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A methodology to model two types of random perturbation that affect the operation of electric power
systems (EPS) are presented. The first uncertainty is wind power generation and is represented by a
one-dimensional and by a multidimensional continuous stochastic process. The second one is power
demand, and is modeled by using an hybrid structure based on harmonic regression and the Ornstein-
Uhlenbeck (0-U) process. The stochastic models are applied to a real Chilean case, using real data for
parametric estimation and validation models.
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1. Introduction

Dynamic and permanent regime studies that deal with electric
power systems (EPS) are of vital importance to the electrical indus-
try, because they make it possible to determine the adequate oper-
ating conditions for supplying the electric power required by
society in an economic, reliable and safe manner. In this context,
the most important approaches of the EPS studies are oriented at
their planning and operation.

One of the main problems that concern planning and operation
consists on keeping the system operating in a steady state, i.e., that
the system does not lose its balance when it is subjected to pertur-
bations that affect its behavior. The most frequent perturbations
found in EPS are fault occurrence, load level variation, changes in
the network topology, and the presence of random components
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caused by generation sources based on unconventional renewable
energy.

In particular, wind generation and power demand will be the
focus of this paper. Due to the stochastic nature governing these
two types of disturbances, it is appropriate to consider statistical
models to represent their behaviors and then, perform more real-
istically studies about their impact over the EPS [1].

Development of more precise and accurate models is of high
importance for improving the results of their subsequent applica-
tion [2-7]. For instance, paper [2] uses Kalman filtering in the con-
text of short-term prediction wind speed, reflecting in turn into a
better planning and usage of the power resource.

In [3], statistical regime-switching models are applied in order to
modeling the fluctuations of offshore wind generation. The research
is oriented to obtain models dedicated to enhance the existing con-
trol and energy management strategies at offshore wind parks.

Ref. [4] applied a Markov-switching model to perform point and
interval forecasting of wind speed. It Emphasize that an accurate
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wind speed interval forecasting is beneficial to the robust opti-
mization in wind farm operational planning.

A statistical and dynamical modeling are proposed in [5] for var-
ious classes of wind speed fluctuations distributions. A generated
wind speed sequence in time is made solving the Langevin equation
with different turbulence conditions. Ref. [6] uses Stochastic
Differential Equations (SDE), based on Ornstein-Uhlenbeck (O-U)
process, to develop methods to model wind speed.

Paper [7] presents models based on SDE and O-U process of
wind power production, besides, base production and base con-
sumption which can be used to evaluate the impact on power sys-
tems balancing. In addition, estimation methods for parameters
are proposed and a case study is presented.

As can be seen, accurate wind speed and wind power simula-
tions and forecasting have an important influence on studies and
decision-making of EPS [8,9]. For this reason, a large number of
techniques have been developed. Papers related to comparisons
between different methods can be found in [10-14].

In [11] a comparison between time series and Artificial Neural
Networks (ANN) models is presented by a long-therm prediction
of production of wind power station in Mexico. Another compar-
ison is made in [12], where Autoregressive - Moving Average
(ARMA), 5 kinds of ANN and the Adaptive neuro fuzzy inference
system (ANFIS) models are compare in different time horizons.

In [13], it is proposed a new method based on multiple architec-
ture system (MAS).

Conversely, load uncertainty models can be found in [15-20],
where they use continuous stochastic process in order to model
the behavior of the loads for stability studies.

While continuous models are widely used for application to sta-
bility studies, other kinds of models are applied to modeling
demand.

Table 1
Statistical methods to model and forecast wind speed and wind power generation.
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In [21-25], regression models to study residential energy
demand are presented. Refs. [21,22] use multilinear regression
with the aim of predicting future values of energy demand. On
the other hand, logistic regression method is used in [23], where
it is applied to analyse the domestic electric consumption types.
In [24,25] harmonic regression is used taking advantage of their
ability to describe processes with marked seasonality.

Time series analysis is also largely used in this context [26-30].
For example, in [29] residential demand is modeled and predicted
with a Seasonal Autoregressive Integrated Moving Average with
Exogenous Variables model (SARIMAX), considering as a data real
residential demand measures.

The models and applications are vast, so in order to sum up all
the techniques used to represent wind generation and power
demand, Tables 1 and 2 classify the principal methods reviewed
and expose their benefits and principal cases of application.

Classification of Table 1 is based on Refs. [31,32], and Table 2
maintains the structure classification but considering Ref. [33] as
a guideline. It is important to say that Table 2 is focused on resi-
dential power demand because this type of load is the most com-
monly analysed.

As the literature shows, there is a wide variety of tools to study
the impact of stochastic perturbation, as wind generation, and dif-
ferent approaches can be made. However the main purpose of this
paper is to model stochastically in continuous time the behavior of
wind farm power generation and the power demand due to resi-
dential consumption by means of a model that accounts for the
random and self-sustained over time dynamics.

The novelty of the models proposed is the development of a
multidimensional correlated model for a wind farm representa-
tion. The interesting thing in the equations obtained is the pres-
ence of a correlation matrix, which can provide potential

Category Subclass Example Advantage Study focus
Conventional Recursive Kalman filters e Ability to provide the quality of the estimate e Used to predict the future
statistics filter e Relatively low complexity wind speed. It is suitable for
online forecasting of wind
speed
e Prediction to improve the
planning and usage of power
sources
Stochastic Discrete time continuous state (Time e Well established methodology e Long, medium and short term
process series analysis: ARMA, ARIMA, ARIMA) e Well implemented estimation and validation studies, where predicting
Discrete time discrete space (Markov techniques future values are needed
chains) e Flexibility in assignment variables e Influence analysis of factors
over wind power generation
Continuous time continuous space e More general description for phenomena e Continuous time analysis,
(Brownian motion, O-U process, etc.) under study ideal for time depending
e Wider range of applicability of possible phe- studies, as analytic stability
nomena modeling studies
e Power wind impact studies
Artificial Artificial Feed-foreward e More general than linear methods, which gives e Accuracy improvement fore-
intelligence neural Elman a major flexibility at the moment to fit a data casting wind speed and wind
and new networks Radial Basis Function series power generation, applied to
methods Multilayer perceptron planning and control studies
Fuzzy Logic e Less condition about the data should be e Applied to non stationary
Wavelets assumed, which is better in situations when wind speed prediction in
Entropy the truly distribution is unknown or cannot wind power systems
based be approximated easily e Used where a system is diffi-
training cult to model exactly
Spatial
correlation
Hybrid methods Mixtures of Adaptation neuro fuzzy inference e Advanced ones and less error than others e Depending on the hybrid
any method system (ANFIS) e Improvement of pure methods mixture. In general used to
mentioned improve the accuracy of fore-
above casting methods

Short and medium term wind
speed and wind power
prediction




Table 2
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Category Subclass Example Advantage Study focus
Conventional Regression Multilinear regression e Easy implementation and interpretation. Well estab- e Long term studies of demand
statistics analysis Harmonic Regression lished estimation techniques behavior, with great time inter-
Conditional Demand Analysis o Intuitive description of seasonal changes vals, varying to hour to years
(CDA) e Scientific acceptance and a wide range of o Influence analysis of factors over
Analysis of Variance (ANOVA) applicability electric consumption behavior
Stochastic Discrete time continuous state e Well established methodology e Long and short term studies,
process (Time series analysis: ARMA, e Well implemented estimation and validation where predict future values are
ARIMA, SARIMA, etc.) techniques needed
Discrete time discrete space o Flexibility in assignment variables
(Markov chains)
Continuous time continuous e More general description for phenomena under study e Continuous time analysis, ideal
space (Brownian motion, O-U e Wider range of applicability of possible phenomena for time depending studies, like
process, etc.) modeling transient changes
Artificial Artificial neural Feed-foreward e More general than linear methods, which gives a e Accuracy forecasting power
intelligence  networks Elman NN major flexibility at the moment of fitting a data series demand, applied to planning
and new Radial Basis Function and control studies
methods Fuzzy logic e Less condition about the data should be assumed.
Which is better in situations when the truly distribu-
tion is unknown or cannot be approximated easily
Wavelets
Hybrid Mixtures of any ~ ANFIS e Improvement of pure methods e Depending on the hybrid mix-
methods method ture. In general used to improve
mentioned the accuracy of forecasting
above methods

information about the effect of a windmill over another and allow-
ing future studies on wind farm geometry.
Summarizing, the novelty of the present paper is:

e Multi-correlated model that represents windmills interactions.

o Validation technique for continuous unidimensional stochastic
models.

e Short-time multidimensional
model (hours).

e Medium-time one dimensional residential power demand fore-
casting hybrid model, based on harmonic regression and O-U
process

wind generation forecasting

The rest of the paper is structured as follows: Section 2 estab-
lishes the necessary knowledge in statistics and mathematics to
propound models applicable to real cases. Section 3 presents the
characterization of the perturbations that affect the operation of
the EPS and the equations of the models are presented. Section 4
applies the proposed models to Chilean cases with real data. Sec-
tion 5 provides the results obtained for the analysed cases, and
finally Section 6 includes the conclusions and future work.

2. Mathematical foundations

This section presents the foundations of the processes and
stochastic differential equations needed for the model, and the
characterization of the random behavior of a wind farm and typical
feeders in distribution networks. It also presents the methodology
used for the parametric estimation of the models from the real data
obtained from field measurements, and the numerical method for
solving the stochastic differential equations.

2.1. Stochastic processes and stochastic differential equations

Definition 1. A one-dimensional stochastic process is a parame-
trized collection of random variables {X;},.; defined in a proba-
bility space (Q,F,P), that assumes values in R. The parametric
space T C R is usually interpreted as time, see [34].

Definition 2. A Gaussian process is a stochastic process {X:}.r
such that every linear combination of the form Z = > ; X, with
n> 10 €N, t; €T, is a normal random variable.

Definition 3. A one-dimensional Brownian motion is a Gaussian
process {W;},.; that satisfies:

(i) EW,) =0Vt eT
(ii) Cov(W¢, Ws) = min{t,s}

Definition 4. A one-dimensional Ito process {X;},.; is one that can
be expressed in the form

t t
X[:X0+/ a(u,Xu)du+/ b(u,X,)dW,
0 0

where a(u,X,) and b(u,X,) are F;-adapted processes and
fotb(mxu)dwu is Ito’s integral (see [34]). This equation can be
expressed as a stochastic differential equation:
dX; = a(t, X )dt + b(t,X;)dW, (1)
where W, is a Brownian motion.Furthermore, if {X;},.; is a contin-
uous process, then it is said to be a diffusion process.

Theorem 1 (one-dimensional Ito’s formula). Let {X;}..; be a diffu-
sion process with (1) as an SDE. Let f : [0, 00[ x R — R be a one time
continuously differentiable function in t and twice continuously differ-
entiable in x. Let Y, = f(t,X;), then Y, is a diffusion process that satis-
fies the following SDE:

_ (of(t.X) oft.X) 1.5 If(t.X0)

af(tvxl)

+ b(tvxt)T

dW[
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Definition 5. The quadratic variation of a stochastic process
{Xe}eer, written as  [X], is defined as [X], =limp_o> 1,
(Xt — Xt ,)?, where P corresponds to partitions over the interval
[0,¢]. This limit, if it exists, is defined using convergence in
probability.

More generally, the cross variation of two processes {X;},.r and
{Yf}teT is defined by [X7 Y]t = limupuﬁozzzl (th — th—l ) (Y[k — Y[kil )

Definition 6. An m-dimensional standard Brownian motion
{W},.,, is that with components W}, W2, ..., WP, which are inde-
pendent one-dimensional Brownian motlons. The increments of
the Brownian motion W/ —W! for je{1,2,....,m},t > 0 and
s < t, are then independent random Gaussian variables with mean
zero and variance equal to t—s. Therefore,
W, — W; ~ N4(0, (t — s)I), where 0 denotes the null vector and I
the identity matrix [35].

Theorem 2 (Multidimensional Ito’s  formula). Given  the
m-dimensional Brownian motion {W},.;, a d-dimensional drift

coefficient vector function a:[0,T] x ®* — %and a d x m-matrix
diffusion coefficient function b : [0 : T] x R — R™™, to form the fol-
lowing d-dimensional stochastic differential equation:

dxt = a(t, Xt)dt + b(t.. Xt)de (3)

where for each component we have:

. ) m L. .
dX, = d'(t,X;)dt + > b (t,X)dW/ 4)
=1
For sufficiently smooth vectorial functions U : [0,T] x R? — ®* of
solution X; of Eq. (3), we get a k-dimensional process Y: = U(t, X;).
The expression for its pth-component, which results from applying
Ito’s formula to each component, satisfies the following differential

equation:
o K 11 OPUP

P _ XY i i,

dY[_<0t+Za Zggbbla E)x,

+ ZZb" o (5)

=1 i=1

forp e {1,2,... k}, where the terms on the right in (5) are evaluated

in (t,X;),UP,d and b" are the corresponding coordinate functions of
the vectorial functions U,a and b [36].

Definition 7. A correlated m-dimensional Brownian motion

{W},_; is such that its components W! W2 ..., W™ are trans-
formed scalar Brownian motions. In vectorial notation, the
m-dimensional transformed Brownian motion can be expressed
by the linear transformation:

W, = at + BW, (6)

where a=(a;,a,...,a7)"is a d-dimensional vector, B is a
d x m-matrix and W = {W;,t > 0} is a standard m-dimensional
Brownian motion.

Applying Ito’s formula we get the following for each component
dwk = akdt + 37! 1bk'alw;, for ke {1,2,....d}.

In this case Wt — Ws ~ N(0,X%), where X = BB' is the correla-
tion matrix [35].

Among the diffusion processes there is the Ornstein-Uhlenbeck
process, widely used for the description of physical phenomena,
which satisfies the following stochastic differential equation:

dU[ = T’IU[dt + Vth (7)

where n <0and v > 0.

This process is Gaussian and it is shown that its expectation is
& It is also verified that the variance
is bounded and admits a statlonary probability distribution. In
other words for a given to, and for Vt > tg, we have that each
random variable complies with U; ~ N(O, —%).

In the present work it will be the fundamental component of
the models to be proposed, and its mathematical properties for the
parameter fitting and later validation of the models will be used.

Upet and its variance is

2.2. Parametric estimation

In the Ornstein-Uhlenbeck process (7), a technique for estimat-
ing parameter # is the use of quasi maximum likelihood [37],
whose estimator turns out to be:

Zz 1Uii-1)4Uis
ZI IUZ

where the random variable U;, corresponds to an observation of the
0O-U process at instant i4. For this fitting these observations will
correspond to the actual data provided by the farm, under a certain
transformation that will be indicated later; n is the number of avail-
able observations, and 4 is the time interval between observations.

Parameter v, of Eq. (7) can be estimated by equating the quad-
ratic variation of the O-U process with its discretization, from
which the following estimator is obtained:

S ST ©)

where t is the total time in which the process was observed, in the
time scale considered for #.

For the estimation of possible correlations between two
processes the cross variation will be used, in the same way as with
the quadratic variation. In this case, for two processes {X:}.r
and {Y.},.; that satisfy Eq. (1), with diffusion coefficients b,(t,X;)
and b (t Yt) respectively. Its cross variation would be
fo (S, Ys)pds, where p is the correlation coefficient.

[n the partlcular case of two O-U process, that satisfy (7), the
estimator of its correlation coefficient, obtained by means of equat-
ing the theoretical cross variation with its discretization, is given
by Eq. (10).

b 00 o

n= (8)

2.3. Numerical resolution schemes

The numerical schemes will be useful at the time of analysing
the behavior of the stochastic process that is being studied and
then simulating the trajectories for later applications.

For a stochastic differential equation of form (1), the Milstein
numerical scheme would be:

Xin = Xi +a(ti, Xi)(tiyn — ti) +b(ti, Xi) + %b(fhxi)b/(fi,xi)
X (Wisr = Wi)? = (ti — 1)) (11)

In the multidimensional case, the kth-component of the
Milstein scheme, for a process that satisfies (3) with diagonal
matrix b, would be:

Xk = X!+ d A+ B awk ¢ b""ak{AW" — A} (12)
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For further details of the above mentioned numerical schemes,
see [36].

3. Perturbation models

This section presents the assumptions made for modeling the
two random phenomena considered in the paper: wind generation
and electric power demand. The procedure to obtain the stochastic
equations that represent the uncertainties is detailed.

3.1. Characterization of the perturbations

3.1.1. Wind generation

Wind generation is subjected to various factors, among the
most important of which there is the wind speed and the installed
capacity of the wind farm. In general, the following aspects are
distinguished:

e In short time intervals, as hours, the irregularity of the wind
speed results in a generation that lacks a definite trend and sea-
sonality. However, seasonalities can exist in longer time inter-
vals, as months or days [38].

o It should be noted that the trajectories of the measurements of
wind generation are bounded in the [0, P] (where P corresponds
to the total installed capacity of the farm). Moreover, the wind
generation samples do not change discontinuously.

e Wind speed does not have symmetrical distribution Therefore,
the representation of the power delivered by the wind farm
should have similar characteristics in its distribution. Weibull
and Rayleigh distributions are most commonly used in wind
speed data analysis [39]. On the other hand, logarithmic normal
distribution is used to characterize wind power generation, due
to the possibility to incorporate the Brownian motion in the
dynamic representation [40].

o The square of the mean wind generation cannot increase during
many consecutive hours, and this is associated with the prop-
erty of reversion to the mean. This implies that the trajectories
of the process will be around the mean value.

3.1.2. Electric power demand

In general, the behavior of a load follows certain seasonal pat-
terns associated with changes in the seasons of the year, day and
night, weekends, etc. It is also subject of a certain trend due to
the population growth and urbanization.

3.2. Wind generation model

Two stochastic models are developed that allow the dynamic
representation of the power generation of the complete farm.
The first corresponds to a one-dimensional representation of the
total power output and the second to a multidimensional repre-
sentation where each component symbolizes a windmill in the
wind farm.

3.2.1. One-dimensional model

If it is desired to directly consider process (7) as a representa-
tion of the wind generation, it would have to be assumed that
the wind generation follows a normal distribution, but as already
stated, it is often considered that the wind power generation fol-
lows a normal-logarithmic distribution, suggesting that the pro-
cess that describes the wind generation, which will be denoted
by {Y:}r, complies with:

InY,—h=U, (13)

=Y, =elh (14)

where h is the mean of InY;. This ensures that InY; — h has a zero
mean and a normal distribution. So (14) is the candidate model
and with transformation (13) one can work directly with the O-U
process.

According to Ito’s formula (3), Eq. (14) satisfies the following
SDE:

2
dy, = (;1 InY, - yh+ Vj) Yedt + VY dW () (15)

3.2.2. Multidimensional model

As an experiment, the wind farm was modeled in a multidimen-
sional manner, taking each component as a windmill. The objective
was to determine if, at the time of describing the farm’s power out-
put, it is more appropriate to take into account the behavior of each
windmill and its possible interaction, or if the overall view consid-
ered in the one-dimensional model is sufficient.

The same as in the case of the total output power, it will be pro-
posed that each wind generator can be described by a process of
the form (14), so that with transformation (13), each windmill
can be fitted by an O-U process. Writing this in matrix form, fol-
lowing model is obtained:

dU, = AU,dt + CdW, (16)

where vector U, = (U}, U?,...,U?") has a one-dimensional O-U pro-
cess in each component. The dU; notation means that each compo-
nent of the vector is differentiated, i.e., dU, = (dU;,dU?,...,dU}).
Matrices A and C are diagonal with components a; and c; respec-
tively, given by:

ai,-:{"f '.*J.c,;:{v‘ - (17)
0 i#j 0 i#j
where vector W, is an n-dimensional Brownian motion. Two cases
will be considered in this stage: correlation and no correlation
between the elements of the vectorial Brownian.

The case with no correlation is simply aimed at fitting an O-U to
each transformed windmill, the same as in the one-dimensional
case, i.e., every wind generator, transformed according to (13), is

associated with the process dU! =nUidt + vidW.,
i=4{1,2,...,n}. The W’; are independent from one another.

For the correlated case it will be assumed that the vectorial
Brownian in (16) is correlated. This Brownian can be expressed as

where

the linear transformation W, = BW,, where W, is an independent
n-dimensional vectorial Brownian and B is the n x n square matrix,
which is built in such a way that at the time of calculating the cross
variation of the processes of each component the cross variation
coefficient is obtained by some extra parameter of matrix C.

In the case of the correlated model it is necessary to build and
then estimate the correlation matrix = = BB‘. To show how to
determine matrix B, consider the three-dimensional case. Assume
the following process:

du; n, 0 0\ /U vi 0 0) [dw,

dv? | =0 n, o[ |dc+|0 v, O ||aw?

du; 0 0 n3/\u} 0 0 v/ \aw?
(18)

.
where vector (dW;,dW? dW;) corresponds to a correlated three-
dimensional Brownian motion that can be expressed as:

aw, bu b by [dW]
dW? = | b2 by by dVNVf (19)
dW? bs1 bsy; bss dW?
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—~ —~ —~_ T
where vector (dW}!,dW? dW?) ) is a standard three-dimensional
Brownian motion.

Each component is written in the form:

dU} = n,Uldt + vy (andW] + a;,dW? + a3dW?)
dU? = i, U2dt + vy (a1 dW! + aydW? + ap3dW?3)
dU? = n,U3dt + v3(as1dW! + as,dW? + assdW?3)
It is expected that when the quadratic and cross variations are
calculated we will have that: [UIL =i, [Uz]t =Vit, [U3][ =vit,

[Uly Uz]t = k1.2,01,2t, [U17 U3L = /<1.3,01,3f, |:U21 Ua}[ = kz‘apz_;f,
where k;; is some constant, and p;; is a correlation parameter to be

estimated.

To begin, it will be assumed that b;; = 1,b1; = b3 =0, so the
first coordinate will be: dU; = n,U}dt + v;dW/, and its quadratic
variation is v3t.

In the second component it will be assumed that

by = pq5,b22 =,/1—p;, and b3 =0, so du? will become:

dU? = n,U%dt + v2(p, ,dW}! + /1 — p?,dW2), and its quadratic
variation is [U?), = (v}p?, + V3(1 — p},))t = v3t.The cross variation
between U; and U? becomes: [U', U%], = v{v2p, ,t.

To determine the coefficients bz, bs; and bsswe proceed as fol-
lows: It must be fulfilled that [U',U°], =ki3p,5t, then
V1V3bsit = Ky 304 3t, S0 k13 = v1v3 and b3; = p, ;. We must also have

that: [UZ7 U3]t = kszzst, SO (V2V3p]~2p1y3 —+ Va V3b32, /1 - p%z)t

P23-P12P13)

=k t, and therefore ky3 = v,v; and b3, = ¢
23013 23 2V3 32 \/:p—%;

Finally, for factor b33, we see the quadratic variation of Uf ,where:

B 2
[UP], = v}t must be fulfilled, therefore, (v%(p{frw

2
+b§3))f = V3t, 50 b33 = \/1 — p2, — P22l From this we get

1-p12
the transformation matrix B, given by:

1 0 0
Py
B P12 \/1 P12 0

2
2 (P23—P12P13)
P23 \/1 _pl,s_T

(P23=P12013)
1-p3,

Under this construction we will have that matrix B will be a
triangular matrix where coefficients b;; will correspond to the cor-
relation between the first component and component i. The rest of
the factors are calculated by equalizing the values that are
expected in the cross and quadratic variations.

3.3. Electric power demand model

A general characterization of this type of behavior will be repre-
sented with the following one-dimensional process:

Dy =0+ Bt + zn:(y,- cos(2mtf;) + &; sin(2mntf;)) + U, (20)

i=1

where D; is the power demand, U; is an O-U process, f; are the fre-
quencies associated with the seasonal changes, ft is associated with
the electric consumption increase over time, and the rest of the
coefficients are parameters that must be estimated.

Using Ito’s formula (3), process (20) satisfies the following
stochastic differential equation:

dD; = (B + i((—an,yi — 16;) sin(27tf;)
p

+ (27f;6; — ny;) cos(2mtf;)) + n(Dy — o — pt))dt + vdW, (21)

4. Application case

The models presented in the section above will be implemented
in a real Chilean case, using real information data for parameter
estimation.

4.1. Wind power generation

Observations measured in field from eleven windmills of Canela
wind farm, located in the Fourth Region of Chile was used.

The treatment to which the data were subjected is presented
below, to get the parameters of the stochastic processes using
the data from the farm.

4.1.1. Presentation of data

The data delivered from the wind farm corresponds to measure-
ments of active power in kW from 11 windmills, made every sec-
ond during three hours. For this time interval under study,
seasonal changes are not appreciable, so they will be not
considered.

The set of observations will be denoted by {y},},_; 10500’
A=1s, 1s represents the time between observations, n is the
identifier for each mill, and i is the number of samples considered.
The total sum of the power generation of the mill every second will

where

Fig. 1 shows the trajectory generated by the data of the total
power output generated by the farm. It is seen that the power
delivered by the farm varies in time, with bounded trajectories
and non-deterministic characteristics.

Some statistical characteristics will be observed in order to jus-
tify the distribution assumptions and the use of the proposed mod-
els in the previous section, as an application with these real data. In
this case, and for practical matters, only the characteristic of global
wind generation data {y;,} are presented. Moreover, the statistical
information of each windmill separately shows similar attributes.

Table 3 shows four statistical measures of the observation sam-
ple, both the real and the transformed by (8). It is important to
analyse the transformation data characteristics, because these will
be used for the model calibration. Positive skewness of the raw
data indicates that the tail on the right side of the probability den-
sity function is longer than the left side, as in the case of log-
normal distribution. The skewness of transformed data is close to
zero, as it could be expected for a normal distribution.

Kurtosis measure has a value proximal to three, in both cases
(raw and transformed). This gives another beneficial point to Gaus-
sian distribution consideration for the data that will be adjusted
and modeled.

In relation to the variance, its value decreases with the logarith-
mic transformation, which in somehow improves the data quality.

On the other hand, Figs. 2(a) and (b) shows respectively the
autocorrelation function (ACF) of the real and transformed data.
The exponential decay of the functions exhibit a similar behavior
of process that correlated the future state with the present, as
0O-U process [41]. This can suggest that the application of the men-
tioned process to represent the data will be appropriate.

Summarizing:

e Data need to be transformed to reduce its variance.
e Transformed data shows indicators with Gaussian
characteristics.
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Table 4
° Parameters estimated from the sum of active power observations of the 11
S | generators.
=
- Parameter Estimated value
8 n ~8.707802
37 v 0.2309347
- h 9.633223
2
c 8
£ 8]
o £
3 Table 5
o 3 n;, vi and h; parameters of the 11 windmills.
S |
= Parameter Value Parameter Value Parameter Value
o n -10.8191 v 08225 Iy 7.2231
S | 1 129155 v, 07515 hy 7.2770
Ll 13 -11.3623  v3 0.7466  hs 7.2640
1 ‘ ‘ T 1 1 s —-8.6407 vy 05866  hy 7.3235
0 2000 4000 6000 8000 10000 0 124291 v 08842 . 29402
Seconds e 2102790 v 09005  hg 72014
. ) - -13.3266 v 09541  h 7.1574
Fig. 1. Act t KW. 7 7 7
ig. ctive power generation in kK n _12.0976 Ve 1.0504 hy 71044
Mo -93986 v 09136  hy 7.1942
o -9.0323 vy 0.9626  hy 7.1972
Table3 A . A i ~132814 vy 09852  hyq 7.1972
Statistical information about total wind generation data.
Measure Raw data Transformed data
Mean 15263.51 —5.857338e—16
. Table 6
Variance 558840.9 0.002373935 Estimation of fati rers bet indmill
Skewness 0.1599429 0.03704418 stimation of correlation parameters between windmills.
Kurtosis 2.720979 267714 Parameter  Value Parameter  Value Parameter  Value
P12 0.0356  psg4 —-0.0758  psge 0.0309
P13 01028  ps5 —0.0400  ps5qo 0.0382
e Autocorrelation function exhibits an exponential decay, which Pia -0.0148  p36 -0.0304  psyy 0.0160
suggest a process with correlation between the future state P1s 00212 ps; 0.0499  pg; —0.0398
and the past state, as O-U process. Prs 00203 pyg 00802 pgg 0.0319
P17 0.0158  psq —~0.0581  pggo 0.0042
. . , 0.0171 0.0541 -0.0155
4.1.2. Parameter fitting of one-dimensional model Z"g 0.0532 23'“’ 0.0251 ’p)s"" 0.0115
. . . . 1.9 . 311 . 6,11 .
Thg parame‘ters 1r}volved in Eq. (15) will be obtained under the Prro 00184 pys 00188 poyg 00844
following c0r1_51deratlons: . _ P —00196  pyg 0.0086  pye 00325
As the estimators respond well under small pass sizes, a time P23 —0.0096  p,, —0.0062 ;1o —0.0053
scale greater than that of seconds (actual sampling time) will be Pra 0.0016  pyq 0.0227  p; gy 0.0158
considered, i.e., instead of considering that a time interval of P25 —0.0208  puq 0.0196  pgq ~0.0181
10,800 s was observed with a 4 of 1s, it will be said that a time P26 —0.0162  pyy -0.0669  pg 1o —0.0081
interval of 3 h was observed with 4 = 3/10800. According to this: P27 00124 pyyy —0.0228  pgyy 0.0209
Pas 0.0222  psg -0.0821  pg o ~0.1052
e 1 is estimated from Eq. (8) considering as observations of the P29 73'3(‘59(7)31 Ps7 78'332 Po11 g‘?iﬁ
~ . ) . 0 . 0 —u.
process the {Jis};_1 10800 data transformed according to (13). ;m 0.0237 Pss Pron
. . . . . 2,11 Y
e Vv is obtained from Eq. (9), with t = 3 h. and considering the
same transformation for #.
Series gp Series gplm
o Q]
@ | @ |
o (=]
© | @ |
[S) w o
[T
Q &
< < | < |
o o
o N
o o
o o
(= I (= I
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Lag Lag

(a) Raw data

(b) transformed data

Fig. 2. Autocorrelation functions (Generation).
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Table 7

Statistical information about power demand data.

Measure Raw data Transformed data
Mean 3.6501 0.007082501
Variance 0.4881835 0.031888
Skewness —0.2297685 —0.05376565
Kurtosis 1.940585 3.573246

e his estimated using the average of the natural logarithm of the
actual observations of the farm, i.e., the following estimator is

used h =157 (In(Yi,)

Table 4 shows the results obtained from the process that repre-
sents the random component of the sum of the 11 generators of the
wind farm. As expected, parameter # is negative, accounting for the
bounded trajectories. As to parameter v, the value is small, and this
means that the amplitudes of the random variations do not
undergo abrupt changes.

4.1.3. Parametric estimation of multidimensional model
The Eq. (16) will be considered as the representation of the
transformation data by Eq. (13). Dimensions of matrices A and C
in this case is n = 11, due to the available measure information
The estimation methods for the 22 parameters of matrices A
and C are the same as those used in the one-dimensional case.
The #; are fitted by the quasi-maximum likelihood technique,

Series resi
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(a) Power demand data

Table 8

Frequencies in Hertz, associated with residential consumption.
Frequency Value Frequency Value Frequency Value
f1 0.00146  fg 0.02109  fyo 0.009
fo 0.00154  f, 0.021 fn 0.006
fs 0.003 fs 0.012 fi2 0.00454
fa 0.01055  fq 0.01046  fi3 0.00163
fs 0.03155

Table 9

Estimated harmonic regression parameters for residential consumption.
Parameter Value Parameter Value
o 3.664 Vs —2.868e—02
B 2.610e—05 Jg —1.478e-01
Y1 2.956e—01 Yo 2.123e-01
51 5.207e-01 S 6.856e—02
Y2 —6.073e-01 Y10 1.602e—-01
73 —5.442e-01 S10 5.722e-02
Y3 —1.400e-01 711 7.104e—02
J3 6.625e—01 11 1.295e-01
Ya —5.464e-01 Y12 —2.202e-01
04 —5.166e—01 d12 1.127e-01
Vs 1.769e-01 Y13 —1.508e—-01
35 —3.201e-02 d13 —1.594e-01
Ye —2.135e-01 Y7 7.866e—02
36 1.249e-01 87 —1.752e-01

and the coefficients v; are estimated by means of the quadratic
variation of the process associated with its corresponding
windmill.

Since the data of each machine were transformed, it is neces-
sary to estimate parameter h;, which corresponds to the corre-
sponding arithmetic mean of each generator.

Table 5 show the results of the parametric estimation.

The same as in the one-dimensional case, it is seen that the val-
ues for parameters #; are all negative, ensuring the stationary of
the estimated process.

In the correlated case the vectorial Brownian motion involve in
Eq. (16) is correlated, so it is necessary to estimate the correlation
coefficients of the transformation matrix B to obtain the correlated
matrix X. Using expression (10) the values of the estimated corre-
lation coefficients between the eleven mills are obtained. The
results are given in Table 6.

4.2. Electric power demand

To implement the model demand (20), a residential type con-
sumption was considered. Loads with other characteristics, such

Series residuosr

ACF

Lag
(b) adjusted power demand data

Fig. 4. Autocorrelation functions (Power Demand).
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as industrial or commercial, can be represented in a similar way.
The differences will lie in the periods and variations of the power
consumption, but the general scheme is the same.

To analyse this behavior, actual observations provided by an
electric power distributing company were used.

4.2.1. Presentation of data

The data provided by the company correspond to measure-
ments every 15 min during 120 days and 20 h of electric power
in GW, of a feeder in Santiago, Chile. The set of observations on
resents the time between observations and i is the number of sam-
ples considered.

Fig. 3 shows a trajectory drawn for the actual data.

Fig. 3 shows a pronounced seasonal behavior, as was estab-
lished in Section 3.1.2. On the other hand, a growing trend is not
exhibit, due to the observation window is not wide enough.

Table 7 reveals information about four statistical measurements
of the power demand data. Transformed data refers to real data
without the seasonal and trend changes, expressed in (20) as a sine
and cosine sum, and a time increment, respectively. Both cases are
important to analyse, because real data will be adjusted by har-
monic regression, and then, the residues of this fit will be adjusted
by an O-U process, thus it is important to check that the data sat-
isfy the requirements to use the proposed techniques.

In the case of transformed data, skewness and kurtosis show
characteristic values for a normal distribution. In relation to the
variance, its value decreases with a sinusoidal adjustment. It can
be concluded, as a first approach, that the transformation is
adequate.

On the other hand, Figs. 4(a) and (b) show respectively the auto-
correlation function (ACF) of the real and transformed data. The
sinusoidal behavior of the function in Fig. 4(a) exhibits the seasonal
characteristic of the data. Furthermore, the exponential decay of
the function in Fig. 4(b) reveals a similar behavior of process that
correlated the future state with the present, as O-U process, but
a little sinusoidal pattern can be seen. The above can suggest that
the application of the mentioned process to represent the residues
of harmonic regression will be appropriate and some seasonal
changes are not been captured by the selected frequencies.

Summarizing:

e Raw data is described by a sinusoidal function.

e Transformed data show indicators with
characteristics.

e Autocorrelation function of adjusted data exhibits an exponen-
tial decay, which suggests a process with correlation between
the future state and the past state, as O-U process.

Gaussian

4.2.2. Parametric estimation

The frequencies present in Eq. (20) are found by analysing the
periodogram of the series of data, which corresponds to an estima-
tion of the spectral density. Table 8 shows the most relevant fre-
quencies considered.

With these frequencies it is possible to estimate the coefficients
that go together with the trigonometric functions in (20) by means
of harmonic regression. The results are shown in Table 9.

Table 10
Estimated parameters for the O-U process for residential consumption.

Parameter Estimated value
Me —5.578228
Ve 2.164175
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Fig. 5. Simulated trajectories of the active power output generation in kW.
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Fig. 7. Sum of simulated trajectories of the active power generation output in kW,
correlated.

To estimate the parameters associated with the O-U process, it
was used the residues obtained from the fit through regression,
carried out earlier. The estimation techniques and the estimators
are the same that were used in the previous one-dimensional mod-
els. The results are shown in Table 10.
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5. Results

The models obtained from estimates of actual Chilean data will
be evaluated and validated, with the aim of showing its potential
usefulness for real studies.

5.1. Trajectory simulation

A first step to verify the good behavior of the obtained models is
to observe them graphically. This requires using numerical
schemes to simulate the solution of the equations proposed com-
putationally. In this case Milstein scheme (12) or (13) will be used,
depending on the dimension of the model. Each case is detailed
below.

5.1.1. Wind generation

a. One-dimensional case
For process (15) we have the following discretization:

Yprl =Y+ <1’]Y, IH(Y,) — ﬂyih(t,‘) +%Y,‘V2> ([’,‘+1 — l’,‘)

szi
2

+VYi (Wi — W;) + (Wit = Wi)? = (tir — 1) (22)

e
-

0.8

0.6

Uniform residuals
04
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T

[
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Quantile U[0,1]

Fig. 10. Residential model residues quantile-quantile graph.

Fig. 5 shows a simulated trajectory in black, and the original data
trajectory is shown in red for comparison. It shows that the simu-
lated curve has a very similar behavior to the real one: both remain
within the same rank and the shapes of their trajectories are very
similar in the sense of how they change over time. This analysis
shows, at first sight, a good representation of the power output of
the wind farm obtained by the model.
b. Multidimensional case
In this case the discretization of each component satisfies
the same scheme (22).
In the uncorrelated case, the Brownian difference random
vector follows a standard multivariate normal distribution.
In the correlated case this vector follows a multivariate nor-
mal distribution with null vector mean and correlation
matrix = = BB'.
Figs. 6 and 7 show in black the sum of the 11 simulated
components for the uncorrelated and correlated cases. The
trajectory of the original data is shown in red and in black
the simulated one. As in the one-dimensional case, both tra-
jectories (uncorrelated and correlated) move within the
same rank and their variations over time are similar to the
real trajectory. Nevertheless, the uncorrelated simulation
shows more abrupt changes than the correlated case. This
could indicate that the second model is more appropriate
to describe the behavior of the power generated by each
windmill simultaneously

5.1.2. Electric power demand
The discretization for Eq. (21) is the following:

Diy1 =Di+ B+ > _((—27fyy; — néi) sin(2mtf)
i=1

+ (27tf ;6 — 7y;) cos(2mtif;)) + n(Di — o0 — Bti) (tiz1 — ;)
V(Wi — W) (23)

Fig. 8 shows a simulated trajectory in black, and, for compar-
ison, the trajectory of the original data is shown in red. In this case,
the actual path is not behaving so randomly: it has certain changes,
which are captured by the sinusoidal functions, behavior that is
well represented in the simulated curve. However, there are slight
variations in the amplitudes: the simulated process shows higher
maximum and lower minimum than the actual curve, which
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Table 11
Validation statistics.

Statistic Result

Jarque Bera Test
Durbin Watson Test
Breusch Pagan Test
R2

R? adjusted

(p — value = 0.2745) Normality

(p — value = 3.266e—05) Correlation
(p — value = 0.8075) Homoscedastic
0.7626

0.7371

expands a little the rank. To determine whether the model over-
states the real values another tool is required, which will be
applied in the next point.

5.2. Residual analysis

An analytic and formal tool to verify and validate the goodness
of a fit of a model based in SDE is the uniform residues study. This
method consists basically in determining whether the actual
observations obtained come from a process with the chosen char-
acteristics of the model [42].

The procedure to use this technique, in the particular case of an
0-U process will be explained. To begin, the expectation and con-
ditional variance of the process must be known, and they can be
calculated explicitly for the O-U process.

For the O-U process the expectation and conditional

variance are respectively E,,(Us|Uy=U, ) =U, e and
Vi (UalUo = Uy, ) = 250,
From this the following random variables are calculated:
U —E,(Uy|Up = Uy, U, — U, e
Ry = i ErrlUalbo = G ) Uy = B, (24)

Vyy(UalUo = Uy, ) v

e2nd 1
2n

Eq. (24) is known as the standardized residues. For this process,
as it is a Gaussian one, the standardized residues must follow a
standardized normal distribution, which implies that if they are
composed by the normal standard cumulative distribution func-
tion @, random variables with uniform distribution U(0,1) must
be obtained, i.e., the variable

Yu(n,v) ¢(Rfi("’v))

= (25)
where &(z) = - [?_ e"©/2dt, must comply with ¥, (17,v) ~ U(0,1).

In order to formally validate the parametric one dimensional
models obtained, the uniform residues associated with parameters
estimated for the O-U process were analysed. For this propose, it
will be verified if the data under the transformation (13) come
from an O-U.

Mean

T T T T T T
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(a) Mean errors behaviour

Standard deviation

1.3

293

The multidimensional case is a slightly more difficult and it will
be a future work.

5.3. One-dimensional wind power model

As stated, if transformation (13) of the data can be represented
by an O-U, it must be true that taking these data as observations of
the random variable U;, we must get that the variables (25) follow
a uniform distribution U(0,1). This can be verified by means of a
quantile-quantile graph that compares the quantiles of the ran-
dom variable (25)with the theoretical quantiles of a variable with
uniform distribution U(0, 1).

For the numerical calculation of (24)the original time scale is
considered, i.e., 4=1s. After getting R;(n,v) and ¥.(n,v), we
got the quantile-quantile graph of Fig. 9 for ¥, (n,v):

Since the points follow approximately the identity line, it means
that the observations obtained fit the stated type of model, and
therefore there are no reasons to doubt the fit.

It can be concluded that this model seems to describe in a very
good way the short-time interactions of the system and it is ready
to be applied for real studies in short and continuous time in EPS.

5.3.1. Electric power demand model

Following the above mentioned procedure, the uniform resi-
dues for the O-U process associated with the residue of harmonic
regression fit will be studied. According to the method described
above, the following result was obtained and shown in Fig. 10:

Again, in Fig. 10 the points follow approximately the identity
line, so this quantile-quantile plot shows that the harmonic regres-
sion residue is well fitted by the chosen process. This states that
the random behavior presented in the residential consumption is
well represented by de the O-U process.

The results obtained by harmonic regression can be tested with
the usual inference analysis. This is: homoscedasticity, correlation,
normality of the residual and the determination coefficient R?.
Table 11 shows the results of statistical tests over the three resid-
uals condition and the R? value

According to the result observed in Table 11, the non-
correlation condition is not fulfilled. This might be because the
chosen frequencies for description were not sufficient and more
factors could be included to improve the model and obtain better
fitting results.

Regarding the R* coefficient value, it indicates that the chosen
parameters improve the electric energy demand variance in about
75%.

As can be seen, the selection of the variables accurately predicts
the energy consumption behavior, however, the correlation and in
the residuals reveals that some other elements could be explained
by selecting another parameters.

15 16 17 1.8

1.4

1.2

T T T T T T
0 200 400 600 800 1000

Number of simulations

(b) Standard deviation errors behaviour

Fig. 11. Behaviors for different number of simulations.
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Table 12
Mean percentage error for the wind generation models.

Model Error (%)
One-dimensional 0.115
Correlated multidimensional 0.206
Uncorrelated multidimensional 0.294

5.4. Wind generation comparison models

In this section the total power outputs delivered by the two
models proposed earlier, correlated and uncorrelated, will be com-
pared with the actual observations. In order to do this we will con-
sider the mean percentage error between the sum of the actual
observations and:

e The trajectories of the one-dimensional model.

e The sum of the trajectories of the 11 components of the uncor-
related model.

e The sum of the trajectories of the 11 components of the corre-
lated model.

For the above, 700 trajectories were simulated for each model.
The number of simulations was chosen for the following reasons:

o After 700 paths, mean and standard deviation of the calculated
error are maintained around a constant value. This can be seen
in the Figs. 11(a) and (b). The experiment was made just for the
one dimensional case.

e The computational cost over 700 trajectories in multidimen-
sional cases increases too much.

The mean percentage error of each trajectory was calculated,
and then these 700 errors were averaged, respectively. Table 12
shows the results.

Although it could be expected that the correlated multidimen-
sional model would be a better representation to the farm, the
error of this model is greater than that of the one-dimensional
due to the data transformation, since for the one-dimensional case
the logarithm of the sum at the time of estimating is considered.
However, for the multidimensional case each component must
be transformed, turning into a sum of logarithms, which for the
values of the provided observations is greater, increasing the error.
It is for this reason, and because of its simplicity, that it is more
convenient to work with the one-dimensional generation model
of the farm. However, if an analysis of the distribution of the wind-
mills wants to be carried out, the multidimensional approach
would be appropriate.

6. Conclusions

The present work shows a methodology that allows character-
izing, by means of a stochastic process, the random and self-
sustained behavior in time of the output power of a wind farm
and the demand for electric power.

For modeling wind generation, two short and continuous time
representations, a one-dimensional and a multidimensional, were
proposed. The one-dimensional case turned out to be a more accu-
rate description of the output power of the farm. On the other
hand, in the multidimensional case, the possible interaction
between windmills was considered, including a correlated
Brownian motion.

A correlation matrix was obtained to represent the effects of
one windmill onto the others. The procedure to construct this
matrix and the estimation method to obtain its components was
explained in detail.

Future studies could be focused on this matrix, which can pro-
vide, for example, information on the geometric arrangement of
the farm.

For power demand a hybrid model was proposed based on har-
monic regression and O-U process.

The techniques for parameter estimation of all the models pro-
posed are given. A validation method for one dimensional contin-
uous model is explained. The latter confirms the good fit of the
stated equations.

In the future it will be used the models obtained to evaluate the
impact of wind penetration and demand on the operation of the
systems in permanent regime.
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