Dom Qλ,1 is quite large. We then start with
the analysis of the nonemptiness of Qλ,1 f (x), by noting that such a nonemptiness
implies the equalities

κλ,1 f (x) = sup
z∈X,y∗∈SX∗

(λ−1〈y∗, x − z〉 − f (z)) = λ−1〈x∗, x − y〉 − f (y)

for all y ∈ Qλ,1 f (x) and x∗ ∈ ∂‖ · ‖(x − y). Moreover if (10) is fulfilled with
α > λ−1 and the space X is finite dimensional, then the emptiness of Qλ,1 f (x)

implies the inequality

κλ,1 f (x) > sup
z∈X,y∗∈SX∗

(λ−1〈y∗, x − z〉 − f (z)),

whenever f is proper and lower semicontinuous. Indeed, if the equality holds true,
then

κλ,1 f (x) = lim
i→+∞(λ−1‖x − zi‖ − f (zi ))

for some sequence (zi )i in X , then it follows from Proposition 1(c) that the sequence
(zi )i is bounded, thus we may assume that it converges to a certain ȳ. It results that

κλ,1 f (x)= lim
i→+∞(λ−1‖x − zi‖ − f (zi ))=λ−1‖x − ȳ‖ − f (ȳ) ≤ κλ,1 f (x),

so κλ,1 f (x) = λ−1‖x − ȳ‖− f (ȳ), which means that ȳ ∈ Qλ,1 f (x), a contradiction.
This indicates the role of the set

{
x ∈ X : ∃x∗ ∈ ∂κλ,1 f (x), sup

y∈X
(λ−1〈x∗, x − y〉 − f (y)) < κλ,1 f (x)

}

in investigating the set of points for which the attainment set is nonempty. Below it is
shown that this set is not too large, namely it is of first category. Let us also recall that
the Gδ density property of Dom Qλ,2 f was studied in [9, Theorem 5] with p = 2,
in fact the strong attainment on a dense Gδ subset was proved. We consider in the
foregoing theorem the case p = 1. The proof of the theorem as well as that of the
following lemma use the main ideas of [27, Lemma 2.2, Theorem 2.3].
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Lemma 2 Let (X, ‖ · ‖) be a normed space and f : X → R ∪ {+∞} be a proper
function for which there are reals α > 0 and β ∈ R such that

α‖x‖ − β ≤ f (x) for all x ∈ X.

Then for any real λ > 1/α the set
{

x ∈ X : ∃x∗ ∈ ∂κλ,1 f (x), sup
y∈X

(〈x∗, x − y〉 − f (y)
)

< κλ,1 f (x)

}

is a countable union of closed sets with empty interior, so it is a set of first category in
the space X.

Proof For each integer i ∈ N denote

Ai :=
{

x ∈ X : ∃x∗ ∈ ∂κλ,1 f (x), sup
y∈X

(〈x∗, x − y〉 − f (y)) ≤ κλ,1 f (x) − 1

i

}
,

so clearly the set of the lemma coincides with
⋃

i∈N Ai .
Let us first fix i ∈ N and show that Ai is closed. Consider any sequence (xn)n of

elements of Ai converging to some x ∈ X , and for each n ∈ N choose by definition
of Ai some x∗

n ∈ ∂κλ,1 f (xn) satisfying

sup
y∈X

(〈x∗
n , xn − y〉 − f (y)) ≤ κλ,1 f (xn) − 1

i
.

The (1/λ)-Lipschitz property of κλ,1 f ensures that ‖x∗
n‖ ≤ 1/λ, so extracting a subnet

we may suppose that (x∗
n )n converges weakly∗ to some x∗ in X∗. The norm×weak∗

closedness of gph ∂κλ,1 f guarantees that x∗ ∈ ∂κλ,1 f (x). Further, for every y ∈ X ,
since

〈x∗
n , xn − y〉 − f (y) ≤ κλ,1 f (xn) − 1

i

and κλ,1 f is continuous, we also have 〈x∗, x − y〉− f (y) ≤ κλ,1 f (x)−1/ i . It ensues
that x ∈ Ai , justifying the closedness of Ai .

It remains to prove that all Ai have empty interior. Suppose, for some i ∈ N, that
int Ai �= ∅ and take some x̄ ∈ X and r > 0 such that B[x̄, r ] ⊂ Ai . We know by
Proposition 1 that the set Q1

λ,1 f (x̄) is nonempty and bounded, hence we can define

the real γ := sup{‖x̄ − y‖ : y ∈ Q1
λ,1 f (x̄)}. For ε := (

2i(γ + r)
)−1

r , there exists

by definition of κλ,1 f some ȳ ∈ Qε
λ,1 f (x̄) ⊂ Q1

λ,1 f (x̄) ⊂ dom f satisfying

κλ,1 f (x̄) − ε <
1

λ
‖x̄ − ȳ‖ − f (ȳ) ≤ κλ,1 f (x̄). (13)

Define t := r/γ and u := x̄ + t (x̄ − ȳ) ∈ B[x̄, r ], so u ∈ Ai . From the definition of
Ai there is some u∗ ∈ ∂κλ,1 f (u) such that
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The NSLUC property and Klee envelope 937

sup
y∈X

(〈u∗, u − y〉 − f (y)) ≤ κλ,1 f (u) − 1

i
. (14)

On the other hand, by (13) and the equality u − ȳ = (1 + t)(x̄ − ȳ) we also have

κλ,1 f (x̄) − κλ,1 f (u) <
1

λ
‖x̄ − ȳ‖ − f (ȳ) + ε − κλ,1 f (u)

= 1

(1 + t)λ
‖u − ȳ‖ − f (ȳ) + ε − κλ,1 f (u)

≤ 1

1 + t

(
1

λ
‖u − ȳ‖ − f (ȳ)

)
− t

1 + t
f (ȳ) + ε − κλ,1 f (u),

which ensures by the definition of κλ,1 f and by (14)

κλ,1 f (x̄) − κλ,1 f (u) <
1

1 + t
κλ,1 f (u) − t

1 + t
f (ȳ) + ε − κλ,1 f (u)

= −t

1 + t
κλ,1 f (u) − t

1 + t
f (ȳ) + ε

≤ t

1 + t

(
〈u∗, ȳ − u〉 + f (ȳ)

)
− t

1 + t
f (ȳ) + ε − t

i(1 + t)

= t

1 + t
〈u∗, ȳ − u〉 + ε − r

i(γ + r)
,

hence taking the equality ȳ − u = 1+t
t (x̄ − u) into account we obtain

κλ,1 f (x̄) − κλ,1 f (u) < 〈u∗, x̄ − u〉 + ε − r

i(γ + r)
.

Since ε < (i(γ + r))−1r , we deduce that

κλ,1 f (x̄) − κλ,1 f (u) < 〈u∗, x̄ − u〉,

which contradicts the inclusion u∗ ∈ ∂κλ,1 f (u), completing the proof. ��
Theorem 1 Let (X, ‖ · ‖) be a Banach space and f : X → R ∪ {+∞} be a proper
function for which there are reals α > 0 and β ∈ R such that

α‖x‖ − β ≤ f (x) for all x ∈ X,

and let λ > 1/α. Assume that, for each x∗ ∈ λ−1
BX∗ , the infimum of the function

f + 〈x∗, ·〉 is attained. Then the set Dom Qλ,1 f contains a dense Gδ subset of X.

Proof Denote by M the set of first category in the statement of Lemma 2 above. Fix
any x ∈ X\M and by Lemma 2 choose some x∗ ∈ ∂κλ,1 f (x) such that

sup
y∈X

(〈x∗, x − y〉 − f (y)) ≥ κλ,1 f (x).
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Since ∂κλ,1 f (x) ⊂ λ−1
BX∗ [according to the (1/λ)-Lipschitz property of κλ,1 f ], we

can take thanks to the attainement assumption some ȳ ∈ X satisfying

〈x∗, ȳ〉 + f (ȳ) = inf
y∈X

(〈x∗, y〉 + f (y)),

or equivalently

〈x∗, x − ȳ〉 − f (ȳ) = sup
y∈Y

(〈x∗, x − y〉 − f (y)).

It results that

κλ,1 f (x) ≤ 〈x∗, x − ȳ〉 − f (ȳ) ≤ 1

λ
‖x − ȳ‖ − f (ȳ) ≤ κλ,1 f (x),

and this justifies the inclusion ȳ ∈ Qλ,1 f (x), concluding the proof of the theorem. ��
Let us notice that, assuming that the effective domain of f is a compact set and f is

lower semicontinuous, we guarantee the assumption that the infimum of the function
f + 〈x∗, ·〉 is attained for every x∗ ∈ λ−1

BX∗ . It is also worth observing that if f is
constant on its effective domain dom f which is additionally assumed to be weakly
closed and bounded, then (by James theorem, see [24]) the attainment assumption in
Theorem 1 means that dom f is weakly compact. In particular, if the effective domain
of f is BX , then X has to be a reflexive Banach space, whenever the attainement
assumption in Theorem 1 is satisfied.

The next corollary is a direct consequence of Theorem 1. Before stating the corol-
lary, let us recall that, given a topology θ on X , a function ϕ : X → R ∪ {+∞} is
θ -inf-compact provided that all lower sections {x : ϕ(x) ≤ r} are θ -compact, for all
r ∈ R.

Corollary 1 Let (X, ‖ · ‖) be a Banach space and f : X → R ∪ {+∞} be a proper
function for which there are reals α > 0 and β ∈ R such that

α‖x‖ − β ≤ f (x) for all x ∈ X,

and let λ > 1/α. Assume, for some topology θ on X, that the function f + 〈x∗, ·〉 is
θ -inf-compact for all x∗ ∈ λ−1

BX∗ . Then the set Dom Qλ,1 f contains a dense Gδ

subset of X.

The second corollary assumes the weak inf-compactness of f .

Corollary 2 Let (X, ‖ · ‖) be a Banach space and f : X → R ∪ {+∞} be a proper
function for which there are reals α > 0 and β ∈ R such that

α‖x‖ − β ≤ f (x) for all x ∈ X,

and let λ > 1/α. Assume that f is weakly inf-compact. Then the set Dom Qλ,1 f
contains a dense Gδ subset of X.
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Proof Fix any x∗ ∈ λ−1
BX∗ and note that

f (x) + 〈x∗, x〉 ≥ (α − λ−1)‖x‖ − β.

This entails thatμ := infX ( f +〈x∗, ·〉) is finite and coincides with infρBX ( f +〈x∗, ·〉)
for some realρ > 0. Putting r := 1+μ andC := {x ∈ X : f (x)+〈x∗, x〉 ≤ r}∩ρBX ,
we see that μ = infC ( f + 〈x∗, ·〉). Further, for any x ∈ C we have

f (x) ≤ r − 〈x∗, x〉 ≤ r + ρ‖x∗‖,

hence C ⊂ {x ∈ X : f (x) ≤ r + ρ‖x∗‖}. The latter set being weakly compact (by
the weak inf-compactness of f ), the weakly closed subset C is weakly compact too.
Consequently, the infimum μ is attained on the set C according to the weak lower
semicontinuity of f + 〈x∗, ·〉. The corollary then follows from Theorem 1. ��

Taking for f the indicator function of a nonempty weakly compact subset of X in
the latter corollary yields the following result:

Corollary 3 (Theorem 2.3 in [27]) Let (X, ‖ · ‖) be a Banach space and S be a
nonempty weakly compact subset of X. Then Dom QS contains a dense Gδ subset of
X.

The next corollary makes use of the Mackey topology on the topological dual
space X∗; we refer to [36, IV Duality, 3. Locally Convex Topologies Consistent with
a Given Duality. TheMackey-Arens Theorem] for the definition and properties of that
topology.

Corollary 4 Let (X, ‖ · ‖) be a Banach space and f : X → R ∪ {+∞} be a proper
lower semicontinuous convex function for which there are reals α > 0 and β ∈ R

such that

α‖x‖ − β ≤ f (x) for all x ∈ X,

and let λ > 1/α. Assume that at every x∗ ∈ λ−1
BX∗ the Legendre-Fenchel conjugate

f ∗ is finite and continuous with respect to the Mackey topology τ(X∗, X). Then the
set Dom Qλ,1 f contains a dense Gδ set of X.

Proof The function f being proper, lower semicontinuous and convex, the continuity
of f ∗ at an element x∗ ∈ dom f ∗ with respect to the Mackey topology τ(X∗, X) is
known to entail that f − 〈x∗, ·〉 is weakly inf-compact (see [33, Corollary 8.2]). The
assertion of the corollary then follows from Corollary 1. ��
Remark 3 For the proper lower semicontinuous convex function f : X → R∪{+∞},
we know that there always exist reals α, β satisfying the inequality α‖x‖−β ≤ f (x)

for every x ∈ X . The assumption of the latter corollary requires the positiveness of
such a real α. ��
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Since κλ,1 f is Lipschitz with 1/λ as Lipschitz constant, we know that Rge(∂κλ,1 f )

⊂ λ−1
BX∗ . Adapting the proofs of Lemma 4.1 and Theorem 4.2 in [39], we can show

more.

Lemma 3 Let (X, ‖ · ‖) be a normed space and f : X → R ∪ {+∞} be a proper
function with κλ,1 f finite at some point. Let also (xi )i be a sequence of elements of
X with lim

i→+∞ ‖xi‖ = +∞. Then for any x ∈ dom f and any sequence (x∗
i )i with

x∗
i ∈ ∂κλ,1 f (xi ), one has

lim
i→+∞

〈
x∗

i ,
xi − x

‖xi − x‖
〉

= lim
i→+∞ ‖x∗

i ‖ = 1

λ
.

Proof Since the function κλ,1 f is assumed to be finite at some point, we know that
it is finite on X and Lipschitz with 1/λ as a Lipschitz constant. Fix any x ∈ dom f .
Observe that on the one hand by definition of κλ,1 f (xi )

1

λ
‖xi − x‖ − f (x) − κλ,1 f (x) ≤ κλ,1 f (xi ) − κλ,1 f (x),

and on the other hand by the inclusion x∗
i ∈ ∂κλ,1 f (xi )

〈x∗
i , x − xi 〉 ≤ κλ,1 f (x) − κλ,1 f (xi ).

It follows that, for large i ∈ N,

1

λ
− f (x) + κλ,1 f (x)

‖xi − x‖ ≤ κλ,1 f (xi ) − κλ,1 f (x)

‖xi − x‖ ≤
〈
x∗

i ,
xi − x

‖xi − x‖
〉

≤ ‖x∗
i ‖ ≤ 1

λ
,

hence passing to the limit as i → +∞ (keeping inmind that‖xi‖ → +∞ as i → +∞)
gives

lim
i→+∞

〈
x∗

i ,
xi − x

‖xi − x‖
〉

= lim
i→+∞ ‖x∗

i ‖ = 1

λ
.

��
Proposition 5 Let (X, ‖ · ‖) be a reflexive Banach space and f : X → R∪ {+∞} be
a proper function with κλ,p f finite-valued.

(a) If p > 1, then Rge(∂κλ,p f ) = X∗.
(b) If the norm‖·‖ is smooth and strictly convex (or equivalently both norms‖·‖and its

dual norm are smooth, that is, Gâteaux differentiable off zero), then Rge(∂κλ,1 f )

is convex and

B(0, 1/λ) ⊂ Rge(∂κλ,1) ⊂ B[0, 1/λ] = cl(Rge(∂κλ,1)).
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Proof (a) The assertion (a) follows from a classical result. We sketch the arguments.
Fixing any x∗ ∈ X∗, since κλ,p f (x) − 〈x∗, x〉 → +∞ as ‖x‖ → +∞ [see (6)],
the weakly lower semicontinuous function κλ,p f (·) − 〈x∗, ·〉 has a global minimizer
x̄ ∈ X , hence the Moreau-Rockafellar sum rule yields x∗ ∈ ∂κλ,p f (x̄).

(b) The Gâteaux differentiability assumption on ‖ · ‖2 entails that (the duality
mapping) J := ∂( 12‖ · ‖2) is single-valued and norm-weak∗ continuous. Let x̄ ∈ X
be a point where f is finite. Fix any x∗ ∈ X∗ with ‖x∗‖ = 1/λ. Choose some x ∈ SX

with 〈x∗, x〉 = 1/λ. By (8) we have x∗ = λ−1 J (x). For each integer i ∈ N, choosing
x∗

i ∈ ∂κλ,1 f (i x + x̄) the above lemma ensures that

lim
i

〈x∗
i , x〉 = lim

i
‖x∗

i ‖ = 1/λ.

Consider a subsequence (that we do not relabel) of (x∗
i )i converging weakly∗ to some

z∗, it is clear that ‖z∗‖ ≤ 1/λ and 〈z∗, x〉 = 1/λ, so ‖z∗‖ = 1/λ. It results that
z∗ = λ−1 J (x), hence z∗ = x∗. On the other hand, denoting by ϕ the Legendre-
Fenchel conjugate of κλ,1 f , by (5) one has cl(Rge(∂κλ,1 f )) = cl(dom ϕ), thus
cl(Rge(∂κλ,1 f )) is a weakly closed convex set in X∗. Since x∗

i ∈ Rge(∂κλ,1 f ), it
results that x∗ ∈ cl(Rge(∂κλ,1 f )). Consequently, λ−1

SX∗ is included in the closed
convex set cl(Rge(∂κλ,1 f )), which entails B[0, 1/λ] ⊂ cl(Rge(∂κλ,1 f )), and this
inclusion is an equality since the converse follows from the Lipschitz property of
κλ,1 f with constant 1/λ.

Now let us show that B(0, 1/λ) ⊂ Rge(∂κλ,1 f ). Fix any x∗ ∈ B(0, 1/λ). Since
B[0, 1/λ] = cl(Rge(∂κλ,1 f )) (as seen above), we can take a sequence (xi , x∗

i )i of
elements of gph ∂κλ,1 f such that lim

i→+∞ ‖x∗
i − x∗‖ = 0. The above lemma ensures

that the sequence (xi )i is bounded since ‖x∗‖ < 1
λ
in this case, hence a subsequence

converges weakly to some x . By the weak-norm closedness of the graph of the subd-
ifferential of the continuous convex function κλ,1 f , we obtain x∗ ∈ ∂κλ,1 f (x), which
justifies the desired inclusion B(0, 1/λ) ⊂ Rge(∂κλ,1 f ).

Finally, the strict convexity of ‖ · ‖ and the inclusions

B(0, 1/λ) ⊂ Rge(∂κλ,1 f ) ⊂ B[0, 1/λ]

guarantee the convexity of Rge(∂κλ,1 f ). ��
The statement (a) is in fact a simple consequence of [41, Proposition 3.5], where

an equivalent condition to the reflexivity of the space was given.
In view of Proposition 3(c) the Gâteaux differentiablity of κλ,1 f at x implies that

D(κλ,1 f )(x) ∈ λ−1
SX∗ whenever Qλ,1 f (x) �= ∅. Thus it is natural to investigate the

set

Cλ f := {x ∈ X : ∂κλ,1 f (x) ⊂ λ−1
SX∗}.

It follows from Proposition 5(b) that there exists at least one point from the domain
of κλ,1 f which is not in Cλ f . As a consequence, the Klee envelope κλ,1 f is not a
smooth function. In other words, there must exist a point in its domain where it is not
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942 A. Jourani et al.

Gâteaux differentiable, whenever X is a reflexive Banach space with both norm ‖ · ‖
and its dual norm being smooth.

Additional properties of theKlee envelope can be obtained in the casewhen (X, ‖·‖)
is a Hilbert space and p = 2. Indeed, writing in that case

1

2λ
‖x − y‖2 − f (y) = 1

2λ
‖x‖2 +

(
〈−λ−1x, y〉 − f (y) + 1

2λ
‖y‖2

)
,

and taking the supremum over y ∈ X gives

κλ,2 f (x) = 1

2λ
‖x‖2 +

(
f − 1

2λ
‖ · ‖2

)∗
(−λ−1x).

Further, given (−λx, y) ∈ gph (Qλ,2 f ), we have

κλ,2 f (−λx) − 1

2λ
‖ − λx‖2 = 1

2λ
‖ − λx − y‖2 − f (y) − 1

2λ
‖ − λx‖2

= 1

2λ
‖y‖2 + 〈y, x〉 − f (y).

Putting ϕ(u) := ( f − 1
2λ‖ · ‖2)∗(u) for all u ∈ X , we deduce on the one hand that

κλ,2 f (−λx) as well as ϕ(x) are finite, and on the other hand that

ϕ(x) + 〈y, u − x〉 = 〈u, y〉 + 1

2λ
‖y‖2 − f (y) ≤ ϕ(u), for all u ∈ X.

This says that y ∈ ∂ϕ(x) = ∂( f − 1
2λ‖ · ‖2)∗(x).

We have then proved the following:

Proposition 6 Assume that (X, ‖ · ‖) is a Hilbert space and f : X → R ∪ {+∞} is
a proper function. Then for all x ∈ X

κλ,2 f (x) = 1

2λ
‖x‖2 +

(
f − 1

2λ
‖ · ‖2

)∗
(−λ−1x)

and

Qλ,2 f (−λx) ⊂ ∂

(
f − 1

2λ
‖ · ‖2

)∗
(x).

Corollary 5 Assume that (X, ‖ · ‖) is a Hilbert space and f : X → R ∪ {+∞} is a
proper function with κλ,2 f finite at some point in X. Then the inverse subdifferential
(∂(κλ,2 f ))−1 is single-valued and λ-Lipschitz on X.

Proof By the first equality in Proposition 6 the lower semicontinuous convex function
g, defined by

123
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g(x) :=
(

f − 1

2λ
‖ · ‖2

)∗
(−λ−1x) for all x ∈ X,

is proper, hence the resolvent mapping J := (I dX + λ∂g)−1 is single-valued and 1-
Lipschitz on X (see, e.g., [31, Propositions 5.b and 6.a] or [5, Corollary 23.10]). This
means by the first equality in Proposition 6 again that (∂(λκλ,2 f ))−1 is single-valued
and 1-Lipschitz on X or equivalently (∂(κλ,2 f ))−1 is single-valued and λ-Lipschitz
on X , as easily seen. ��

Finishing this Section we would like to emphasize, that there are other papers
concerning subdifferential or differential properties of the Klee envelope. For exam-
ple Proposition 4.4 and Theorem 4.7 in [38] provide such some results in the finite
dimensional setting. In Proposition 3 and Theorem 7 of [9], these properties were
investigated under the strong attainment assumption with p = 2.

4 Klee envelope of the lower semicontinuous convex hull function

For a set S of the normed space (X, ‖·‖), according to theMazur Intersection Property,
we define the Mazur hull Maz S of S as the intersection of all closed balls containing
S, so a closed set fulfills the Mazur intersection property if and only if it coincides
with its Mazur hull. Clearly, from the very definition

Maz S =
⋂

x∈X

B[x,�S(x)],

so �Maz S(x) ≤ �S(x) for any x ∈ X . This combined with the inclusions S ⊂ co S ⊂
co S ⊂ Maz S entails that for any bounded set S

�S(x) = �co S(x) = �co S(x) = �Maz S(x), for all x ∈ X. (15)

Given a function f : X → R∪{+∞}, its convex hull co f : X → R∪{−∞,+∞}
is defined by

co f (x) = inf{r ∈ R : (x, r) ∈ co (epi f )},

where epi f denotes the epigraph of f , that is,

epi f = {(y, r) ∈ X × R : f (y) ≤ r}.

Clearly, it is the greatest convex function majorized by f and

co f (x) = inf

{
m∑

i=1

ti f (yi ) : yi ∈ X, ti > 0,
m∑

i=1

ti yi = x,

m∑

i=1

ti = 1

}
.
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944 A. Jourani et al.

Similarly, the lower semicontinuous convex hull (or closed convex hull) co f : X →
R ∪ {−∞,+∞} of f is defined by

co f (x) = inf{r ∈ R : (x, r) ∈ co (epi f )}.

It follows from the construction that co f is convex and lower semicontinuous and it is
the greatest lower semicontinuous convex function less or equal to f . It also satisfies
the following properties

co [epi f ] = epi (co f ), co [dom f ] ⊂ dom co f.

This allows us to express this closed convex hull function in the followingmanner in the
case where f is lower semicontinuous: For all x ∈ X there exist sequences of elements

(mn)n in N, (tn
1 )n, . . . , (tn

mn
)n in ]0, 1], with

∑mn

i=1
tn
i = 1, and (yn

1 )n, . . . , (yn
mn

)n in
dom f such that

lim
n→+∞

mn∑

i=1

tn
i yn

i = x, co f (x) = lim
n→+∞

mn∑

i=1

tn
i f (yn

i ).

The foregoing proposition extends the two first equalities in (15) to Klee envelopes
of functions.

Proposition 7 Let (X, ‖ · ‖) be a normed space and let f : X → R∪ {−∞,+∞} be
an extended real-valued function. For all x ∈ X,

κλ,p f (x) = κλ,p(co f )(x) = κλ,p(co f )(x). (16)

Proof Since co f ≤ co f ≤ f , we see that κλ,p f ≤ κλ,p(co f ) ≤ κλ,p(co f ).
Now fix x ∈ X and take any y ∈ X . Consider any convex combination

∑m
i=1 ti yi =

y, that is, ti > 0 and
∑m

i=1 ti = 1. For every i = 1, . . . , m, we have

1

pλ
‖x − yi‖p − f (yi ) ≤ κλ,p f (x),

hence

m∑

i=1

ti
1

pλ
‖x − yi‖p −

m∑

i=1

ti f (yi ) ≤ κλ,p f (x),

which combined with the convexity of ‖x − ·‖p yields

1

pλ
‖x − y‖p −

m∑

i=1

ti f (yi ) ≤ κλ,p f (x).
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The NSLUC property and Klee envelope 945

Taking the supremum of both members over all convex combinations of y, we obtain

1

pλ
‖x − y‖p − inf

{
m∑

i=1

ti f (yi ) :
m∑

i=1

ti yi = y, ti > 0,
m∑

i=1

ti = 1

}
≤ κλ,p f (x),

in other words 1
pλ

‖x − y‖p − co f (y) ≤ κλ,p f (x).
For every u ∈ X , taking the limit superior of both members of the latter inequality

as y → u gives

1

pλ
‖x − u‖p − co f (u) ≤ κλ,p f (x),

hence taking now the supremum over all u ∈ X guarantees that κλ,p
(
co f

)
(x) ≤

κλ,p f (x). This and what precedes justifies the desired equalities in (16). ��

5 The NSLUC property

We begin this section by defining a class of closed sets which will be involved in the
next section for the study of relationship between the attainment sets of κλ,p f and
κλ,p

(
co f

)
.

Definition 1 Let S be a subset of the normed space (X, ‖ · ‖). We say that S has
norm subdifferential local uniform convexity property, NSLUC in short, if for every
bounded subset S′ ⊂ S with 0 /∈ cl‖·‖ S′ and every u ∈ SX for which there is a
continuous linear functional u∗ ∈ ∂‖ · ‖(u) satisfying

inf
s′∈S′ ‖s′ − 〈u∗, s′〉u‖ > 0, (17)

one can find a real β > 0 such that

∀s′ ∈ S′, ‖s′‖ ≥ |〈u∗, s′〉| + β‖s′ − 〈u∗, s′〉u‖. (18)

Let us point out that if we omit the restriction that S′ must be bounded, then even
in Hilbert spaces (or simply in the Euclidean space R2), we cannot ensure that (18)
holds true. As an example, in a Hilbert space H endowed with the inner product (·|·)
let us take the subset S′ = {v + nu : n ≥ 0}, where ‖u‖ = ‖v‖ = 1 and (u|v) = 0.
Then, u∗ := (u|·) ∈ ∂‖ · ‖(u) and inf

s′∈S′ d(s′, span u) = 1, thus (17) is satisfied. So, if

there exists β > 0 for which relation (18) is fulfilled, otherwise stated, for all n ∈ N,
β + n ≤ ‖v + nu‖ or equivalently β2 + 2βn + n2 ≤ n2 + 1, that is, β2 + 2βn ≤ 1,
then we arrive at a contradiction.

Below we provide another characterization of the NSLUC property by means of
distances from the kernel of the functional u∗ ∈ ∂‖ · ‖(u) and the space generated
by u, whenever u ∈ SX . For this reason, fix any u ∈ SX and u∗ ∈ ∂‖ · ‖(u). Since
〈u∗, u〉 = 1 �= 0, we know that the space X is the algebraic (even topological) direct
sum of the vector spaces ker u∗ and span u, that is,
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946 A. Jourani et al.

X = ker u∗ ⊕ span u.

Further, for every x ∈ X , noticing by the well-known distance formula from a closed
hyperplane (see, e.g., [17, Exercice 2.12, p. 71]) that

d(x, ker u∗) = |〈u∗, x〉|
‖u∗‖ = |〈u∗, x〉|,

we see that p1(x) := x − 〈u∗, x〉u is a nearest point (with respect to ‖ · ‖) of x in
ker u∗. Putting p2(x) := 〈u∗, x〉u ∈ span u, it is known and obvious that p2 is the
projector onto span u, that is, x = p1(x) + p2(x) for all x ∈ X .

Let S′ ⊂ S be a bounded subset, with 0 /∈ cl‖·‖ S′ such that S′ keeps the space
span u (uniformly) far, that is,

inf
s′∈S′ d(s′, span u) > 0, (19)

then assuming NSLUC property, there exists β > 0, such that

∀s′ ∈ S′, ‖s′‖ ≥ ‖s′ − p1(s
′)‖ + β‖s′ − p2(s

′)‖

or equivalently (for the proof see Proposition 8 below)

∀s′ ∈ S′, ‖s′‖ ≥ d(s′, ker u∗) + γ d(s′, span u), (20)

for some γ > 0. When (X, ‖ · ‖) is a Hilbert space and S′ keeps the set span u
(uniformly) far, such a real γ can be precised. Let such a bounded subset S′ of a
Hilbert space (X, ‖·‖) be given. Put M := sup

s′∈S′
‖s′‖ and r := inf

s′∈S′ d(s′, span u). Note

that, for all s′ ∈ S′,

‖s′‖2 = ‖s′ − p1(s
′)‖2 + ‖p1(s

′)‖2
= d(s′, ker u∗)2 + ‖s′ − 〈u∗, s′〉u‖2 ≥ d(s′, ker u∗)2 + d(s′, span u)2.

So, to ensure the desired inequality it suffices to choose γ so that for all s′ ∈ S′

d(s′, ker u∗)2 + 2γ d(s′, ker u∗)d(s′, span u) + γ 2d(s′, span u)2

≤ d(s′, ker u∗)2 + d(s′, span u)2,

and (by definitions of M and r ) this holds true if in particular

2γ M2+γ 2M2≤r2 ⇔ M2(γ 2 + 2γ + 1) ≤ M2 + r2 ⇔ M2(γ + 1)2 ≤ M2 + r2,

which in turn is satisfied in particular for γ := −M+√
M2+r2

M .
In fact, as it will be established hereafter, in several normed vector spaces the impli-

cation (19) ⇒ (20) is satisfied. This can be easily seen whenever the characterization
of the NSLUC property given below is used.
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The NSLUC property and Klee envelope 947

Proposition 8 Let S be a subset in the normed space (X, ‖ · ‖) and S′ ⊂ S with
0 /∈ cl‖·‖ S′ be a bounded subset. Then for every u ∈ SX and u∗ ∈ ∂‖ · ‖(u) relation
(17) holds if and only if (19) holds. Moreover, the following assertions are equivalent:

1. S has NSLUC property,
2. For every bounded subset S′ ⊂ S with 0 /∈ cl‖·‖ S′ and every u ∈ SX satisfying

relation (19) and every continuous linear functional u∗ ∈ ∂‖ · ‖(u) one can find a
real γ > 0 such that relation (20) holds true.

Proof We start our proof by establishing the following equivalence: relation (19) is
equivalent to relation (17) for every u∗ ∈ ∂‖ · ‖(u). Since for every u∗ ∈ ∂‖ · ‖(u),
d(s′, span u) ≤ ‖s′ − 〈u∗, s′〉u‖, then the implication (19) ⇒ (17) is trivial. Now,
assume that relation (17) holds for every u∗ ∈ ∂‖ · ‖(u) and suppose that relation
(19) does not hold. Then there exists a bounded sequence (si )i of elements of S′ such
that lim

i→+∞ d(si , span u) = 0. Since the space span u is finite dimensional, extracting

subsequence, we may assume that lim
i→+∞ si = λu and hence lim

i→+∞〈u∗, si 〉 = λ and

lim
i→+∞ ‖si − 〈u∗, si 〉u‖ = 0, which contradicts relation (17).

The implication (1) ⇒ (2) is easy to observe, because of the previous part of the
proof and for all s ∈ X , d(s, ker u∗) = |〈u∗, s〉| and d(s, span u) ≤ ‖s − 〈u∗, s〉u‖.

Now, we prove the implication (2) ⇒ (1). Fix any bounded set S′ ⊂ S and u ∈ SX

for which there is u∗ ∈ ∂‖ · ‖(u) fulfilling (17) and for each i ∈ N there exists si ∈ S′
such that

‖si‖ < |〈u∗, si 〉| + 1

i
‖si − 〈u∗, si 〉u‖. (21)

By (2), there exists γ > 0 depending only on S′ [and not on (si )i ] such that

‖si‖ ≥ d(si , ker u∗) + γ d(si , span u),

and hence, using the equality d(·, ker u∗) = |〈u∗, ·〉|, we see that relation (21) ensures
that

γ d(si , span u) <
1

i
‖si − 〈u∗, si 〉u‖.

Since the sequence (si )i is bounded, we obtain that lim
i→+∞ d(si , span u) = 0, which

contradicts relation (19). ��
Remark 4 Let S be a subset of the normed space (X, ‖·‖) having theNSLUCproperty.
Let (u, u∗) ∈ gph ∂‖ · ‖ with u ∈ SX and let α > 0. If (si )i is a sequence of elements
of S, then the following implication

lim
i→+∞ ‖si‖ = lim

i→+∞〈u∗, si 〉 = α �⇒ lim
i→+∞ ‖si − αu‖ = 0

holds true. ��

123



948 A. Jourani et al.

Let us also observe that, if X has the NSLUC property, then any subset S of X has
the NSLUC property too. Below it is proved that if the unit sphere has the NSLUC
property, then the whole set X has the property too.

Remark 5 The sphere SX of the normed space (X, ‖ · ‖) has the NSLUC property if
and only if the whole set X has the NSLUC property.

Proof Suppose that SX has the NSLUC property. Let us fix a bounded set S′ ⊂ X
with 0 /∈ cl‖·‖ S′ and (u, u∗) ∈ gph ∂‖ · ‖ such that

inf
s′∈S′ ‖s′ − 〈u∗, s′〉u‖ > 0. (22)

Put

A := {‖s′‖−1s′ : s′ ∈ S′}

and notice that A ⊂ SX . Since

�S′(0) inf
a∈A

‖a − 〈u∗, a〉u‖ ≥ inf
s′∈S′ ‖s′ − 〈u∗, s′〉u‖,

it follows from (22) and the NSLUC property for SX that there is β > 0 such that

∀a ∈ A, ‖a‖ ≥ |〈u∗, a〉| + β‖a − 〈u∗, a〉u‖. (23)

It is a simple consequence of (23) that

∀s′ ∈ S′, ‖s′‖ ≥ |〈u∗, s′〉| + β‖s′ − 〈u∗, s′〉u‖,

which gives the NSLUC property of the whole set X .
The converse implication is a direct consequence of the observation preceding the

remark. ��
In the following proposition, we shall show that if a subset S of X has the NSLUC

property, then the norm of the space is strictly convex on S and the set S has the
Kadec-Klee property with respect to the norm. Let us recall that the norm ‖ · ‖ is
strictly convex on a subset S of X if the following implication holds true:

x, y ∈ S, ‖x + y‖ = ‖x‖ + ‖y‖, x �= 0, y �= 0 ⇒ x = ‖x‖
‖y‖ y. (24)

If (24) holds true for S = SX , then one just says that the norm is strictly convex or the
space (X, ‖ · ‖) is stricly convex.

We say that a set S ⊂ X has Kadec-Klee property with respect to the norm ‖ · ‖
whenever any sequence (xi )i of elements of S converging weakly to x ∈ X along
with lim

i→+∞ ‖xi‖ = ‖x‖ converges strongly to x (that is, ‖xi − x‖ → 0 as i → +∞).

So, the norm ‖ · ‖ has the Kadec-Klee property if and only if the whole set X has the
Kadec-Klee property with respect to ‖ · ‖.
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The NSLUC property and Klee envelope 949

Proposition 9 Let S be a set in the normed space (X, ‖·‖) having the NSLUC property.
Then the norm ‖ · ‖ is strictly convex on S and S has the Kadec-Klee property with
respect to ‖ · ‖.

Proof Strict convexity: Let x, y ∈ S, with ‖x + y‖ = ‖x‖ + ‖y‖, x �= 0 and y �= 0.
We shall show that x = λy, where λ := ‖x‖

‖y‖ . Suppose that

‖x − λy‖ > 0. (25)

Put S′ = {x, y} and u = x+y
‖x‖+‖y‖ . Then ‖u‖ = 1. We claim that, for all u∗ ∈ ∂‖ · ‖(u)

‖y − 〈u∗, y〉u‖ > 0, and ‖x − 〈u∗, x〉u‖ > 0.

Indeed, if y = 〈u∗, y〉u, then |〈u∗, y〉| = ‖y‖. If 〈u∗, y〉 = ‖y‖, then y = λ−1x ,
and this contradicts relation (25). If 〈u∗, y〉 = −‖y‖, then y = − ‖y‖

‖x‖+2‖y‖ x , and
hence y = 0, and this contradicts y �= 0 and hence the claim is justified. Then, by the
NSLUC property of S, there exists β > 0 such that

‖x‖ ≥ |〈u∗, x〉| + β‖x − 〈u∗, x〉u‖, and ‖y‖ ≥ |〈u∗, y〉| + β‖y − 〈u∗, y〉u‖,

and adding these two inequalities gives

‖x‖ + ‖y‖ ≥ |〈u∗, x + y〉| + β(‖x − 〈u∗, x〉u‖ + ‖y − 〈u∗, y〉u‖).

Since ‖x‖ + ‖y‖ = ‖x + y‖ and 〈u∗, x + y〉 = ‖x + y‖, it ensues that

‖x + y‖ ≥ ‖x + y‖ + β(‖x − 〈u∗, x〉u‖ + ‖y − 〈u∗, y〉u‖),

which contradicts the inequality ‖x − 〈u∗, x〉u‖ + ‖y − 〈u∗, y〉u‖ > 0.
Kadec-Klee property: Let (xi )i be a sequence of elements of S and x ∈ X be such

that (xi )i converges weakly to x and lim
i→+∞ ‖xi‖ = ‖x‖. We may assume that x �= 0,

otherwise we are done. Put α := ‖x‖, u := α−1x and take u∗ ∈ ∂‖ · ‖(u). It follows
from Remark 4 that lim

i→+∞ ‖xi − x‖ = 0. ��

Now we give examples of sets satisfying the NSLUC property. Let us recall first
that the norm ‖ · ‖ of X is locally uniformly rotund (LUR), or simply (X, ‖ · ‖) is LUR
(see, e.g., [11]), if the following condition holds:

lim
i→+∞ ‖xi‖ = 1, lim

i→+∞ ‖xi + x‖ = 2 �⇒ lim
i→+∞ ‖xi − x‖ = 0.

Proposition 10 If the normed space (X, ‖·‖) is LUR, then X has the NSLUC property.

Proof Fix any bounded set S′ ⊂ X with 0 /∈ cl‖·‖S′ and any u ∈ SX for which there
is u∗ ∈ ∂‖ · ‖(u) fulfilling (17). Suppose that there is no real β > 0 satisfying relation
(18). Then for each i ∈ N there exists si ∈ S′ such that
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‖si‖ < |〈u∗, si 〉| + 1

i
‖si − 〈u∗, si 〉u‖. (26)

Further by (17), for δ := infs′∈S′ ‖s′ − 〈u∗, s′〉u‖ > 0, we have

‖si − 〈u∗, si 〉u‖ ≥ δ, for all i ∈ N. (27)

As S′ is bounded, the sequence (si )i is bounded too and hence

lim
i→+∞

1

i
‖si − 〈u∗, si 〉u‖ = 0.

Note that, because of (26) and the relation 0 /∈ cl‖·‖S′, each convergent subsequence
(which exists because of the boundedness of S′) of the sequence (〈u∗, si 〉)i has a
nonzero limit. Put αi = 〈u∗, si 〉 for all i ∈ N. We may suppose that

αi �= 0, ∀i and lim
i→+∞ αi = α �= 0.

Using (26), we get

lim
i→+∞ ‖α−1

i si‖ = 1 and 〈u∗, α−1
i si 〉 = 1, for all i ∈ N. (28)

Now, note that

2 = ‖u‖ + 〈u∗, α−1
i si 〉 = 〈u∗, u + α−1

i si 〉 ≤ ‖u + α−1
i si‖ ≤ ‖u‖ + ‖α−1

i si‖ (29)

and hence lim
i→+∞ ‖u +α−1

i si‖ = 2. So the LUR property of X implies that lim
i→+∞ ‖u −

α−1
i si‖ = 0. Because of (17), the last equality contradicts the following inequality

‖α−1
i si − u‖ ≥ 1

|αi | inf
s′∈S

‖s′ − 〈u∗, s′〉u‖.

��
For any fixed integer k ≥ 2, a normed space (X, ‖ · ‖) is called fully k-convex (see,

e.g., [18] and [19]), if every sequence (xn)n of elements of X satisfying lim
n→+∞ ‖xn‖ =

1, and
1

k
‖
∑k

i=1
xνi ‖ ≥ 1 for any k indices ν1 ≤ · · · ≤ νk is a Cauchy sequence. Fan

and Glicksberg proved that (X, ‖ · ‖) is fully k-convex if and only if every sequence
(xn)n of elements of X satisfying

lim
ν1,··· ,νk→∞

1

k

∥∥∥∥∥

k∑

i=1

xνi

∥∥∥∥∥ = 1,
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is a Cauchy sequence. It is also shown in [19], that for any integer k ≥ 2, every
fully k-convex normed space is strictly convex and has the Kadec-Klee property.
Further, Polak and Sims exhibited in [35] an example of a Banach space which is fully
2−convex but not locally uniformly rotund.

In the following proposition, we shall show that all subsets of a fully k-convex
Banach space have the NSLUC property. This allows us to say that there is no equiv-
alence between the LUR property of a Banach space and the NSLUC property of the
space.

Proposition 11 If (X, ‖ · ‖) is a fully k-convex Banach space, for some integer k ≥ 2,
then X has the NSLUC property.

Proof Fix any bounded subset S′ ⊂ X with 0 /∈ cl‖·‖S′ and any u ∈ SX for which
there is u∗ ∈ ∂‖ · ‖(u) fulfilling (17). We repeat the proof of Proposition 10, to get
the existence of δ > 0 and a sequence (si )i of elements of the bounded subset S′ such
that

‖si − 〈u∗, si 〉u‖ ≥ δ ∀i ∈ N, (30)

the sequence (〈u∗, si 〉)i converging to α �= 0 and lim
i→+∞

‖si‖
|〈u∗, si 〉| = 1 as well as (26).

Putting εα := sign(α), there is some i0 such that |〈u∗, si 〉| = εα〈u∗, si 〉 for all i ≥ i0.
Let ν1 ≤ · · · ≤ νk be any k indices greater than i0. Using relation (26) gives

εα〈u∗, sν1 + · · · + sνk 〉 ≤ ‖sν1 + · · · + sνk ‖

< εα〈u∗, sν1 + · · · + sνk 〉 +
k∑

j=1

1

ν j
‖sν j − 〈u∗, sν j 〉u‖,

and hence noting that
∑k

j=1
1
ν j

‖sν j −〈u∗, sν j 〉u‖ → 0 as ν j → ∞ (for j = 1, . . . , k)
we get

lim
ν1,··· ,νk→∞

1

k
‖

k∑

i=1

sνi

α
‖ = 1.

Since X is fully k-convex, the sequence (si )i converges to some s, and s �= 0 because
0 /∈ cl‖·‖S′. Consequently, 〈u∗, εαs〉 = ‖εαs‖ or equivalently u∗ ∈ ∂‖ · ‖(εαs). Since
u∗ ∈ ∂‖ · ‖(u), we obtain ‖u + εαs

‖εαs‖‖ = 2. The strict convexity of X (because of
the full k-convexity of (X, ‖ · ‖)) ensures that u = εαs

‖εαs‖ . Thus s = 〈u∗, s〉u, and this
contradicts relation (30) [by passing to the limit in (30)]. ��

Recall that one says that a subset S of the normed space (X, ‖ · ‖) is relatively ball-
compact (resp. relatively weakly sequentially ball-compact) whenever the intersection
of S with any closed ball is relatively compact (resp. relatively weakly sequentially
compact). Below it is established that weakly sequentially ball-compact sets have
the NSLUC property, whenever the norm of the space is strictly convex and has the
Kadec-Klee property, compare to Proposition 9.
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Proposition 12 Let S be a relatively weakly sequentially ball-compact subset of the
normed space (X, ‖ · ‖). If the norm ‖ · ‖ is strictly convex (or equivalently the norm
is stricly convex on SX ) and the set S has the Kadec-Klee property, then S has the
NSLUC property.

Proof We repeat the proof of Proposition 10, to get the existence of the sequence (αi )i

converging to α �= 0 and a sequence (si )i of S satisfying lim
i→+∞ ‖α−1

i si‖ = 1 as well

as (27) and (28). This says in particular that the sequence (si )i is bounded, and hence
according to the fact that S is relatively weakly sequentially ball-compact, we may
suppose that (si − αi u)i converges weakly to some z, hence (si )i converges weakly
to z + αu.

If z = 0, then (si )i converges weakly to αu. As ‖u‖ = 1 and lim
i→+∞ ‖α−1

i si‖ = 1,

the Kadec-Klee property of S ensures that

lim
i→+∞ ‖si − αi u‖ = 0,

and this contradicts relation (27).
Suppose z �= 0. Since the sequence (u+α−1

i si )i convergesweakly to 2u+α−1z and
lim

i→+∞〈u∗, u+α−1
i si 〉 = 2 by (28), we have 〈u∗, u+α−1z〉 = 1, that is, 〈u∗, αu+z〉 =

α. We then obtain

|α| = |〈u∗, αu + z〉| ≤ ‖αu + z‖ ≤ lim inf
i→+∞ ‖si‖ ≤ |α|,

and hence ‖αu + z‖ = |α| and |α| > 0 (since, as said above, α �= 0). Noting that the
sequence (si )i converges weakly to αu + z, lim

i→+∞ ‖si‖ = |α| and ‖αu + z‖ = |α|, by
the Kadec-Klee property of S, we get lim

i→+∞ ‖si − αu − z‖ = 0.

The strict convexity of the norm ‖ · ‖ together with the equalities ‖u‖ = 1, ‖u +
α−1z‖ = 1 and the following relations

2 = 〈u∗, u + u + α−1z〉 ≤ ‖u + u + α−1z‖
≤ lim inf

i→+∞ ‖u + α−1
i si‖ ≤ 2

ensure that u + α−1z = u. Thus z = 0 and this second contradiction completes the
proof. ��

Whenwe look closely at the proof of Proposition 12, thenwe see that the assumption
that the set S is relatively weakly sequentially ball-compact is too strong to get the
statement of the Proposition. What we need in fact is a possibility to choose a weakly
converging subsequence from any sequence (si )i satisfying inequality (26). Of course
the problem does not occur, whenever the space X is reflexive. Moreover the strict
convexity of the norm, which is one of assumptions in Proposition 12, implies the
Gâteaux differentiability of the dual norm in this case, see [13, Corollary 1, p. 24].
So it seems that smoothness of the dual norm is a suitable assumption to preserve the
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The NSLUC property and Klee envelope 953

weak sequential compactness whenever X is not a reflexive Banach space. We present
details in Proposition 13 below.

Proposition 13 Let (X, ‖ · ‖) be a Banach space whose norm has the Kadec-Klee
property and the dual norm is Gâteaux differentiable off the origin. Then X has the
NSLUC property.

Proof We repeat the proof of Proposition 10, to get the existence of δ > 0 and a
bounded sequence (si )i such that relation (27) holds, the sequence (〈u∗, si 〉)i con-

verging to α �= 0 and lim
i→+∞

‖si‖
|〈u∗, si 〉| = 1 as well as (26). So, 〈u∗, u〉 = 1 and

lim
i→+∞〈u∗, α−1si 〉 = 1 with lim

i→+∞ ‖α−1si‖ = 1 = ‖u‖. Since the dual norm is

Gâteaux differentiable off the origin, the S̆mulyan theorem [11, Theorem 1.4] asserts
that the sequence (α−1si )i converges weakly to u and by the Kadec-Klee property,
(α−1si )i norm-converges to u and this contradicts relation (27). ��

As a corollary we obtain that the Kadec-Klee property of the norm and the Gâteaux
differentiability of the dual norm characterize the NSLUC property in the reflexive
Banach space setting.

Corollary 6 Let (X, ‖ · ‖) be a reflexive Banach space. Then the following assertions
are equivalent:

(a) The norm ‖ · ‖ has the Kadec-Klee property and its dual norm is Gâteaux differ-
entiable off the origin;

(b) X has the NSLUC property;
(c) The sphere SX of (X, ‖ · ‖) has the NSLUC property;
(d) The norm ‖ · ‖ is strictly convex and has the Kadec-Klee property.

Proof The equivalence (b) ⇔ (c) is established in Remark 5. The implications
(a) ⇒ (b) and (b) ⇒ (d) follow from Propositions 13 and 9 respectively. On the
other hand, it is known that the strict convexity of a dual norm entails the Gâteaux
differentiability of the corresponding initial norm; this and the reflexivity of (X, ‖ · ‖)
justifies the last implication (d) ⇒ (a). ��
Remark 6 Even in a reflexive Banach space, the NSLUC property is weaker than the
LUR one. Indeed, with the help of Corollary 6, [7, Remark 6.7] ensures the existence
of a reflexive Banach space with NSLUC property which is not LUR. Namely, there
are reflexive Banach spaces with the norm strictly convex and having the Kadec-Klee
property but not being LUR, see [7, Remark 6.7]. ��

The strict convexity of a normed space canbe also characterized through theNSLUC
property for some class of sets.

Proposition 14 A normed space (X, ‖ · ‖) is strictly convex if and only if every rela-
tively ball-compact subset S of X has the NSLUC property.

Proof The “if” part follows from Proposition 9. Let us establish the “only if” part.
As above, we repeat the proof of Proposition 10, to get the existence of the sequence
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(αi )i converging to α �= 0 and a sequence (si )i of S satisfying lim
i→+∞ ‖α−1

i si‖ = 1

as well as (28) and (29). Because of the boundedness of the sequence (si )i and the
relative ball-compactness of S, we may suppose that (si − αi u)i converges to some z,
hence (α−1

i si )i converges to u + α−1z, so in particular ‖u + α−1z‖ = 1.
Since lim

i→+∞〈u∗, u + α−1
i si 〉 = 2 by (28), we have

2 = 〈u∗, 2u + α−1z〉 ≤ ‖2u + α−1z‖ ≤ lim inf
i→+∞ ‖u + α−1

i si‖ ≤ 2,

and hence ‖2u + α−1z‖ = 2. Taking into account the equalities ‖u + α−1z‖ = 1 and
‖u + (u +α−1z)‖ = 2, the strict convexity of ‖ · ‖ together with the equality ‖u‖ = 1
guarantee that u + α−1z = u, thus z = 0. Consequently, lim

i→+∞ ‖α−1
i si − u‖ = 0,

which is in contradiction with (17). ��

6 Attainment sets of the Klee envelope

Our aim in this section is to investigate the connection between the attainment sets
Qλ,p f (x) and Qλ,p

(
co f

)
(x) for an appropriate x ∈ X . Let us start with the following

example which shows that the inclusion Qλ,p f (x) ⊂ Qλ,p
(
co f

)
(x) may be strict.

Example 1 Consider the lower semicontinuous function f : R → R∪ {+∞} defined
by

f (x) =
⎧
⎨

⎩

1 if x = 1
2 if x = 2

+∞ otherwise.

For λ = 1 and p = 1, we have

co f (x) =
{

x if x ∈ [1, 2]
+∞ otherwise

and

κ1,1(co f )(1) = −1, Q1,1(co f )(1) = [1, 2], Q1,1 f (1) = {1, 2}.

We recall that the reals λ and p are taken as λ > 0 and p ≥ 1.

Theorem 2 Let (X, ‖ · ‖) be a normed space and let f : X → R ∪ {+∞} be a
proper lower semicontinuous function whose domain dom f is bounded. Then for
every x ∈ dom κλ,pco f such that dom f − x satisfies NSLUC property we have

d ∈ Qλ,p(co f )(x) �⇒ d ∈ co(Qλ,p f (x) ∩ [x + span(d − x)]),

and hence

Qλ,p f (x) ⊂ Qλ,p(co f )(x) ⊂ co Qλ,p f (x).
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The NSLUC property and Klee envelope 955

Moreover, if f is constant on its domain then Qλ,p(co f )(x) = Qλ,p f (x).

Proof Let x ∈ dom κλ,p f , so x ∈ dom κλ,p(co f ) by Proposition 7. Pick d ∈
Qλ,p(co f )(x). Without loss of generality we may assume that λ = 1.

Case 1: If d = x , then since the equality inf
y∈X

co f (y) = inf
y∈X

f (y) is obvious, by

Proposition 7, we get

κλ,p f (d) = κλ,p(co f )(d) = −co f (d)

= sup
y∈X

−co f (y) = sup
y∈X

− f (y)

= − inf
y∈X

f (y)

because

−co f (d) = κλ,p(co f )(d) ≥ sup
y∈X

(−co f )(y) ≥ −co f (d).

Taking a sequence (yn)n such that lim
n→+∞ f (yn) = inf

y∈X
f (y) = co f (d) and noting

that

− f (yn) ≤ ‖yn − d‖p − f (yn) ≤ κλ,p f (d) = −co f (d)

it follows that lim
n→+∞ yn = d. So using the lower semicontinuity of f , we get

f (d) ≤ lim inf
n→+∞ f (yn) = co f (d) ≤ f (d)

and this implies that κλ,p f (d) = − f (d), and consequently d ∈ Qλ,p f (x).
Case 2: If d �= x , then without loss of generality, we may assume that ‖d − x‖ = 1.

Since d ∈ Qλ,p(co f )(x), then

κλ,p f (x) = κλ,p(co f )(x) = ‖d − x‖p − co f (d).

For each n ∈ N there exist mn ∈ N, tn
1 , . . . , tn

mn
∈]0, 1], with

∑mn

i=1
tn
i = 1, and

yn
1 , . . . , yn

mn
∈ dom f such that

lim
n→+∞

mn∑

i=1

tn
i yn

i = d, co f (d) = lim
n→+∞

mn∑

i=1

tn
i f (yn

i ). (31)

Note that the sequence (yn
1 , . . . , yn

mn
)n is bounded according to the boundedness of

dom f . On the other hand, as for all n ∈ N and i = 1, . . . , mn ,

‖yn
i − x‖p − f (yn

i ) ≤ ‖d − x‖p − co f (d),
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we also have

mn∑

i=1

tn
i [‖yn

i − x‖p − f (yn
i )] ≤ ‖d − x‖p − co f (d),

and hence

∥∥∥∥∥

mn∑

i=1

tn
i yn

i − x

∥∥∥∥∥

p

≤
mn∑

i=1

tn
i ‖yn

i − x‖p ≤ ‖d − x‖p − co f (d) +
mn∑

i=1

tn
i f (yn

i ),

which combined with (31) entails

lim
n→+∞

mn∑

i=1

tn
i ‖yn

i − x‖p = ‖d − x‖p. (32)

Pick u∗ ∈ ∂‖ · ‖(d − x). For each n ∈ N, the inequality

‖yn
i − x‖ ≥ |〈u∗, yn

i − x〉| with i = 1, . . . , mn

along with the convexity of | · |p ensures that

mn∑

i=1

tn
i ‖yn

i − x‖p ≥
mn∑

i=1

tn
i |〈u∗, yn

i − x〉|p ≥
∣∣∣∣∣

〈
u∗,

mn∑

i=1

tn
i yn

i − x

〉∣∣∣∣∣

p

,

hence

lim
n→+∞

mn∑

i=1

tn
i |〈u∗, yn

i − x〉|p = ‖d − x‖p = 1. (33)

Let μ > 0 be arbitrary and consider, for each n ∈ N, the following sets

I n
μ = {i ∈ {1, . . . , mn} : ‖yn

i − x − 〈u∗, yn
i − x〉(d − x)‖ ≥ μ},

An
μ := {i ∈ {1, . . . , mn} : ‖yn

i − x − 〈u∗, yn
i − x〉(d − x)‖ ≤ μ and

‖yn
i − x‖p − f (yn

i ) + μ ≤ κλ,p f (x)}

and

Bn
μ := {i ∈ {1, . . . , mn}\(I n

μ ∪ An
μ) : 〈u∗, yn

i − x〉 ≤ 1 − μ}.

We have lim sup
n→+∞

∑
i∈An

μ

tn
i = 0, because
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κλ,p f (x) = lim
n→+∞

⎛

⎝
∑

i∈An
μ

tn
i [‖yn

i − x‖p − f (yn
i )] +

∑

i /∈An
μ

tn
i [‖yn

i − x‖p − f (yn
i )]

⎞

⎠

≤ κλ,p f (x) − μ lim sup
n→+∞

∑

i∈An
μ

tn
i ≤ κλ,p f (x).

We claim that lim sup
n→+∞

∑
i∈I n

μ

tn
i = 0. Suppose the contrary, that is,

lim sup
n→+∞

∑

i∈I n
μ

tn
i = r > 0.

Extracting subsequence, we may assume that lim
n→+∞

∑
i∈I n

μ

tn
i = r . Clearly, the set

P := {n ∈ N : I n
μ �= ∅} is infinite (keep in mind that in the definition of r the limit is

involved) and the set S′ := {yn
i − x : n ∈ P, i ∈ I n

μ} is a bounded subset of dom f − x
and by the definition of I n

μ it fulfills the condition (17) with S := dom f − x . By (18)
(applied with S = dom f − x), there exists β := β(μ) > 0 (not depending on n) such
that for all n ∈ P and i ∈ I n

μ,

‖yn
i − x‖ ≥ |〈u∗, yn

i − x〉| + β‖yn
i − x − 〈u∗, yn

i − x〉(d − x)‖
≥ |〈u∗, yn

i − x〉| + βμ.

Fix any n ∈ P . Since

mn∑

i=1

tn
i [‖yn

i − x‖p − f (yn
i )]

= −
mn∑

i=1

tn
i f (yn

i ) +
∑

i /∈I n
μ

tn
i ‖yn

i − x‖p +
∑

i∈I n
μ

tn
i ‖yn

i − x‖p

≥ −
mn∑

i=1

tn
i f (yn

i ) +
∑

i /∈I n
μ

tn
i |〈u∗, yn

i − x〉|p +
∑

i∈I n
μ

tn
i ‖yn

i − x‖p

≥ −
mn∑

i=1

tn
i f (yn

i ) +
∑

i /∈I n
μ

tn
i |〈u∗, yn

i − x〉|p +
∑

i∈I n
μ

tn
i (|〈u∗, yn

i − x〉| + βμ)p,

we have

mn∑

i=1

tn
i [‖yn

i − x‖p − f (yn
i )]

≥ −
mn∑

i=1

tn
i f (yn

i ) +
∑

i /∈I n
μ

tn
i |〈u∗, yn

i − x〉|p +
∑

i∈I n
μ

tn
i |〈u∗, yn

i − x〉|p +
∑

i∈I n
μ

tn
i (βμ)p
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=
mn∑

i=1

tn
i [|〈u∗, yn

i − x〉|p − f (yn
i )] +

∑

i∈I n
μ

tn
i (βμ)p.

Using (33) and (31) and passing to the limit as P � n → ∞, we get

κλ,p(co f )(x) ≥ κλ,p(co f )(x) + r(βμ)p

and this contradiction establishes our claim.
If for all n ∈ N, Bn

μ = {1, . . . , mn}\(I n
μ ∪ An

μ), then lim
n→+∞

∑
i∈Bn

μ

tn
i = 1 and,

by the definition of Bn
μ and the fact lim

n→+∞
∑

i∈Bn
μ

tn
i yn

i = d [see (31)], we have

the following contradiction 1 = ‖d − x‖ = 〈u∗, d − x〉 ≤ 1 − μ. Then Bn
μ �=

{1, . . . , mn}\(I n
μ ∪ An

μ) for some n ∈ N.
Thus we can choose an increasing sequence (n(μ))μ (we take μ in a discrete set

such that μ → 0+), with i(μ) ∈ {1, . . . , mn(μ)}\(I n(μ)
μ ∪ An(μ)

μ ∪ Bn(μ)
μ ), so

κλ,p f (x)=‖d−x‖p−co f (d) ≤ ‖yn(μ)

i(μ) −x‖p− f (yn(μ)

i(μ) )+μ; 〈u∗, yn(μ)

i(μ) −x〉 ≥ 1−μ.

(34)
Thus the sequence (yn(μ)

i(μ) )μ is bounded (since dom f is bounded) and, by the definition

of I n(μ)
μ ,

lim
μ→0+ d(yn(μ)

i(μ) , x + span (d − x)) = 0 and lim inf
μ→0+ 〈u∗, yn(μ)

i(μ) − x〉 ≥ 1.

Without loss of generality we may suppose that

lim
μ→0+ yn(μ)

i(μ) = ȳ ∈ x + span (d − x)

[because of the boundedness of (yn(μ)

i(μ) )μ and the fact that span(d − x) is finite-
dimensional]. The lower semicontinuity of f and the relation (34) ensure that

κλ,p f (x) = ‖d − x‖p − co f (d) ≤ ‖ȳ − x‖p − f (ȳ) ≤ κλ,p f (x), and 〈u∗, ȳ − x〉 ≥ 1

then ȳ ∈ Qλ,p f (x). Since

ȳ ∈ x + span (d − x), 〈u∗, ȳ − x〉 ≥ 1 and 〈u∗, d − x〉 = 1,

there exists s1 ≥ 1 such that

ȳ − x = s1(d − x). (35)

Now, we consider the sets

Cn
μ := {i ∈ {1, . . . , mn}\(I n

μ ∪ An
μ) : 〈u∗, yn

i − x〉 ≥ 1 + μ}.
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Repeating the same reasoning with Cn
μ instead of Bn

μ provides the existence of z̄ ∈
Qλ,p f (x) and s2 ≤ 1 such that

z̄ − x = s2(d − x). (36)

Combining relations (35) and (36), we get

d ∈ co(Qλ,p f (x) ∩ [x + span (d − x)]).

Now suppose that f is constant on its domain. If d = x , by the case 1 we have
d ∈ Qλ,p f (x). So, let us suppose d �= x and show that ȳ = d, where ȳ is as obtained
in case 2. Since co f (ȳ) ≤ f (ȳ) and

‖ȳ − x‖p − f (ȳ) = κλ,p f (x) = ‖d − x‖p − co f (d)

= κλ,p(co f )(x)

≥ ‖ȳ − x‖p − co f (ȳ),

it follows that co f (ȳ) = f (ȳ) = co f (d) and hence ‖ȳ − x‖ = ‖d − x‖. As
ȳ ∈ x + span (d − x) and ‖ȳ − x‖ = ‖d − x‖, there exists γ ∈ {−1, 1} such that
ȳ − x = γ (d − x). Since i(μ) /∈ Bn(μ)

μ , then γ ≥ 0 and hence ȳ = d and the proof is
completed. ��

From Proposition 7 we know that dom κλ,p f = dom κλ,p(co f ). Consequently,
Propositions 10, 11, 12, 13 and 14 combined with Theorem 2 guarantee the following:

Theorem 3 Let (X, ‖ · ‖) be a normed space and let f : X → ∪R{+∞} be a proper
lower semicontinuous function whose domain dom f is bounded. Under anyone of
the assumptions (1)–(5), one has the inclusion

Qλ,p(co f )(x) ⊂ co
(
Qλ,p f (x)

)
for all x ∈ X.

(1) The norm of (X, ‖ · ‖) has the LUR property;
(2) The space (X, ‖ · ‖) is a fully k-convex Banach space;
(3) The norm of (X, ‖ · ‖) is strictly convex and has the Kadec-Klee property, and

dom f is relatively weakly sequentially ball-compact;
(4) The space (X, ‖ · ‖) is a Banach space whose norm has the Kadec-Klee property

and the dual norm is Gâteaux differentiable off the origin;
(5) The norm of X is strictly convex and dom f is relatively ball-compact.

If in addition f is constant on its domain, then one has

Qλ,p(co f )(x) = Qλ,p f (x) for all x ∈ X.

As a direct consequence of Theorem 2 we get.
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Corollary 7 Let (X, ‖ · ‖) be a normed space. For any bounded closed set S of X
satisfying the NSLUC property, one has the equality

QS(x) = Qco S(x) for all x ∈ X.

Continuing with the case of sets, other properties hold true. Let us establish the
following one which follows ideas in the proof of [15, Theorem 2].

Proposition 15 Let (X, ‖ · ‖) be a normed space fulfilling the Mazur Intersection
Property. Then, for any bounded set S such that Dom QS is dense in X, one has the
equality

co (Rge QS) = co S.

Proof Fix any x /∈ co (Rge QS). By theMazur Intersection Property, there are x0 ∈ X
and a real r > 0 such that

x /∈ B[x0, r ] ⊃ co (Rge QS).

We can choose some real ε > 0 such that ‖x − x0‖ > r + ε. According to the density
assumption, choose x̄ ∈ Dom QS with ‖x̄ − x0‖ < ε/2. Taking some ȳ ∈ QS(x̄), we
have ȳ ∈ B[x0, r ]. Then for any y ∈ S, we have

‖y − x0‖ ≤ ‖y − x̄‖ + ‖x̄ − x0‖ ≤ ‖ȳ − x̄‖ + ‖x̄ − x0‖
≤ ‖ȳ − x0‖ + 2‖x̄ − x0‖ < r + ε.

This entails S ⊂ B[x0, r + ε], hence co S ⊂ B[x0, r + ε], which ensures x /∈ co S
since ‖x − x0‖ > r + ε. Consequently, co (Rge QS) ⊃ co S, and this inclusion is an
equality as asserted, since the reverse inclusion is obvious. ��

Lau’s theorem [27, Theorem 2.3] says, for any weakly compact set S of a Banach
space (X, ‖·‖), that Dom QS contains a dense Gδ set of X . Consequently, the equality
in Proposition 15 is valid for every weakly compact set of a Banach space satisfying
the Mazur intersection property. This contains [15, Theorem 2]. A result showing that
Dom QS contains a dense Gδ set of X∗, whenever S ⊂ X∗ is weakly∗ compact, can
be found in [12, Proposition 3].

7 The Klee envelope: an approach with a distance from a set

The aim of this section is to show that subdifferential properties of the Klee envelope
κλ,1 f can be investigated through the distance function, namely we want to show that

κλ,1 f (x) + 1

λ
d(x, Wα) = mα ∀x ∈ cl

(
X\Wα

)
, (37)

where α > 0, mα = α + inf
y∈X

κλ,1 f (y) and

Wα = {y ∈ X : κλ,1 f (y) ≥ mα}.
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Whenever κλ,1 f is finite at some point x̄ , according to the coercivity [see (7)] and the
Lipschitz continuity of κλ,1 f , the set Wα is nonempty and closed. The finiteness of
κλ,1 f at x̄ also ensures that f is finite at some ȳ, so writing, for all x ∈ X ,

κλ,1 f (x) = sup
y∈X

(
1

λ
‖x − y‖ − f (y)

)
≥ − f (ȳ),

we see that κλ,1 f is bounded from below. Then mα > inf
y∈Y

κλ,1 f , hence the set

{x ∈ X : κλ,1 f (x) < mα} is nonempty. This nonemptiness combined with the
continuity and convexity of κλ,1 f easily entails that

cl {x ∈ X : κλ,1 f (x) < mα} = {x ∈ X : κλ,1 f (x) ≤ mα} (38)

and
int {x ∈ X : κλ,1 f (x) ≤ mα} = {x ∈ X : κλ,1 f (x) < mα}. (39)

Moreover, if f is the indicator function of a non-singleton set S for which Qλ,1 f (x)

is a singleton for all x ∈ X , we show that the set PWα (x) of nearest points of x
in Wα is a singleton for every α > κλ,1 f (x); see Theorem 5. In other words, if S
(not singleton) is such a set that for every x the set QS(x) is a singleton, then we
can construct an open bounded convex nonempty set U ⊂ X such the set X\U is
Chebyshev and d(·, X\U ) + �S(·) is a constant function on U . Observe that X\U
can not be a convex set. Thus the Klee question, that is, the problem of singleton
property of sets with unique farthest points (see Problem 6 in [23]) turns out to be
a question on the convexity of Chebyshev sets, see Problem 5 in [23] and also the
Goebel-Schöneberg problem [21], whenever X is a Hilbert space. Namely, if we have
the convexity of Chebyshev sets, then only singletons have unique farthest points,
we refer to [6,7,10,14,20,21,23,25,38,42] and their references for several results
concerning convexity of Chebyshev set in Hilbert spaces.

Theorem 4 Let (X, ‖ · ‖) be a normed space and f : X → R ∪ {+∞} be a proper
function. If κλ,1 f is finite at some point, then relation (37) holds true.

Proof We saw above that the finitness of κλ,1 f at some point implies that m0 :=
inf
u∈X

κλ,1 f (u) is well defined in R. Let us fix any x ∈ int Dα with κλ,1 f (x) > − f (x),

where [see (38)]

Dα := cl
(
X\Wα

) = {u ∈ X : κλ,1 f (u) ≤ mα}.

Take a sequence (yn)n of elements of X such that

κλ,1 f (x) <
1

n
+ 1

λ
‖yn − x‖ − f (yn),

and observe that yn �= x for n large enough, say n ≥ n0, since κλ,1 f (x) > − f (x). Fix
any integer n ≥ n0. Since κλ,1 f (u) → +∞ as ‖u‖ → ∞ by (7) and κλ,1 f (x) < mα
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by (39), we can choose by the continuity of κλ,1 f and the intermediate value theorem
some zn = x + tn(x − yn) with tn > 0 such that κλ,1 f (zn) = mα .

Choose some x∗
n ∈ ∂‖ · ‖(x − yn) and note that 〈x∗

n , x − yn〉 = ‖x − yn‖ since
yn �= x . Then we have

mα − κλ,1 f (x) + 1

n
= κλ,1 f (zn) − κλ,1 f (x) + 1

n

≥ 1

λ
‖zn − yn‖ − f (yn) +

(
−1

λ
‖x − yn‖ + f (yn)

)
,

which gives

mα − κλ,1 f (x) + 1

n
≥ 1

λ

(‖zn − yn‖ − ‖x − yn‖)

≥ 1

λ
〈x∗

n , zn − x〉 = 1

λ
tn‖x − yn‖

= 1

λ
‖x − zn‖ ≥ 1

λ
d(x, Wα).

Passing to the limit as n → ∞, we get

mα ≥ κλ,1 f (x) + 1

λ
d(x, Wα). (40)

On the other hand, since κλ,1 f is Lipschitz with constant 1/λ, we also have

mα ≤ κλ,1 f (y) ≤ κλ,1 f (x) + 1

λ
‖x − y‖, ∀y ∈ Wα,

and consequently mα ≤ κλ,1 f (x) + 1
λ

d(x, Wα). It ensues that

mα = κλ,1 f (x) + 1

λ
d(x, Wα), for all x ∈ int Dα with κλ,1 f (x) > − f (x).

In order to finish the proof, it is enough to show that the set

{x ∈ int Dα : κλ,1 f (x) > − f (x)}

is dense in int Dα . Assume the contrary, that is, there are y0 ∈ int Dα and r0 > 0 such
that

B(y0, r0) ⊂ {x ∈ int Dα : κλ,1 f (x) = − f (x)}.

This implies that for every y ∈ B(y0, r0)

− f (y) = sup
z∈X

(
1

λ
‖z − y‖ − f (z)

)
≥ sup

z∈X
(− f (z)) ≥ − f (y).
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It ensues that f is constant over B(y0, r), or equivalently

f (y) = f (y0) for all y ∈ B(y0, r0).

It follows that

− f (y0) = κλ,1 f (y0) ≥ sup
y∈B(y0,r0)

(
1

λ
‖y0 − y‖ − f (y0)

)
= r0

λ
− f (y0),

which is a contradiction. Thus the set {x ∈ int Dα : κλ,1 f (x) > − f (x)} is dense
in int Dα , hence also in Dα according to (38) and (39). Since the function x �→
κλ,1 f (x) + 1

λ
d(x, Wα) is continuous then (37) holds true and the proof is completed.

��
Remark 7 It follows from Theorem 4, taking α > 0 large enough, the differentiability
or subdifferentialbility of κλ,1 f at point x ∈ X can be inferred from differentiability
or subdifferentiability of the opposite of the distance function to the complement of
bounded convex set. ��
Remark 8 Theorem 4 can be stated in a more general setting as follows : Let g :
X → R be a Lipschitz continuous convex function, with Lipschitz constant equal to
1, satisfying the following assumptions:

1. lim‖x‖→+∞ g(x) = +∞;

2. There exists a dense set G of X such that ∂ 1
n

g(x) ∩ SX∗ �= ∅, for all x ∈ G and

n ∈ N, where

∂εg(x) := {x∗ ∈ X∗ : 〈x∗, u − x〉 + g(x) ≤ g(u) + ε, ∀u ∈ X}

denotes the approximate ε-subdifferential of the convex function g at x .

Then relation (37) holds true with g instead of κλ,1 f (x). ��
There is a partial connexion between the set of farthest points in a set S and the set

of nearest points in S to points outside S.

Proposition 16 Let (X, ‖·‖) be a normed space and S be a nonempty closed bounded
subset of X. Then

Rge QS ⊂ PS(X\S).

Proof Wemay suppose that S is not a singleton, since otherwise the inclusion is trivial.
Let y ∈ Rge QS , so y ∈ S. There exists x ∈ X such that ‖x − y‖ = �S(x) > 0.
For x ′ := 2y − x , we see that ‖x ′ − x‖ = 2�S(x), so in particular x ′ ∈ X\S since
‖x ′ − x‖ > �S(x). Further, for every u ∈ S we have ‖x − u‖ ≤ �S(x) according to
the definition of �S(x), hence

‖x ′ − u‖ = ‖2y − x − u‖ = ‖2(y − x) − (u − x)‖
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≥ 2‖y − x‖ − ‖u − x‖
≥ 2�S(x) − �S(x)

= �S(x) = ‖x − y‖ = ‖x ′ − y‖.

This guarantees that y is a nearest point in S of x ′ ∈ X\S, so y ∈ PS(X\S) as
desired. ��

The problem of possible convexity of a Chebyshev set and the question if a set
with the unique farthest point property is itself a singleton are not solved in a Hilbert
setting (see Problems 5 and 6 in [23]). In order to show that the question related to the
unique farthest point property is a question of possible convexity of Chebyshev sets,
we restrict ourselves to the Hilbert space setting. So, through the rest of this section we
shall assume that X is a Hilbert space, although the subsequent result can be obtained
in a more general set up.

By the main result in the previous section (Theorem 2), we may consider only the
case when the set with the unique farthest point property is convex and closed.

Theorem 5 Let S be a closed convex subset of a (real) Hilbert space (X, ‖ · ‖) such
that for every x ∈ X the set

QS(x) = {s ∈ S : ‖s − x‖ = sup
s′∈S

‖s′ − x‖}

is a singleton. If S is not a singleton, then there exists a nonempty bounded convex
open set U ⊂ X such that

d(u, X\U ) + �S(u) = 1 + inf
x∈X

�S(x), ∀u ∈ U

and the set W := X\U is a Chebyshev set, that is, for every u ∈ U there exists exactly
one w ∈ W such that

d(u, W ) = ‖u − w‖.

Proof Theorem 4 with f as the indicator function of S (so, κ1,1 f = �S) asserts that
for

W = {w ∈ X : �S(w) ≥ 1 + inf
x∈X

�S(x)} and U := X\W,

we have
d(u, W ) + �S(u) = 1 + inf

x∈X
�S(x), ∀u ∈ U. (41)

So, we only need to show that W is a Chebyshev set. Fix any u ∈ U and take
s = QS(u), that is, (because S is not a singleton)

∀q ∈ S, q �= s, �S(u) = sup
s′∈S

‖s′ − u‖ = ‖u − s‖ > ‖u − q‖,
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and this allows us to say that u �= s. SinceU is an open bounded convex setwith u ∈ U ,
clearly (u + cone(u − s)) ∩ bdryU �= ∅, hence we can take w in this intersection, or
equivalently w ∈ W ∩ clU ∩ {u + cone(u − s)}. Observe that

‖w − u‖ ≥ �S(w) − �S(u) ≥ ‖w − s‖ − ‖u − s‖ = ‖w − u‖,

and hence �S(w) − �S(u) = ‖w − u‖. On the other hand, since w ∈ bdryU we also
have �S(w) = 1 + inf

x∈X
�S(x), so (41) gives �S(w) = d(u, W ) + �S(u). It results

that

�S(w) − �S(u) = ‖w − u‖ ≥ d(u, W ) = �S(w) − �S(u),

thus

d(u, W ) = ‖w − u‖.

It remains to show that w is the unique nearest point in W of u. Suppose that there
exists w1 ∈ W , with w1 �= w, and d(u, W ) = ‖u − w1‖. Note that w1 ∈ W ∩ clU .
Take any x ∈]u, w1[. It follows from Proposition 4.1 and Theorem 4.2 in [25] (see
also Theorem 4.1 in [40]) that the function d(·, W ) is Fréchet differentiable at x ,
with derivative Dd(·, W )(x) = u−w1‖u−w1‖ . Since ]u, w1[⊂ U , by (41) the function
�S = κ1,1 f is also Fréchet differentiable at x , with derivative

D�S(x) = − u − w1

‖u − w1‖ , ∀x ∈]u, w1[.

Using the closedness of the graph of the set-valued mapping z �→ ∂�S(z), we get
w1−u

‖u−w1‖ ∈ ∂�S(u). Then, for every n ∈ N, we have

�S(u +n−1(w1−u))−�S(u) ≥
〈

w1 − u

‖w1 − u‖ , n−1(w1 − u)

〉
= n−1‖w1−u‖. (42)

Put bn = u + n−1(w1 − u) and b∗
n := (

bn − QS(bn)
)
/‖bn − QS(bn)‖. Then b∗

n ∈
∂�S(bn) by Proposition 3, and hence by (42)

〈b∗
n, bn − u〉 ≥ �S(bn) − �S(u) ≥ 1

n
‖w1 − u‖,

which entails

〈b∗
n, w1 − u〉 ≥ ‖w1 − u‖.

Since X is a Hilbert space, it results that b∗
n = w1−u

‖w1−u‖ or equivalently QS(bn) =
bn + �S(bn)

d(u,W )
(u − w1), because �S(bn) = ‖bn − QS(bn)‖ and ‖w1 − u‖ = d(u, W ).

Now using the continuity of �S and the fact that lim
n→+∞ bn = u, we deduce

lim
n→+∞ QS(u + n−1(w1 − u)) = u + �S(u)

d(u, W )
(u − w1).
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Since QS(u) is a singleton and S is closed, we get

u + �S(u)

d(u, W )
(u − w) = QS(u) = u + �S(u)

d(u, W )
(u − w1),

where the first equality is due to the definition of w [i.e., w − u = γ (u − QS(u)] and
γ �S(u)
d(u,W )

= 1, a contradiction since w �= w1. ��
Remark 9 It is an obvious observation from Theorem 4 that if S is a singleton, then
any subset W of X satisfying (37) for κλ,1 f (x) := �S(x) can not be a Chebyshev set.

��
Remark 10 If the set W constructed in Theorem 5 is convex then both functions
d(·, W ) and �S(·) are Fréchet differentiable on U , so S is singleton. ��

Using the fact that locally compact Chebyshev sets are convex, the following well-
known result is a direct consequence of Theorem 5.

Corollary 8 Let S be a closed convex subset of the Euclidean space Rn such that for
every x ∈ X the set

QS(x) =
{

s ∈ S : ‖s − x‖ = sup
s′∈S′

‖s′ − x‖
}

is a singleton. Then S is a singleton.
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