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Transport in Sawtooth photonic lattices
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We investigate, theoretically and experimentally, a photonic realization of a Sawtooth lattice.
This special lattice exhibits two spectral bands, with one of them experiencing a complete collapse
to a highly degenerate flat band for a special set of inter-site coupling constants. We report the ob-
servation of different transport regimes, including strong transport inhibition due to the appearance
of the non-diffractive flat band. Moreover, we excite localized Shockley surfaces states, residing in

the gap between the two linear bands.

Commonly, lattices of coupled waveguides exhibit a
dispersive band structure, such that different eigenmodes
acquire different phases during evolution. As a conse-
quence, excited waves in general diffract. This effect
lies at the heart of the conduction properties of any pe-
riodic material. Although the propagation of waves in
such photonic lattices is well understood [} 2], some lat-
tices have become prominent for exhibiting peculiar non-
diffractive properties due to particular characteristics of
their spectrum. These structures are perfectly periodic
and yet exhibit insulating properties, which is in contrast
to Anderson localization [3H5], where transport is inhib-
ited by perturbing the underlying periodicity. The non-
intuitive transport behavior in these lattices arises from
the fact that at least one of their bands is completely flat,
that is, all eigenmodes forming this band are degenerate.
These extended Bloch modes can be coherently super-
posed, forming highly localized Flat band states with a
strictly zero background [6]. As a consequence, the ob-
servable transport regimes are very sensitive to how the
unit cell is excited [7]. Aside from the fundamental in-
terest on the transport properties of periodic systems,
flat band lattices are a very promising candidate for non-
diffractive image propagation [8 [9]. Well-known two-
dimensional (2D) examples of non-diffractive lattices are
Kagome and Lieb lattices. Recently, the experimental
implementation of Kagome lattice [I0, [IT] and Lieb lat-
tices [7] were studied, showing that transport strongly
depends on which site in the unit cell is excited. Funda-
mental flat band modes in Lieb lattices were reported in
Refs. [9, 12| 13]. Since flat band modes do not diffract
across the lattice, any linear combination of them prop-
agates without diffraction as well [6, [§]. Additionally,
a very recent work explores the construction of a full
flat band using a band engineering method in a photonic
crystal, going beyond the tight-binding limit [14]. Al-
though the existence of flat bands does not require a 2D
lattice [IBHIT], there are only few experimental realiza-
tions of flat bands in quasi one-dimensional (1D) lattices
in general. Very recently, the observation of a linear lo-
calized state occupying two sites only in a rhombic (dia-

FIG. 1.

(Color online) (a) Implementation of a Sawtooth
waveguide lattice. The inter-site coupling C; (C-) is repre-
sented by full (dashed) straight lines. (b) Linear spectrum of
an infinite Sawtooth lattice for Cy = Cy (gray), Ca = v/2Ch
(black), and C> = 2C; (dashed). (C1 = 1). The inset in (b)
shows the profile of a Sawtooth Flat band mode (black, green
and yellow correspond to intensities 0, 1, 2, respectively).

mond) configuration was reported [I8]. In the context
of micro-pillar optical cavities, polariton condensation
was demonstrated experimentally in 1D Lieb (Stub) lat-
tices [19]. A peculiar incarnation of a 1D system possess-
ing a flat band is the Sawtooth lattice [20] (also known as
A chain [21]), used to describe the properties of Y CuO4 5
conducting delafossites [22]. The Sawtooth lattice con-
sists of a 1D sequence of triangles forming a lattice; a
sketch of it is shown in Fig. a). Note that we show
a particular implementation where the triangles have al-
ternating orientation in order to suppress the coupling
between successive vertices B and D [16]. Recent stud-
ies on the Sawtooth lattice include quantum topological
excitations [23] as well as Bose-Einstein condensation in
flat band systems [24], with a recent proposal for an ex-
perimental implementation [25]. However, a realization



of this type of lattice in the laboratory is elusive so far.

In our work, we implement an artificial Sawtooth lat-
tice using a coupled waveguide structure and investigate
its transport characteristics. We explore the transition
into localization for different parameters of the Sawtooth
geometry and demonstrate the predicted flat band prop-
erties. In particular, we show the existence of Shockley-
type edge states [26], as exact solutions at A-site edges.

The unit cell of the Sawtooth lattice is not affected by
the orientation of the triangles as the underlying symme-
try is manifested in the tight-binding Hamiltonian: The
unit cell consists of only two elements, A and B. In this
binary super-lattice, the evolution of the electric field am-
plitude along the propagation direction z is well described
by a sequence of coupled Schrodinger equations:

- ZE = C1 (ung1 + up—1) + C2 (U5, + Vpy1)
dvy,
*ZE = CQ (Un + Un—l) ) (1)

where u,, and v,, represent the electric field amplitudes
at the A and B sites, respectively, according to Fig. (a).
The coupling between two A sites is defined by Cy
whereas coupling between A and B sites is denoted
Cy [visualized by full and dashed lines, respectively, in
Fig. [I{a)]. When implementing this lattice as an array
of coupled waveguides, the strength of the coupling con-
stants C7 and C5 follows an exponential decaying law on
the distance between lattice sites [27]. For simplicity, we
define the ratio 6 = C3/Cy to describe different regimes
of the transport on the Sawtooth lattice. In the geome-
try of the lattice, we set the separation between succes-
sive A sites as 2a, and the vertical distance between A
and B sites as b. The plane wave solutions of are of
the form {u,(2),v,(2)} = {U,V}exp (ikyzy)exp (iAz),
where U and V describe constant amplitudes. k, defines
the transverse wavenumber, and z,, = an determines the
horizontal position of the A and B sites. The dispersion
relation between the longitudinal spatial frequency A\ and
k, follows as
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FIG. 2. (Color online) (a) Linear spectrum X vs. 6. The edge
state appears in red. (b) The participation ratio R versus ¢ for
surface modes. [Red dots in (a) and (b) correspond to profiles
shown as insets in (b)]. Numerically obtained output intensity
profiles versus ¢ for single-site excitation at the (c¢) bulk A-
site, (d) bulk B-site, (e) edge A-site. (f) Output R versus
6 for bulk-A (thin), bulk-B (dashed), and edge-A (orange)
sites. (C1 =1).

Akz) = C |cos(2k,a) £ /1 + 4(62 — 1) cos?(kya) + 4 cos*(k,a)

which is the spectrum of the Sawtooth lattice having
two bands of different curvature and width. Figure [1b)
shows the linear spectrum of a Sawtooth lattice, in the
first Brillouin zone, for three representative values of §.
We see that for a critical value . = \@, the bands
reduce to A(k;) = 4C;cos?(kya) and A(k,) = —2Cy;
i.e., the lower band collapses and becomes completely
flat [see black line in Fig. [I[b)]. The states residing in
this non-dispersive and highly degenerated band spread
only across three sites, namely {...,0,—1,v/2,—1,0,...},
as Fig. b)—inset shows. These localized states can be
located anywhere in the lattice. As they possess the same
propagation constant, they are promising candidates for
non-diffractive image propagation [8, [9]. For ¢ < 4., the
sign of the curvature is the same for both bands, such

thal at a given k the states from both bands will prop-
agate in the same direction (but with different veloci-
ties). For § > 4., however, the curvature is opposite, and
the states at a fixed k propagate in opposite directions.
Hence, at the critical value J. the sign of the curvature
of the lower band changes, which is inherent to Sawtooth
lattices. One possible application of this phenomenon is
to use this type of lattice as a beam splitter, with two
beams traveling in the same or in opposite directions.

Additionally, we numerically compute the spectrum of
a finite Sawtooth lattice by directly diagonalizing , for
different values of ¢, and obtain the spectrum shown in
Fig. P[a). The analytically computed bands (k) agree
perfectly with these numerical results but, additionally,
an edge state appears [see red curve in Fig. [2a)]. This
mode exists only at the A-site edge, and for two A-ends



two degenerate states appear. The mode is well local-
ized and decays into the bulk in an exponential way [see
examples in Fig. [2(b)]. Using the ansatz

{uy(2),v5(2)} = {A, B} €"exp (iAe2) ,

with n > 0 at the A-site edge and |¢|] < 1. We analyt-
ically find that B = —A/6, e = (1 — 62)/(1 + 62) and
Ae = —20162/(1 + 62). This edge solution coincides per-
fectly with the numerically found edge modes. To study
the effective size of the edge state and its dependence on
the parameter §, we use the participation ratio, defined
as R= (3, lwnl?)?/ >, lwn|*, where wy, is the field am-
plitude of the edge state at site n. In Fig. 2|(b), we plot
the corresponding function R(d) = (1 + §2)2/262 for the
edge state. We find a minimum of R = 2 for § = 1. At
this point, € = 0 and the mode occupies only the first
two lattice sites at the edge with equal amplitude but
opposite phases. This highly localized state shows a fun-
damental condition found in diverse flat band systems,
namely that the coupling between these two sites with
respect to a third one is completely canceled, and the
transmission of energy through the rest of the lattice is
forbidden. For § — 0, the decay factor € — 1, hence, the
participation ratio increases rapidly showing the transi-
tion of the mode into an extended mode inside the band.
Consequently, for § = 0, the A and B layers are com-
pletely decoupled from each other and no surface state
exists [II, 2, 28, 29]. For § > 1, R increases slowly as
€ — —1. In this regime, the surface state is still single-
peaked but acquires a more complicated phase structure,
namely 0,7, 7,0,0,... [see inset in Fig. b)] For 6 > 1,
the surface mode converges to the upper mode of the
lower band at A\, = —2C}.

To study general transport properties, we explore the
excitation of individual waveguides at the bulk and sur-
face of a Sawtooth lattice. Figs. l(c e) show the output
intensity profile for one-site input exc1tat10ns obtained
by numerically integrating . up to the same propaga-
tion distance. Figure I(c ) shows the tendency to localiza-
tion for § — §. for an A-site bulk excitation. It is impor-
tant to note that a single-site input excites both bands
homogeneously. However, faster waves, mostly coming
from the upper band, are hardly visible due to the larger
spreading area. Slower waves, mostly belonging to the
lower band, spread over a narrower region and possess
larger site amplitudes. Close to ., mostly a flat band
state is excited, such that the output profile is very nar-
row with only a weak background arising from the weak
excitation of modes from the upper band. For § > 4.,
the diffraction is stronger, because the lower band is not
flat anymore. For § < J., both bands also consist of ex-
tended modes, but as the band curvature is reduced, the
diffraction cone is slightly weaker. In Fig. f ) it is shown
that participation ratio of the output light distribution
reaches a minimum when § ~ §.. For a B-site bulk ex-
citation [see figure 2d)], the observation is quite similar
but, additionally, a tendency to generate a localized pat-
tern for lower ¢ is observed. This can be well understood

FIG. 3. (Color online) (a) Microscope image at the out-
put facet of a Sawtooth photonic lattice. (b) Experimental
setup for studying transport in this lattice. (c1)—(c8) Exper-
imental output intensity for an A-site bulk excitation with
5 = 1.89, 1.68, 1.49, 1.44, 1.38, 1.35, 1.13, 1.05, 0.93, re-
spectively. The dashed line indicates the input position.

by considering the fact that the underlying reduction of
the diagonal coupling C5 gradually isolates the top or
bottom sites from the rest of the lattice. In Fig. [2[f) we
observe how the output participation ratio decreases for
0 =~ J. and for 0 ~ 0.75, and grows for § > J.. This
d-controlled bulk transport transition can be viewed as
an insulator-conductor system governed by the geome-
try of the lattice. Additionally, these results nicely show
how Sawtooth lattices are able to localize energy only by
virtue of their geometry, without requiring, e.g., disorder
or nonlinearity [11 [2].

When exciting the A-site edge, we observe a stable
and localized intensity distribution at the surface [see
Fig. I This is confirmed by the participation ratio
shown in Fig. I(f ), which exhibits a minimum for § = 1.1.
We observe that for § & 1 the profile is rather flat at the
surface with essentially two equal peaks (B = —A), which
is in agreement with the modes shown in Fig. [2b). For
0 2 1 the excited profile becomes single-peaked at the
edge (|B| < |4|), and the effective size tends to be con-
stant, but slowly increasing as 0 increases. For < 1, the
localized profile shifts its center to the second waveguide
(|B| > |A|]) and the participation ratio increases.

We fabricated several waveguide lattices in the Saw-
tooth geometry using the direct femtosecond laser-
writing technique [30], on a L = 10 em long fused silica



glass chip. A microscopic image of a fabricated lattice
is shown in Fig. B(a). Each fabricated array has a con-
stant horizontal period of a = 11 um, but different ver-
tical distances in the interval b € {13,20} pum, such that
the ratio § decreases from 1.89 to 0.82. This parameter
was calibrated varying the vertical distance b by directly
measuring the propagation pattern in a 3-sites triangular
array, while keeping constant the horizontal distance a.
Moreover, the arrays consist of 71 waveguides each, with
A-site edges, as shown in Fig. a). To study transport
in this lattice, we inject a horizontally polarized 633 nm
laser beam into single waveguides, by tightly focusing the
beam with a lens of short focal distance. We use a 10x
microscope objective to image the intensity patterns from
the output facet onto a CCD camera [see Fig. [3[(b)]. The
exposition of our camera is set such that the background
is observable as well.

We first study bulk transport by exciting a central A
site in each lattice, as presented in Fig. c). We observe
how transport is governed by the properties of the two
bands discussed above. Similar to our simulations, faster
modes residing in the upper band are weakly visible com-
pared to the slower modes from the lower band. For a
smaller value of b (i.e., larger ) light strongly spreads all
over the lattice, as show in Figs. [3(cl) and (c2). When
the vertical distance is increased and § approaches 6,
[see Figs. [3|(c3)—(c6)], we observe light trapping around
the excited waveguide. This is a strong indication of the
reduction of the curvature and width of the lower band,
which is the most excited band for this localized input
condition (a single-site excitation is very close to a three-
sites flat band mode profile). Taking a look at the back-
ground of the intensity distributions, we observe that the
upper band, where the modes possess a flat phase distri-
bution, is excited only weakly and some light propagates
away from the input excitation. For ¢ < ¢, the diffrac-
tion of the background increases again, but is weaker
compared to the case where § > ., such that the light
is concentrated around the excited site with a more ho-
mogenous amplitude profile [see Figs. B[c7)—(c9)]. All
these observations agree very well with our numerical re-
sults shown in Fig. [[c).

In the next experiment we excite a bulk B site in each
lattice, as shown in Fig. [d{(a). We observe that for § > 4.
the light spreads slower than for a bulk A excitation,
but nevertheless a good transport over the lattice is ob-
served. Again, there is a tendency to localization close
to d., but not as strong as in the previous case where
an A site was excited. Notably, the strongest localiza-
tion is obtained for a value of § = 0.93, that is, slightly
off the critical value, which is in agreement with the nu-
merical simulations presented in Fig. (d) Finally, we
explore the excitation of edge states by injecting light at
the A-site edge. Our results are shown in Fig. [[b). In
general, for any d-value, we observe the excitation of a
very well localized pattern, as expected from our simula-
tions shown in Fig. e)]. As described above, we observe
a transition from a two-site localized profile (for ¢ ~ 1)

S

FIG. 4. (Color online) Experimental output intensity for a
(a) B-site bulk and for an (b) A-site edge excitation. In-
sets in (b7) and (b10) show an interferogram between the
respective output profile and a tilted plane wave. ¢§ =
1.89, 1.68, 1.49, 1.44, 1.38, 1.35, 1.13, 1.05, 0.93, 0.82, re-
spectively. Dashed line indicates input position.

to a one-peaked profile for increasing §. The light diffrac-
tion pattern essentially corresponds to the excitation of
the predicted surface state discussed in Figs. a) and
(b). We include two insets in Fig. f{b) to show the phase
structure of this profile for the first A and B sites, observ-
ing a clear m-phase difference between them. Following
the formal definitions, this surface profile corresponds to
an edge state originated by an effective defect at the sur-
face that arises from the reduction of nearest-neighbor
interactions [7), [31] as well as from a band crossing occur-
ring at § = J., as shown in Fig. a). By inspecting the
states in the lower band, we observe a kind of band twist
at this critical value, such that our observed edge state
is of the Shockley-type [32], 33].

In conclusion, we have studied the fundamental trans-
port properties of a Sawtooth photonic lattice. We have
shown that bulk transport strongly depends on the par-
ticular geometry of this lattice, with a strong tendency to
localization for § ~ §.. For A- or B-site bulk excitation,
the energy tends to concentrate strongly at the input re-
gion and transport is reduced drastically. We found that
for top or bottom bulk excitation, light tends to localize
even for smaller values of ¢, depending on the particu-
lar propagation distance. When injecting light at the A-
edge, a localized Shockley surface state is excited. There-
fore, in general, this special lattice allows us to localize
energy in different positions, depending on their partic-
ular coupling parameters, beyond the excitation of the
flat band phenomenology. This is very important when
considering the use of waveguide lattices for transmitting
information in the low-power regime, that is, without em-
ploying nonlinearities.
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