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In this paper we prove the existence of weak solutions for the inclusion problem in anti-plane Cosserat elasticity in
Sobolev space setting, and for the corresponding systems of boundary integral equations.
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1 Introduction

The theory of Cosserat elasticity (also known as micropolar or asymmetric elasticity) was introduced by Cosserat brothers
[1] and further developed by Eringen [2] to model the mechanical behavior of materials for which the microstructure is
significant (see [3] for a review of works in this area and an extensive bibliography). The theory was intended to eliminate
discrepancies between the classical elasticity and experiments since the classical elasticity failed to produce the acceptable
results when the effects of material microstructure were known to significantly affect the body’s overall deformation, for
example, in the case of granular bodies with large molecules (e.g. polymers), human bones, porous and cellular solids or
foams (see, for example, [4–6]). These cases are becoming increasingly important in the design and manufacture of modern
day advanced materials as small-scale effects become paramount in the prediction of the overall mechanical behavior of
these materials. Recent experiments [6] show that Cosserat theory gives more accurate results in comparison with the
classical theory in modeling of many modern materials, such as fiber-reinforced composites, synthetic polymers or metallic
foams.

In [7], the classical (Dirichlet, Neumann, mixed) boundary value problems of the three dimensional theory of elasticity
were shown to be well-posed and subsequently solved in a rigorous setting using the boundary integral equation method. In
a series of recent papers [8–12], the boundary integral equation method proposed in [7] has been extended for the rigorous
treatment of the corresponding plane and antiplane problems of Cosserat elasticity and the boundary value problems arising
in the theory of plates.

The inclusion problems have been receiving an increasing amount of attention in the literature [13–16]. This interest
is caused by the rapid development and growing use of composite materials, since the interaction of fibers with the
surrounding matrix can be modeled as an inclusion problem. The inclusion problem in micropolar elasticity is especially
challenging due to the presence of independent micro-rotations. The solutions available in the literature are restricted by
assumptions of a simplified shape of the inclusion or a form of the applied loading. For example, Cheng and He in [17,18],
Hansong and Gengkai in [19] considered a spherical, cylindrical and ellipsoidal inclusions, respectively, and derived the
analytical expressions of the corresponding micropolar Eshelby tensors [20].

In [21, 22] the rigorous mathematical analysis of an inclusion problem in plane and anti-plane Cosserat elasticity,
respectively, was presented. The boundary value problem for an inclusion of arbitrary shape with a homogeneously
imperfect interface was formulated and showed to be well-posed, and subsequently reduced to the system of boundary
integral equations with unique solutions. Despite the fact, that the inclusion problem was considered in a very general
formulation, i.e. without restrictions for the shape of the inclusion and type of the boundary conditions, the analysis was
done under assumption that the boundary of the inclusion is a C2-curve. Therefore, a wide class of boundary shapes was
excluded from consideration, such as for example, polygons and piecewise-defined curves. These cases are very important
for applications, such as finite element method and boundary element method, but also very difficult for analysis due to the
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uncertainty in the behavior of the solutions at the corners of the boundary, and a different approach should be engaged to
accommodate these special points.

Chudinovich and Constanda in [23] suggested that the boundary value problems arising in the bending of plates be
formulated in a weak (Sobolev) space setting. Later this approach was successfully used for various problems of plane and
anti-plane Cosserat elasticity, [24–27].

In the present paper we introduce the weak formulation of the boundary value problem for an inclusion of arbitrary
shape with a homogeneously imperfect interface in anti-plane Cosserat elasticity. We develop the modification of the
boundary integral equation method suggested by Chudinovich and Constanda in [28] for the treatment of inclusions in
plates, and reduce the problem to the systems of boundary integral equations and prove the existence and uniqueness of the
corresponding solutions. Using the results presented herein those solutions can be represented in terms of modified integral
potentials which further can be expanded into semi-analytic solutions using generalized Fourier series. Solutions in terms of
generalized Fourier series can be easily employed for the treatment of inclusion problems arising in engineering applications
in the cases when material microstructure is known to be significant. Such situations can occur in the consideration of
elastic behaviour of fiber reinforced polymers, titanium implants in human bones, crllular solids and foams.

2 Preliminaries

In what follows Greek and Latin indices take the values 1, 2 and 1, 2, 3, respectively, the convention of summation over
repeated indices is understood, Mm×n is the space of (m × n)- matrices, En is the identity element in Mm×n, a superscript
T indicates matrix transposition and (...),α ≡ ∂(...)/∂xα . Also, if X is a space of scalar functions and v a matrix, v ∈ X

means that every component of v belongs to X.
Let S be a domain in R

2 bounded by a piecewise C0,1-curve ∂S, which consists of finitely many C2-arcs, and occupied
by a homogeneous and isotropic linearly elastic micropolar material with elastic constants λ,μ, κ , and γ . The state of
plane micropolar strain is characterized by a displacement field u(x ′) = (u1(x ′), u2(x ′), u3(x ′))T and a microrotation field
�(x ′) = (φ1(x ′), φ2(x ′), φ3(x ′))T of the form

uα (x ′) = 0, u3 (x ′) = u3 (x) ,

φα (x ′) = φα (x) , φ3(x ′) = 0, (1)

where x ′ = (x1, x2, x3) and x = (x1, x2) are generic points in R
3 and R

2 respectively.
In view of (1), in absence of body forces and couples, the equilibrium equations [2] are written in the form

L(∂x)u(x) = 0, (2)

where φ3 is denoted by u3, u = (u1, u2, u3)T and the matrix partial differential operator L(∂x) = L(∂/∂x1, ∂/∂x2) is
defined by [8]

L(ξα) =
⎛⎝γ
 + (α + β)ξ 2

1 − 2κ (α + β)ξ1ξ2 κξ2

(α + β)ξ1ξ2 γ
 + (α + β)ξ 2
2 − 2κ −κξ1

−κξ2 κξ1 (μ + κ)


⎞⎠ , (3)

where 
 = ξαξα .
We consider also the boundary stress operator T (∂x) = T (∂/∂xα) defined by [8]

T (ξα) =
⎛⎝(α + β + γ )ξ1n1 + γ ξ2n2 αξ2n1 + βξ1n2 0

αξ1n2 + βξ2n1 (α + β + γ )ξ2n2 + γ ξ1n1 0
−κn2 κn1 (μ + κ)ξαnα

⎞⎠ , (4)

where n = (n1, n2)T is the unit outward normal to ∂S. We define the bilinear form E(u, v) by

2E(u, v) = Ee(u, v) + Er(u, v)

Ee(u, v) = (μ + κ)(u3,1v3,1 + u3,2v3,2) + κ(u3,1v2 + v3,1u2 − u3,2v1 − v3,2u1 + 2(u1v1 + u2v2))

Er(u, v) = (α + β + γ )(u1,1v1,1 + u2,2v2,2) + α(u1,1v2,2 + u2,2v1,1)

+β(u2,1v1,2 + u1,2v2,1) + γ (u2,1v2,1 + u1,2v1,2). (5)

The internal energy density is given by E(u, u). Throughout what follows we assume that

2μ + κ > 0, α, γ, κ > 0, −γ < β < γ. (6)
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Conditions (6) guarantee the ellipticity of the system (2) and the positiveness of the internal energy density E(u, u) [2]. In
fact E(u, u) = 0 if and only if u ∈ Z , where Z is the space of rigid displacements spanned by the columns of the matrix

F =
⎛⎝0 0 0

0 0 0
0 0 1

⎞⎠ . (7)

Clearly, Lz = 0 in R
2 and T z = 0 on ∂S for any z ∈ Z and a generic rigid displacement z ∈ Z can be written as z = Fk,

where k ∈ M3×1 is constant and arbitrary.
Let A be the class of vectors u ∈ M3×1 whose components in terms of polar coordinates, as r = |x| → ∞, admit an

asymptotic expansion of the form [8]:

u1 (r, θ) = r−2 (m0 sin 2θ + m1(1 − cos 2θ) + m2) + O
(
r−3

)
,

u2 (r, θ) = r−2 (−m0 sin 2θ − m1(1 − cos 2θ) + m3) + O
(
r−3

)
, (8)

u3 (r, θ) = r−1 ((m3 − m0) cos θ − (m2 − m1) sin θ) + O
(
r−2

)
,

where m0, . . . , m3 are arbitrary constants. We consider also the set

A∗ = {
u : u = Fk + sA

}
, (9)

where k ∈ M3×1 is an arbitrary constant and sA ∈ M3×1 ∩ A. In view of (5), A and A∗ are classes of finite energy
functions.

The following theorems are known as Betti formulas and proved in [8].

Theorem 1. (i) For any u, v ∈ C2(S+) ∩ C1(S̄+)∫
S+

vT Lu dx = 2
∫

S+
E(u, v)dx −

∫
∂S

vT T u ds. (10)

(ii) For any u, v ∈ C2(S−) ∩ C1(S̄−) ∩ A∗∫
S−

vT Lu dx = 2
∫

S−
E(u, v)dx +

∫
∂S

vT T u ds. (11)

The matrix of fundamental solutions D(x, y) of system (2) is given by [8]

D(x, y) = L∗(∂x)t(x, y), (12)

where L∗ is the adjoint of L,

t(x, y) = − a

2π

{
1

k2
1k

2
2

ln r − 1

k2
1

(
k2

1 − k2
2

)K0(k1r) + 1

k2
2

(
k2

1 − k2
2

)K0(k2r)

}
, (13)

where r = |x − y|, K0 is the modified Bessel function of order zero and constants a , k1, k2 are defined by

a−1 = γ (μ + κ)(α + β + γ ), k2
1 = κ(κ + 2μ)

γ (κ + μ)
, k2

2 = 2κ

α + β + γ
. (14)

In view of (8) and (9)

D(x, y) = (D(y, x))T . (15)

Along with D(x, y) we consider the matrix of singular solutions P (x, y) given by

P (x, y) = (T (∂y)D(y, x))T . (16)

It is easy to verify that the columns of D(x, y) and P (x, y) satisfy (2) at all x ∈ R
2, x 
= y, and for any direction n

independent of x.
We also recall Somigliana formulas as proved in [8].

Theorem 2. (i) If u ∈ C2(S+) ∩ C1(S̄+) is a solution of (2) in S+, then

∫
∂S

[D(x, y)T (∂y)u(y) − P (x, y)u(y)] dsy =

⎧⎪⎨⎪⎩
u(x), x ∈ S+,
1
2u(x), x ∈ ∂S,

0, x ∈ S−.

(17)
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(ii) If u ∈ C2(S−) ∩ C1(S̄−) ∩ A is a solution of (2) in S−, then

−
∫

∂S

[D(x, y)T (∂y)u(y) − P (x, y)u(y)] dsy =

⎧⎪⎨⎪⎩
0, x ∈ S+,
1
2u(x), x ∈ ∂S,

u(x), x ∈ S−.

(18)

3 Basic definitions of Sobolev spaces

Let S+ be the bounded domain enclosed by ∂S and S− = R
2\S̄+. In what follows we use the same notation for spaces,

norms and inner products of scalar and vector functions. The symbols ‖·‖0;S and (·, ·)0;S denote the norm and inner product
in L2(S). When S = R

2 we use the notations ‖·‖0 and (·, ·)0.
For any m ∈ R, let Hm(R2) be the standard real Sobolev space of three-component distributions, equipped with the

norm

‖u‖2
m =

∫
R2

(1 + |ξ |2)m |̃u(ξ)|2dξ,

where ũ is the Fourier transform of u. In what follows we do not distinguish between equivalent norms and denote them
by the same symbol; thus, the norm in H1(R2) can be defined by

‖u‖2
1 = ‖u‖2

0 +
3∑

i=1

‖∇ui‖2
0.

The spaces Hm(R2) and H−m(R2) are dual with respect to duality induced by (·, ·)0.

We introduce the space L2
ω(R2) of all u = (uT , u3)T , where u = (u1,u2)T , such that

‖u‖2
0,ω =

∫
R2

∣∣u(x)
∣∣2

dx +
∫

R2

∣∣u3(x)
∣∣2

(1 + |x|)2(1 + ln2(1 + |x|))dx < ∞.

We consider the bilinear form a(u, v) = 2
∫

R2 E(u, v)dx.

Let H1,ω(R2) be the space of three-component distributions on R
2 for which

‖u‖2
1,ω = ‖u‖2

0,ω + a(u, u) < ∞,

The space H−1,ω(R2) is dual to H1,ω(R2) with respect to duality generated by (·, ·)0. The norm in H−1,ω(R2) is denoted
by ‖·‖−1,ω.

Let
◦
Hm(S+) be the subspace of Hm(R2) consisting of all u such that supp u ⊂ S

+
.Hm(S+) is the space of the restrictions

to S+ of all u ∈ Hm(R2). Denoting by π± the operators of restrictions from R
2 to S±, respectively, we introduce the norm of

u ∈ Hm(S+) by ‖u‖m;S+ = inf
v∈Hm(R2):π+v=u

‖v‖m. If m = 1, then the norms of u ∈
◦
H 1(S+) and u ∈ H1(S+) are equivalent

to {
‖u‖2

0;S+ +
3∑

i=1

∫
S+

|∇ui(x)|2dx

}1/2

.

The spaces
◦
Hm(S+) and H−m(S+) are dual with respect to the duality induced by (·, ·)0;S+ .

Let
◦
H 1,ω(S−) be the subspace of H1,ω(R2) consisting of all u such that supp u ⊂ S

−
. H1,ω(S−) is the space of the

restrictions to S− of all u ∈ H1,ω(R2). The norm in H1,ω(S−) is defined by ‖u‖1,ω;S− = inf
v∈H1,ω(R2):π−v=u

‖v‖1,ω. It can be

shown that the norm of u ∈ H1,ω(S−) is equivalent to{‖u‖2
0,ω;S− + a−(u, u)

}1/2
,

where

‖u‖2
0,ω;S− =

∫
S−

∣∣u(x)
∣∣2

dx +
∫

S−

∣∣u3(x)
∣∣2

(1 + |x|)2(1 + ln2(1 + |x|))dx

and a±(u, v) = 2
∫
S± E(u, v) dx.
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The dual of
◦
H 1,ω(S−) with respect to the duality generated by (·, ·)0;S− is the space H−1,ω(S−), with norm ‖·‖−1,ω;S− ;

the dual of H1,ω(S−) is
◦
H−1,ω(S−), which can be identified with a subspace of H−1,ω(R2).

Let Hm(∂S) be the standard Sobolev space of distributions on ∂S with norm ‖·‖m;∂S.Hm(∂S) and H−m(∂S) are dual
with respect to the duality generated by the inner product (·, ·)0;∂S in L2(∂S).

We denote by γ + and γ − the trace operators defined first on C∞
0 (S±) and then extended by continuity to the surjections

γ + : H1(S+) −→ H1/2(∂S),γ − : H1,ω(S−) −→ H1/2(∂S). This is possible because of the local equivalence of H1,ω(S−)
and H1(S−). We also consider a continuous extension operators l+ : H1/2(∂S) −→ H1(S+), l− : H1/2(∂S) −→ H1(S−),
the latter, since norm in H1(S−) is stronger than that in H1,ω(S−), can also be regarded as a continuous operator from
H1/2(∂S) into H1,ω(S−).

To proceed further we will need the following well-known fact from the functional analysis.

Theorem 3. (Lax-Milgram Lemma) Let H be a Hilbert space and b(u, v) be a bilinear functional defined for every
ordinate pair u, v ∈ H, for which there exist two constants h and k such that:∣∣b(u, v)

∣∣ � h ‖u‖ ‖v‖ , ‖u‖2 � k
∣∣b(u, u)

∣∣ ∀u, v ∈ H,

in this case we say that a(u, v) is coercive. Then however we assign the bounded linear functional L(v) on H there exists
one and only one u such that

b(u, v) = L(v), ∀v ∈ H, ‖u‖ � c ‖L‖∗ ,

where ‖·‖∗ is the norm on the dual H ′ of H.

The proof of this lemma can be found in [29].

4 Variational formulation of the transmission problem

We consider an infinite plane with a bounded inclusion occupying the domain S
+

enclosed by ∂S with the unit outward
normal (n1, n2)T . The inclusion is homogeneous and isotropic with elastic constants μi, αi, βi, γi and κi . The remainder
of the plane, which lies in S

−
is also homogeneous and isotropic with constants μe, αe, βe, γe and κe. Let Li(∂x), Le(∂x)

be the operator L(∂x) with constants μi, αi, βi, γi, κi and μe, αe, βe, γe, κe respectively. The boundary stress operators
Ti(∂x), Te(∂x) and the bilinear forms Ei(u, v), Ee(u, v) are defined analogously. We assume both sets of constants satisfy
conditions (6). The transmission problem for an inclusion with the perfect interface is formulated as follows.

Find u = {u+, u−}, u+ ∈ C2(S+) ∩ C1(S̄+) and u− ∈ C2(S−) ∩ C1(S̄−) ∩ A∗ such that

Liu+ = q+ in S+, Leu− = q− in S−, (19)

and

u+ = u−, Tiu+ = Teu− on ∂S, (20)

where q+ and q− are prescribed in S+ and S−, respectively. We write

aν±(u, v) = 2
∫
S±

Eν(u, v), aν(u, v) = 2
∫
R2

Eν(u, v)dx, ν = i, e. (21)

We introduce the space H1,ω(R2) with norm ‖·‖2
1,ω = ‖·‖2

0,ω + ae(u, v), the space
◦
H 1,ω(R2) = {

u = {u+, u−} ∈ H1,ω

(R2) : γ +u+ = γ −u−
}

and the spaces H−1,ω(R2), Hm,ω(S−),
◦
Hm,ω(S−) (with m = ±1) as described above. For any

v ∈ C∞
0 (R2) we write v = {v+, v−} where v± = π±v. Multiplying the first equation of (19) by v+ and the second equation

of (19) by v−, integrating over S+ and S−, respectively, and adding the results, we arrive at

(Liu+, v+)0;S+ + (Leu−, v−)0;S− = (q+, v+)0;S+ + (q−, v−)0;S− . (22)

Using Betti formulas (10)-(11) Eq. (22) becomes

ai+(u+, v+) + ae−(u−, v−) = (q+, v+)0;S+ + (q−, v−)0;S− . (23)

We use the notations q = {q+, q−} and (q, v)0 = (q+, v+)0;S+ + (q−, v−)0;S− . According to Eq. (23), we introduce the
variational formulation of problem (19)–(20) as follows.
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Find u = {u+, u−} ∈
◦
H 1,ω(R2) such that

ai+(u+, v+) + ae−(u−, v−) = (q, v)0 ∀v = {v+, v−} ∈
◦
H 1,ω(R2). (24)

Taking v = z ∈ Z we deduce that (24) is solvable if and only if

(q, z)0 = 0 ∀z ∈ Z. (25)

Let H−1,ω(R2) be the subspace of H−1,ω(R2) consisting of all q satisfying (25).

5 Solvability of the transmission problem

Theorem 4. For any q ∈ H−1,ω(R2) the transmission problem (24) has a solution u ∈ H1,ω(R2). Any two solutions of
(24) differ by a rigid displacement z ∈ Z and there is a solution u0 that satisfies the estimate

‖u0‖1,ω ≤ c‖q‖−1,ω, (26)

where c is a positive constant.

P r o o f . We introduce the factor space H1,ω(R2) =
◦
H 1,ω(R2)/Z , the bilinear form A(U,V ) = ai+(u+, v+) +

ae−(u−, v−) defined on H1,ω(R2) × H1,ω(R2) and the linear functional L(V ) = (q, v)0 defined on H1,ω(R2), where u

and v are arbitrary representatives of classes U,V ∈ H1,ω(R2), respectively. Due to the properties of rigid displacements,
definitions of A(U,V ) and L(V ) are consistent. We define the norm on H1,ω(R2) by ‖U‖H1,ω(R2) = inf

u∈U
‖u‖1,ω. We now

consider the problem of finding U ∈ H1,ω(R2) such that

A(U,V ) = L(V ) ∀V ∈ H1,ω(R2). (27)

As it follows from definition of A(U,V ) and L(V ), for any U,V ∈ H1,ω(R2)

A(U,V ) ≤ c‖U‖H1,ω(R2)‖V ‖H1,ω(R2), |L(V )| ≤ c‖V ‖H1,ω(R2) . (28)

To prove that A(U,V ) is coercive on H1,ω(R2) we use the following results from [24]:

‖u+‖2
1;S+ � c

(
ai+(u+, u+) +

3∑
i=1

(γ +u+, z(i))2
0;∂S

)
,

‖u−‖2
1,ω;S− � c

(
ae−(u−, u−) +

3∑
i=1

(γ −u−, z(i))2
0;∂S

)
, (29)

where z(i) is an L2(∂S)-orthonormal basis for Z . We can choose u ∈ U such that (γ ±u±, z)2
0;∂S = 0 for all z ∈ Z , then

Eqs. (29) yield the estimate

‖U‖2
H1,ω(R2) ≤ ‖u‖2

1,ω = ‖u+‖2
1;S+ + ‖u−‖2

1,ω;S−

≤ {ai+(u+, u+) + ae−(u−, u−)} = cA(U,U). (30)

As it follows from Eqs. (28)–(30), A(U,V ) and L(V ) satisfy the conditions of Lax-Milgram Lemma, hence we conclude
that there exists the unique solution U ∈ H1,ω(R2) of (27). This solution satisfies the estimate:

‖U‖H1,ω(R2) ≤ c ‖q‖−1,ω. (31)

Every u ∈ U is a solution of (24). In view of definition of the norm in H1,ω(R2) there exists u0 ∈ U such that ‖U‖H1,ω(R2) =
‖u0‖1,ω and (26) follows from (31). �

Next we show that the problem (24) can be reduced to the analogous problem with homogeneous equilibrium equations
and non-homogeneous boundary conditions.

We define two area potentials of density q by

(Uνq)(x) =
∫
R2

Dν(x, y)q(y)dy α = i, e, x ∈ R
2, (32)
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where Di , De are matrices D(x, y) constructed with μi, αi, βi, γi, κi and μe, αe, βe, γe, κe, respectively. It has been shown
in [30] that if q ∈ H−1,ω(R2), then Uνq ∈ H1,ω(R2) and

aν(U±q, v) = (q, v)0 ∀v ∈
◦
H 1,ω(R2), ν = i, e. (33)

We represent the solution u of (24) in the form u = w + Uq, where Uq = {π+Uiq, π−Ueq} and w = {w+, w−} ∈
H1,ω(R2), then w satisfies

ai+(w+, v+) + ae−(w−, v−) = (q, v)0 − ai+(π+Uiq, v+) − ae−(π−Ueq, v−) ∀ v ∈
◦
H 1,ω(R2) (34)

and

γ +w+ − γ −w− = −γ +π+Uiq + γ −π−Ueq. (35)

Let us denote f = −γ +π+Uiq + γ −π−Ueq ∈ H1/2(∂S). Next we show that the right hand side of (34) depends only on

v0 = γ +v+ = γ −v−. Let us consider v(1), v(2) ∈
◦
H 1,ω(R2) such that γ +v

(1)
+ = γ −v

(1)
− = γ +v

(2)
+ = γ −v

(2)
− . Then, making

use of the Betti formulae (10)–(11) we arrive at

(q, v(1) − v(2))0 − ai+(π+Uiq, v
(1)
+ − v

(2)
+ ) − ae−(π−Ueq, v

(1)
− − v

(2)
− )

= (q, v(1) − v(2))0 − (q+, v
(1)
+ − v

(2)
+ )0;S+ − (q−, v

(1)
− − v

(2)
− )0;S− = 0. (36)

Hence we define the linear functional defined on H1/2(∂S) by

L(v0) = (q+, l+v0)0;S+ + (q−, l−v0)0;S− − ai+(π+Uiq, l+v0) − ae−(π−Ueq, l−v0). (37)

The linearity of L(v0) follows from the properties of ai(π+Uiq, l+v+) and ae(π−Ueq, l−v−). The continuity follows from
the following estimate.

|L(v0)|
= |(q+, l+v0)0;S+ + (q−, l−v0)0;S− − ai+(π+Uiq, l+v0) − ae−(π−Ueq

−, l−v0)|
≤ c

(‖q+‖−1;S+‖l+v0‖1;S+ + ‖q−‖−1,ω;S−‖l−v0‖1,ω;S−

+ ‖π+Uiq‖1;S+‖l+v0‖1;S+ + ‖π−Ueq‖1,ω;S−‖l−v0‖1,ω;S−
)

≤ c‖q+‖−1,ω‖v0‖1/2;∂S (38)

Hence, we have proved that L(v0) is a continuous linear functional on H1/2(∂S), therefore there exists g ∈ H−1/2(∂S) such
that

L(v0) = (g, v0)0;∂S ∀v0 ∈ H1/2(∂S) (39)

and, as it follows from (38), ‖q‖−1/2,∂S ≤ c‖q‖−1,ω.
According to Eqs. (34), (35) and (38), and (39) variational problem (24) is equivalent to finding u ∈ H1,ω(R2) such that

∀v = {v+, v−} ∈
◦
H 1,ω(R2) : γ +v+ = γ −v− = v0

ai+(u+, v+) + ae−(u−, v−) = (g, v0)0;∂S,

γ +u+ − γ −u− = f, (40)

where f ∈ H1/2(∂S) and g ∈ H−1/2(∂S) are prescribed on ∂S. As it follows from (37) and (39), if q ∈ H−1,ω(R2) then
(g, z)0;∂S = 0 for all z ∈ Z .

Let us denote by H±1/2(∂S), the subspaces of H±1/2(∂S), respectively of all g, such that

(g, z)0;∂S = 0 ∀z ∈ Z. (41)

6 The Poincaré - Steklov operators

Let f ∈ H1/2(∂S) and u+ ∈ H1(S+) and u− ∈ H1,ω(S−) be the solutions of the interior and the exterior Dirichlet problems
with boundary data f for a plane with material constants μi, αi, βi, γi and κi , namely

ai+(u+, v+) = 0 ∀v+ ∈
◦
H 1(S+), γ +u+ = f,

ai−(u−, v−) = 0 ∀v− ∈
◦
H 1,ω(S−), γ −u− = f. (42)
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We consider an arbitrary φ ∈ H1/2(∂S) and let v+ = l+φ ∈ H1(S+) and v− = l−φ ∈ H1,ω(S−). Using Riesz representation
theorem [29], we can define the Poincaré-Steklov operators T ±

i by

(T +
i f, ϕ)0;∂S = ai+(u+, v+), (T −

i f, ϕ)0;∂S = −ai−(u−, v−). (43)

In order to demonstrate, that this definition doesn’t depend on the choice of the extension operators l±, let us consider another

extensions w+, w− of φ. Then w+ − v+ ∈
◦
H 1(S+) and w− − v− ∈

◦
H 1,ω(S−) and according to (42) ai+(u+, w+ − v+) = 0

and ai−(u−, w− − v−) = 0. Let us recall the properties of Poincaré-Steklov operators, discussed in details in [23].

Theorem 5. (i) T ±
i are continuous from H−1/2(∂S) to H−1/2(∂S),

(ii) T ±
i are self-adjoint in the sense that

(T ±
i f, φ)0;∂S = (f, T ±

i φ)0;∂S ∀f, φ ∈ H1/2(∂S), (44)

(iii) The kernels of T ±
i coincide with Z ,

(iv) The ranges of T ±
i coincide with H−1/2(∂S),

(v) The restrictions N±
i of T ±

i to H1/2(∂S) are homeomorphisms from H1/2(∂S) to H−1/2(∂S).

The operators T ±
e , N±

e for a plane with constants μe, αe, βe, γe and κe are defined in the similar manner. Their properties
are analogous to the properties of T ±

i , N±
i . The following statement has been proved in [28].

Theorem 6. N = N+
i − N−

e is a homeomorphism from H1/2(∂S) to H−1/2(∂S).

7 Elastic potentials

We introduce the single layer potential as

(Vνϕ)(x) =
∫

∂S

Dν(x, y)ϕ(y)ds(y), x ∈ R
2 (45)

and double layer potential as

(Wνϕ)(x) =
∫

∂S

Pν(x, y)ϕ(y)ds(y), x ∈ S+ ∪ S− (46)

where ϕ ∈ M3×1 and ν = i, e. The properties of single and double layer integral potentials with smooth densities were
discussed in [9]. Here we recall properties of (Vνϕ)(x) and (Wνϕ)(x) in Sobolev spaces [24].

Theorem 7. If ϕ ∈ H−1/2(∂S) then

(i) Vνϕ ∈ H1,ω(R2), ‖Vνϕ‖1,ω ≤ c‖ϕ‖−1/2;∂S and

γ +π+Vνϕ = γ −π−Vνϕ = (Vνϕ)0,

(ii) boundary operator Vν0 of the single layer potential is defined by the direct value (Vνϕ)0 of Vνϕ on ∂S, i.e.
Vν0ϕ = (Vνϕ)0, this operator is continuous from H−1/2(∂S) to H1/2(∂S).

(iii) the jump formula holds

(T +
ν − T −

ν )Vν0ϕ = ϕ. (47)

Theorem 8. If ψ ∈ H1/2(∂S) then

(i) π+Wνψ ∈ H1(S+) and π−Wνψ ∈ H1,ω(S−) and

‖π+Wνψ‖1;S+ + ‖π−Wνψ‖1,ω;S− ≤ c‖ψ‖1/2;∂S,

(ii) the operators W±
ν of limiting values on ∂S of the double layer potential Wνϕ are defined by W±

ν ψ = γ ±π±Wνψ ,
and they are continuous from H1/2(∂S) to H1/2(∂S),

(iii) the jump formula holds

W+
ν ψ − W−

ν ψ = −ψ and T +
ν W+

ν ψ = T −
ν W−

ν ψ.

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org



ZAMM · Z. Angew. Math. Mech. 96, No. 6 (2016) / www.zamm-journal.org 729

For ϕ ∈ H−1/2(∂S) we define a modified single layer potential and its corresponding boundary operator by

(Vνϕ)(x) = (Vνϕ)(x) −
3∑

i=1

(Vν0ϕ, z(i))0;∂Sz
(i)(x), x ∈ R

2 (48)

Vν0ϕ = Vν0ϕ −
3∑

i=1

(Vν0ϕ, z(i))0;∂Sz
(i)(x) (49)

The operator Vνϕ is continuous from H−1/2(∂S) to H1,ω(R2), Vν0ϕ is a homeomorphism from H−1/2(∂S) to H1/2(∂S).
The following jump formulae hold

γ +π+Vνϕ = γ −π−Vνϕ = Vν0ϕ, (N+
ν − N−

ν )Vν0ϕ = ϕ. (50)

For ψ ∈ H1/2(∂S) we define a modified double layer potential and the operators of its limiting values by

(Wνψ)(x) =

⎧⎪⎪⎨⎪⎪⎩
(Wνψ)(x) −

3∑
i=1

(W+
ν ψ, z(i))0;∂Sz

(i)(x), x ∈ S+,

(Wνψ)(x) −
3∑

i=1
(W−

ν ψ, z(i))0;∂Sz
(i)(x), x ∈ S−,

(51)

W±
ν ψ = γ ±π±Wνψ. (52)

The operators W±
ν ψ are homeomorphisms from H1/2(∂S) to ∈ H1,ω(R2), π+Wνψ ∈ H1(S+), π−Wνψ ∈ H1,ω(S−) and

‖π+Wνψ‖1;S+ + ‖π−Wνψ‖1,ω;S− ≤ c‖ψ‖1/2;∂S . (53)

The following jump formulae hold

W+
ν ψ − W−

ν ψ = −ψ, N+
ν W+

ν ψ = N−
ν W−

ν ψ. (54)

Finally

W+
ν = VνN−

ν , W−
ν = VνN+

ν . (55)

The potentials Vνϕ, Wνψ , Vνϕ, Wνψ with ν = i, e satisfy homogenous equilibrium equations with material constants
μi, αi, βi, γi, κi and μe, αe, βe, γe, κe, respectively.

8 Boundary integral equations

We seek a solution of (40) in the form u = {u+, u−} such that

u+ = π+Viϕ+ +
3∑

i=1

(f, z(i))0;∂Sz
(i) + z, u− = π−Veϕ− + z, (56)

where ϕ± ∈ H−1/2(∂S) is the unknown density and z ∈ Z is arbitrary. This representation leads to the following system
of boundary integral equations with singular and weakly singular kernels.

Vi0ϕ+ − Ve0ϕ− = f̃ , N+
i Vi0ϕ+ − N−

e Ve0ϕ− = g, (57)

where f̃ = f −
3∑

i=1
(f, z(i))0;∂Sz

(i) ∈ H1/2(∂S) and ‖f̃ ‖1/2;∂S ≤ c ‖f ‖1/2;∂S .

Theorem 9. For any f ∈ H1/2(∂S) and g ∈ H−1/2(∂S) system (57) has a unique solution pair {ϕ+, ϕ−} ∈ [H−1/2(∂S)]2

and

‖ϕ±‖−1/2;∂S ≤ c (‖f ‖1/2;∂S + ‖g‖−1/2;∂S). (58)

Subsequently, (56) is the solution of (40) for any z ∈ Z and there is a solution u0 such that

‖u0‖1,ω ≤ c (‖f ‖1/2;∂S + ‖g‖−1/2;∂S). (59)
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P r o o f . Applying N+
i to the first equation of (57) we arrive at

N+
i Vi0ϕ+ − N+

i Ve0ϕ− = N+
i f̃ . (60)

Next, using the second equation of (57) together with (60) we arrive at

ϕ− = (Ve0)−1N−1
(
g − N+

i f̃
)
,

ϕ+ = (Vi0)−1
(
f̃ + N−1

(
g − N+

i f̃
))

. (61)

The estimate (58) follows from (61) and the properties of operators Ve0, Vi0, N and N+
i . The estimate (59) follows from

(56) with z = 0 and (29). �

If we seek a solution of (40) in the form u = {u+, u−} such that

u+ = π+Wiψ+ +
3∑

i=1

(f, z(i))0;∂Sz
(i) + z, u− = π−Weψ− + z, (62)

where ψ± ∈ H1/2(∂S) is the unknown density and z ∈ Z is arbitrary, we arrive to the following system of boundary integral
equations with singular and hyper-singular kernels.

W+
i ψ+ − W−

e ψ− = f̃ , N+
i W+

i ψ+ − N−
e W−

e ψ− = g, (63)

Theorem 10. For any f ∈ H1/2(∂S) and g ∈ H−1/2(∂S) system (63) has a unique solution pair {ψ+, ψ−} ∈ [H1/2(∂S)]2

and

‖ψ±‖1/2;∂S ≤ c (‖f ‖1/2;∂S + ‖g‖−1/2;∂S). (64)

Subsequently, (62) is the solution of (40) for any z ∈ Z and there is a solution u0 such that

‖u0‖1,ω ≤ c (‖f ‖1/2;∂S + ‖g‖−1/2;∂S). (65)

P r o o f . Applying N+
i to the first equation of (63) we arrive at

N+
i W+

i ψ+ − N+
i W−

e ψ− = N+
i f̃ . (66)

Next, using the second equation of (63) together with (66) we arrive at

ψ− = (W−
e )−1N−1

(
g − N+

i f̃
)
,

ψ+ = (W+
i )−1

(
f̃ + N−1

(
g − N+

i f̃
))

. (67)

The estimate (64) follows from (67) and the properties of operators W−
e , W+

i , N and N+
i . The estimate (65) follows from

(62) with z = 0 and (29). �

If we seek a solution of (40) in the form u = {u+, u−} such that

u+ = π+Viϕ+ +
3∑

i=1

(f, z(i))0;∂Sz
(i) + z, u− = π−Weψ− + z, (68)

where ϕ+ ∈ H−1/2(∂S) and ψ− ∈ H1/2(∂S) are the unknown densities and z ∈ Z is arbitrary, we arrive to the following
system of boundary integral equations with weakly singular, singular, and hyper-singular kernels.

Vi0ϕ+ − W−
e ψ− = f̃ , N+

i Vi0ϕ+ − N−
e W−

e ψ− = g, (69)

Theorem 11. For any f ∈ H1/2(∂S) and g ∈ H−1/2(∂S) system (69) has a unique solution pair {ϕ+, ψ−}, ϕ+ ∈
H−1/2(∂S) , ψ− ∈ H1/2(∂S) and

‖ϕ+‖1/2;∂S ≤ c(‖f ‖1/2;∂S + ‖g‖−1/2;∂S),

‖ψ−‖1/2;∂S ≤ c(‖f ‖1/2;∂S + ‖g‖−1/2;∂S). (70)

Subsequently, (68) is the solution of (40) for any z ∈ Z and there is a solution u0 such that

‖u0‖1,ω ≤ c (‖f ‖1/2;∂S + ‖g‖−1/2;∂S). (71)
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P r o o f . Applying N+
i to the first equation of (63) we arrive at

N+
i Vi0ϕ+ − N+

i W−
e ψ− = N+

i f̃ . (72)

Next, using the second equation of (69) together with (72) we arrive at

ψ− = (W−
e )−1N−1 (

g − N+
i f̃

)
,

ϕ+ = (Vi0)−1 (
f̃ + N−1 (

g − N+
i f̃

))
. (73)

The estimate (70) follows from (73) and the properties of operators W−
e , Vi0, N and N+

i . The estimate (71) follows from
(68) with z = 0 and (29). �

Finally if we seek a solution of (40) in the form u = {u+, u−} such that

u+ = π+Wiψ+ +
3∑

i=1

(f, z(i))0;∂Sz
(i) + z, u− = π−Veϕ− + z, (74)

where ϕ− ∈ H−1/2(∂S) and ψ+ ∈ H1/2(∂S) are the unknown densities and z ∈ Z is arbitrary, we arrive to the following
system of boundary integral equations with weakly singular, singular, and hyper-singular kernels.

W+
i ψ+ − Vi0ϕ− = f̃ , N+

i W+
i ψ+ − N−

e Ve0ϕ− = g, (75)

Theorem 12. For any f ∈ H1/2(∂S) and g ∈ H−1/2(∂S) system (75) has a unique solution pair {ϕ−, ψ+}, ϕ− ∈
H−1/2(∂S) , ψ+ ∈ H1/2(∂S) and estimates (70) and (71) hold.

P r o o f . The proof of this theorem repeats the proof of theorem (11) with obvious changes. �

9 Conclusion

In this paper we have formulated the inclusion problem in anti-plane Cosserat elasticity in Sobolev spaces and established
existence, uniqueness and continuous dependence on the data results for this problem. This is a necessary step to deal with
such problem from the practical point of view, since it validates the subsequent application of numerical procedures such
as finite element method or method of generalized Fourier series.
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