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A methodology to model two types of random perturbation that affect the operation of electric power
systems (EPS) are presented. The first uncertainty is wind power generation and is represented by a
one-dimensional and by a multidimensional continuous stochastic process. The second one is power
demand, and is modeled by using an hybrid structure based on harmonic regression and the Ornstein–
Uhlenbeck (O–U) process. The stochastic models are applied to a real Chilean case, using real data for
parametric estimation and validation models.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic and permanent regime studies that deal with electric
power systems (EPS) are of vital importance to the electrical indus-
try, because they make it possible to determine the adequate oper-
ating conditions for supplying the electric power required by
society in an economic, reliable and safe manner. In this context,
the most important approaches of the EPS studies are oriented at
their planning and operation.

One of the main problems that concern planning and operation
consists on keeping the system operating in a steady state, i.e., that
the system does not lose its balance when it is subjected to pertur-
bations that affect its behavior. The most frequent perturbations
found in EPS are fault occurrence, load level variation, changes in
the network topology, and the presence of random components
caused by generation sources based on unconventional renewable
energy.

In particular, wind generation and power demand will be the
focus of this paper. Due to the stochastic nature governing these
two types of disturbances, it is appropriate to consider statistical
models to represent their behaviors and then, perform more real-
istically studies about their impact over the EPS [1].

Development of more precise and accurate models is of high
importance for improving the results of their subsequent applica-
tion [2–7]. For instance, paper [2] uses Kalman filtering in the con-
text of short-term prediction wind speed, reflecting in turn into a
better planning and usage of the power resource.

In [3], statistical regime-switchingmodels are applied in order to
modeling the fluctuations of offshorewind generation. The research
is oriented to obtain models dedicated to enhance the existing con-
trol and energy management strategies at offshore wind parks.

Ref. [4] applied a Markov-switching model to perform point and
interval forecasting of wind speed. It Emphasize that an accurate
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wind speed interval forecasting is beneficial to the robust opti-
mization in wind farm operational planning.

A statistical and dynamical modeling are proposed in [5] for var-
ious classes of wind speed fluctuations distributions. A generated
wind speed sequence in time is made solving the Langevin equation
with different turbulence conditions. Ref. [6] uses Stochastic
Differential Equations (SDE), based on Ornstein–Uhlenbeck (O–U)
process, to develop methods to model wind speed.

Paper [7] presents models based on SDE and O–U process of
wind power production, besides, base production and base con-
sumption which can be used to evaluate the impact on power sys-
tems balancing. In addition, estimation methods for parameters
are proposed and a case study is presented.

As can be seen, accurate wind speed and wind power simula-
tions and forecasting have an important influence on studies and
decision-making of EPS [8,9]. For this reason, a large number of
techniques have been developed. Papers related to comparisons
between different methods can be found in [10–14].

In [11] a comparison between time series and Artificial Neural
Networks (ANN) models is presented by a long-therm prediction
of production of wind power station in Mexico. Another compar-
ison is made in [12], where Autoregressive – Moving Average
(ARMA), 5 kinds of ANN and the Adaptive neuro fuzzy inference
system (ANFIS) models are compare in different time horizons.

In [13], it is proposed a newmethod based on multiple architec-
ture system (MAS).

Conversely, load uncertainty models can be found in [15–20],
where they use continuous stochastic process in order to model
the behavior of the loads for stability studies.

While continuous models are widely used for application to sta-
bility studies, other kinds of models are applied to modeling
demand.
Table 1
Statistical methods to model and forecast wind speed and wind power generation.

Category Subclass Example Advan

Conventional
statistics

Recursive
filter

Kalman filters � Ab
� Re

Stochastic
process

Discrete time continuous state (Time
series analysis: ARMA, ARIMA, ARIMA)
Discrete time discrete space (Markov
chains)

� W
� W
te

� Fl

Continuous time continuous space
(Brownian motion, O–U process, etc.)

� M
un

� W
no

Artificial
intelligence
and new
methods

Artificial
neural
networks

Feed-foreward
Elman
Radial Basis Function
Multilayer perceptron

� M
a
se

Fuzzy Logic
Wavelets
Entropy
based
training
Spatial
correlation

� Le
as
th
be

Hybrid methods Mixtures of
any method
mentioned
above

Adaptation neuro fuzzy inference
system (ANFIS)

� Ad
� Im
In [21–25], regression models to study residential energy
demand are presented. Refs. [21,22] use multilinear regression
with the aim of predicting future values of energy demand. On
the other hand, logistic regression method is used in [23], where
it is applied to analyse the domestic electric consumption types.
In [24,25] harmonic regression is used taking advantage of their
ability to describe processes with marked seasonality.

Time series analysis is also largely used in this context [26–30].
For example, in [29] residential demand is modeled and predicted
with a Seasonal Autoregressive Integrated Moving Average with
Exogenous Variables model (SARIMAX), considering as a data real
residential demand measures.

The models and applications are vast, so in order to sum up all
the techniques used to represent wind generation and power
demand, Tables 1 and 2 classify the principal methods reviewed
and expose their benefits and principal cases of application.

Classification of Table 1 is based on Refs. [31,32], and Table 2
maintains the structure classification but considering Ref. [33] as
a guideline. It is important to say that Table 2 is focused on resi-
dential power demand because this type of load is the most com-
monly analysed.

As the literature shows, there is a wide variety of tools to study
the impact of stochastic perturbation, as wind generation, and dif-
ferent approaches can be made. However the main purpose of this
paper is to model stochastically in continuous time the behavior of
wind farm power generation and the power demand due to resi-
dential consumption by means of a model that accounts for the
random and self-sustained over time dynamics.

The novelty of the models proposed is the development of a
multidimensional correlated model for a wind farm representa-
tion. The interesting thing in the equations obtained is the pres-
ence of a correlation matrix, which can provide potential
tage Study focus

ility to provide the quality of the estimate
latively low complexity

� Used to predict the future
wind speed. It is suitable for
online forecasting of wind
speed

� Prediction to improve the
planning and usage of power
sources

ell established methodology
ell implemented estimation and validation
chniques
exibility in assignment variables

� Long, medium and short term
studies, where predicting
future values are needed

� Influence analysis of factors
over wind power generation

ore general description for phenomena
der study
ider range of applicability of possible phe-
mena modeling

� Continuous time analysis,
ideal for time depending
studies, as analytic stability
studies

� Power wind impact studies
ore general than linear methods, which gives
major flexibility at the moment to fit a data
ries

� Accuracy improvement fore-
casting wind speed and wind
power generation, applied to
planning and control studies

ss condition about the data should be
sumed, which is better in situations when
e truly distribution is unknown or cannot
approximated easily

� Applied to non stationary
wind speed prediction in
wind power systems

� Used where a system is diffi-
cult to model exactly

vanced ones and less error than others
provement of pure methods

� Depending on the hybrid
mixture. In general used to
improve the accuracy of fore-
casting methods

� Short and medium termwind
speed and wind power
prediction



Table 2
Statistical methods to model and forecast load uncertainties.

Category Subclass Example Advantage Study focus

Conventional
statistics

Regression
analysis

Multilinear regression
Harmonic Regression
Conditional Demand Analysis
(CDA)
Analysis of Variance (ANOVA)

� Easy implementation and interpretation. Well estab-
lished estimation techniques

� Intuitive description of seasonal changes
� Scientific acceptance and a wide range of
applicability

� Long term studies of demand
behavior, with great time inter-
vals, varying to hour to years

� Influence analysis of factors over
electric consumption behavior

Stochastic
process

Discrete time continuous state
(Time series analysis: ARMA,
ARIMA, SARIMA, etc.)
Discrete time discrete space
(Markov chains)

� Well established methodology
� Well implemented estimation and validation
techniques

� Flexibility in assignment variables

� Long and short term studies,
where predict future values are
needed

Continuous time continuous
space (Brownian motion, O–U
process, etc.)

� More general description for phenomena under study
� Wider range of applicability of possible phenomena
modeling

� Continuous time analysis, ideal
for time depending studies, like
transient changes

Artificial
intelligence
and new
methods

Artificial neural
networks

Feed-foreward
Elman NN
Radial Basis Function

� More general than linear methods, which gives a
major flexibility at the moment of fitting a data series

� Accuracy forecasting power
demand, applied to planning
and control studies

Fuzzy logic � Less condition about the data should be assumed.
Which is better in situations when the truly distribu-
tion is unknown or cannot be approximated easily

Wavelets
Hybrid

methods
Mixtures of any
method
mentioned
above

ANFIS � Improvement of pure methods � Depending on the hybrid mix-
ture. In general used to improve
the accuracy of forecasting
methods
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information about the effect of a windmill over another and allow-
ing future studies on wind farm geometry.

Summarizing, the novelty of the present paper is:

� Multi-correlated model that represents windmills interactions.
� Validation technique for continuous unidimensional stochastic
models.

� Short-time multidimensional wind generation forecasting
model (hours).

� Medium-time one dimensional residential power demand fore-
casting hybrid model, based on harmonic regression and O–U
process

The rest of the paper is structured as follows: Section 2 estab-
lishes the necessary knowledge in statistics and mathematics to
propound models applicable to real cases. Section 3 presents the
characterization of the perturbations that affect the operation of
the EPS and the equations of the models are presented. Section 4
applies the proposed models to Chilean cases with real data. Sec-
tion 5 provides the results obtained for the analysed cases, and
finally Section 6 includes the conclusions and future work.

2. Mathematical foundations

This section presents the foundations of the processes and
stochastic differential equations needed for the model, and the
characterization of the random behavior of a wind farm and typical
feeders in distribution networks. It also presents the methodology
used for the parametric estimation of the models from the real data
obtained from field measurements, and the numerical method for
solving the stochastic differential equations.

2.1. Stochastic processes and stochastic differential equations

Definition 1. A one-dimensional stochastic process is a parame-
trized collection of random variables fXtgt2T defined in a proba-
bility space ðX;F ; PÞ, that assumes values in R. The parametric
space T � R is usually interpreted as time, see [34].
Definition 2. A Gaussian process is a stochastic process fXtgt2T
such that every linear combination of the form Z ¼Pn

i¼1aiXti , with
n P 1;ai 2 R; ti 2 T , is a normal random variable.
Definition 3. A one-dimensional Brownian motion is a Gaussian
process fWtgt2T that satisfies:

(i) EðWtÞ ¼ 0,8t 2 T
(ii) CovðWt ;WsÞ ¼ minft; sg
Definition 4. A one-dimensional Ito process fXtgt2T is one that can
be expressed in the form

Xt ¼ X0 þ
Z t

0
aðu;XuÞduþ

Z t

0
bðu;XuÞdWu

where aðu;XuÞ and bðu;XuÞ are F t-adapted processes andR t
0 bðu;XuÞdWu is Ito’s integral (see [34]). This equation can be
expressed as a stochastic differential equation:

dXt ¼ aðt;XtÞdt þ bðt;XtÞdWt ð1Þ

where Wt is a Brownian motion.Furthermore, if fXtgt2T is a contin-
uous process, then it is said to be a diffusion process.
Theorem 1 (one-dimensional Ito’s formula). Let fXtgt2T be a diffu-
sion process with (1) as an SDE. Let f : 0;1½ ½ �R ! R be a one time
continuously differentiable function in t and twice continuously differ-
entiable in x. Let Yt ¼ f ðt;XtÞ, then Yt is a diffusion process that satis-
fies the following SDE:

dYt ¼ @f ðt;XtÞ
@t

þ aðt;XtÞ @f ðt;XtÞ
@x

þ 1
2
b2ðt;XtÞ @

2f ðt;XtÞ
@x2

 !
dt

þ bðt;XtÞ @f ðt;XtÞ
@x

dWt ð2Þ
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Definition 5. The quadratic variation of a stochastic process
fXtgt2T , written as X½ �t , is defined as X½ �t ¼ limkPk!0

Pn
k¼1

ðXtk � Xtk�1
Þ2, where P corresponds to partitions over the interval

0; t½ �. This limit, if it exists, is defined using convergence in
probability.

More generally, the cross variation of two processes fXtgt2T and
fYtgt2T is defined by X;Y½ �t ¼ limkPk!0

Pn
k¼1 Xtk � Xtk�1

� �
Ytk � Ytk�1

� �
.

Definition 6. An m-dimensional standard Brownian motion
fWgt2T , is that with components W1

t ;W
2
t ; . . . ;W

m
t , which are inde-

pendent one-dimensional Brownian motions. The increments of

the Brownian motion W j
t �W j

s for j 2 f1;2; . . . ;mg; t P 0 and
s 6 t, are then independent random Gaussian variables with mean
zero and variance equal to t � s. Therefore,
Wt �Ws � Ndð0; ðt � sÞIÞ, where 0 denotes the null vector and I
the identity matrix [35].
Theorem 2 (Multidimensional Ito’s formula). Given the
m-dimensional Brownian motion fWgt2T , a d-dimensional drift

coefficient vector function a : ½0; T� �Rd ! Rdand a d�m-matrix

diffusion coefficient function b : ½0 : T� �Rd ! Rd�m, to form the fol-
lowing d-dimensional stochastic differential equation:

dXt ¼ aðt;XtÞdt þ bðt;XtÞdWt ð3Þ
where for each component we have:

dXi
t ¼ aiðt;XtÞdt þ

Xm
j¼1

bi;jðt;XtÞdW j
t ð4Þ

For sufficiently smooth vectorial functions U : ½0; T� �Rd ! Rk of
solution Xt of Eq. (3), we get a k-dimensional process Yt ¼ Uðt;XtÞ.

The expression for its pth-component, which results from applying
Ito’s formula to each component, satisfies the following differential
equation:

dYp
t ¼

@Up

@t
þ
Xd
i¼1

ai @U
p

@xi
þ 1
2

Xd
i;j¼1

Xm
l¼1

bi;lbj;l @
2Up

@xi@xj

 !
dt

þ
Xm
l¼1

Xd
i¼1

bi;l @U
p

@xi
dWl

t ð5Þ

for p 2 f1;2; . . . ; kg, where the terms on the right in (5) are evaluated

in ðt;XtÞ;Up; ai and bi;j are the corresponding coordinate functions of
the vectorial functions U;a and b [36].
Definition 7. A correlated m-dimensional Brownian motion

ffWgt2T is such that its components fW1
t ;
fW2

t ; . . . ;
fWm

t are trans-
formed scalar Brownian motions. In vectorial notation, the
m-dimensional transformed Brownian motion can be expressed
by the linear transformation:fWt ¼ at þ BWt ð6Þ
where a ¼ ða1; a2; . . . ; adÞ>is a d-dimensional vector, B is a
d�m-matrix and W ¼ fWt; t P 0g is a standard m-dimensional
Brownian motion.

Applying Ito’s formula we get the following for each component

dfWk
t ¼ akdt þPm

i¼1b
k;idWi

t , for k 2 f1;2; . . . ; dg.
In this case fWt �fWs � Nð0;RÞ, where R ¼ BB> is the correla-

tion matrix [35].
Among the diffusion processes there is the Ornstein–Uhlenbeck

process, widely used for the description of physical phenomena,
which satisfies the following stochastic differential equation:
dUt ¼ gUtdt þ mdWt ð7Þ
where g < 0 and m > 0.

This process is Gaussian and it is shown that its expectation is

U0egt and its variance is m2ðe2gt�1Þ
2g . It is also verified that the variance

is bounded and admits a stationary probability distribution. In
other words for a given t0, and for 8t > t0, we have that each

random variable complies with Ut � Nð0;� m2
2gÞ.

In the present work it will be the fundamental component of
the models to be proposed, and its mathematical properties for the
parameter fitting and later validation of the models will be used.
2.2. Parametric estimation

In the Ornstein–Uhlenbeck process (7), a technique for estimat-
ing parameter g is the use of quasi maximum likelihood [37],
whose estimator turns out to be:

~g ¼ 1
D

log
Pn

i¼1Uði�1ÞDUiDPn
i¼1U

2
ði�1ÞD

ð8Þ

where the random variable UiD corresponds to an observation of the
O–U process at instant iD. For this fitting these observations will
correspond to the actual data provided by the farm, under a certain
transformation that will be indicated later; n is the number of avail-
able observations, and D is the time interval between observations.

Parameter m, of Eq. (7) can be estimated by equating the quad-
ratic variation of the O–U process with its discretization, from
which the following estimator is obtained:

~m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
t

Xn

i¼1
ðUiD � Uði�1ÞDÞ2

r
ð9Þ

where t is the total time in which the process was observed, in the
time scale considered for g.

For the estimation of possible correlations between two
processes the cross variation will be used, in the same way as with
the quadratic variation. In this case, for two processes fXtgt2T
and fYtgt2T that satisfy Eq. (1), with diffusion coefficients bxðt;XtÞ
and byðt;YtÞ, respectively. Its cross variation would beR t
0 bxðs;XsÞbyðs;YsÞqds, where q is the correlation coefficient.
In the particular case of two O–U process, that satisfy (7), the

estimator of its correlation coefficient, obtained by means of equat-
ing the theoretical cross variation with its discretization, is given
by Eq. (10).

~qn ¼ 1
m1m2t

Xn
k¼1

U1
tk
� U1

tk�1

� �
U2

tk
� U2

tk�1

� �
ð10Þ
2.3. Numerical resolution schemes

The numerical schemes will be useful at the time of analysing
the behavior of the stochastic process that is being studied and
then simulating the trajectories for later applications.

For a stochastic differential equation of form (1), the Milstein
numerical scheme would be:

Xiþ1 ¼ Xi þ aðti;XiÞðtiþ1 � tiÞ þ bðti;XiÞ þ 1
2
bðti;XiÞb0ðti;XiÞ

� ððWiþ1 �WiÞ2 � ðtiþ1 � tiÞÞ ð11Þ
In the multidimensional case, the kth-component of the

Milstein scheme, for a process that satisfies (3) with diagonal
matrix b, would be:

Xk
nþ1 ¼ X1

n þ akDþ bk;kDWk þ 1
2
bk;k @b

k;k

@xk
fðDWkÞ2 � Dg ð12Þ
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For further details of the above mentioned numerical schemes,
see [36].

3. Perturbation models

This section presents the assumptions made for modeling the
two random phenomena considered in the paper: wind generation
and electric power demand. The procedure to obtain the stochastic
equations that represent the uncertainties is detailed.

3.1. Characterization of the perturbations

3.1.1. Wind generation
Wind generation is subjected to various factors, among the

most important of which there is the wind speed and the installed
capacity of the wind farm. In general, the following aspects are
distinguished:

� In short time intervals, as hours, the irregularity of the wind
speed results in a generation that lacks a definite trend and sea-
sonality. However, seasonalities can exist in longer time inter-
vals, as months or days [38].

� It should be noted that the trajectories of the measurements of
wind generation are bounded in the ½0; P� (where P corresponds
to the total installed capacity of the farm). Moreover, the wind
generation samples do not change discontinuously.

� Wind speed does not have symmetrical distribution Therefore,
the representation of the power delivered by the wind farm
should have similar characteristics in its distribution. Weibull
and Rayleigh distributions are most commonly used in wind
speed data analysis [39]. On the other hand, logarithmic normal
distribution is used to characterize wind power generation, due
to the possibility to incorporate the Brownian motion in the
dynamic representation [40].

� The square of the mean wind generation cannot increase during
many consecutive hours, and this is associated with the prop-
erty of reversion to the mean. This implies that the trajectories
of the process will be around the mean value.

3.1.2. Electric power demand
In general, the behavior of a load follows certain seasonal pat-

terns associated with changes in the seasons of the year, day and
night, weekends, etc. It is also subject of a certain trend due to
the population growth and urbanization.

3.2. Wind generation model

Two stochastic models are developed that allow the dynamic
representation of the power generation of the complete farm.
The first corresponds to a one-dimensional representation of the
total power output and the second to a multidimensional repre-
sentation where each component symbolizes a windmill in the
wind farm.

3.2.1. One-dimensional model
If it is desired to directly consider process (7) as a representa-

tion of the wind generation, it would have to be assumed that
the wind generation follows a normal distribution, but as already
stated, it is often considered that the wind power generation fol-
lows a normal-logarithmic distribution, suggesting that the pro-
cess that describes the wind generation, which will be denoted
by fYtgt2T , complies with:

lnYt � h ¼ Ut ð13Þ

) Yt ¼ eUtþh ð14Þ
where h is the mean of lnYt . This ensures that lnYt � h has a zero
mean and a normal distribution. So (14) is the candidate model
and with transformation (13) one can work directly with the O–U
process.

According to Ito’s formula (3), Eq. (14) satisfies the following
SDE:

dYt ¼ g lnYt � ghþ m2

2

� �
Ytdt þ mYtdWðtÞ ð15Þ
3.2.2. Multidimensional model
As an experiment, the wind farm was modeled in a multidimen-

sional manner, taking each component as a windmill. The objective
was to determine if, at the time of describing the farm’s power out-
put, it is more appropriate to take into account the behavior of each
windmill and its possible interaction, or if the overall view consid-
ered in the one-dimensional model is sufficient.

The same as in the case of the total output power, it will be pro-
posed that each wind generator can be described by a process of
the form (14), so that with transformation (13), each windmill
can be fitted by an O–U process. Writing this in matrix form, fol-
lowing model is obtained:

dUt ¼ AUtdt þ CdWt ð16Þ
where vector Ut ¼ ðU1

t ;U
2
t ; . . . ;U

n
t Þ has a one-dimensional O–U pro-

cess in each component. The dUt notation means that each compo-

nent of the vector is differentiated, i.e., dUt ¼ ðdU1
t ;dU

2
t ; . . . ;dU

n
t Þ.

Matrices A and C are diagonal with components aij and cij respec-
tively, given by:

aij ¼
gi i ¼ j

0 i– j

	
cij ¼

mi i ¼ j

0 i– j

	
ð17Þ

where vector Wt is an n-dimensional Brownian motion. Two cases
will be considered in this stage: correlation and no correlation
between the elements of the vectorial Brownian.

The case with no correlation is simply aimed at fitting an O–U to
each transformed windmill, the same as in the one-dimensional
case, i.e., every wind generator, transformed according to (13), is

associated with the process dUi
t ¼ giU

i
tdt þ midW

i
t , where

i ¼ f1;2; . . . ;ng. The Wi
t are independent from one another.

For the correlated case it will be assumed that the vectorial
Brownian in (16) is correlated. This Brownian can be expressed as

the linear transformation Wt ¼ BfWt , where fWt is an independent
n-dimensional vectorial Brownian and B is the n� n square matrix,
which is built in such a way that at the time of calculating the cross
variation of the processes of each component the cross variation
coefficient is obtained by some extra parameter of matrix C.

In the case of the correlated model it is necessary to build and
then estimate the correlation matrix R ¼ BBt . To show how to
determine matrix B, consider the three-dimensional case. Assume
the following process:

dU1
t

dU2
t

dU3
t

0BB@
1CCA ¼

g1 0 0
0 g2 0
0 0 g3

0B@
1CA U1

t

U2
t

U3
t

0B@
1CAdt þ

m1 0 0
0 m2 0
0 0 m3

0B@
1CA dW1

t

dW2
t

dW3
t

0BB@
1CCA
ð18Þ

where vector ðdW1
t ;dW

2
t ;dW

3
t Þ

>
corresponds to a correlated three-

dimensional Brownian motion that can be expressed as:

dW1
t

dW2
t

dW3
t

0BB@
1CCA ¼

b11 b12 b13

b21 b22 b23

b31 b32 b33

0B@
1CA dfW 1

t

dfW 2
t

dfW 3
t

0BB@
1CCA ð19Þ
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where vector ðdfW 1
t ; dfW 2

t ;dfW 3
t Þ

>Þ is a standard three-dimensional
Brownian motion.

Each component is written in the form:

dU1
t ¼ g1U

1
t dt þ m1ða11dfW 1

t þ a12dfW 2
t þ a13dfW 3

t Þ
dU2

t ¼ g2U
2
t dt þ m2ða21dfW 1

t þ a22dfW 2
t þ a23dfW 3

t Þ
dU3

t ¼ g3U
3
t dt þ m3ða31dfW 1

t þ a32dfW 2
t þ a33dfW 3

t Þ
It is expected that when the quadratic and cross variations are

calculated we will have that: U1
h i

t
¼ m21t; U2

h i
t
¼ m22t; U3

h i
t
¼ m23t;

U1;U2
h i

t
¼ k1;2q1;2t; U1;U3

h i
t
¼ k1;3q1;3t; U2;U3

h i
t
¼ k2;3q2;3t,

where ki;j is some constant, and qi;j is a correlation parameter to be
estimated.

To begin, it will be assumed that b11 ¼ 1; b12 ¼ b13 ¼ 0, so the

first coordinate will be: dU1
t ¼ g1U

1
t dt þ m1dfW 1

t , and its quadratic
variation is m21t.

In the second component it will be assumed that

b21 ¼ q1;2; b22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q1;2

q
and b23 ¼ 0, so dU2

t will become:

dU2
t ¼ g2U

2
t dt þ m2ðq1;2dfW 1

t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1;2

q
dfW 2

t Þ, and its quadratic

variation is ½U2�t ¼ ðm22q2
1;2 þ m22ð1� q2

1;2ÞÞt ¼ m22t.The cross variation

between U1
t and U2

t becomes: ½U1;U2�t ¼ m1m2q1;2t.
To determine the coefficients b31; b32 and b33we proceed as fol-

lows: It must be fulfilled that ½U1;U3�t ¼ k1;3q1;3t, then
m1m3b31t ¼ k1;3q1;3t, so k1;3 ¼ m1m3 and b31 ¼ q1;3. We must also have

that: ½U2;U3�t ¼ k2;3q2;3t, so ðm2m3q1;2q1;3 þ m2m3b32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1;2

q
Þt

¼ k2;3q1;3t, and therefore k2;3 ¼ m2m3 and b32 ¼ ðq2;3�q1;2q1;3Þffiffiffiffiffiffiffiffiffiffiffi
1�q2

1;2

p .

Finally, for factor b33, we see the quadratic variation ofU3
t , where:

½U3�t ¼ m23t must be fulfilled, therefore, m23 q2
1;3 þ ðq2;3�q1;2q1;3Þ2

1�q1;2

��
þb2

33

��
t ¼ m23t, so b33 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1;3 �
ðq2;3�q1;2q1;3Þ2

1�q1;2

r
. From this we get

the transformation matrix B, given by:

B ¼

1 0 0
q1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1;2

q
0

q2;3
ðq2;3�q1;2q1;3Þffiffiffiffiffiffiffiffiffiffiffi

1�q2
1;2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1;3 �
ðq2;3�q1;2q1;3Þ2

1�q2
1;2

r
0BBBB@

1CCCCA
Under this construction we will have that matrix B will be a

triangular matrix where coefficients bi;1 will correspond to the cor-
relation between the first component and component i. The rest of
the factors are calculated by equalizing the values that are
expected in the cross and quadratic variations.

3.3. Electric power demand model

A general characterization of this type of behavior will be repre-
sented with the following one-dimensional process:

Dt ¼ aþ bt þ
Xn
i¼1

ðci cosð2ptfiÞ þ di sinð2ptfiÞÞ þ Ut ð20Þ

where Dt is the power demand, Ut is an O–U process, f i are the fre-
quencies associated with the seasonal changes, bt is associated with
the electric consumption increase over time, and the rest of the
coefficients are parameters that must be estimated.

Using Ito’s formula (3), process (20) satisfies the following
stochastic differential equation:
dDt ¼ ðbþ
Xn
i¼1

ðð�2pf ici � gdiÞ sinð2ptfiÞ

þ ð2pf idi � gciÞ cosð2ptfiÞÞ þ gðDt � a� btÞÞdt þ mdWt ð21Þ
4. Application case

The models presented in the section above will be implemented
in a real Chilean case, using real information data for parameter
estimation.

4.1. Wind power generation

Observations measured in field from eleven windmills of Canela
wind farm, located in the Fourth Region of Chile was used.

The treatment to which the data were subjected is presented
below, to get the parameters of the stochastic processes using
the data from the farm.

4.1.1. Presentation of data
The data delivered from the wind farm corresponds to measure-

ments of active power in kW from 11 windmills, made every sec-
ond during three hours. For this time interval under study,
seasonal changes are not appreciable, so they will be not
considered.

The set of observations will be denoted by fyniDgi¼0;...;10800, where
D ¼ 1 s, 1 s represents the time between observations, n is the
identifier for each mill, and i is the number of samples considered.
The total sum of the power generation of the mill every second will
be denoted by f~yiDgi¼0;...;10800.

Fig. 1 shows the trajectory generated by the data of the total
power output generated by the farm. It is seen that the power
delivered by the farm varies in time, with bounded trajectories
and non-deterministic characteristics.

Some statistical characteristics will be observed in order to jus-
tify the distribution assumptions and the use of the proposed mod-
els in the previous section, as an application with these real data. In
this case, and for practical matters, only the characteristic of global
wind generation data f~yiDg are presented. Moreover, the statistical
information of each windmill separately shows similar attributes.

Table 3 shows four statistical measures of the observation sam-
ple, both the real and the transformed by (8). It is important to
analyse the transformation data characteristics, because these will
be used for the model calibration. Positive skewness of the raw
data indicates that the tail on the right side of the probability den-
sity function is longer than the left side, as in the case of log-
normal distribution. The skewness of transformed data is close to
zero, as it could be expected for a normal distribution.

Kurtosis measure has a value proximal to three, in both cases
(raw and transformed). This gives another beneficial point to Gaus-
sian distribution consideration for the data that will be adjusted
and modeled.

In relation to the variance, its value decreases with the logarith-
mic transformation, which in somehow improves the data quality.

On the other hand, Figs. 2(a) and (b) shows respectively the
autocorrelation function (ACF) of the real and transformed data.
The exponential decay of the functions exhibit a similar behavior
of process that correlated the future state with the present, as
O–U process [41]. This can suggest that the application of the men-
tioned process to represent the data will be appropriate.

Summarizing:

� Data need to be transformed to reduce its variance.
� Transformed data shows indicators with Gaussian
characteristics.



Table 6
Estimation of correlation parameters between windmills.

Parameter Value Parameter Value Parameter Value

q1;2 0.0356 q3;4 �0.0758 q5;9 0.0309
q1;3 0.1028 q3;5 �0.0400 q5;10 0.0382
q1;4 �0.0148 q3;6 �0.0304 q5;11 0.0160
q1;5 0.0212 q3;7 0.0499 q6;7 �0.0398
q1;6 0.0203 q3;8 0.0802 q6;8 0.0319
q1;7 0.0158 q3;9 �0.0581 q6;9 0.0042
q1;8 0.0171 q3;10 0.0541 q6;10 �0.0155
q1;9 0.0532 q3;11 0.0251 q6;11 0.0115
q1;10 0.0184 q4;5 �0.0188 q7;8 �0.0844
q1;11 �0.0196 q4;6 0.0086 q7;9 �0.0325
q2;3 �0.0096 q4;7 �0.0062 q7;10 �0.0053
q2;4 0.0016 q4;8 0.0227 q7;11 0.0158
q2;5 �0.0208 q4;9 0.0196 q8;9 �0.0181
q2;6 �0.0162 q4;10 �0.0669 q8;10 �0.0081
q2;7 0.0124 q4;11 �0.0228 q8;11 0.0209
q2;8 0.0222 q5;6 �0.0821 q9;10 �0.1052
q2;9 �0.0901 q5;7 �0.0015 q9;11 0.0523
q2;10 0.0574 q5;8 0.0023 q10;11 �0.1451
q2;11 �0.0237

Fig. 1. Active power generation in kW.

Table 5
gi ; mi and hi parameters of the 11 windmills.

Parameter Value Parameter Value Parameter Value

g1 �10.8191 m1 0.8225 h1 7.2231
g2 �12.9155 m2 0.7515 h2 7.2770
g3 �11.3623 m3 0.7466 h3 7.2640
g4 �8.6407 m4 0.5866 h4 7.3235
g5 �12.4291 m5 0.8842 h5 7.2402
g6 �10.2790 m6 0.9005 h6 7.2014
g7 �13.3266 m7 0.9541 h7 7.1574
g8 �12.0976 m8 1.0594 h8 7.1044
g9 �9.3986 m9 0.9136 h9 7.1942
g10 �9.0323 m10 0.9626 h10 7.1972
g11 �13.2814 m11 0.9852 h10 7.1972Table 3

Statistical information about total wind generation data.

Measure Raw data Transformed data

Mean 15263.51 �5.857338e�16
Variance 558840.9 0.002373935
Skewness 0.1599429 0.03704418
Kurtosis 2.720979 2.67714

Table 4
Parameters estimated from the sum of active power observations of the 11
generators.

Parameter Estimated value

g �8.707802
m 0.2309347
h 9.633223
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� Autocorrelation function exhibits an exponential decay, which
suggest a process with correlation between the future state
and the past state, as O–U process.

4.1.2. Parameter fitting of one-dimensional model
The parameters involved in Eq. (15) will be obtained under the

following considerations:
As the estimators respond well under small pass sizes, a time

scale greater than that of seconds (actual sampling time) will be
considered, i.e., instead of considering that a time interval of
10,800 s was observed with a D of 1 s, it will be said that a time
interval of 3 h was observed with D ¼ 3=10800. According to this:

� g is estimated from Eq. (8) considering as observations of the
process the f~yiDgi¼1;...10800 data transformed according to (13).

� m is obtained from Eq. (9), with t ¼ 3 h. and considering the
same transformation for g.
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Fig. 3. Electric power demand.

Table 9
Estimated harmonic regression parameters for residential consumption.

Parameter Value Parameter Value

a 3.664 c8 �2.868e�02
b 2.610e�05 d8 �1.478e�01
c1 2.956e�01 c9 2.123e�01
d1 5.207e�01 d9 6.856e�02
c2 �6.073e�01 c10 1.602e�01
d2 �5.442e�01 d10 5.722e�02
c3 �1.400e�01 c11 7.104e�02
d3 6.625e�01 d11 1.295e�01
c4 �5.464e�01 c12 �2.202e�01
d4 �5.166e�01 d12 1.127e�01
c5 1.769e�01 c13 �1.508e�01
d5 �3.201e�02 d13 �1.594e�01
c6 �2.135e�01 c7 7.866e�02
d6 1.249e�01 d7 �1.752e�01

Table 8
Frequencies in Hertz, associated with residential consumption.

Frequency Value Frequency Value Frequency Value

f 1 0.00146 f 6 0.02109 f 10 0.009
f 2 0.00154 f 7 0.021 f 11 0.006
f 3 0.003 f 8 0.012 f 12 0.00454
f 4 0.01055 f 9 0.01046 f 13 0.00163
f 5 0.03155

Table 7
Statistical information about power demand data.

Measure Raw data Transformed data

Mean 3.6501 0.007082501
Variance 0.4881835 0.031888
Skewness �0.2297685 �0.05376565
Kurtosis 1.940585 3.573246
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� h is estimated using the average of the natural logarithm of the
actual observations of the farm, i.e., the following estimator is

used ~h ¼ 1
n

Pn
i¼0 lnðYiDÞ

Table 4 shows the results obtained from the process that repre-
sents the random component of the sum of the 11 generators of the
wind farm. As expected, parameter g is negative, accounting for the
bounded trajectories. As to parameter m, the value is small, and this
means that the amplitudes of the random variations do not
undergo abrupt changes.

4.1.3. Parametric estimation of multidimensional model
The Eq. (16) will be considered as the representation of the

transformation data by Eq. (13). Dimensions of matrices A and C
in this case is n ¼ 11, due to the available measure information
of the 11 windmills of the farm denoted by fyniDgi¼0;...;10800.

The estimation methods for the 22 parameters of matrices A
and C are the same as those used in the one-dimensional case.
The gi are fitted by the quasi-maximum likelihood technique,
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and the coefficients mi are estimated by means of the quadratic
variation of the process associated with its corresponding
windmill.

Since the data of each machine were transformed, it is neces-
sary to estimate parameter hi, which corresponds to the corre-
sponding arithmetic mean of each generator.

Table 5 show the results of the parametric estimation.
The same as in the one-dimensional case, it is seen that the val-

ues for parameters gi are all negative, ensuring the stationary of
the estimated process.

In the correlated case the vectorial Brownian motion involve in
Eq. (16) is correlated, so it is necessary to estimate the correlation
coefficients of the transformation matrix B to obtain the correlated
matrix R. Using expression (10) the values of the estimated corre-
lation coefficients between the eleven mills are obtained. The
results are given in Table 6.
4.2. Electric power demand

To implement the model demand (20), a residential type con-
sumption was considered. Loads with other characteristics, such
tions (Power Demand).



Fig. 7. Sum of simulated trajectories of the active power generation output in kW,

Fig. 6. Sum of simulated trajectories of the active power generation output in kW,
uncorrelated.

Fig. 5. Simulated trajectories of the active power output generation in kW.
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as industrial or commercial, can be represented in a similar way.
The differences will lie in the periods and variations of the power
consumption, but the general scheme is the same.

To analyse this behavior, actual observations provided by an
electric power distributing company were used.

4.2.1. Presentation of data
The data provided by the company correspond to measure-

ments every 15 min during 120 days and 20 h of electric power
in GW, of a feeder in Santiago, Chile. The set of observations on
the feeder will be denoted by fdiDgi¼0;...;11600, where D ¼ 15 min rep-
resents the time between observations and i is the number of sam-
ples considered.

Fig. 3 shows a trajectory drawn for the actual data.
Fig. 3 shows a pronounced seasonal behavior, as was estab-

lished in Section 3.1.2. On the other hand, a growing trend is not
exhibit, due to the observation window is not wide enough.

Table 7 reveals information about four statistical measurements
of the power demand data. Transformed data refers to real data
without the seasonal and trend changes, expressed in (20) as a sine
and cosine sum, and a time increment, respectively. Both cases are
important to analyse, because real data will be adjusted by har-
monic regression, and then, the residues of this fit will be adjusted
by an O–U process, thus it is important to check that the data sat-
isfy the requirements to use the proposed techniques.

In the case of transformed data, skewness and kurtosis show
characteristic values for a normal distribution. In relation to the
variance, its value decreases with a sinusoidal adjustment. It can
be concluded, as a first approach, that the transformation is
adequate.

On the other hand, Figs. 4(a) and (b) show respectively the auto-
correlation function (ACF) of the real and transformed data. The
sinusoidal behavior of the function in Fig. 4(a) exhibits the seasonal
characteristic of the data. Furthermore, the exponential decay of
the function in Fig. 4(b) reveals a similar behavior of process that
correlated the future state with the present, as O–U process, but
a little sinusoidal pattern can be seen. The above can suggest that
the application of the mentioned process to represent the residues
of harmonic regression will be appropriate and some seasonal
changes are not been captured by the selected frequencies.

Summarizing:

� Raw data is described by a sinusoidal function.
� Transformed data show indicators with Gaussian
characteristics.

� Autocorrelation function of adjusted data exhibits an exponen-
tial decay, which suggests a process with correlation between
the future state and the past state, as O–U process.

4.2.2. Parametric estimation
The frequencies present in Eq. (20) are found by analysing the

periodogram of the series of data, which corresponds to an estima-
tion of the spectral density. Table 8 shows the most relevant fre-
quencies considered.

With these frequencies it is possible to estimate the coefficients
that go together with the trigonometric functions in (20) by means
of harmonic regression. The results are shown in Table 9.
correlated.

Table 10
Estimated parameters for the O–U process for residential consumption.

Parameter Estimated value

gc �5.578228
mc 2.164175
To estimate the parameters associated with the O–U process, it
was used the residues obtained from the fit through regression,
carried out earlier. The estimation techniques and the estimators
are the same that were used in the previous one-dimensional mod-
els. The results are shown in Table 10.



Fig. 9. Uniform residues quantile–quantile graph of the O–U model of the wind
generation data.

Fig. 10. Residential model residues quantile–quantile graph.

Fig. 8. Residential consumption simulation model.
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5. Results

The models obtained from estimates of actual Chilean data will
be evaluated and validated, with the aim of showing its potential
usefulness for real studies.

5.1. Trajectory simulation

A first step to verify the good behavior of the obtained models is
to observe them graphically. This requires using numerical
schemes to simulate the solution of the equations proposed com-
putationally. In this case Milstein scheme (12) or (13) will be used,
depending on the dimension of the model. Each case is detailed
below.

5.1.1. Wind generation

a. One-dimensional case
For process (15) we have the following discretization:
Yiþ1 ¼ Yi þ gYi lnðYiÞ � gYihðtiÞ þ 1
2
Yim2

� �
ðtiþ1 � tiÞ

þ mYiðWiþ1 �WiÞ þ m2Yi

2
ððWiþ1 �WiÞ2 � ðtiþ1 � tiÞÞ ð22Þ
Fig. 5 shows a simulated trajectory in black, and the original data
trajectory is shown in red for comparison. It shows that the simu-
lated curve has a very similar behavior to the real one: both remain
within the same rank and the shapes of their trajectories are very
similar in the sense of how they change over time. This analysis
shows, at first sight, a good representation of the power output of
the wind farm obtained by the model.

b. Multidimensional case
In this case the discretization of each component satisfies
the same scheme (22).
In the uncorrelated case, the Brownian difference random
vector follows a standard multivariate normal distribution.
In the correlated case this vector follows a multivariate nor-
mal distribution with null vector mean and correlation
matrix R ¼ BB>.
Figs. 6 and 7 show in black the sum of the 11 simulated
components for the uncorrelated and correlated cases. The
trajectory of the original data is shown in red and in black
the simulated one. As in the one-dimensional case, both tra-
jectories (uncorrelated and correlated) move within the
same rank and their variations over time are similar to the
real trajectory. Nevertheless, the uncorrelated simulation
shows more abrupt changes than the correlated case. This
could indicate that the second model is more appropriate
to describe the behavior of the power generated by each
windmill simultaneously

5.1.2. Electric power demand
The discretization for Eq. (21) is the following:

Diþ1 ¼ Di þ bþ
Xn
i¼1

ðð�2pf ici � gdiÞ sinð2ptif iÞ

þ ð2pf idi � gciÞ cosð2ptif iÞÞ þ gðDi � a� btiÞðtiþ1 � tiÞ
þ mðWiþ1 �WiÞ ð23Þ

Fig. 8 shows a simulated trajectory in black, and, for compar-
ison, the trajectory of the original data is shown in red. In this case,
the actual path is not behaving so randomly: it has certain changes,
which are captured by the sinusoidal functions, behavior that is
well represented in the simulated curve. However, there are slight
variations in the amplitudes: the simulated process shows higher
maximum and lower minimum than the actual curve, which



Table 11
Validation statistics.

Statistic Result

Jarque Bera Test (p� value ¼ 0:2745) Normality
Durbin Watson Test (p� value ¼ 3:266e�05) Correlation
Breusch Pagan Test (p� value ¼ 0:8075) Homoscedastic

R2 0.7626

R2 adjusted 0.7371
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expands a little the rank. To determine whether the model over-
states the real values another tool is required, which will be
applied in the next point.
5.2. Residual analysis

An analytic and formal tool to verify and validate the goodness
of a fit of a model based in SDE is the uniform residues study. This
method consists basically in determining whether the actual
observations obtained come from a process with the chosen char-
acteristics of the model [42].

The procedure to use this technique, in the particular case of an
O–U process will be explained. To begin, the expectation and con-
ditional variance of the process must be known, and they can be
calculated explicitly for the O–U process.

For the O–U process the expectation and conditional
variance are respectively Eg;mðUDjU0 ¼ Uti�1

Þ ¼ Uti�1
egD and

Vg;mðUDjU0 ¼ Uti�1
Þ ¼ m2ðe2gD�1Þ

2g .

From this the following random variables are calculated:

Rtiðg;mÞ ¼
Uti � Eg;mðUDjU0 ¼ Uti�1

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vg;mðUDjU0 ¼ Uti�1

Þp ¼ Uti � Uti�1
egD

m
ffiffiffiffiffiffiffiffiffiffiffi
e2gD�1

2g

q ð24Þ

Eq. (24) is known as the standardized residues. For this process,
as it is a Gaussian one, the standardized residues must follow a
standardized normal distribution, which implies that if they are
composed by the normal standard cumulative distribution func-
tion U, random variables with uniform distribution Uð0;1Þ must
be obtained, i.e., the variable

Wti ðg; mÞ ¼ U Rti ðg; mÞ
� � ð25Þ

where UðzÞ ¼ 1ffiffiffiffi
2p

p
R z
�1 e�t2=2dt, must comply with Wti ðg; mÞ � Uð0;1Þ.

In order to formally validate the parametric one dimensional
models obtained, the uniform residues associated with parameters
estimated for the O–U process were analysed. For this propose, it
will be verified if the data under the transformation (13) come
from an O–U.
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The multidimensional case is a slightly more difficult and it will
be a future work.

5.3. One-dimensional wind power model

As stated, if transformation (13) of the data can be represented
by an O–U, it must be true that taking these data as observations of
the random variable Uti we must get that the variables (25) follow
a uniform distribution Uð0;1Þ. This can be verified by means of a
quantile–quantile graph that compares the quantiles of the ran-
dom variable (25)with the theoretical quantiles of a variable with
uniform distribution Uð0;1Þ.

For the numerical calculation of (24)the original time scale is
considered, i.e., D ¼ 1 s. After getting Rti ðg; mÞ and Wti ðg; mÞ, we
got the quantile–quantile graph of Fig. 9 for Wti ðg; mÞ:

Since the points follow approximately the identity line, it means
that the observations obtained fit the stated type of model, and
therefore there are no reasons to doubt the fit.

It can be concluded that this model seems to describe in a very
good way the short-time interactions of the system and it is ready
to be applied for real studies in short and continuous time in EPS.

5.3.1. Electric power demand model
Following the above mentioned procedure, the uniform resi-

dues for the O–U process associated with the residue of harmonic
regression fit will be studied. According to the method described
above, the following result was obtained and shown in Fig. 10:

Again, in Fig. 10 the points follow approximately the identity
line, so this quantile–quantile plot shows that the harmonic regres-
sion residue is well fitted by the chosen process. This states that
the random behavior presented in the residential consumption is
well represented by de the O–U process.

The results obtained by harmonic regression can be tested with
the usual inference analysis. This is: homoscedasticity, correlation,
normality of the residual and the determination coefficient R2.
Table 11 shows the results of statistical tests over the three resid-
uals condition and the R2 value

According to the result observed in Table 11, the non-
correlation condition is not fulfilled. This might be because the
chosen frequencies for description were not sufficient and more
factors could be included to improve the model and obtain better
fitting results.

Regarding the R2 coefficient value, it indicates that the chosen
parameters improve the electric energy demand variance in about
75%.

As can be seen, the selection of the variables accurately predicts
the energy consumption behavior, however, the correlation and in
the residuals reveals that some other elements could be explained
by selecting another parameters.
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Table 12
Mean percentage error for the wind generation models.

Model Error (%)

One-dimensional 0.115
Correlated multidimensional 0.206
Uncorrelated multidimensional 0.294
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5.4. Wind generation comparison models

In this section the total power outputs delivered by the two
models proposed earlier, correlated and uncorrelated, will be com-
pared with the actual observations. In order to do this we will con-
sider the mean percentage error between the sum of the actual
observations and:

� The trajectories of the one-dimensional model.
� The sum of the trajectories of the 11 components of the uncor-
related model.

� The sum of the trajectories of the 11 components of the corre-
lated model.

For the above, 700 trajectories were simulated for each model.
The number of simulations was chosen for the following reasons:

� After 700 paths, mean and standard deviation of the calculated
error are maintained around a constant value. This can be seen
in the Figs. 11(a) and (b). The experiment was made just for the
one dimensional case.

� The computational cost over 700 trajectories in multidimen-
sional cases increases too much.

The mean percentage error of each trajectory was calculated,
and then these 700 errors were averaged, respectively. Table 12
shows the results.

Although it could be expected that the correlated multidimen-
sional model would be a better representation to the farm, the
error of this model is greater than that of the one-dimensional
due to the data transformation, since for the one-dimensional case
the logarithm of the sum at the time of estimating is considered.
However, for the multidimensional case each component must
be transformed, turning into a sum of logarithms, which for the
values of the provided observations is greater, increasing the error.
It is for this reason, and because of its simplicity, that it is more
convenient to work with the one-dimensional generation model
of the farm. However, if an analysis of the distribution of the wind-
mills wants to be carried out, the multidimensional approach
would be appropriate.
6. Conclusions

The present work shows a methodology that allows character-
izing, by means of a stochastic process, the random and self-
sustained behavior in time of the output power of a wind farm
and the demand for electric power.

For modeling wind generation, two short and continuous time
representations, a one-dimensional and a multidimensional, were
proposed. The one-dimensional case turned out to be a more accu-
rate description of the output power of the farm. On the other
hand, in the multidimensional case, the possible interaction
between windmills was considered, including a correlated
Brownian motion.

A correlation matrix was obtained to represent the effects of
one windmill onto the others. The procedure to construct this
matrix and the estimation method to obtain its components was
explained in detail.
Future studies could be focused on this matrix, which can pro-
vide, for example, information on the geometric arrangement of
the farm.

For power demand a hybrid model was proposed based on har-
monic regression and O–U process.

The techniques for parameter estimation of all the models pro-
posed are given. A validation method for one dimensional contin-
uous model is explained. The latter confirms the good fit of the
stated equations.

In the future it will be used the models obtained to evaluate the
impact of wind penetration and demand on the operation of the
systems in permanent regime.
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