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Abstract. A set of n × n symmetric matrices whose ordered vector of eigen-
values belongs to a fixed set in Rn is called spectral or isotropic. In this paper, we
establish that every locally symmetric Ck submanifold M of Rn gives rise to a Ck

spectral manifold for k ∈ {2, 3, . . . ,∞, ω}. An explicit formula for the dimension
of the spectral manifold in terms of the dimension and the intrinsic properties of
M is derived. This work builds upon the results of Sylvester and Šilhavý and uses
characteristic properties of locally symmetric submanifolds established in recent
works by the authors.

1 Introduction

Let Rn≥ = {(x1, . . . , xn) ∈ Rn : x1 ≥ x2 ≥ · · · ≥ xn}. Denoting by Sn the
euclidean space of n × n symmetric matrices with inner product 〈X,Y 〉 = tr (XY ),
we consider the spectral mapping λ, i.e., the function from Sn to Rn which
associates to X ∈ Sn the vector λ(X) ∈ Rn≥ of its eigenvalues; i.e., for X ∈ Sn,
λ(X) = (λ1(X), . . . , λn(X)), where λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X) are the eigen-
values of X counted with multiplicity. The objects of study in this paper are the
spectral sets of Sn. A subset M ⊂ Sn is a spectral set if U�XU ∈ M for all
X ∈ M and U ∈ On, where On is the group of n × n orthogonal matrices. In other
words, if a matrix X lies in a spectral set M ⊂ Sn, then so does its orbit under the
natural action of the group On

On.X := {U�XU : U ∈ On}.
The spectral sets are determined entirely by their eigenvalues and can be defined
equivalently by

λ−1(M ) := {X ∈ Sn : λ(X) ∈ M} for some M ⊂ Rn.

1Research supported by the grant MTM2014-59179-C2-1-P (MINECO of Spain and FEDER of
EU), by the BASAL Project PFB-03, and by the FONDECYT Regular grant No 1130176 (Chile).

2Research supported by the NSERC of Canada.
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For example, if M is the euclidean unit ball B(0, 1) of Rn, then λ−1(M ) is the
euclidean unit ball of Sn as well. A spectral set can be written as a union of orbits

(1.1) λ−1(M ) =
⋃
x∈M

On.Diag(x),

where Diag(x) denotes the diagonal matrix with the vector x ∈ Rn on the main
diagonal. Notice that each orbit is an analytic submanifold of Sn; see Example 2.7
for details.

In this context, a general question arises. Which properties of M remain true
for the corresponding spectral set λ−1(M )? In the sequel, we say that a property
obeys the transfer principle if it holds for λ−1(M ) whenever it holds for M .
The spectral mapping λ has nice geometrical properties, but it may behave very
badly as far as, for example, differentiability is concerned. This imposes intrinsic
difficulties for the formulation of a generic transfer principle.

Invariance properties of M under permutations often correct such bad behavior
and allow us to deduce transfer properties between the sets M and λ−1(M ). A
permutation σ on n elements acts on Rn by σ(x1, . . . , xn) = (xσ(1), . . . xσ(n)). A set
M ⊂ Rn is symmetric if σM = M for all σ. Thus, if M ⊂ Rn is symmetric, prop-
erties such as closedness and convexity are transferred between M and λ−1(M );
namely, M is closed (respectively, convex [14], prox-regular [5]) if and only if
λ−1(M ) is closed (respectively, convex, prox-regular). The next result is another
interesting example of such a transfer.

Proposition 1.1 (Transferring algebraicity). Let M ⊂ Rn be a symmetric

algebraic variety. Then, λ−1(M) is an algebraic variety of Sn.

Proof. Let p be a polynomial equation of M, i.e., p(x) = 0 if and only if
x ∈ M. Define the symmetric polynomial q(x) :=

∑
σ p2(σx). Observe that q is

again a polynomial equation of M and q(λ(X)) is an equation of λ−1(M). We just
have to prove that q◦λ is a polynomial in the entries of X . It is known that q can be
written as a polynomial of the elementary symmetric polynomials p1, p2, . . . , pn.
Each p j (λ(X)), up to a sign, is a coefficient of the characteristic polynomial of X
and thus is a polynomial in X . �

Concurrently, similar transfer properties hold for spectral functions, func-
tions F : Sn → Rn which are constant on the orbits On.X or, equivalently, func-
tions F that can be written as F = f ◦λ with f : Rn → R symmetric, i.e., invariant
under any permutation of entries of x. Since f is symmetric, closedness and con-
vexity are transferred between f and F ; see [14] for details. More surprisingly,
differentiability properties are also transferred; see [1], [20], [19], [13], [15], and
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[18]. As established recently in [5], the same occurs for the variational property
of prox-regularity, for the definition of which we refer to [17].

In this work, we study the transfer of differentiable structure of a submanifold
M of Rn to the corresponding spectral set. This gives rise to an orbit-closed set
λ−1(M) of Sn, which, in case it is a manifold, is called the spectral manifold.
Such spectral manifolds often appear in engineering sciences, often as constraints
in feasibility problems (e.g., in the design of tight frames [21] in image processing
or in the design of low-rank controllers [16] in control). However, given a manifold
M, the answer to the question of whether the spectral set λ−1(M) is a manifold of
Sn is not immediate. Indeed, a careful glance at (1.1) reveals that On.Diag(x) has a
natural (quotient) manifold structure; the question there is how the different strata
combine as x moves along M.

For functions, transferring local properties such as differentiability requires
some symmetry, albeit not with respect to all permutations. Many properties still
hold under local symmetry, i.e., invariance under permutations that preserve
balls centered at the point of interest. We make this notion more precise in Sub-
section 2.1.

The main goal here is to prove that local smoothness of M is transferred to the
spectral set λ−1(M) whenever M is locally symmetric. More precisely, our aims
here are

• to prove that every connected Ck locally symmetric manifold M of Rn is
“lifted” to a connected Ck manifold λ−1(M) of Sn, for k ∈ {2, 3, . . . ,∞, ω}
(where Cω stands for real analytic);

• to derive a formula for the dimension of λ−1(M) in terms of the dimension
of M and some characteristic properties of M.

We achieved these aims in 2009 for the cases k = 2, k = ∞, and k = ω

through a long technical proof in the unpublished technical note [6]. Here, we
provide a shorter, tractable version of the aforementioned proof, which moreover
encompasses all cases k ∈ {2, 3, . . . ,∞, ω}. Notation and arguments have been
simplified, and additional comments providing extra intuition have been added.
We use the results from [20] and [19] and the properties of locally symmetric
submanifolds of [7].

The particular case of the lift of a C∞ manifold is recovered in a very recent
work [4] through an indirect technique based on metric projections. However, this
technique is specific for the case k = ∞ and does not provide any information on
the dimension of the spectral manifold λ−1(M).

The main result of the current manuscript is Theorem 3.20, which proves that
the lift of a locally symmetric Ck submanifold of Rn is a Ck manifold of Sn, and
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provides a formula for its dimension. We obtain this result using extensively dif-
ferential properties of spectral functions as well as structural properties of locally
symmetric manifolds. Roughly speaking, given a manifold M which is locally
symmetric around x ∈ M, the proof splits in the following two steps:

Step 1. exhibiting a simple locally symmetric affine manifold D (see (3.8)) which
will be used as the domain for a locally symmetric local equation for the
manifold M around x (Lemma 3.10);

Step 2. showing that λ−1(D) is an analytic manifold (Theorem 3.15) and using
it as a domain to build a local equation of λ−1(M) (cf. (3.12)), in order
to establish that this latter spectral set is a manifold (Theorem 3.20). Let
us remark, however, that λ−1(D) is not an affine manifold in general; see
comments at the end of Section 3.2.

2 Locally symmetric functions and manifolds

This section does not contain any new results, but introduces relevant background
notation and revises material established in [7] (and previously in [6], though in a
less elaborated form) concerning the structure of a locally symmetric submanifold
M of Rn. A key notion is that of a characteristic partition (see Section 2.3), as
well as the existence of a locally symmetric reduced tangential parametrization
(Theorem 2.17).

2.1 Notation and definitions. A partition P of a finite set N is a collec-
tion of non-empty, pairwise disjoint subsets of N whose union is N . The elements
of a partition are sometimes called blocks. The partition {{i} : i ∈ N } is denoted
by idN . The set of all partitions of N is denoted by �N . The symbol RN denotes
the set of all functions from N to R. Set Nn := {1, . . . , n}. When N = Nn, we
simply write �n, for �N , idn for idN , and Rn for RN . The partition induced by
x ∈ RN , denoted by Px, is defined by the indexes of the equal coordinates of x.
More precisely, for i, j ∈ N , i, j are in the same subset of Px if and only if xi = x j .
Given two partitions P and P′ of�N , we say that P′ is a refinement of P, written
P 
 P′, if every set in P is a (disjoint) union of sets from P′. Given a partition P
of�N , define the subset�P of RN by

�P := {x ∈ RN : Px = P}.(2.1)

Obviously,�P is an affine manifold, which is not connected in general. (By affine
manifold, we mean an open subset of an affine subspace of a vector space.) The
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collection {�P : P ∈ �N } is an affine stratification of RN i.e., a finite decomposi-
ton of RN into affine manifolds (strata) that fit together in a regular way. For each
x ∈ RN , there exists a δ > 0 such that the ball B(x, δ ) intersects only strata�P with
P � Px; see [7, Section 2.2]. If the partition P ∈ �N is given by P = {I1, . . . , Im},
then the orthogonal and bi-orthogonal spaces of�P have the expressions

(2.2) �⊥
P =

{
x ∈ RN :

∑
j∈Ii

x j = 0 for all i ∈ Nm

}
,

(2.3) �⊥⊥
P = {x ∈ RN : xi = x j for all i, j ∈ Ik, k ∈ Nm},

respectively. Note that �⊥⊥
P = �P, where the latter set is the closure of �P. Also,

�⊥⊥
P =

⋃
P′
P�P′ .

The group �n of permutations over Nn has a natural action on Rn and �n de-
fined for x ∈ Rn by σx := (xσ−1(1), . . . , xσ−1(n)), and for a partition P = {I1, . . . , Im}
by σP :=

{{σ(i) : i ∈ Ik} : k = 1, . . . ,m
}
. For a vector x ∈ Rn and a partition

P ∈ �n, define the subgroups of permutations

�n
P := {σ ∈ �n : σP = P} and �n

x := {σ ∈ �n : σx = x}.
Note that �n

Px
= �n

x for all x ∈ Rn.

Definition 2.1. A map f defined on Rn is called symmetric if f (σy) = f (y)
for all y ∈ Rn and all σ ∈ �n. The function f is called locally symmetric at
x ∈ Rn if there exists an open ball B centered at x and

f (σy) = f (y) for all y ∈ B and all σ ∈ �n
x .

Locally symmetric functions are those which are symmetric on an open ball
centered at x under all permutations of entries of x that preserve this ball; see
[7, Section 3.1]. The above property is exactly the invariance property required
on f which allows the transfer of its differentiability properties to the spectral
function f ◦ λ; see Theorem 2.2, below. For a proof, we refer to [20] and [22].
(Note that although the main result in [20] is stated for symmetric functions f ,
the supporting results are stated in locally symmetric language, and the argument
remains unchanged in this case.) In the sequel, given a vector x ∈ Rn, Diag x

denotes the diagonal matrix with the vector x on the main diagonal, and diag :
Sn → Rn denotes its adjoint operator, defined by diag (X) := (x11, . . . , xnn) for any
matrix X = (xi j )i, j ∈ Sn.

Theorem 2.2 (Derivatives of spectral functions). Let f : Rn → R be locally
symmetric at x ∈ Rn≥, and k ∈ {1, 2, . . . ,∞, ω}. The function F : Sn → R defined



374 A. DANIILIDIS, J. MALICK, AND H. SENDOV

by F = f ◦ λ is Ck in a neighborhood of X ∈ λ−1(x) if and only if f is Ck in a

neighborhood of x. In that case,

∇F (X) = U�(Diag∇ f (λ(X)))U,

where U is an orthogonal matrix such that X = U�(Diagλ(X))U. Equivalently,

(2.4) ∇F (X)[H ] = ∇ f (λ(X)))[diag (UHU�)]

for every direction H ∈ Sn.

The differentiability of spectral functions will be intensively used in the se-
quel. Before giving the definition of spectral manifolds and locally symmetric
manifolds, let us first recall the definition of a submanifold.

Definition 2.3. A nonempty set M ⊂ Rn is a Ck submanifold of dimen-
sion d (with d ∈ {0, . . . , n} and k ∈ N ∪ {ω}) if for every x ∈ M, there exist a
neighborhood U ⊂ Rn of x and a Ck function ϕ : U → Rn−d with Jacobian matrix
Jϕ(x) of full rank such that for all y ∈ U , y ∈ M if and only if ϕ(y) = 0 . The map
ϕ is called a local equation of M around x.

Definition 2.4. A set S ⊆ Rn is strongly locally symmetric if σS = S for
all x ∈ S and all σ ∈ �n

x . The set S is locally symmetric if for every x ∈ S, there
exists δ > 0 such that S ∩ B(x, δ ) is a strongly locally symmetric set.

In other words, S is locally symmetric if for every x ∈ S, there exists δ > 0
such that

(2.5) σ(S ∩ B(x, δ )) = S ∩ B(x, δ ) for all y ∈ S ∩ B(x, δ ) and σ ∈ �n
y .

Observe that if S satisfies (2.5), then for ρ ≤ δ , S ∩ B(x, ρ) is a strongly locally
symmetric set as well.

Example 2.5. Obviously, Rn is (strongly locally) symmetric. It is also easily
seen from the definition that any stratum�P is a strongly locally symmetric affine
manifold. If x ∈ �P and the ball B(x, δ ) is so small that it intersects only strata
�P′ with P′ � P, then B(x, δ ) is strongly locally symmetric.

2.2 Locally symmetric manifolds. In this subsection, we recall the for-
mal definition of a locally symmetric manifold (submanifold of Rn) from [7] and
illustrate this notion by means of characteristic examples.

Definition 2.6. A subset M of Rn is said to be a (strongly) locally sym-
metric manifold if M is a connected submanifold of Rn without boundary, a
(strongly) locally symmetric set, and satisfies M ∩ Rn≥ �= ∅.
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The above definition includes the technical assumption M∩ Rn≥ �= ∅, since the
entries of the eigenvalue vector λ(X) are non-increasing (by definition of λ). This
assumption is not restrictive, since we can always reorder the orthogonal basis of
Rn to satisfy this property.

Our aim is to show that λ−1(M ∩ Rn≥) is a manifold, an objective ultimately
realized in Section 3 by Theorem 3.20. First we sketch two simple approaches
that could be adopted in order to prove this result and illustrate the difficulties that
appear.

Consider the expression (1.1) for the spectral set λ−1(M). Although each orbit
On.Diag(x) is well known to be an analytic manifold (see Example 2.7 below),
there is no straightforward approach for showing that the union (1.1) is also a
smooth manifold. Our strategy, developed in Section 3, uses crucial properties of
locally symmetric manifolds derived in [7, Section 5], namely, the existence of a
locally symmetric tangential parametrization in an appropriately reduced ambient
space. This is used to provide a locally symmetric local equation defined in a
reduced ambient space (see Section 3.2), which, in turn, is used to exhibit an
explicit smooth local equation for the spectral manifold λ−1(M); see Sections 3.3–
3.4.

Example 2.7 (The case M = {x}.). Recall that the stabilizer On
X of a matrix

X ∈ Sn under the action of the orthogonal group On is defined by

On
X := {U ∈ On : U�XU = X}.

For x ∈ Rn≥, we have an exact description of the stabilizer On
Diag(x) of the matrix

Diag(x). Indeed, with the partition Px = {I1, . . . , Im}, U ∈ On
Diag(x) is a block-

diagonal matrix made up of matrices Ui ∈ O|Ii |. Conversely, every such block-
diagonal matrix clearly belongs to On

Diag(x). In other words, we have the identifica-
tion On

Diag(x) � O|I1| × · · ·×O|Im |. Since Op is a manifold of dimension p(p−1)/2,
On

Diag(x) is a manifold of dimension
∑m

i =1 |Ii |(|Ii | − 1)/2. It is well-known that
the orbit On.Diag(x) is diffeomorphic to the quotient manifold On/On

Diag(x). Thus,
On.Diag(x) is a submanifold of Sn of dimension

dim On.Diag(x) = dim On − dim On
Diag(x) =

n(n − 1)
2

−
m∑

i =1

|Ii |(|Ii | − 1)
2

=
n2 −∑m

i =1 |Ii |2
2

=
∑

1≤i< j≤m

|Ii ||I j |,

where we have twice used the fact that n =
∑m

i =1 |Ii |.
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Let us now explain how a natural approach to show that λ−1(M) is a mani-
fold using local equations, would fail. Assume that the manifold M of dimension
d ∈ {0, 1, . . . , n} is described by a smooth equation ϕ : Rn → Rn−d around the
point x ∈ M ∩ Rn≥. This gives a function ϕ ◦ λ, whose zeros characterize λ−1(M)
around X ∈ λ−1(M); i.e., for all Y ∈ Sn around X ,

(2.6) Y ∈ λ−1(M) ⇐⇒ λ(Y ) ∈ M ⇐⇒ ϕ(λ(Y )) = 0.

However, we cannot guarantee that � := ϕ ◦ λ is smooth, unless ϕ is locally
symmetric (in which case, Theorem 2.2 applies). However, as shown in the next
easy example (cf. [7, Example 5.5] and also [6, Example 3.8]), local equations
ϕ : Rn → R of a locally symmetric submanifold of Rn can fail to be locally sym-
metric.

Example 2.8 (A symmetric manifold without symmetric equations). Con-
sider the symmetric (affine) submanifold of R2 of dimension 1

M = {(x, y) ∈ R2 : x = y} = �((12)).

The associated spectral set

λ−1(M) = {A ∈ S2 : λ1(A) = λ2(A)} = {αI2 : α ∈ R}
is a submanifold of S2 around I2 = λ−1(1, 1). However, although λ−1(M) is a
(spectral) 1-dimensional submanifold of S2, it cannot be described by a local equa-
tion that is a composition of λ with a symmetric local equation ϕ : R2 → R of M
around (1, 1). Indeed, assume to the contrary that such a local equation of M ex-
ists, i.e., there exists a smooth symmetric function ϕ : R2 → R with surjective
derivative ∇ϕ(1, 1) which satisfies ϕ(x, y) = 0 if and only if x = y. Consider now
the two smooth paths c1 : t �→ (t, t) and c2 : t �→ (t, 2 − t). Since ϕ ◦ c1(t) = 0,

(2.7) ∇ϕ(1, 1)(1, 1) = 0.

On the other hand, since c′
2(1) = (1,−1) is normal to M at (1, 1) and since ϕ is

symmetric, the smooth function t �→ (ϕ ◦ c2)(t) has a critical point at t = 1. Thus

(2.8) 0 = (ϕ ◦ c2)
′(1) = ∇ϕ(1, 1)(1,−1).

But (2.7) and (2.8) imply that ∇ϕ(1, 1) = (0, 0), which is a contradiction.

We close this section by observing that the property of local symmetry intro-
duced in Definition 2.4 is necessary and, in a sense, minimal. In any case, as
revealed by the following examples, it cannot easily be relaxed.
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Example 2.9 (A manifold without symmetry). Consider the manifold
N = {(t, 0) : t ∈ (−1, 1)} ⊂ R2. We have an explicit expression for λ−1(N):

λ−1(N) =

{[
t cos2 θ t(sin 2θ)/2

t(sin 2θ)/2 t sin2 θ

]
,

[
−t sin2 θ t(sin 2θ)/2

t(sin 2θ)/2 −t cos2 θ

]
: t ≥ 0

}
.
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Figure 1. A spectral subset of S2 represented in R3.

It can be proved that this lifted set is not a submanifold of S2, since it has a
sharp point at the zero matrix, as suggested by Figure 1.

Example 2.10 (A manifold without enough symmetry). Consider the set
N = {(t, 0,−t) : t ∈ (−ε, ε)} ⊂ R3, and let x = (0, 0, 0) ∈ N. Then, �Px =
{(α, α, α) : α ∈ R}, and N is a smooth submanifold of R3 which is symmetric
with respect to the affine set �Px . However, it is not locally symmetric. Indeed, it
can be easily seen that the set λ−1(N) is not a submanifold of S3 around the zero
matrix.

2.3 Properties of locally symmetric manifolds. In this subsection, we
collect definitions and results from [7] that are needed in the present work. Note
first that if x ∈ M ∩ Rn≥, then every set in Px contains consecutive integers.
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Definition 2.11. Consider partitions P,P′ ∈ �n.
• The partition P′ is said to be much smaller than P, written P′ ≺≺ P,

whenever P′ ≺ P and there exists some set in P′ which is formed by merging
at least two sets from P, at least one of which contains at least two elements.

• When P′ ≺ P but P′ is not much smaller than P, we write P′ ≺∼ P. In other
words, if P′ ≺ P but P′ is not much smaller than P, then every set in P′ that
is not in P is formed by uniting one-element sets from P.

Suppose that M is a locally symmetric manifold. Among the partitions P ∈ �n

such that M ∩ Rn≥ ∩ �P �= ∅, there is a unique maximal partition P∗ called the
characteristic partition of M. The characteristic partition describes the strata
that may intersect M:

(2.9) M ⊆ �P∗ ∪
( ⋃

P≺∼P∗

�P

)
⊆ �⊥⊥

P∗ .

Formula (2.9) implies that every set in P∗ contains consecutive integers, and the
tangent space TM(x) of M at x satisfies

(2.10) TM(x) ⊂ �⊥⊥
P∗ .

The stratum �P∗ is dense in M: for every x ∈ M and δ > 0,

M ∩�P∗ ∩ B(x, δ ) �= ∅.(2.11)

Define

N
1
n := the union of all sets in P∗ with exactly one element, and

N
2
n := the union of all sets in P∗ with more than one elements.

Clearly, Nn is the disjoint union of N1
n and N

2
n. (Either N1

n or N2
n may possibly be

empty.)

Definition 2.12. The characteristic partition P∗ of M yields a canonical
split of Rn as a direct sum of the spaces RN

1
n and RN

2
n as follows. Each vector

x ∈ Rn is represented as

(2.12) x = xF ⊗ xM ,

where
• xF ∈ RN

1
n is the subvector of x obtained by collecting the coordinates that

have indices in one-element sets of P∗, preserving their relative order;
• xM ∈ RN

2
n is the subvector of x obtained by collecting the remaining coordi-

nates, again preserving their order.
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It is readily seen that the canonical split is both a linear and a reversible opera-
tion. Reversibility means that given xF ∈ RN

1
n and xM ∈ RN

2
n , there exists a unique

xF ⊗ xM ∈ Rn such that

(xF ⊗ xM )F = xF and (xF ⊗ xM )M = xM .

In the particular case P∗ = idn, x = xF for all x ∈ Rn.

Definition 2.13. P ∈ �n is called P∗-decomposable if P � P◦ for some
P◦ ≺∼ P∗.

Note that a P∗-decomposable partition P has the property that if a set in P

contains elements from N
1
n, then it cannot contain elements from N

2
n. Accord-

ing to (2.9), if x ∈ M, Px is P∗-decomposable; moreover, every P � Px is P∗-
decomposable.

Definition 2.14. For a P∗-decomposable partition P, define the partitions
PF ∈ �N1

n
and PM ∈ �N2

n
as follows:

• PF contains those sets of P that contain only elements from N
1
n;

• PM contains the remaining sets of P (those containing only elements from
N

2
n).

The disjoint union P = PF ∪ PM is called the P∗-decomposition of P.

For example, applying the P∗-decomposition to P∗ yields PF∗ = idN1
n
. Notice

that the P∗-decomposition cannot be applied to partitions P that are much smaller
than P∗, since these partitions may have sets containing elements from both N

1
n

and N
2
n. We now summarize the properties of P∗ and the P∗-decomposition that

are needed later.

Proposition 2.15. (i) P ≺∼ P∗ if and only if PF ≺ idN1
n
and PM = PM∗ ;

(ii) If x ∈ M and Px 
 P, then PF
x 
 PF 
 idN1

n
and PM∗ = PM

x 
 PM.

If P ∈ �n is P∗-decomposable, then the partitions PF ∈ �N1
n
and PM ∈ �N2

n

define strata in RN
1
n and RN

2
n , respectively; see (2.1), (2.2), and (2.3). A glance at

(2.2) and (2.3) reveals the following relations:

(2.13) �⊥⊥
P = �⊥⊥

PF ⊗�⊥⊥
PM and �⊥

P = �⊥
PF ⊗�⊥

PM .

As above, for x ∈ M, let TM(x) be the tangent space of M at x, and let NM(x) be
the normal space of M at x. The local symmetry of M implies that these spaces
are invariant under all permutations σ ∈ �n

x . For all x ∈ M,

TM(x) = (TM(x) ∩�⊥⊥
Px

) ⊕ (TM(x) ∩�⊥
Px

), and(2.14)

NM(x) = (NM(x) ∩�⊥⊥
Px

) ⊕ (NM(x) ∩�⊥
Px

).(2.15)
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It has been established in [7, Section 5.1] that for all x ∈ M,

if w ∈ TM(x) then wM ∈ �⊥⊥
PM

x
; and(2.16)

if v ∈ NM(x), then vF ∈ �⊥⊥
PF

x
.(2.17)

The following lemma complements the structural property (2.16).

Lemma 2.16 ([7, Lemma 6.1]). For every x ∈ M and ε > 0, there exists

w ∈ TM(x) ∩ B(0, ε) such that in the vector wF ∈ RN
1
n , every subvector wF

I has

distinct coordinates for every set I in the partition PF
x .

In the rest of this section, we briefly recall a local equation, the tangential
parametrization, for a submanifold of Rn, specialized to our context of a locally
symmetric manifold M. Let πT : Rn → TM(x) denote the orthogonal projection
onto the tangent space at x, and let πN be the orthogonal projection onto the normal
space NM(x). Let π̄T : Rn → x + TM(x) be the projection onto the affine space
x + TM(x); and, similarly, let π̄N denote the projection of Rn onto x + NM(x). Note
that for all y ∈ Rn sufficiently close to x,

π̄T (y) + π̄N (y) = x + y.(2.18)

The local symmetry of M implies the existence of δ > 0 such that

(2.19) σπ̄T (y) = π̄T (σy) and σπ̄N (y) = π̄N (σy)

for all y ∈ B(x, δ ) and all σ ∈ �n
x . Choosing smaller δ > 0, if necessary, we can

ensure that the following conditions hold.
A1. The restriction π̄T : M ∩ B(x, δ ) → x + TM(x) is a diffeomorphism onto its

image.
A2. The ball B(x, δ ) intersects only strata �P with P � Px.

Under the above conditions, M ∩ B(x, δ ) is a strongly locally symmetric man-
ifold; see (2.5). In addition, there exists a smooth map

(2.20) φ : (x + TM(x)) ∩ B(x, δ ) → NM(x)

such that

(2.21) M ∩ B(x, δ ) = {y + φ(y) ∈ Rn : y ∈ (x + TM(x)) ∩ B(x, δ )}.

The map φ measures the difference between the manifold and its tangent space.
Clearly, φ ≡ 0 if M is an affine manifold around x. Note that, technically speaking,
the domain of the map φ is the (strongly symmetric) open set π̄T (M ∩ B(x, δ )),
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which may be a proper subset of (x+TM(x))∩B(x, δ ). To keep the paper readable,
we do not introduce the more precise (but also more complicated notation) of a
rectangular neighborhood around x.

We call the map ψ : (x + TM(x)) ∩ B(x, δ ) → M ∩ B(x, δ ) defined by

(2.22) ψ(y) = y + φ(y)

the tangential parametrization of M around x. This function is smooth,
one-to-one and onto, with a full rank Jacobian matrix Jψ(x): it is a local diffeo-
morphism at x; and its inverse is π̄T , i.e., locally π̄T (ψ(y)) = y.

We can now state the main result of [7], noting that the proof of (2.23) utilizes
the fundamental relation (2.17) established in [7, Theorem 5.1].

Theorem 2.17 ([7, Theorem 5.1].). For x ∈ M, the function φ in (2.22)
satisfies

(2.23) φ(x) ∈ NM(x) ∩�⊥⊥
Px
.

Moreover, for all y ∈ (x + TM(x)) ∩ B(x, δ ) and for all σ ∈ �n
x,

(2.24) ψ(σy) = σψ(y)

and

(2.25) φ(σy) = σφ(y) = φ(y).

3 Spectral manifolds

We begin this section with an example of the special case in which the (locally
symmetric) manifold M is (a relatively open subset of) a stratum �P. In this case,
basic algebraic arguments allow us to conclude directly that λ−1(M) is a smooth
manifold.

Example 3.1 (Lift of stratum�P). Suppose that a manifold M is (a relatively
open subset of) a stratum �P and intersects Rn≥. We show directly that the spec-
tral set λ−1(M) is an analytic (fiber) manifold, using basic arguments exposed in
Example 2.7. As stated there, the orbit On

Diag(x) is a submanifold of Sn of dimen-
sion

∑
1≤i< j≤m |Ii ||I j |, where P = {I1, . . . , Im}. The key is to observe that, in our

case, for all x ∈ M, On
Diag(x) � O|I1| × · · · × O|Im | and Px = P. Then, all the orbits

On.Diag(x) are manifolds diffeomorphic to On/On
Diag(x̄) (fibers), hence of the same

dimension. We deduce that λ−1(M) is a submanifold of Sn diffeomorphic to the
direct product M × (

On/On
Diag(x̄)

)
, with dimension

dimλ−1(M) = d +
∑

1≤i< j≤m

|Ii ||I j |.(3.1)
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The proof of the general situation (M an arbitrary locally symmetric manifold)
is a (non-trivial) generalization of the above arguments. The strategy is more
precisely explained in Section 3.2. First, in Section 3.1, we treat the special case
P∗ = idn. In this case, the proof that a locally symmetric manifold lifts smoothly in
Sn goes through without extra technicalities, illustrating the main ideas. Moreover,
the main result in the special case P∗ = idn is a needed step in the general case.

We require the following definition.

Definition 3.2 (Ordered partition). A partition P = {I1, . . . , Im} of Nn is
called ordered if whenever 1 ≤ i < j ≤ m, the smallest element in Ii is (strictly)
smaller than the smallest element in I j .

For example, the ordered version of the partition {{4}, {3, 2}, {1, 5}} of N5

is {{1, 5}, {2, 3}, {4}}. Consider an ordered partition P = {I1, . . . , Im} of Nn.
Consider the space Sn

P of all block-diagonal symmetric matrices in which the �-th
block is of size |I�|, and denote by On

P the subgroup of block-diagonal orthogonal
matrices in which the �-th block is of size |I�|. Denote by XP = Diag(X1, . . . ,Xm)
an element of Sn

P, where X� ∈ S|I�|. For XP ∈ Sn
P, we define

λP(XP) :=
(
λ(X1), . . . , λ(Xm)

) ∈ Rn.

Note the difference between λP(XP) and λ(XP): the coordinates of λP(XP) are or-
dered within each block, whereas those of λ(XP) are ordered globally. For techni-
cal reasons, we need a slight modification of Theorem 2.2 (Derivatives of spectral
functions) to cover the case of spectral functions of the type f ◦ λP on Sn

P.

Lemma 3.3. Suppose that f : Rn → R is locally symmetric at x ∈ Rn≥. For
sufficiently small δ > 0, the function F : Sn

Px
→ R defined by F = f ◦ λPx is

Ck on λ−1
Px

(B(x, δ )) if and only if f is Ck on B(x, δ ). The Jacobian of f ◦ λPx at

X ∈ λ−1
Px

(B(x, δ )) applied to H ∈ Sn
Px

is

J( f ◦ λPx)(X)[H ] = J( f ◦ λ)(X)[H ].

Here k ∈ {1, 2, 3, . . . ,∞, ω}.

Proof. Let Px = {I1, . . . , Im} and X = Diag(X1, . . . ,Xm) ∈ λ−1
Px

(B(x, δ )).
Suppose B(x, δ ) intersects only strata �P with P � Px. The fact that x ∈ Rn≥
implies that λmin(X�) > λmax(X�+1) for 1 ≤ � ≤ m − 1. Hence λPx(X) = λ(X), and
the claim follows from Theorem 2.2. �
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3.1 Lift into Sn (case P∗ = idn). In this subsection, we consider the case
P∗ = idn. This condition implies that PF = P for any P∗-decomposable partition
P, and vF = v for any v ∈ Rn. Thus, Property (2.17) simplifies to

(3.2) NM(x) ⊆ �⊥⊥
Px

for all x ∈ M.

The goal here is to establish, under conditions (A1)–(A2), that if x ∈ M∩Rn≥, then
λ−1

Px
(M∩B(x, δ )) is a submanifold of Sn

Px
, and to calculate its dimension. This is an

intermediate step on the way to proving that λ−1(M) is a submanifold of Sn. The
advantage of treating first the special case P∗ = idn is twofold: on the one hand,
the results in this subsection are needed later; and, on the other, the succession of
arguments in the general case is similar to the that for the special case.

Using (3.2), we can easily exhibit a locally symmetric local equation of M.
Thus, we fix x ∈ M ∩ Rn≥ and recall the definitions of the projections π̄T and π̄N .

Lemma 3.4. If P∗ = idn, then π̄N is locally symmetric at x.

Proof. Take y ∈ B(x, δ ′), where δ > δ ′ > 0 is so small that B(x, δ ) intersects
only strata �P for P � Px. Without loss of generality, assume that there exists
z ∈ M ∩ B(x, δ ) such that π̄N (y) = π̄N (z). The fact that z ∈ �⊥⊥

Pz
together with

(3.2), applied to z, gives that z + NM(z) ⊆ �⊥⊥
Pz

. Therefore, π̄N (z) ∈ �⊥⊥
Pz

; and,
consequently, for all σ ∈ �n

x , π̄N (σy) = σπ̄N (y) = σπ̄N (z) = π̄N (z) = π̄N (y). This
means that π̄N is locally symmetric at x. �

Recall also the definition of φ given by (2.20) and the conditions on the ball
B(x, δ ) there. Define the function φ̄ : B(x, δ ) → NM(x) by

(3.3) y �→ x + φ(π̄T (y)) − π̄N (y).

Lemma 3.5 (Existence of a locally symmetric local equation in the case
P∗ = idn). The function φ̄ defined by (3.3) is a local equation of M around x ∈ M

which is locally symmetric. In other words,

φ̄(σy) = σφ̄(y) = φ̄(y) for all y ∈ B(x, δ ) and all σ ∈ �n
x .

Proof. Successive use of (2.18) and (2.21) gives, for y ∈ B(x, δ ), the equiva-
lence of following statements:

(i) φ̄(y) = 0;
(ii) π̄N (y) = x + φ(π̄T (y));
(iii) y = π̄T (y) + φ(π̄T (y));
(iv) y ∈ M ∩ B(x, δ ).
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The Jacobian mapping Jφ̄(y) is a linear map from Rn to NM(x), which, when
applied to any direction h, yields Jφ̄(y)[h] = Jφ(π̄T (y))[πT (h)] − πN (h). Clearly,
Jφ̄(x)[h] = −h for h ∈ NM(x), which shows that the Jacobian is onto and hence of
full rank. Thus, φ̄ is a local equation of M around x. In view of Theorem 2.17 and
the symmetries of the projections, (φ ◦ π̄T )(σy) = (φ ◦ π̄T )(y) for all σ ∈ �n

x and
y ∈ B(x, δ ). This implies that σ−1φ̄(σy) = σ−1(x + (φ ◦ π̄T )(y) − σπ̄N (y)) = φ̄(y).
Since φ̄(y) ∈ NM(x) ⊂ �⊥⊥

Px
, we obtain the second claimed equality σφ̄(y) =

φ̄(y). �
Next, consider the map �̄ : λ−1

Px
(B(x, δ )) → NM(x) defined by

(3.4) X �→ (φ̄ ◦ λPx)(X) = x + φ(π̄T (λPx(X))) − π̄N (λPx(X)).

Since φ̄ is a local equation of M around x, we deduce that for X ∈ Sn
Px

,

(3.5) X ∈ λ−1
Px

(M ∩ B(x, δ )) ⇐⇒ λPx(X) ∈ M ∩ B(x, δ ) ⇐⇒ �̄(X) = 0.

Thus, in order to prove that �̄ is a local equation for λ−1
Px

(M ∩ B(x, δ )), it remains
to establish that �̄ is Ck-differentiable and that its Jacobian J�̄ has full rank at
X ∈ λ−1

Px
(x). This is accomplished in Theorem 3.7. First we need the following

lemma.

Lemma 3.6. The function π̄N ◦ λPx is analytic on λ−1
Px

(B(x, δ )). Moreover, at

each X ∈ λ−1
Px

(B(x, δ )) and every direction H ∈ Sn
Px

,

J(π̄N ◦ λPx)(X)[H ] = πN (diag (UHU�)),

where U ∈ On
Px

is such that X = U�(DiagλPx(X)
)
U.

Proof. By Lemma 3.4, π̄N is locally symmetric at x. By Lemma 3.3,
π̄N ◦ λPx is analytic on λ−1

Px
(B(x, δ )). Its Jacobian at X ∈ λ−1

Px
(B(x, δ )) in the direc-

tion H ∈ Sn
Px

is

J(π̄N ◦ λPx)(X)[H ] = J(π̄N ◦ λ)(X)[H ] = Jπ̄N (λ(X))[diag(UHU�)]

= πN (diag (UHU�)).

The second equality follows by (2.4). �

Theorem 3.7 (Main result (case P∗ = idn)). Let M be a locally symmetric
Ck submanifold of Rn of dimension d. Suppose P∗ = idn, fix x ∈ M ∩ Rn≥ and

let δ > 0 be such that conditions (A1)–(A2) hold. Then λ−1(M ∩ B(x, δ )) is a
Ck submanifold of Sn with codimension n − d. Here k ∈ {2, 3, . . . ,∞, ω}.
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Proof. By Theorem 2.17 and (2.19), the function φ ◦ π̄T is locally symmetric
at x. Therefore, Lemma 3.3 yields that φ ◦ π̄T ◦ λPx is Ck on λ−1

Px
(B(x, δ )) =

λ−1(B(x, δ )). Combining this with Lemma 3.6, we deduce that the function �̄
defined by (3.4) is Ck on λ−1(B(x, δ )).

Let us now show that the Jacobian J�̄ has full rank at X ∈ λ−1(B(x, δ )). First,
the gradient of the i-th coordinate function φi ◦ π̄T at x applied to the direction h is

∇(φi ◦ π̄T )(x)[h] = ∇φi(π̄T (x))[πT (h)].

Second, Lemma 3.3 and Theorem 2.2 give that the gradient of φi ◦ π̄T ◦ λ at X in
the direction H ∈ Sn is

∇(φi ◦ π̄T ◦ λ)(X)[H ] = ∇φi(π̄T (λ(X)))[πT (diag (UHU�))],

where U ∈ On satisfies X = U�(Diagλ(X))U . Combining this with Lemma 3.6
we obtain the following expression for the derivative of the map �̄:

J�̄(X)[H ] = Jφ(π̄T (λ(X)))[πT (diag (UHU�))] − πN (diag (UHU�)).

Notice that for each h ∈ NM(x), defining H := U�(Diag h)U ∈ Sn, we have
J�̄(X)[H ] = −h, which shows that the linear map J�̄(X) : Sn → NM(x) is onto
and thus has full rank. In view of (3.5), �̄ is a local equation of M around X .

Since d = dim (M) = dim (TM(x)) and dim (NM(x)) = n − d , and since φ̄ and
�̄ are local equations of the manifolds M and λ−1(M∩B(x, δ )), respectively, these
manifolds have the same codimension n − d . �

3.2 Reduction of the ambient space (general case). We now consider
a manifold M with general characteristic partition P∗ and δ > 0 such that condi-
tions (A1)–(A2) hold. Using (2.21) and (2.23), we obtain the inclusion

M ∩ B(x, δ ) ⊂
(
x + TM(x) ⊕ (NM(x) ∩�⊥⊥

Px

) ) ∩ B(x, δ ).

To define a local equation of M in the appropriate space, we introduce the reduced
tangent and normal spaces:

(3.6) T red
M (x) := TM(x) ∩�⊥

Px
and N red

M (x) := NM(x) ∩�⊥⊥
Px
.

Note that these spaces are invariant under permutations σ ∈ �n
x . For later use,

when calculating the dimension of spectral manifolds, we write

(3.7) nred := dimN red
M (x).
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We now describe the set on which the local equation of λ−1(M) is to be defined.
Let x = xF ⊗ xM be the canonical split of x in Rn. Naturally, B(xF , δ1) denotes the
open ball in RN

1
n centered at xF with radius δ1, and B(xM , δ2) denotes the open ball

in RN
2
n centered at xM with radius δ2. Define the rectangular neighborhood of x

B(x, δ1, δ2) := B(xF , δ1) ⊗ B(xM , δ2).

Choose δ1, δ2 such that B(x, δ1, δ2) ⊂ B(x, δ ). By conditions (A1)–(A2) and
Proposition 2.15 (ii), B(xF , δ1) intersects only strata�PF ⊂ RN

1
n for PF � PF

x , and
similarly for the ball B(xM , δ2). Thus, B(x, δ1, δ2) is invariant under permutations
σ ∈ �n

x .
The key element in our next development is the set

(3.8) D :=
(
x + TM(x) ⊕ N red

M (x)
)∩ B(x, δ1, δ2),

which plays the role of a new ambient space. Indeed, D is an affine manifold of Rn

and, as it turns out, is the domain of a symmetric local equation of M. We gather
properties of D in the next proposition.

Proposition 3.8. In the situation above,

(3.9) TM(x) ⊕ N red
M (x) = T red

M (x) ⊕�⊥⊥
Px
.

Hence

D =
(
x +

(
T red
M (x) ⊕�⊥⊥

Px

)) ∩ B(x, δ1, δ2).

Moreover, D is invariant under all permutations σ ∈ �n
x, and so is a locally sym-

metric set.

Proof. Since TM(x) and NM(x) are orthogonal complements, applying suc-
cessively (3.6) and (2.14), we have

TM(x) ⊕ N red
M (x) = TM(x) ⊕ (NM(x) ∩�⊥⊥

Px

)
= (TM(x) ∩�⊥

Px
) ⊕ (TM(x) ∩�⊥⊥

Px
) ⊕ (NM(x) ∩�⊥⊥

Px
)

=
(
TM(x) ∩�⊥

Px

)⊕�⊥⊥
Px

= T red
M (x) ⊕�⊥⊥

Px
,

which yields (3.9) since x ∈ �⊥⊥
Px

and 0 ∈ T red
M (x). The invariance of D follows

from the invariance of each set in the intersection. �
Let π̄red

N and πred
N be the projections onto x + N red

M (x) and N red
M (x), respectively.

Note that

(3.10) x + y = π̄T (y) + π̄red
N (y) for all y ∈ x + TM(x) ⊕ N red

M (x).

The next result is the analogue of Lemma 3.4.



SPECTRAL (ISOTROPIC) MANIFOLDS AND THEIR DIMENSION 387

Lemma 3.9. The projection π̄red
N is locally symmetric at x.

Proof. Projecting onto x + N red
M (x) can be accomplished in two steps: first

projecting onto x + �⊥⊥
Px

and then onto x + N red
M (x). Now, the projection onto

x + �⊥⊥
Px

is given by y �→ x + 1
|�n

x |
∑
σ∈�n

x
σy [7, Lemma 2.9]. Since it is locally

symmetric at x, the result follows. �
Similarly to (3.3), we define the map φ̄ : D → N red

M (x) by

(3.11) y �→ x + φ(π̄T (y)) − π̄red
N (y).

The next lemma is an analogue of Lemma 3.5.

Lemma 3.10. The map φ̄ is well-defined, locally symmetric, and is a local

equation of M around x.

Proof. The set D is chosen so that φ is well-defined. Thanks to (2.23) and
the fact that x − π̄red

N (y) ∈ N red
M (x), the range of φ̄ is in N red

M (x). The remainder
of the proof follows closely that of Lemma 3.5. In view of (3.10), (2.21) and
Theorem 2.17, we see that for all y ∈ D, the following statements are equivalent:

(i) φ̄(y) = 0;
(ii) π̄red

N (y) = x + φ(π̄T (y));
(iii) y = π̄T (y) + φ(π̄T (y));
(iv) y ∈ M ∩ B(x, δ ).

The Jacobian of φ̄ at y is the linear map from TM(x) ⊕ N red
M (x) to N red

M (x) given by

Jφ̄(y)[h] = Jφ(π̄T (y))[πT (h)] − πred
N (h).

Clearly, for h ∈ N red
M (x), Jφ̄(x)[h] = −h, which shows that the Jacobian Jφ̄ at

x is onto and has full rank. Thus, φ̄ is a local equation of M around x. Finally,
Theorem 2.17 shows that for each σ ∈ �n

x and y ∈ D, φ(π̄T (σy)) = φ(σπ̄T (y)) =
φ(π̄T (y)). This, together with Lemma 3.9, gives the local symmetry of φ̄. �

We introduce the spectral function �̄ : λ−1(D) → N red
M (x) associated with φ̄,

defined by

(3.12) X �→ (φ̄ ◦ λ)(X) = x + φ(π̄T (λ(X))) − π̄red
N (λ(X)).

By construction, the zeros of �̄ characterize M, since

(3.13) X ∈ λ−1(M ∩ B(x, δ )) ⇐⇒ λ(X) ∈ M ∩ B(x, δ ) ⇐⇒ �̄(X) = 0.

At this stage, let us compare (3.12) with (3.4) and the particular treatment in Sec-
tion 3.1. In Section 3.1, we had NM(x) ⊆ �⊥⊥

Px
, yielding N red

M (x) = NM(x) and



388 A. DANIILIDIS, J. MALICK, AND H. SENDOV

thus D = B(x, δ1, δ2), which is an open subset of Rn. Unfortunately, in the general
case, there is an extra difficulty, stemming from the fact that D is not open in Rn.
Consequently, �̄ is defined on a subset λ−1(D) of Sn, of lower dimension. To work
around this diffuculty, we proceed as follows.

1 Transfer of local approximation. We show that the set λ−1(D) is an analytic
manifold locally around X ∈ λ−1(x), and calculate its dimension.

2 Transfer of local equation. We show that the function �̄ defined on λ−1(D) is
differentiable with derivative at X of full rank (as a linear map on the tangent
space of λ−1(D)).

3.3 Transfer of the local approximation. The goal of this subsection is
to show that locally around X ∈ λ−1(x) the set λ−1(D) is an analytic submanifold
of Sn. We do this in two steps. The first step consists of showing that the F -part
and the M -part of D give rise to analytic submanifolds in the spaces S|N1

n|
PF

x
and

S|N2
n|

PM
x

respectively. In the second step, we show that ‘intertwining’ the two parts
preserves this property in the space Sn. Suppose the partition Px = PF

x ∪ PM
x is

made up of the sets

(3.14) PF
x = {I1, . . . , Iκ} and PM

x = {Iκ+1, . . . , Iκ+m}.
Lemma 3.11. The affine manifold D can be decomposed as

D =
{
yF ⊗ yM : yF ∈ DF , yM ∈ DM},

where DF and DM are affine manifolds defined by

DF :=
(
[T red

M (x)]F ⊕�PF
x

) ∩ B(xF , δ1) and

DM := �PM
x

∩ B(xM , δ2)

and [T red
M (x)]F is the F-part of the reduced space T red

M (x). The sets DF and DM are

locally symmetric, and dimDF = d + nred − m.

Proof. Recalling the definition of T red
M (x̄) and using (2.16) and the right part

of (2.13), one sees that yM = 0 for every y = yF ⊗ yM ∈ T red
M (x). By the left part of

(2.13) with P = Px, combined with Proposition 3.8,

D =
{
yF ⊗ yM : yF ∈ ([T red

M (x)]F ⊕�⊥⊥
PF

x

) ∩ B(xF , δ1), yM ∈ �⊥⊥
PM

x
∩ B(xM , δ2)

}
=
{
yF ⊗ yM : yF ∈ ([T red

M (x)]F ⊕�PF
x

) ∩ B(xF , δ1), yM ∈ �PM
x

∩ B(xM , δ2)
}
,

where we have used the facts that the ball B(xF , δ1) intersects only strata�PF with
PF � PF

x and similarly for the ball B(xM , δ2). The desired expressions for DF and
DM follow.
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By Proposition 3.8, the set D is invariant under all permutations in �n
x . Thus,

by Proposition 2.15(ii), being the F -part and the M -part of D respectively, the sets
DF and DM are invariant with respect to the permutations preserving PF

x and PM
x ,

respectively. We now compute the dimension of DF . Proposition 3.8 yields

x + TM(x) ⊕ N red
M (x) = T red

M (x) ⊕ �⊥⊥
Px

=
(
[T red

M (x)]F ⊕�⊥⊥
PF

x

)⊗ ({0} ⊕�⊥⊥
PM

x

)
,

where the zero vector is of dimension |N2
n|. Thus, using (3.9), (3.7), and the fact

that dim�⊥⊥
PM

x
= m, we get d + nred = dimDF +dim�⊥⊥

PM
x

, completing the proof.�
In the next two lemmas, we show that the two parts of D lift to manifolds

λ−1
PM

x

(
DM

)
and λ−1

PF
x

(
DF
)
. Let us start with the easier case, concerning the M -part.

Lemma 3.12. The set SM := λ−1
PM

x

(
DM

)
is an analytic submanifold in S|N2

n|
PM

x

with codimension
∑m

i =1

(|Iκ+i |(|Iκ+i | + 1)
)
/2 − m.

Proof. Vectors in �PM
x

have equal coordinates within each block Iκ+i . Each
block lifts to a multiple of the identity matrix (of appropriate dimension). Since the
lifting λ−1

PM
x

is block-wise, SM is a direct product of multiples of identity matrices.
Hence it is an analytic submanifold with dimension m. �

Lemma 3.13. The set SF := λ−1
PF

x
(DF ) is an analytic submanifold in S|N1

n|
PF

x
with

codimension |N1
n| − (d + nred − m).

Proof. By Lemma 3.11, DF is a locally symmetric affine submanifold of RN
1
n .

Our aim is to show that the characteristic partition of DF is idN1
n
. Then, apply-

ing Theorem 3.7 to DF shows that SF is an analytic submanifold of codimension
|N1

n| − (d + nred − m).
To this end, fix ε > 0, and let ω ∈ TM(x̄) ∩ B(0, ε) have the properties

stated in Lemma 2.16, i.e., ωF ∈ RN
1
n is such that each subvector ωF

Ii has dis-
tinct coordinates for all i ∈ Nκ. By (2.14), there exists a unique representation
ω = ω⊥ + ω⊥⊥,where ω⊥ ∈ T red

M (x) and ω⊥⊥ ∈ TM(x) ∩�⊥⊥
Px

. Taking the F -parts,
we have ωF = ωF⊥ + ωF⊥⊥ with ωF⊥ ∈ [T red

M (x̄)]F and ωF⊥⊥ ∈ �⊥⊥
PF

x
. Recall that

PF
x = {I1, . . . , Iκ}, and write ωF⊥ = ωF − ωF⊥⊥. Since the subvector ωF

Ii has dis-
tinct coordinates, whereas (ωF⊥⊥)Ii has equal coordinates, the subvector (ωF⊥)Ii has
distinct coordinates for all i ∈ Nκ.

Consider now DF . Fix xF ∈ �PF
x

∩ B(xF , δ1). Taking ω close to 0 ensures that
ωF⊥ is close to 0, all of the coordinates of ωF⊥ + xF are distinct, and ωF⊥ + xF ∈ DF .
Thus DF ∩�id

N1
n
�= ∅, and the characteristic partition of the affine manifold DF is

idN1
n
, as asserted. �
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We show that λ−1(D), the intended domain of the local equation of λ−1(M),
is an analytic manifold by merging the results of the two preceding lemmas using
the following technical result.

Proposition 3.14 (Local canonical split of Sn induced by Px). For each
x ∈ M ∩ Rn≥, there exist an open neighborhood W ⊂ Sn of X ∈ λ−1(x) and

two analytic maps �F : W → SN
1
n

PF
x

and �M : W → SN
2
n

PM
x

such that

(i) λ(Y ) = λPF
x
(�F (Y )) ⊗ λPM

x
(�M (Y )) for all Y ∈ W;

(ii) the Jacobians of the analytic maps�F and �M have full rank at X.

Proof. To each set in the partition Px = {I1, . . . , Im}, we apply the following
classical result on eigenvalues [2, Example 3.98]. Let X ∈ Sn have eigenvalues

λ1(X) ≥ · · · ≥ λk−1(X) > λk(X) = · · · = λk+r−1(X) > λk+r(X) ≥ · · · ≥ λn(X);

then there exist an open neighborhood W ⊂ Sn of X and an analytic map
� : W → Sr such that

(i) {λk(Y ), . . . , λk+r−1(Y )} = {λ1(�(Y )), . . . , λr(�(Y ))} for all Y ∈ W , and
(ii) the Jacobian of � has full rank at X .

Recall now that each I� contains consecutive integers and assume, without loss
of generality, that Px is an ordered partition, i.e., for all 1 ≤ �1 < �2 ≤ m,
i ∈ I�1 , j ∈ I�2 implies i < j . In other words, λi (X) > λ j (X). Apply the above
result to each I� to get an open neighborhood W� ⊂ Sn of X and an analytic map
�� : W� → S|I� | having full rank Jacobian. Set W =

⋂m
�=1 W� and put the F -pieces

and the M -pieces together; i.e., restricting each�� to W , define the direct products

�F := ×{�� : I� ∈ PF
x } and �M := ×{�� : I� ∈ PM

x }.

The order of multiples in the direct products follows the order of the sets I� in Px.
Then the functions defined above have the desired properties. �

Theorem 3.15. The set λ−1(D) is an analytic submanifold of Sn around
X ∈ λ−1(x) with dimension

(3.15) dimλ−1(D) =
n(n + 1)

2
+ d + nred − |N1

n| −
m∑

i =1

|Iκ+i |(|Iκ+i | + 1)
2

.

Proof. By Proposition 3.14, there exist a neighborhood W ⊂ Sn of X and
analytic maps �F and �M such that

λ(Y ) = λPF
x
(�F (Y )) ⊗ λPF

x
(�M (Y )) for all Y ∈ W.(3.16)
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Set XF := �F (X) ∈ S|N1
n|

PF
x

and XM := �M (X) ∈ S|N2
n|

PM
x

. Then (3.16) gives
x = λ(X) = λPF

x
(XF ) ⊗ λPM

x
(XM ), and hence xF = λPF

x
(XF ) and xM = λPM

x
(XM ),

from which we conclude that XF ∈ SF and XM ∈ SM (recall Lemmas 3.12
and 3.13). Consider the respective codimensions

s1 := co-dimSF = |N1
n| − (d + nred − m), and(3.17)

s2 := co-dimSM =
m∑

i =1

|Iκ+i |(|Iκ+i | + 1)
2

− m.(3.18)

Since �F and �M have Jacobians of full rank at X , they are open around it. By
shrinking W if necessary, we may assume that there exist analytic maps

�F : �F (W ) → Rs1 and �M : �M (W ) → Rs2,

with Jacobians having full rank at XF and XM , respectively, such that

�F (Y ) = 0 ⇔ Y ∈ SF ∩�F (W ) and �M (Y ) = 0 ⇔ Y ∈ SM ∩�M (W ).

We now define a local equation � : W → Rs1 × Rs2 for λ−1(D) around X by

X �→ (�F ◦�F )(X) × (�M ◦�M )(X).

Indeed, using (3.16), we have

�(Y ) = 0 ⇐⇒ λ(Y ) = λPF
x
(�F (Y )) ⊗ λPM

x
(�M (Y )) ∈ D ⇐⇒ Y ∈ λ−1(D)

for all Y ∈ W . That the Jacobian of � has full rank at X follows from the chain
rule and the fact that the Jacobians J�F (X), J�M (X), J�F (XF ), and J�M (XM )
are all of full rank. Thus� is an analytic local equation of λ−1(D) around X , from
which it follows that λ−1(D) is a submanifold of Sn around X . Using (3.17) and
(3.18), we compute its dimension as follows:

dimλ−1(D) = dim Sn − (
co-dimSF + co-dimSM )

=
n(n + 1)

2
+ d + nred − |N1

n| −
m∑

i =1

|Iκ+i |(|Iκ+i | + 1)
2

. �

Theorem 3.15 is an important intermediate result used in Subsection 3.4 be-
low, which contains the final step of the proof. In the following particular case,
Theorem 3.15 actually gives us the result directly.

Example 3.16 (Lift of strata). For a partition P◦ ∈ �n, the set

M := �P◦ ∪
( ⋃

P≺∼P◦
�P

)
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is a locally symmetric manifold with characteristic permutation P◦ [7, Re-
mark 4.6]. Suppose, in addition, that the sets in P◦ contain consecutive integers.
Then M ∩ Rn≥ �= ∅. For each x ∈ M ∩ Rn≥, N red

M (x) = {0}, i.e.,nred = 0. This
means that the affine manifolds M and D coincide locally around x; see (3.8).
In this case, Theorem 3.15 shows directly that λ−1(M) is a manifold in Sn with
dimension given by (3.15).

At first glance, it may appear that the dimension depends on the particular
choice of x. However, since Px = P◦ or Px ≺∼ P◦, Proposition 2.15(ii) implies that
PM

x = PM◦ =: {I◦
κ+1, . . . , I

◦
κ+m}. Let PF◦ = {I◦

1 , . . . , I
◦
κ }. Since n = |N1

n| + |N2
n| =∑κ

i =1 |I◦
i | +

∑κ+m
i =κ+1 |I◦

i |, one can verify that (3.15) becomes

dimλ−1(M) = d +
∑

1≤i< j≤κ+m

|I◦
i ||I◦

j |.

Thus, by (3.1), dimλ−1(M) = dimλ−1(�P◦). This is a particular case of the more
general formula (3.21), below. �

In Example 3.16, the manifold M has a trivial reduced normal space. The
following remark sheds more light on this aspect.

Remark 3.17. Let M be a locally symmetric manifold with characteristic
partition P∗, and let x ∈ M ∩ Rn≥. Then, by (2.21) and (2.23), it can be seen that

N red
M (x) = {0} ⇐⇒ M ∩ B(x, δ ) = (x + TM(x)) ∩ B(x, δ ) for some δ > 0.

Inclusion (2.9) shows that x ∈ �⊥⊥
P∗ , which, together with (2.10), implies that

(x + TM(x)) ⊂ �⊥⊥
P∗ . Thus

N red
M (x) = {0} ⇐⇒ M ∩ B(x, δ ) = �⊥⊥

P∗ ∩ B(x, δ ) for some δ > 0.

3.4 Transfer of local equations, proof of the main result. This sub-
section contains the final step of our argument. We show that (3.12) is indeed a
local equation of M around X ∈ λ−1(x).

Lemma 3.18. The map �̄ defined in (3.12) is of class Ck at X ∈ λ−1(x).
Denote the differential of �̄ at X by D�̄(X) : Tλ−1(D)(X) → N red

M (x),
For every direction H ∈ Tλ−1(D)(X),

(3.19) D�̄(X) [H ] = Dφ (π̄T (λ(X))) [πT (diag(U H U�))] − πred
N (diag(U H U�)),

where U ∈ On is such that X = U�(Diagλ(X))U.



SPECTRAL (ISOTROPIC) MANIFOLDS AND THEIR DIMENSION 393

Proof. We deduce from Theorem 2.17 that for all σ ∈ �n
x and y ∈ D,

(3.20) (φ ◦ π̄T )(σy) = (φ ◦ π̄T )(y).

In addition, the gradient of the i-th coordinate function φi ◦ π̄T at x applied to any
direction h ∈ TD(x) = T red

M (x) ⊕�⊥⊥
Px

(see Proposition 3.8) yields

∇(φi ◦ π̄T )(x)[h] = ∇φi(π̄T (x))[πT (h)].

Thus, by Theorem 2.2, we obtain for H ∈ Tλ−1(D)(X)

∇(φi ◦ π̄T ◦ λ)(X)[H ] = ∇φi (π̄T (λ(X))) [πT (diag (UHU�))] for i ∈ Nn,

where U ∈ On is such that X = U�(Diagλ(X))U . By Lemma 3.9, the projection
π̄red

N is locally symmetric at x. Thus, by (2.4),

J(π̄red
N ◦ λ)(X)[H ] = Jπ̄red

N (λ(X))[diag(UHU�)] = πred
N (diag (UHU�)),

from which (3.19) follows. �
Next, we show that the differential of �̄ at X is of full rank. We accomplish

this without actually computing the tangent space of the manifold λ−1(D) at X .
Instead, we show that the tangent space is sufficiently rich to guarantee surjectivity.

Lemma 3.19. The differential of �̄ at X

D�̄(X) : Tλ−1(D)(X) → N red
M (x)

is onto, and hence has a full rank.

Proof. Let U ∈ On be such that X = U�(Diagλ(X)) U . The tangent space
of On at U is {UA : A is an n × n skew-symmetric matrix}. Thus, for each n × n

skew symmetric matrix A, there exists an analytic curve t �→ U(t) ∈ On such that
U(0) = U and U̇(0) := d

dtU(0) = UA. Now fix h ∈ N red
M (x) and consider the

curve t �→ U(t)�(Diag (x + th))U(t). For all values of t sufficiently close to 0, this
curve lies in λ−1(D), because x+ th lies in D. Introduce the vector xt whose entries
are those of x + th reordered in decreasing way. Since N red

M (x) is invariant under
all permutations σ ∈ �n

x , xt ∈ x + N red
M (x), for t sufficiently close to zero. The

derivative of this curve at t = 0 (i.e., a tangent vector in Tλ−1(D)(X)) is

H := U̇(0)�(Diag x)U(0) + U(0)�(Diag h)U(0) + U(0)�(Diag x)U̇(0)

= −AU�(Diag x)U + U�(Diag h)U + U�(Diag x)UA,

where we have used the fact that A� = −A. Substituting the above expression for
H into (3.19) and using the facts that UU� = U�U = I and that UAU�(Diag x)
and (Diag x)UAU� have the same diagonal, we obtain D�̄(X)[H ] = −h, which
shows that D�̄(X) is surjective onto N red

M (x). �
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Theorem 3.20 (The Main Result). Let M be a locally symmetric Ck sub-

manifold (k ∈ {2, 3, . . . ,∞, ω}) of Rn of dimension d. Then λ−1(M) is a Ck

submanifold of Sn of dimension

(3.21) dimλ−1(M) = d +
∑

1≤i< j≤m∗
|I∗

i ||I∗
j |,

where P∗ = {I∗
1 , . . . , I

∗
m∗} is the characteristic partition of M.

Proof. Fix x ∈ M ∩ Rn≥ and X ∈ λ−1(x), and consider the spectral function
�̄ introduced in (3.12). Equation (3.13) shows that �̄ is a local equation of M.
Lemmas 3.18 and 3.19 prove that �̄ is a Ck local equation of λ−1(M) around X .
Thus λ−1(M) is a Ck submanifold of Sn around X . Moreover, the dimension of
λ−1(M) is dimλ−1(M) = dimλ−1(D) − dim(N red

M (x)).

Suppose that (3.14) holds. By Proposition 2.15(ii), PM
x = PM∗ . So suppose

that Iκ+i = I∗
m∗−m+i for all i = 1, . . . ,m. Recall that n = |N1

n| + |N2
n| and that∑m

i =1 |Iκ+i | = n − |N1
n|. Using (3.6) and Theorem 3.15, we get

dimλ−1(M) = d +
n(n + 1)

2
− |N1

n| −
m∑

i =1

|Iκ+i |(|Iκ+i | + 1)
2

= d +
n2

2
− |N1

n|
2

−
m∑

i =1

|Iκ+i |2
2

= d +
n2

2
− |N1

n|
2

− 1
2

( m∑
i =1

|I∗
m∗−m+i |

)2
+

∑
1≤i< j≤m

|I∗
m∗−m+i ||I∗

m∗−m+ j |

= d +
|N1

n|(|N1
n| − 1)

2
+ |N1

n|(n − |N1
n|) +

∑
1≤i< j≤m

|I∗
m∗−m+i ||I∗

m∗−m+ j |

= d +
∑

1≤i< j≤m∗
|I∗

i | |I∗
j |.

The last equality comes from the fact that all the sets in PF∗ = {I∗
1 , . . . , I

∗
m∗−m} have

size one. �
Observe that the dimension (3.21) of λ−1(M) depends only on the dimension

of the underlying manifold M and its characteristic permutation P∗. This is not the
case with the dimension (3.15) of λ−1(D), which also depends on the partition Px

(via nred, κ and m).

Remark 3.21. The case of a locally symmetric C1 manifold M is compro-
mised by [7, Lemma 3.13] (Determination of isometries), which uses the intrinsic
Riemannian structure of M, thus requiring C2 regularity. Lemma 3.13 from [7]
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was used there to obtain the reduction of the ambient space for the tangential
parametrization of M, which is one of the main ingredients in establishing Theo-
rem 2.17.

Let us now give a few applications of the main result. It is known that the set
of all symmetric matrices in Sn of rank k is an analytic manifold; see, for example,
[9, Proposition 1.14, p.133]. This also follows from our main result, together with
the formula for its dimension.

Example 3.22 (Matrices of constant rank). Let

M = {x ∈ Rn : x has exactly n − k zeros}.
Then λ−1(M) = {A ∈ Sn : rankA = k}. Fix a subset J of {1, 2, . . . , n} with
n − k consecutive elements, and let M′ := {x ∈ Rn : xi = 0, i ∈ J}, which is a
connected component of M. Then dimM′ = k, and the characteristic partition of
M′ is P∗ = {i : i ∈ J} ∪ {{i} : i �∈ J}. By Theorem 3.20, λ−1(M) is an analytic
submanifold of Sn with dimension

dimλ−1(M) = dimλ−1(M′) = k +
k(k − 1)

2
+ k(n − k) =

k(2n − k + 1)
2

.

In particular, the dimension of rank-one matrices (k = 1) is n, whereas the dimen-
sion of the invertible matrices (k = n) is

(n
2

)
.

Example 3.23 (The unit shpere). The unit sphere

M := {x ∈ Rn : x2
1 + · · · + x2

n = 1} ⊂ Rn

is a symmetric analytic manifold of dimension n − 1 and characteristic partition
P∗ = {{i} : i = 1, . . . , n}. By Theorem 3.20, λ−1(M) is an analytic submanifold
of Sn with dimension

dimλ−1(M) = (n − 1) +

(
n
2

)
=

(
n + 1

2

)
− 1.

Indeed, it is easy to see that

λ−1(M) = {A ∈ Sn : ‖λ(A)‖ = 1} = {A ∈ Sn : ‖A‖ = 1}.
i.e.,, λ−1(M) is the unit sphere in Sn.

Remark 3.24 (The case |N1
n| ∈ {0, 1}). If M is a connected, submanifold of

Rn of dimension d such that |N1
n| ∈ {0, 1}, then M ⊂ �P∗ . The same arguments

as in Example 3.1 allow us to conclude that λ−1(M) is a spectral manifold of
dimension given by (3.1).
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