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1. Introduction

In the sixties, J.J. Moreau and R.T. Rockafellar gave the pioneering formula for the 
Fenchel subdifferential of the sum of two convex functions f, g : X → R ∪ {±∞}:

∂(f + g) = ∂f + ∂g. (1)

When X is finite-dimensional the condition for the validity of formula (1) is [23, Theo-
rem 23.8]

ri(dom f) ∩ ri(dom g) �= ∅. (2)

It can be easily shown that this condition is equivalent to

dom f ∩ ri(dom g) �= ∅ AND ri(dom f) ∩ dom g �= ∅. (3)

In the infinite-dimensional setting, when X is a (real) separated locally convex space, 
the condition for (1) is ([19], [20], [22, p. 47])

dom f ∩ cont g �= ∅ OR cont f ∩ dom g �= ∅,

where conth is the set of continuity points of h from domh. In particular, when X is a 
Banach space and f is a proper lower semicontinuous (lsc, for short) convex function, it 
is known that cont f = int(dom f) and so the condition above reads

dom f ∩ int(dom g) �= ∅ OR int(dom f) ∩ dom g �= ∅. (4)

Observe that the conditions above can be weakened when one or both functions are 
polyhedral. For instance, according to [23, Theorem 23.8], (1) also follows when X is 
finite-dimensional, if (2) is replaced by

g is polyhedral AND dom g ∩ ri(dom f) �= ∅.

Compared with (2), condition (4) is obviously a (nonsymmetric) one-sided relation. 
Hence, the two conditions (3) and (4) are not equivalent in general. This kind of asymme-
try arises when passing from the finite to the infinite-dimensional setting. The approach 
to this issue constitutes one of the main contributions of this paper.

The consequences of calculus rules for the subdifferential are undoubtedly of the great-
est importance in convex analysis and in the whole theory of convex optimization, giving 
rise to standard constraint qualifications like Slater, Abadie, and many others (e.g. [24]
and references therein).

Conditions (3) and (4) lead to formula (1), which involves only the exact subdif-
ferential of the corresponding functions. However, under the only assumption of lower 
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semicontinuity of f and g, we have the following Hiriart-Urruty and Phelps formula [15]
(which uses the approximate subdifferential rather than the exact one), stating that for 
every x ∈ X

∂(f + g)(x) =
⋂
ε>0

cl(∂εf(x) + ∂εg(x)) (5)

(the closure in the last expression is with respect to any topology compatible with the 
duality pair X and its dual). See also [16] for other related calculus rules using the 
ε-subdifferential approach. It is worth recalling that the first calculus rule which requires 
no condition is the Brøndsted formula [7] given for the maximum of two convex functions 
(see also [13] and [14] for an extension of this result).

Rule (5) is also a powerful tool in optimization theory, and also in algorithmic ap-
proaches based on the use of approximate subdifferentials of the corresponding data 
functions. The subtle condition relative to the lower semicontinuity of f and g seems to 
be restrictive in some situations; indeed, it is not explicitly evoked when conditions (2)
or (4) are used. However, it is implicit there because both of these conditions imply the 
following relationship between the closed hulls of the involved functions (see, e.g., [23, 
p. 146] and [14, Lemma 15])

f + g = f + g, (6)

that is obviously verified when f and g are lsc. Moreover, it is shown in Proposition 2
that (5) holds under this last general condition.

Our main purpose in this paper is to derive new formulas for the subdifferential of 
the sum under conditions which are at an intermediate level of generality among those 
leading to the Hiriart-Urruty and Phelps formula (5), which holds for lsc proper convex 
functions, and the Moreau–Rockafellar formula (1), which indirectly requires the convex 
functions to satisfy the closure condition (6). This is, for instance, the case when only 
a half (one part) of (2) is used; that is, the domains of the involved functions overlap 
quasi-sufficiently. In particular, our main result, Theorem 12, establishes that, under (6)
(or any other condition guaranteeing the validity of (5)), the asymmetric assumption

dom f ∩ ri(dom g) �= ∅ and g|aff(dom g) is continuous on ri(dom g), (7)

provides the following asymmetric calculus rule:

∂(f + g)(x) =
⋂
ε>0

cl(∂εf(x) + ∂g(x)), for every x ∈ X. (8)

This formula is in fact intermediate between the classical results (1) and (5) since it uses 
the approximate subdifferential of one of the two functions and the exact subdifferential 
of the other one. This second function is called qualified function, and it is the one 
whose relative interior is involved in condition (7). A particular situation occurs when 
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the subdifferential of the qualified function is empty at the reference point x; in that 
case, the exact calculus rule for the sum (1) obviously follows from (8).

Formula (8) is also valid for a large family of functions for which the convex cone

R+(epi g − (x, g(x))) is closed

(condition (i) in Theorem 12). This is the case of infinite-dimensional polyhedral func-
tions, whose analysis is meaningful in our approach and is carried out in Corollaries 14
and 20.

When functions f and g are both qualified, that is (2) holds, together with the fol-
lowing symmetric condition

f|aff(dom f) and g|aff(dom g) are respectively continuous on ri(dom f) and ri(dom g), (9)

it is proved in Theorem 15 that

∂(f + g)(x) = cl (∂f(x) + ∂g(x)) , for every x ∈ X.

In addition, if one of the subdifferential sets of f or g at x is locally compact, then this 
last formula reduces to the exact rule (1); this is our Corollary 19.

In this respect, our hypothesis (9) constitutes the infinite-dimensional counterpart, 
which is needed, together with (2), to extend the aforementioned result of Rockafel-
lar (Theorem 23.8 in [23]) to the setting of locally convex spaces. Obviously, (9) is 
automatically satisfied when X = Rn, in which case it is equivalent to the fact that 
R+(dom f − dom g) is a linear subspace. When X is a Banach space, the condition

R+(dom f − dom g) is a closed linear subspace,

together with the lower semicontinuity of f and g, constitutes the so-called Attouch–
Brézis condition [2], extended by Zălinescu [28, Theorem 2.8.7] to the case in which 
X is a Fréchet space. In this way, our assumption can be seen as a counterpart of the 
Attouch-Brézis condition for general locally convex spaces. Other conditions guarantee-
ing the fulfillment of the exact formula (1) can be found in [3–5,8,9,21,25,27], among 
others.

Regarding our assumption (7), a legitimate criticism could be addressed at a first 
glance to the use of the relative interior out of the finite-dimensional framework. Indeed, 
the relative interior of convex sets is intrinsically connected to the finite-dimensional 
setting since it is always nonempty in this framework, but could be empty in infinite-
dimensional spaces. However, our analysis goes beyond this difficulty by using the family 
of functions gL given as the sum of g and the indicator functions IL of finite-dimensional 
subspaces L of X intersecting dom g. In this way, we guarantee that

dom f ∩ ri(dom gL) �= ∅.
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Moreover, the continuity of g|aff(dom g) on ri(dom gL) is automatically satisfied as the 
last set is finite-dimensional. Thus, we arrive at Corollary 13 to the following alternative 
characterization of the subdifferential of the sum:

∂(f + g)(x) =
⋂

L∈F(x)
ε>0

cl(∂εf(x) + ∂gL(x)), for every x ∈ X,

where the intersection is taken over ε > 0 and a certain family F(x), defined in (37), 
whose members are finite-dimensional subspaces intersecting dom g. The last expression 
then gives another route for the subdifferential of the sum, filtering the approximate 
subdifferential of f on the one hand and the exact subdifferential of an augmented 
function gL of g on the other hand. Moreover, by repeating this argument on f we arrive 
at Corollary 18 to the following formula

∂(f + g)(x) =
⋂

L∈G(x)

cl(∂fL(x) + ∂gL(x)), for every x ∈ X,

where G(x) is defined in (47). This formula then can be viewed as an alternative for (5), 
which uses only the exact subdifferential of the augmented functions fL and gL of f
and g, respectively.

Another interesting situation, not covered by the classical calculus rules, occurs when 
f and g are lsc convex proper functions respectively defined on X and Rn, A : X → Rn

is a continuous linear mapping with continuous adjoint A∗, and

A(dom f) ∩ ri(dom g) �= ∅.

Because g is defined in Rn, ri(dom g) is given in the usual sense. Then, (8), when applied 
to an appropriate choice of functions, leads us to the following characterization (see 
Corollary 23):

∂(f + g ◦A)(x) =
⋂
ε>0

cl(∂εf(x) + A∗∂g(Ax)).

In the last section, the above results are applied to derive new optimality conditions 
for convex programming problems of the form

(P ) Min f(x)
s.t. ft(x) ≤ 0, t ∈ T,

x ∈ C,

where T is an arbitrary infinite index set, C ⊂ X is a nonempty closed convex subset, 
and f , ft : X → R ∪ {+∞}, t ∈ T , are lsc proper convex functions. As a consequence of 
our conditions, the resulting optimality conditions will involve the exact subdifferential 
of the constraint functions.
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The summary of the paper is as follows. Section 2 sets the notation and gathers the 
preliminary results. Our main results in this paper are given in section 3. In particular, 
Theorems 12 and 15 provide the desired calculus rules, although most of the previous 
results in this section have their own interest in infinite-dimensional convex analysis. 
Finally, section 4 addresses the objective of deriving necessary and sufficient asymptotic 
optimality conditions for convex infinite-dimensional optimization problems.

2. Notation and preliminary results

In this paper X is a real (separated) locally convex space, its topological dual space 
being denoted by X∗ and endowed, unless otherwise stated, with the w∗-topology. The 
spaces X and X∗ are paired in duality by means of the canonical bilinear form (x, x∗) ∈
X × X∗ �→ 〈x∗, x〉 := x∗(x). The zero vector in both spaces is denoted by θ, and the 
convex neighborhoods of θ are called θ-neighborhoods. We shall adopt the convention 
that ∞ + (−∞) = ∞.

If A, B are sets in X (or in X∗), and Λ ⊂ R is nonempty, we define

A + B := {x + y | x ∈ A, y ∈ B} and ΛA := {λx | λ ∈ Λ, x ∈ A}, (10)

with the conventions Λ∅ = A + ∅ = ∅, Λx := Λ{x}, λA := {λ}A and x + A := {x} + A. 
By coA, coneA (or R+A), and aff A, we denote the convex hull, the conic hull, and
the affine hull of A, respectively. Moreover, intA is the interior of A, and clA and 
A are indistinctly used for denoting the closure of A (w∗-closure if A ⊂ X∗). Thus, 
coA := cl(coA), affA := cl(aff A), etc. By riA we represent the interior of A in the 
topology relative to aff A if aff A is closed, and the empty set otherwise [28, p. 15]. We 
also associate with A the (negative) dual cone of A defined by

A◦ := {x∗ ∈ X∗ | 〈x∗, x〉 ≤ 0 for all x ∈ A} .

If the set A is convex and closed, we define the recession cone of A as

A∞ := {v ∈ X | x + tv ∈ A for all t ≥ 0},

where x is any point of A. If A is convex and ε ≥ 0, we define

Nε
A(x) :=

{
{x∗ ∈ X∗ | 〈x∗, y − x〉 ≤ ε for all y ∈ A}, if x ∈ A,

∅, if x /∈ A,

with Nε
∅ ≡ ∅. If ε = 0 we omit the reference to ε and write NA(x), which is the usual 

normal cone of A at x.
The following property is used very often: If A is convex,

λ riA + (1 − λ) clA ⊂ riA, for every λ ∈ ]0, 1]. (11)
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As a consequence of (11), if A and B are convex sets in X such that ri(A) ∩ ri(B) �= ∅, 
then we have

A ∩B = A ∩B = ri(A) ∩ ri(B) = ri(A) ∩ ri(B). (12)

In particular, if B = X, this property yields

ri(A) �= ∅ ⇒ A = ri(A).

We say that a function h : X −→ R ∪ {±∞} is proper if its effective domain, domh :=
{x ∈ X | h(x) < +∞}, is nonempty and h never takes the value −∞; and it is convex
(lower semicontinuous or lsc, for short) if its epigraph, epih := {(x, λ) ∈ X × R |
h(x) ≤ λ}, is convex (closed). The restriction of h to the set A is denoted by h|A. The 
lsc envelope of h is the function h such that epi(h) = cl(epih). Equivalently, we have

h(x) = lim inf
y→x

h(y) for all x ∈ X.

We shall denote by Γ0(X) the family of lsc proper convex functions defined on X.
The Fenchel conjugate of a proper function h is the function h∗ : X∗ −→ R ∪ {±∞}

defined by

h∗(x∗) := sup
x∈X

{〈x∗, x〉 − h(x)}.

The indicator and the support functions of A ⊂ X are, respectively, defined as

IA(x) :=
{

0, if x ∈ A,

+∞, if x /∈ A,

σA(x∗) := I∗A(x∗) = sup{〈x∗, x〉 | x ∈ A}, for x∗ ∈ X∗,

with σ∅ ≡ −∞.
Suppose now that h is convex. If ε ≥ 0, the ε-subdifferential of h at a point x where 

h is finite is the w∗-closed convex set given by

∂εh(x) := {x∗ ∈ X∗ | h(y) − h(x) ≥ 〈x∗, y − x〉 − ε for all y ∈ X}.

If h(x) /∈ R, or if h(x) is not defined (of the form −∞ +∞), then we set ∂εh(x) := ∅. In 
particular, for ε = 0 we get the Fenchel subdifferential of h at x, ∂h(x) := ∂0h(x). The 
following implications are very useful (e.g. [19])

∂h(x) �= ∅ =⇒ h(x) = h(x) =⇒ ∂εh(x) = ∂εh(x). (13)

Moreover, when ∂εh(x) �= ∅ we have that
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h(x) ≤ h̄(x) + ε. (14)

The ε-directional derivative of h at x where it is finite is the function h′
ε(x; ·) : X −→

R ∪ {±∞} defined by

h′
ε(x; v) = inf

t>0

h(x + tv) − h(x) + ε

t
.

For ε = 0 we simply write h′(x; ·) := h′
0(x; ·). If, in addition to being convex, h is lsc, for 

x ∈ X where h is finite we have the following important relations:

h′
ε(x; ·) = σ∂εh(x) for every ε > 0, (15)

h′(x; ·) = σ∂h(x) when ∂h(x) �= ∅ and h′(x; ·) is lsc, (16)

dom h′
ε(x; ·) = cone(dom h− x) for every ε ≥ 0. (17)

The following lemma will be used in the paper.

Lemma 1. Let us consider two convex functions f, g : X −→ R ∪ {±∞} such that the 
equality in (6) holds at a given x ∈ X; i.e., (f + g)(x) = f̄(x) + ḡ(x). If ∂ε(f +g)(x) �= ∅
for some ε ≥ 0, then the functions f , f̄ , g, and ḡ are all proper and satisfy

f(x) ≤ f̄(x) + ε, g(x) ≤ ḡ(x) + ε.

Proof. The assumption ∂ε(f + g)(x) �= ∅ entails that f(x) and g(x) ∈ R. Moreover, the 
inclusion ∂ε(f + g)(x) ⊂ ∂ε(f + g)(x) implies (f + g)(x) ∈ R so that f̄(x), ḡ(x) ∈ R (by 
(6) at x). Thus, f̄ and ḡ are both proper. Because of the relations f ≥ f̄ and g ≥ ḡ, we 
see that f and g are also proper. Finally, from (14) and equality in (6) at x we have that

f(x) + g(x) ≤ f̄(x) + ḡ(x) + ε.

This relation together with f̄(x) ≤ f(x) and ḡ(x) ≤ g(x) give us the desired inequali-
ties. �

The following simple example shows the necessity of condition (6) in Lemma 1.

Example 1. Consider the convex functions f, g : R → R defined as

f(x) := +∞ if x < 0; 0 if x = 0; +∞ if x > 0,

g(x) := −∞ if x < 0; 0 if x = 0; +∞ if x > 0.

Then, we easily check that ∂(f + g)(0) �= ∅ but the equality in (6) does not hold at 0.

Let us give, for the sake of completeness, a direct and easy proof of formula (5) when 
the convex functions f and g satisfy the closure condition (6).
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Proposition 2. Formula (5) holds for every couple of convex functions f, g : X −→
R ∪ {±∞} satisfying (6).

Proof. If ∂(f + g)(x) �= ∅, by Lemma 1 above, the functions f, g, f̄ , ̄g are all proper and 
we have that f̄(x) = f(x) ∈ R and ḡ(x) = g(x) ∈ R. By (13) and (6),

∂(f + g)(x) = ∂(f + g)(x) = ∂(f + g)(x).

Since σ∂(f̄+ḡ)(x) is the closure of the function (f̄ + ḡ)′(x; ·), we have for all ε > 0,

σ∂(f+g)(x) = σ∂(f̄+ḡ)(x) ≤ (f̄ + ḡ)′(x; ·) = f̄ ′(x; ·) + ḡ′(x; ·)

≤ f̄ ′
ε(x; ·) + ḡ′ε(x; ·) = σ∂εf̄(x) + σ∂εḡ(x) = σ∂εf(x) + σ∂εf(x).

Hence, ∂(f + g)(x) ⊂
⋂
ε>0

cl (∂εf(x) + ∂εg(x)) and, so, (5) follows due to the straightfor-

wardness of the opposite inclusion. �
Finally, we recall that if f , g ∈ Γ0(X) and ε ≥ 0, then we have, in addition to (5),

∂ε(f + g)(x) =
⋂
η>0

cl
( ⋃

ε1+ε2=ε+η

∂ε1f(x) + ∂ε2g(x)
)

(18)

(e.g. [15]). It is worth noting that (18) also holds on the domain of the subdifferential 
mapping ∂(f + g), when f and g are proper and convex, and satisfy condition (6) rather 
than being lsc.

Proposition 3. Let f, g : X −→ R ∪ {±∞} be convex functions satisfying (6). Then, (18)
holds at every x ∈ X where ∂(f + g)(x) �= ∅.

Proof. If ∂(f + g)(x) �= ∅, then (f + g)(x) = (f + g)(x) and so, invoking the current 
assumption (6),

f(x) = f̄(x), g(x) = ḡ(x), (19)

∂ε(f + g)(x) = ∂ε(f + g)(x) = ∂ε(f̄ + ḡ)(x), ∂εf(x) = ∂εf̄(x), and

∂εg(x) = ∂εḡ(x). (20)

Hence, (18) follows by applying the Hiriart-Urruty and Phelps formula [15] to the lsc 
proper (recall Lemma 1) convex functions f̄ and ḡ. �
3. The sum rules

In this section, we prove some new sum rules for the subdifferential; they constitute 
the core part of this paper. We begin by establishing the following proposition, which 
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gives rise to some specialization of the formula in (8) for the case in which g is an 
indicator function.

Proposition 4. Let C ⊂ X and {Aε}ε>0 be a family of convex subsets of X∗ nonincreasing 
as ε goes to 0. Fix x ∈ C and assume

either (i) R+(C − x) is closed
or (ii) there exists ε0 > 0 such that ri(C − x) ∩ dom σAε0

�= ∅.
Then,

⋂
ε>0

cl {Aε + Nε
C(x)} =

⋂
ε>0

cl {Aε + NC(x)} . (21)

Proof. We denote by B the left-hand-side set in (21). It is clear that

⋂
ε>0

cl {Aε + NC(x)} ⊂ B,

as NC(x) ⊂ Nε
C(x), and only the opposite inclusion needs to be proved. We suppose that 

all the subsets Aε are nonempty (as ∅ + NC(x) = ∅). To this aim, it is enough to prove 
that B ⊂ cl {Aε + NC(x)} for all ε ∈ ]0, ε0[ with ε0 > 0 (because Aε is nonincreasing as 
ε ↓ 0). Since B ⊂ cl {Aε + NC(x)} is equivalent to

σB(u) ≤ σAε+NC(x)(u) for all u ∈ X, (22)

we shall distinguish the following cases relative to the position of u:
(a) If u /∈ cone(C − x) = (NC(x))◦, then

σAε+NC(x)(u) = +∞,

and, so, (22) trivially holds.
(b) If u = y − x, with y ∈ C, then for a given ε > 0 and every δ ∈ ]0, ε[ we write

σAδ+Nδ
C(x)(u) ≤ σAδ

(u) + δ ≤ σAε
(u) + δ ≤ σAε+NC(x)(u) + δ, (23)

which in turn leads us to

σB(u) ≤ inf
δ∈]0,ε[

(σAε+NC(x)(u) + δ) = σAε+NC(x)(u),

that is, (22) follows.
(c) If u ∈ cone(C − x), (22) follows from (b) due to the positive homogeneity of the 

support function σAε+NC(x).
At this step, the proof of (22) is finished under assumption (i).
Let us assume (ii). We only need to investigate the case (d) below.
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(d) If u ∈ cone(C−x)� cone(C−x), we pick u0 ∈ ri(C−x) ∩dom σAε0 .
Then, for any 

λ ∈ ]0, 1[, by (11) we have that uλ := λu + (1 − λ)u0 ∈ ri(cone(C − x)) ⊂ cone(C − x). 
Hence, because of the lower semicontinuity and convexity of σB, inequality (23) applied to 
uλ ∈ cone(C−x), the inequality σNC(x)(u0) ≤ 0, and the inclusion domσAε0

⊂ dom σAε
, 

for any ε ∈ ]0, ε0[

σB(u) ≤ lim inf
λ→1

σB(uλ)

≤ lim inf
λ→1

σAε+NC(x)(uλ) (by (c))

≤ lim inf
λ→1

{λσAε+NC(x)(u) + (1 − λ)σAε+NC(x)(u0)}

≤ σAε+NC(x)(u) + lim sup
λ↑1

(1 − λ)σAε
(u0)

= σAε+NC(x)(u).

This finishes the proof of the proposition. �
The following corollary provides the announced specialization of the formula in (5)

for the case in which g is an indicator function.

Corollary 5. Let f ∈ Γ0(X) and C ⊂ X be a closed convex set. If for a given x ∈ C

either R+(C − x) is closed or ri(C − x) ∩ R+(dom f − x) �= ∅, then

∂(f + IC)(x) =
⋂
ε>0

cl(∂εf(x) + NC(x)).

Proof. By (15) and (17), the second assumption is equivalent to

ri(C − x) ∩ dom σ∂εf(x) �= ∅ for all ε > 0.

Now we apply formula (5) (f and IC are convex, proper, and lsc) and (21) to get the 
desired conclusion. �
Lemma 6. The following statements are equivalent for any couple of proper convex func-
tions f and g defined on X:

(i) dom f ∩ ri(dom g) �= ∅ and g|aff(dom g) is continuous on ri(dom g);
(ii) ((dom f − x) × R) ∩ (ri(epi g − (x, g(x)))) �= ∅ for all x ∈ dom g;
(iii) ((dom f − x) × R) ∩ (ri(epi g − (x, g(x)))) �= ∅ for some x ∈ dom g.

Proof. (i) ⇒ (ii). If x0 ∈ ri(dom g) ∩ dom f and g|aff(dom g) is continuous on ri(dom g), 
then it is obvious that (x0, g(x0) + 1) ∈ ri(epi g). Now, for x ∈ dom g one has

(x0, g(x0) + 1) − (x, g(x)) ∈ ri(epi g) − (x, g(x)) = ri(epi g − (x, g(x))).
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At the same time, (x0 − x, g(x0) − g(x) + 1) ∈ (dom f − x) × R.
(ii) ⇒ (iii). Obvious (g is proper).
(iii) ⇒ (i). Take (z, μ) ∈ (ri(epi g− (x0, g(x0)))) ∩ ((dom f − x0) ×R) for x0 ∈ dom g. 

From one side, (z, μ) + (x0, g(x0)) ∈ ri(epi g) and this entails g|aff(dom g) is continuous 
at z + x0 ∈ ri(dom g); hence, continuous on ri(dom g) (see, e.g., [28, Corollary 2.2.10]). 
From the other side, relation (z, μ) ∈ (dom f − x0) × R entails z + x0 ∈ dom f so that 
z + x0 ∈ ri(dom g) ∩ dom f . �

The following proposition provides some properties of functions f such that R+(epi f−
(x, f(x))) is closed for some x ∈ dom f . This family is shown in Lemma 8 below to include 
all polyhedral functions; that is, those (convex and lsc) functions whose epigraphs are 
polyhedral sets. However, there are nonpolyhedral functions which satisfy (24); for in-
stance, locally positive homogeneous functions. Other related properties are the so-called 
local polyhedrality [1] and exactness of tangent approximations [18].

Proposition 7. Let f be a proper convex function defined on X. If x ∈ X is such that 
f(x) ∈ R and R+(epi f − (x, f(x))) is closed, then f̄ is proper and we have that

epi f ′(x; ·) = R+(epi f − (x, f(x))). (24)

As a consequence of that, ∂f(x) �= ∅, f ′(x; ·) =
(
f̄
)′ (x; ·) = σ∂f(x), and f is lsc at x.

Proof. Let us first show that (24) holds. It is clear that epi f − (x, f(x)) ⊂ epi f ′(x; ·)
and, since f ′(x; ·) is sublinear, R+(epi f − (x, f(x))) ⊂ epi f ′(x; ·). Conversely, if (u, λ) ∈
epi f ′(x; ·), then for any given δ > 0 there exists t > 0 such that t−1(f(x + tu) − f(x)) <
λ + δ; that is,

(u, λ + δ) ∈ t−1(epi f − (x, f(x))) ⊂ R+(epi f − (x, f(x))). (25)

Thus, by the current assumption we conclude

epi f ′(x; ·) = R+(epi f − (x, f(x))),

so that f ′(x; ·) is lsc and proper (recall that a lsc convex function finite at a point never 
takes the value −∞). Consequently, ∂f(x) �= ∅ and f ′(x; ·) = σ∂f(x) so that f̄(x) = f(x)
and f̄ is proper. Moreover, since

R+(epi f̄ − (x, f(x))) = R+(epi f − (x, f(x))) = R+(epi f − (x, f(x))), (26)

we infer that f ′(x; ·) =
(
f̄
)′ (x; ·) = σ∂f̄(x) = σ∂f(x). �
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The following lemma is addressed to prove the aforementioned assertion that polyhe-
dral functions satisfy condition (24).

Lemma 8. Given a polyhedral set A ⊂ X, for every x ∈ A the set R+(A − x) is closed.

Proof. We write set A as

A := {z ∈ X| 〈aj , z〉 ≤ bj , j ∈ 1, n}, (27)

and denote Jx := {j ∈ 1, n | 〈aj , x〉 = bj} for x ∈ A. If Jx = ∅, then x ∈ int(A) and, so, 
R+(A − x) = X. Otherwise, if Jx �= ∅, we prove that

R+(A− x) = {z ∈ X| 〈aj , z〉 ≤ 0, for j ∈ Jx}.

The inclusion ‘’⊂” is clear. To verify the other inclusion we take z in the right-hand side 
and choose an α > 0 such that

〈aj , αz + x〉 ≤ bj for all j ∈ 1, n \ Jx.

Then, since for all j ∈ Jx

〈aj , αz + x〉 = 〈aj , αz〉 + bj ≤ bj ,

we deduce that αz + x ∈ A and, so, z ∈ α−1(A − x) ⊂ R+(A − x). �
The following lemma shows a stability aspect of the relation in (24).

Lemma 9. Let f, g be two convex functions on X, and let x ∈ X such that f(x) and g(x)
are finite. If the sets

R+(epi f − (x, f(x))) and R+(epi g − (x, g(x))) are closed,

then so is the set R+(epi(f + g) − (x, f(x) + g(x))).

Proof. Let nets (αi)i∈I ⊂ R+ and (xi, λi)i∈I ⊂ epi(f + g) be such that αi((xi, λi) −
(x, f(x) + g(x))) converges to some (u, μ) ∈ X × R; i.e. the net αi(xi − x) converges 
to u and αi(λi − f(x) − g(x)) converges to μ. If y∗ ∈ ∂f(x) and z∗ ∈ ∂g(x) (due 
to Proposition 7, ∂f(x) and ∂g(x) are both nonempty), by taking into account that 
f(xi) + g(xi) ≤ λi we can easily prove that

〈y∗, αi(xi − x)〉 ≤ αi(f(xi) − f(x)) ≤ αi(λi − f(x) − g(x)) − 〈z∗, αi(xi − x)〉 ,

and so, for every ε > 0, the net αi(f(xi) − f(x)) is eventually contained in the interval 
[〈y∗, u〉 − ε, μ − 〈z∗, u〉 + ε].
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A similar argument yields the conclusion that, for every ε > 0, the net αi(g(xi) −g(x))
is eventually contained in the interval [〈z∗, u〉 − ε, μ − 〈y∗, u〉 + ε]. Therefore, we may 
suppose that the (eventually bounded) nets (αi(f(xi) −f(x)))i∈I and (αi(g(xi) −g(x)))i∈I

converge to some μ1, μ2 ≥ 0, respectively. On the other hand, we have for every i ∈ I,

αi(f(xi) − f(x)) + αi(g(xi) − g(x)) ≤ αi(λi − f(x) − g(x))

entailing

μ1 + μ2 ≤ μ. (28)

In other words, we have that

αi((xi, f(xi) − (x, f(x))) → (u, μ1) and αi((xi, g(xi) − (x, g(x))) → (u, μ2).

Thus, by the current assumption, there are γ1, γ2 ≥ 0 such that (u, μ1) ∈ γ1(epi f −
(x, f(x))) and (u, μ2) ∈ γ2(epi g− (x, g(x))). More specifically, since epi f − (x, f(x)) and 
epi g− (x, g(x)) are convex sets and contain (θ, 0) we may assume that γ1 = γ2 ≥ 1; that 
is, denoting γ := γ1 = γ2,

(x, f(x)) + γ−1(u, μ1) ∈ epi f and (x, g(x)) + γ−1(u, μ2) ∈ epi g.

Hence, by (28),

f(x + γ−1u) + g(x + γ−1u) ≤ f(x) + γ−1μ1 + g(x) + γ−1μ2

≤ f(x) + g(x) + γ−1μ.

Therefore, (x + γ−1u, f(x) + g(x) + γ−1μ) ∈ epi(f + g) and, so, (u, μ) ∈ γ(epi(f + g) −
(x, f(x) + g(x))) ⊂ R+(epi(f + g) − (x, f(x) + g(x))). �

The following result completes Proposition 2 by providing other sufficient conditions 
for the validity of the subdifferential formula in (5).

Proposition 10. Consider two convex functions f, g : X −→ R ∪ {±∞} and x ∈ X such 
that ∂(f + g)(x) �= ∅. Then the functions f , g, f̄ , and ḡ are proper, and formula (5)
holds at x; that is,

∂(f + g)(x) =
⋂
ε>0

cl(∂εf(x) + ∂εg(x)),

provided that one of the following conditions holds:
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(i) The equality f + g = f̄ +g holds on X and the cone R+(epi g− (x, g(x))) is closed.
(ii) The cones R+(epi f − (x, f(x))) and R+(epi g − (x, g(x))) are closed.
(iii) The cone R+(epi f − (x, f(x))) is closed, dom f ∩ ri(dom g) �= ∅, and the function 

g|aff(dom g) is continuous on ri(dom g).

Proof. Due to Proposition 7, conditions (i) and (ii) imply that (f + g)(x) = f̄(x) +g(x) =
f̄(x) + ḡ(x). Thus, Lemma 1 ensures that the functions f , g, f̄ , and ḡ are all proper. 
Also by Proposition 7, since (f + g)(x) = (f + g)(x) ∈ R, condition (iii) implies that 
(f + g)(x) = f̄(x) + g(x) ∈ R. Take x0 ∈ dom f ∩ ri(dom g) �= ∅, λ ∈ (0, 1), and denote 
xλ := λx0 +(1 −λ)x; hence, xλ ∈ dom f ∩ri(dom g). Then, by lsc and convexity of f + g, 
together with the continuity assumption on g,

f̄(x) + g(x) = (f + g)(x) ≤ lim inf
λ↓0

(f + g)(xλ) ≤ lim inf
λ↓0

(f + g)(xλ)

= lim inf
λ↓0

f(xλ) + ḡ(xλ) ≤ lim inf
λ↓0

λ(f + ḡ)(x0) + (1 − λ)(f + ḡ)(x) = f(x) + ḡ(x),

and so ḡ(x) = g(x) ∈ R. This shows that (f + g)(x) = f̄(x) + g(x) = f̄(x) + ḡ(x), and 
so, again by Lemma 1, it follows that the functions f , g, f̄ , and ḡ are also proper under 
condition (iii). This establishes the first statement of the proposition.

To continue the proof we proceed by investigating each one of the current conditions:
(i) By [28, Theorem 2.4.1(ii)] and the condition f + g = f̄ + g we obtain that

∂(f + g)(x) = ∂(f + g)(x) = ∂(f̄ + g)(x);

hence, (f + g)(x) = (f̄ + g)(x) so that f̄(x) = f(x) ∈ R (recall that g is lsc at x due 
to Proposition 7). Thus, for every ε > 0 we write (thanks to [28, Theorem 2.4.11] and 
Proposition 7),

σ∂(f+g)(x) = σ∂(f̄+g)(x) ≤ (f̄ + g)′(x; ·)

= f̄ ′(x; ·) + (ḡ)′(x; ·)
≤ (f̄)′ε(x; ·) + (ḡ)′ε(x; ·)
≤ σ∂εf̄(x) + σ∂εḡ(x) = σ∂εf(x) + σ∂εg(x).

Hence, ∂(f + g)(x) ⊂
⋂

ε>0 cl (∂εf(x) + ∂εg(x)) and, so, (5) follows due to the straight-
forwardness of the opposite inclusion.

(ii) By using again Proposition 7 we write, for every ε > 0,

σ∂(f+g)(x) ≤ (f + g)′(x; ·)
= f ′(x; ·) + g′(x; ·)
= (f̄)′(x; ·) + (ḡ)′(x; ·)
≤ σ∂ f̄(x) + σ∂εḡ(x) = σ∂εf(x) + σ∂εf(x).
ε



1192 R. Correa et al. / Journal of Functional Analysis 271 (2016) 1177–1212
Thus, we conclude as in the paragraph above.
(iii) We take v ∈ dom f ∩ dom g and denote vλ := v + λ(x0 − v), λ ∈ (0, 1), where as 

above x0 ∈ dom f ∩ ri(dom g). So, vλ ∈ dom f ∩ ri(dom g) and x + t(vλ − x) ∈ ri(dom g)
for every λ, t ∈ (0, 1). Then, since ḡ(x + t(vλ − x)) = g(x + t(vλ − x)) by the current 
assumption, and g(x) = ḡ(x) as shown in the beginning of the proof, we get

g′(x; vλ − x) = inf
0<t<1

g(x + t(vλ − x)) − g(x)
t

= inf
0<t<1

ḡ(x + t(vλ − x)) − ḡ(x)
t

= ḡ′(x; vλ − x).

Consequently, invoking Proposition 7, for every ε > 0 we write (f̄ and ḡ are proper and 
satisfy f(x) = f̄(x), g(x) = ḡ(x); see the beginning of the proof)

σ∂(f+g)(x)(vλ − x) ≤ (f + g)′(x; vλ − x)

= f ′(x; vλ − x) + g′(x; vλ − x)

= (f̄)′(x; vλ − x) + ḡ′(x; vλ − x)

≤ (f̄)′ε(x; vλ − x) + ḡ′ε(x; vλ − x)

= σ∂εf̄(x)(vλ − x) + σ∂εḡ(x)(vλ − x)

= σ∂εf(x)(vλ − x) + σ∂εg(x)(vλ − x)

≤ λ(σ∂εf(x)(x0 − x) + σ∂εg(x)(x0 − x))

+(1 − λ)(σ∂εf(x)(v − x) + σ∂εg(x)(v − x)).

Hence, as λ ↓ 0 we obtain that

σ∂(f+g)(x)(v − x) ≤ σ∂εf(x)(v − x) + σ∂εg(x)(v − x),

showing that

σ∂(f+g)(x)(u) ≤ σ∂εf(x)+∂εg(x)(u) for all u ∈ R+(dom f ∩ dom g − x). (29)

Moreover, since for every ε > 0

R+(dom f − x) = dom f ′(x; ·) = dom(f̄)′(x; ·)

= dom(f̄)′ε(x; ·) = dom σ∂εf̄(x) = dom σ∂εf(x),

R+(dom g − x) ⊃ dom(ḡ)′ε(x; ·) = dom σ∂εḡ(x) = dom σ∂εg(x),

it follows that
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dom σ∂εf(x)+∂εg(x) = dom σ∂εf(x) ∩ dom σ∂εg(x)

⊂ R+(dom f − x) ∩ R+(dom g − x) = R+(dom f ∩ dom g − x).

This shows that inequality (29) obviously holds outside the set R+(dom f∩dom g−x). In 
other words, (29) holds for all u and we infer that ∂(f +g)(x) ⊂

⋂
ε>0

cl (∂εf(x) + ∂εg(x)). 

The conclusion follows as in the paragraph above. �
We shall also need the following lemma.

Lemma 11. Let f and g be two proper convex functions defined on X. Then, (6) follows 
in each one of the following cases:

(i) ri(dom f) ∩ ri(dom g) �= ∅ and the functions f|aff(dom f) and g|aff(dom g) are contin-
uous on ri(dom f) and ri(dom g), respectively.

(ii) dom f ∩ ri(dom g) �= ∅, the function g|aff(dom g) is continuous on ri(dom g), and 
f + g = f + g.

Proof. From the definition of the lsc envelope, it is clear that f + g ≥ f + g. Now, for a 
fixed x ∈ X, we have to prove

(f + g)(x) ≤ f(x) + g(x). (30)

We may assume that x belongs to dom f̄ ∩ dom ḡ ⊂ cl(dom f) ∩ cl(dom g).
(i) We choose x0 ∈ ri(dom f) ∩ ri(dom g) and denote xλ := λx + (1 − λ)x0, λ ∈ ]0, 1[. 

Then, since xλ ∈ ri(dom f) ∩ ri(dom g), by the continuity assumption we infer that

f̄(xλ) = f(xλ) and ḡ(xλ) = g(xλ)

(observe that f|aff(dom f) = f̄|aff(dom f) and similarly for g). Consequently, using the con-
vexity of f and g, for every λ ∈ ]0, 1[ we write

λ(f̄(x) + ḡ(x)) + (1 − λ)(f̄(x0) + ḡ(x0)) ≥ f̄(xλ) + ḡ(xλ) = f(xλ) + g(xλ).

Thus, since x0 ∈ dom f ∩ dom g ⊂ dom f̄ ∩ dom ḡ and f , g are proper [28, Theo-
rem 2.2.6(iv)], by taking limits for λ ↑ 1 we obtain that

(f + g)(x) ≤ lim inf
λ↑1

(f + g)(xλ)

≤ lim inf
λ↑1

λ(f̄ + ḡ)(x) + (1 − λ)(f̄ + ḡ)(x0) = (f̄ + ḡ)(x),

proving the desired inequality.
(ii) We choose x0 ∈ dom f ∩ ri(dom g) and denote xλ as above so that xλ ∈ dom f̄ ∩

ri(dom g) and ḡ(xλ) = g(xλ). If f̄ is not proper, then f̄(xλ) = −∞ for all λ ∈ ]0, 1[ ([28, 
Theorem 2.2.6(iv)]) and, so, using the current assumption f + g = f + g,
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(f + g)(x) = (f̄ + g)(x) ≤ lim inf
λ↑1

{f̄(xλ) + g(xλ)} = −∞;

that is, (30) follows. Let us suppose now that f̄ is proper. Then, arguing as in the proof 
of (i) above, for every λ ∈ ]0, 1[ we write

f̄(xλ) + g(xλ) = f̄(xλ) + ḡ(xλ) ≤ λ(f̄(x) + ḡ(x)) + (1 − λ)(f̄(x0) + ḡ(x0)),

which leads us, as λ ↑ 1, to

(f + g)(x) ≤ lim inf
λ↑1

(f̄ + g)(xλ) ≤ f̄(x) + ḡ(x),

which is the desired inequality. �
Now we give the main result of this section, which uses the weaker condition requir-

ing that the domains of the involved functions overlap quasi-sufficiently; that is, the 
domain of one of these functions meets the relative interior of the domain of the other 
one. The resulting formula involves the exact subdifferential of the qualified function 
(represented by the relative interior of its domain into the condition) and the approx-
imate subdifferential of the other function. As we said in the introduction, this result 
uses conditions which are somewhat at an intermediate level of generality between the 
Moreau–Rockafellar’s rule (1) and the Hiriart-Urruty and Phelps formula (5).

Theorem 12. Let f and g be two convex functions defined on X and satisfying f + g =
f̄ + g. Given x ∈ X such that g(x) ∈ R, we assume

either (i) R+(epi g − (x, g(x))) is closed
or (ii) dom f ∩ ri(dom g) �= ∅ and g|aff(dom g) is continuous on ri(dom g).
Then

∂(f + g)(x) =
⋂
ε>0

cl(∂εf(x) + ∂g(x)). (31)

Proof. We may suppose that x ∈ dom f . Then, according to Proposition 10, condition (i) 
together with the assumption f + g = f̄ + g guarantee that (5) holds at x; that is,

∂(f + g)(x) =
⋂
ε>0

cl(∂εf(x) + ∂εg(x)). (32)

In case (ii), in view of Lemma 11(ii) assumption f + g = f̄ +g implies that f + g = f̄ + ḡ

and, so, by Proposition 2 formula (32) also holds.
The inclusion ‘’⊃” in (31) follows immediately from (32). To show the direct inclu-

sion ‘’⊂” we pick x∗ in ∂(f + g)(x). Then, using the relationship ∂εg(x) × {−1} ⊂
Nε

epi g(x, g(x)), from (32) we get
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(x∗,−1) ∈
⋂
ε>0

cl (∂εf(x) × {0} + ∂εg(x) × {−1})

⊂
⋂
ε>0

cl
(
∂εf(x) × {0} + Nε

epi g(x, g(x))
)
. (33)

We appeal now to Proposition 4. If (i) holds, then it follows from the last inclusion that

(x∗,−1) ∈
⋂
ε>0

cl (∂εf(x) × {0} + Nepi g(x, g(x))) . (34)

Otherwise, if (ii) holds, we have by Lemma 6

(ri(epi g − (x, g(x)))) ∩ ((dom f − x) × R) �= ∅,

and observing that

(dom f − x) × R ⊂ dom σ∂εf(x) × R = dom σ∂εf(x)×{0},

we conclude

(ri(epi g − (x, g(x)))) ∩ dom σ∂εf(x)×{0} �= ∅.

Therefore, (34) follows by applying once again Proposition 4.
We claim that for all ε > 0 and all u ∈ X

σ∂(f+g)(x)(u) ≤ σ∂εf(x)+∂g(x)(u). (35)

This will clearly ensure the inclusion ‘’⊂” in (31). Fix ε > 0, u ∈ X, and take α <

σ∂(f+g)(x)(u). Let x∗ ∈ ∂(f + g)(x) such that α < 〈x∗, u〉. Then, using (34), we find 
nets (y∗i )i∈I ⊂ ∂εf(x), (z∗i )i∈I ⊂ X∗, and (βi)i∈I ⊂ R+ such that ((z∗i , −βi))i∈I ⊂
Nepi g(x, g(x)), βi → 1, and

x∗ = lim
i∈I

(y∗i + z∗i ) .

Since βi → 1 we can suppose that βi > 0, and then β−1
i z∗i ∈ ∂g(x). Then, writing

σ∂εf(x)(u) + βiσ∂g(x)(u) ≥ 〈y∗i , u〉 + βi

〈
β−1
i z∗i , u

〉
= 〈y∗i + z∗i , u〉 ,

and taking limits we get

σ∂εf(x)+∂g(x)(u) = σ∂εf(x)(u) + σ∂g(x)(u) ≥ 〈x∗, u〉 > α.

Hence, (35) follows when α approaches the value σ∂(f+g)(x)(u). �
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Remark 1. The only purpose of using assumption

f + g = f̄ + g (36)

in Theorem 12 (coupled with one of conditions (i) and (ii)) is to guarantee the validity 
of formula (5) (see (32) in the proof of that theorem). Hence, according to Proposition 2, 
Theorem 12 is also valid if instead of (36) we use condition (6) or any one of the conditions 
in Proposition 10.

However, conditions (36) and (6) are not comparable in general; namely, on one hand, 
for the case f = g, condition (6) reads 2f̄ = f̄ + f̄ , which is obviously always true, 
while the validity of (36) requires the lsc of f . On the other hand, (36) and (6) are 
equivalent whenever function g is lsc. Of course, our preference for condition (36) is 
justified by Lemma 11(ii), and also by its simple and asymmetric appearance, which 
does not require the calculation of the lsc hull of the qualified function g.

Following the discussion made in the introduction about the use of the relative interior 
in the infinite-dimensional setting, we give the following corollary in which the resulting 
formula of the subdifferential of the sum is given by means of the exact subdifferential 
of the qualified function.

We shall consider the functions

gL := g + IL, L ⊂ X,

and denote, for x ∈ X such that g(x) ∈ R,

F(x) :=
{

x ∈ L = aff(L), dim(L) < ∞, and
either dom f ∩ ri(L ∩ dom g) �= ∅ or R+(epi gL − (x, g(x)) is closed

}
. (37)

Observe that F(x) always contains the set {x}. If g(x) �∈ R we put F(x) := ∅.

Corollary 13. Let f and g be two lsc convex functions. Then for every x ∈ X we have 
that

∂(f + g)(x) =
⋂

L∈F(x)
ε>0

cl(∂εf(x) + ∂gL(x)),

with the convention that the right-hand side is empty when F(x) = ∅. Consequently, we 
also have that

∂(f + g)(x) =
⋂

L∈F ′(x)
ε>0

cl(∂εf(x) + ∂gL(x)),

where F ′(x) := {L ⊂ X | x ∈ L = aff(L),dim(L) < ∞, and dom f ∩ ri(dom gL) �= ∅}
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Proof. Fix x in dom f such that g(x) ∈ R. If L ∈ F(x) is given we easily verify that

∂(f + g)(x) ⊂ ∂(f + gL)(x).

But we have, since the lsc convex functions f and gL satisfy the hypotheses of Theo-
rem 12,

∂(f + gL)(x) =
⋂
ε>0

cl(∂εf(x) + ∂gL(x)),

and so, by intersecting over L in F(x) ⊃ F ′(x),

∂(f + g)(x) ⊂
⋂

L∈F(x)
ε>0

∂(f + gL)(x) ⊂
⋂

L∈F ′(x)
ε>0

∂(f + gL)(x).

To establish the opposite inclusion, we pick x∗ in the right-hand side. If y ∈ {dom f ∩
dom g} \{x} is given, we consider the set L := x +R(y−x). Observe that the segment ]x, y[
is included in dom f∩ri(L ∩dom g). Hence, L ∈ F ′(x) and we have that x∗ ∈ ∂(f+gL)(x); 
that is,

〈x∗, y − x〉 ≤ (f + gL)(y) − (f + gL)(x) = (f + g)(y) − (f + g)(x).

This inequality being true when y = x or y lies outside the set {dom f ∩ dom g} \ {x}, 
we conclude that x∗ ∈ ∂(f + g)(x). �

The following corollary is a special case of Theorem 12.

Corollary 14. Let f be a convex function and g be a polyhedral function both defined 
on X. If f + g = f̄ + g, then for every x ∈ X

∂(f + g)(x) =
⋂
ε>0

cl(∂εf(x) + ∂g(x)).

Proof. Due to Lemma 8 the cone R+(epi g − (x, g(x))) is closed for each x ∈ dom f ∩
dom g. Thus, the conclusion follows by Theorem 12(i). �

We give now another result, which constitutes an infinite-dimensional extension of 
Theorem 23.8 in [23], and yields a quasi-exact rule for convex functions whose epigraphs 
overlap sufficiently.

Theorem 15. Let f and g be two convex functions defined on X. Given x ∈ X such that 
f(x), g(x) ∈ R, we assume that one of the following conditions holds:

(i) R+(epi f−(x, f(x))) is closed, dom f ∩ri(dom g) �= ∅, and g|aff(dom g) is continuous 
on ri(dom g),
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(ii) R+(epi f − (x, f(x))) and R+(epi g − (x, g(x))) are closed,
(iii) ri(dom f) ∩ ri(dom g) �= ∅ and f|aff(dom f) and g|aff(dom g) are continuous on 

ri(dom f) and ri(dom g), respectively.
Then we have that

∂(f + g)(x) = cl (∂f(x) + ∂g(x)) . (38)

Proof. We shall prove that

∂(f + g)(x) ⊂ cl(∂f(x) + ∂g(x)), (39)

since the converse inclusion in (38) is straightforward. We fix x ∈ X such that 
∂(f+g)(x) �= ∅; hence, x ∈ dom f∩dom g and the function f + g is proper. Moreover, due 
to Proposition 10, each one of the conditions (i) and (ii) imply that f , g, f̄ , ḡ are proper. 
This is also the case under condition (iii). Indeed, take x0 ∈ ri(dom f) ∩ ri(dom g). If, for 
instance, f is not proper, then f(u) = −∞ for u ∈ ri(dom f), whence (f +g)(x0) = −∞, 
and so (f + g)(x0) = −∞. It follows that (f + g)(u) = −∞ for u ∈ dom(f + g) ⊃
dom(f +g). In particular, (f +g)(x) = −∞, a contradiction. Consequently, f and g, and 
equivalently, f̄ and ḡ, are proper. On another hand, Proposition 10 yields the formula

∂(f + g)(x) =
⋂
ε>0

cl(∂εf(x) + ∂εg(x)). (40)

We pick x∗ in ∂(f+g)(x). Then, using the relationship ∂εf(x) ×{−1} ⊂ Nε
epi f (x, f(x)), 

from (40) we get

(x∗,−1) ∈
⋂
ε>0

cl
(
∂εg(x) × {0} + Nε

epi f (x, f(x))
)
.

Hence, by Proposition 4, each one of the conditions (i) and (ii) implies that

(x∗,−1) ∈
⋂
ε>0

cl (∂εg(x) × {0} + Nepi f (x, g(x))) . (41)

While, if (iii) holds, Lemma 6 guaranties that

(ri(epi f − (f(x)))) ∩ ((dom g − x) × R) �= ∅;

hence, since

(dom g − x) × R ⊂dom σ∂εg(x) × R = dom σ∂εg(x)×{0},

we conclude that

(ri(epi f − (x, f(x)))) ∩ dom σ∂εg(x)×{0} �= ∅.
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Therefore, thanks Proposition 4, formula (41) also holds under condition (iii). Now, as 
in the proof of Theorem 12 (when verifying (35)) we show that (41) yields the following 
inequality, for all ε > 0 and all u ∈ X,

σ∂(f+g)(x)(u) ≤ σ∂f(x)+∂εg(x)(u), (42)

which in turn leads us to

x∗ ∈ ∂(f + g)(x) =
⋂
ε>0

cl(∂f(x) + ∂εg(x)).

In order to remove ε from this expression, we proceed as above and write

(x∗,−1) ∈
⋂
ε>0

cl
(
∂f(x) × {0} + Nε

epi g(x, g(x))
)
.

Then, on the one hand, under condition (ii) Proposition 4 ensures that

(x∗,−1) ∈
⋂
ε>0

cl (∂f(x) × {0} + Nepi g(x, g(x))) . (43)

On the other hand, due to the relation

(dom f − x) × R ⊂ dom σ∂f(x) × R = dom σ∂f(x)×{0},

according to Lemma 6 each one of the conditions (i) and (iii) leads us to

(ri(epi g − (x, g(x)))) ∩ dom σ∂f(x)×{0} �= ∅.

Thus, (43) follows by appealing to Proposition 4. In this way, we have proved that each 
one of the conditions (i), (ii), and (iii) yields that

(x∗,−1) ∈ cl (∂f(x) × {0} + Nepi g(x, g(x))) . (44)

By repeating once again the proof of Theorem 12 (the part concerning (35), as we did 
with (42) above) we verify that, for every ε > 0 and u ∈ X,

σ∂(f+g)(x)(u) ≤ σ∂f(x)+∂g(x)(u). (45)

Indeed, take α < σ∂(f+g)(x)(u) and choose x∗ ∈ ∂(f +g)(x) such that α < 〈x∗, u〉. Then, 
according to (44), we find nets (y∗i )i∈I ⊂ ∂f(x), (z∗i )i∈I ⊂ X∗, and (βi)i∈I ⊂ R+ such 
that β−1

i z∗i ∈ ∂g(x), βi → 1, with βi > 0, and

x∗ = lim (y∗i + z∗i ) .

i∈I
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Then, taking the limit in the inequalities

σ∂f(x)(u) + βiσ∂g(x)(u) ≥ 〈y∗i , u〉 + βi

〈
β−1
i z∗i , u

〉
= 〈y∗i + z∗i , u〉 ,

we get

σ∂f(x)+∂g(x)(u) ≥ 〈x∗, u〉 > α.

Hence, (45) follows when α goes to σ∂(f+g)(x)(u) and the inclusion x∗ ∈ ∂(f + g)(x) ⊂
cl(∂f(x) + ∂g(x)) follows. �

The following result is immediate from Theorem 15.

Corollary 16. Let C and D be two convex subsets of X such that

ri(domC) ∩ ri(domD) �= ∅.

Then for every x ∈ C ∩D we have that

NC∩D(x) = cl (NC(x) + ND(x)) .

The previous results are applied in the following corollary to get calculus rules for 
the subdifferential of the composition of a convex function with a linear mapping. This 
result is also needed in Corollary 23 below.

Corollary 17. Let us consider a continuous linear mapping A : X → Y with continu-
ous adjoint A∗, where Y is another (real) separated locally convex space, and a convex 
function f defined on X. Given x ∈ X such that f(Ax) ∈ R, we assume

either (i) R+(epi f − (Ax, f(Ax))) is closed,
or (ii) A(X) ∩ ri(dom f) �= ∅ and f|aff(dom f) is continuous relative to ri(dom f).
Then,

∂(f ◦A)(x) = cl(A∗∂f(Ax)).

Proof. We consider the convex functions g, h : X × Y → R defined as

g(x, y) := f(y) and h(x, y) := Igph A,

where gphA denotes the graph of A. Then, on the one hand, by writing

R+(epih− (x,Ax, 0)) = R+(gphA× R+ − (x,Ax, 0)) = gphA× R+,

it follows that R+(epih − (x, Ax, 0)) is a closed set. On the other hand, we have that
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R+(epi g − (x,Ax, f(Ax))) = R+(X × epi f − (x,Ax, f(Ax)))

= X × R+(epi f − (Ax, f(Ax))).

Therefore, if (i) holds, then R+(epi g−(x, Ax, f(Ax))) is closed and, so, by Theorem 15(i)
we get

∂(g + h)(x,Ax) = cl(∂g(x,Ax) + ∂Igph A(x,Ax)) = cl({θ} × ∂f(Ax) + Ngph A(x,Ax))

and then

∂(f ◦A)(x) × {θ} = ∂(g + h)(x,Ax) ∩ (X∗ × {θ})

= cl{(A∗v∗, y∗ − v∗) | y∗ ∈ ∂f(Ax), v∗ ∈ Y ∗} ∩ (X∗ × {θ}). (46)

In other words, if x∗ is given in ∂(f ◦ A)(x), then we find nets (y∗i ) ⊂ ∂f(Ax) and 
(v∗i ) ⊂ Y ∗ such that x∗ = limi A

∗v∗i and limi(y∗i − v∗i ) = θ. Since A∗ is continuous, we 
deduce that x∗ = limi A

∗v∗i = limi A
∗y∗i ∈ cl (A∗∂f(Ax)). The opposite inclusion also 

easily follows from (46).
If (ii) holds, then it easily follows that domh ∩ ri(dom g) �= ∅ and g|aff(dom g) is 

continuous relative to ri(dom g). Thus, we conclude as in (i) above. �
The following result is a continuation of Corollary 13 in which we use the following 

notation, where x ∈ X is such that f(x), g(x) ∈ R,

G(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L ⊂ X

∣∣∣∣∣∣∣∣∣

L is a finite-dimensional affine manifold, x ∈ L, and
either ri(dom fL) ∩ ri(dom gL) �= ∅
or dom fL ∩ ri(dom gL) �= ∅ and R+(epi fL − (x, f(x)) is closed
or R+(epi fL − (x, f(x)) and R+(epi gL − (x, g(x)) are closed

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(47)

(recall that fL = f + IL and gL = g + IL). Observe that {x} ∈ G(x).

Corollary 18. Let f and g be two proper convex functions both defined on X. Then for 
every x ∈ X such that f(x), g(x) ∈ R we have

∂(f + g)(x) =
⋂

L∈G(x)

cl(∂fL(x) + ∂gL(x)).

Proof. According to Theorem 15, the conclusion follows in view of the relationship

∂(f + g)(x) =
⋂

∂(fL + gL)(x). �

L∈G(x)
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Taking G′(x) := {L ⊂ X | x ∈ L = aff L, dimL < ∞, ri(dom fL) ∩ ri(dom gL) �= ∅}, 
the conclusion of Corollary 18 is valid replacing G(x) by G′(x); in fact, it is true even 
with replacing G(x) by G′′(x) := {L ∈ G′(x) | dimL = 1}.

The closure in formula (38) of Theorem 15 is removed in the next two corollaries.

Corollary 19. Let functions f and g be the same as in Theorem 15(iii). If x ∈ X is such 
that ∂f(x) or ∂g(x) is locally compact, then

∂(f + g)(x) = ∂f(x) + ∂g(x).

Proof. We may assume that f(x), g(x) ∈ R. According to Theorem 15(iii), we have 
that ∂(f + g)(x) = cl(∂f(x) + ∂g(x)). If ∂f(x) or ∂g(x) is empty, then we are done. 
Consequently, ∂f(x) and ∂g(x) as well as ∂(f + g)(x) are all nonempty. Hence, by 
Lemma 1 functions f and g are proper, and we have that f̄ , ̄g ∈ Γ0(X). Next (without 
loss of generality) we assume that θ ∈ ri(dom f) ∩ri(dom g) and let U ⊂ X be a balanced 
and convex θ-neighborhood such that

U1 := U ∩ aff(dom f) ⊂ dom f, U2 := U ∩ aff(dom g) ⊂ dom g.

We have that U1 and U2 are balanced and convex in aff(dom f) and aff(dom g), re-
spectively. Take v∗ ∈ (∂f(x))∞ ∩ (−(∂g(x))∞). Thanks to [28, Theorem 2.4.1(ii) and 
Exercise 2.23] we can write

v∗ ∈ (∂f(x))∞ ∩ (−(∂g(x))∞) = Ndom f (x) ∩ (−Ndom g(x))

= Ndom f (x) ∩ (−Ndom g(x)) .

Then, for every u1 ∈ U1 and u2 ∈ U2 we obtain that

〈v∗, u1 − x〉 ≤ 0 and 〈−v∗, u2 − x〉 ≤ 0, (48)

which by summing up gives us 〈v∗, u1 − u2〉 ≤ 0. Moreover, since −u1 ∈ U1 and 
−u2 ∈ U2, we also have that

〈v∗, u2 − u1〉 ≤ 0 for all u1 ∈ U1 and u2 ∈ U2,

which shows that v∗ ∈ (aff(dom f − dom g))◦ (U1 and U2 are absorbing in aff(dom f)
and aff(dom g), respectively).

Thus, since the inclusion (aff(dom f − dom g))◦ ⊂ Ndom f (x) ∩ (−Ndom g(x)) always 
holds, we deduce that Ndom f (x) ∩ (−Ndom g(x)) = (aff(dom f −dom g))◦. Therefore, the 
closedness of ∂f(x) + ∂g(x) follows from Dieudonné’s Theorem [28, Theorem 1.1.8]. �

The following result is well-known in the finite-dimensional setting (e.g. [23, Theo-
rem 23.8]). The infinite-dimensional case can also be reduced to the finite-dimensional 
setting, but here we give a proof based on Theorem 15(ii).
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Corollary 20. Let f and g be two polyhedral functions defined on X. Then for every 
x ∈ X we have that

∂(f + g)(x) = ∂f(x) + ∂g(x).

Proof. We fix x ∈ X such that ∂(f + g)(x) �= ∅; hence, f, g ∈ Γ0(X) (by Lemma 1). 
Since the sets R+(epi f − (x, f(x))) and R+(epi g − (x, g(x))) are closed (see Lemma 8), 
according to Theorem 15(ii) we have that

∂(f + g)(x) = cl(∂f(x) + ∂g(x)). (49)

Now, it can be shown (e.g. [6, Proposition 3.1.1]) that f (or similarly g) admits the 
following representation

f(x) = max
i=1, ..,k

{〈ai, x〉 − bi} + I{z∈X|〈ai,z〉≤bi,i=k+1, ..,m}(x),

with a1, . . . , ak, ak+1, . . . , am ∈ X∗ and b1, . . . , bk, bk+1, . . . , bm ∈ R. Hence, using [28, 
Theorem 2.8.7(iii)] together with Valadier’s formula (e.g. [28, p. 136]), for every x ∈
dom f the subdifferential of f at x is nonempty and is characterized by

∂f(x) = co{aj | j ∈ I(x)} + R+{aj | j ∈ J(x)},

where I(x) := {j ∈ {1, .., k} | 〈aj , x〉 − bj = maxi=1, ..,k{〈ai, x〉 − bi}} and J(x) := {j ∈
{k + 1, .., m} | 〈aj , x〉 = bj}. This shows, again by Dieudonné’s Theorem, that the 
closure is superfluous in (49). �

Below, Theorem 12 is extended to deal with finitely many functions. We will need the 
following proposition.

Proposition 21. Let f and g be two proper convex functions defined on X. Suppose that 
ri(dom f) ∩ri(dom g) �= ∅ and that the functions f|aff(dom f) and g|aff(dom g) are continuous 
on ri(dom f) and ri(dom g), respectively. Then

ri(dom(f + g)) = ri(dom f) ∩ ri(dom g) (50)

and

(f + g)|aff(dom(f+g)) is continuous on ri(dom(f + g)).

Proof. Let us first prove that given two convex sets A and B with ri(A) ∩ ri(B) �= ∅, 
we have that ri(A) ∩ ri(B) = ri(A ∩ B). If θ ∈ ri(A) ∩ ri(B), then aff A = spanA is 
closed and spanA = R+A; similarly for B. It follows that spanA ∩ spanB = R+A ∩
R+B = R+(A ∩ B) = span(A ∩ B). Moreover, there exists a θ-neighborhood U such 
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that U ∩ spanA ⊂ A and U ∩ spanB ⊂ B, whence U ∩ span(A ∩ B) ⊂ A ∩ B; hence 
θ ∈ ri(A ∩B). Now if x ∈ ri(A) ∩ ri(B), then θ ∈ ri(A − x) ∩ ri(B − x) = ri((A ∩B) − x)
and so x ∈ ri(A ∩B).

For the converse inclusion, take x0 ∈ ri(A) ∩ ri(B); as above, we may assume that 
x0 = θ. Take x ∈ ri(A ∩ B). Then there exists α > 1 such that αx ∈ A ∩ B. Since θ ∈
ri(A) ∩ri(B), x = α−1(αx) +(1 −α−1)θ ∈ ri(A) ∩ri(B). Hence ri(A ∩B) = ri(A) ∩ ri(B).

Now we go back to the proof of the proposition. Taking A := dom f and B := dom g we 
get (50). Moreover, since f|aff(A) is continuous on ri(A) and aff(A ∩B) = aff(A) ∩ aff(B) ⊂
aff(A), it follows that f|aff(A∩B) is continuous on ri(A) ∩ aff(A ∩B). Similarly, g|aff(A∩B)
is continuous on ri(B) ∩ aff(A ∩B), whence (f + g)|aff(A∩B) = f|aff(A∩B) + g|aff(A∩B) is 
continuous on ri(A) ∩ ri(B) ∩ aff(A ∩B) = ri(A ∩B) ∩ aff(A ∩B) = ri(A ∩B). �
Theorem 22. Let f1, .., fk, g1, .., gm : X −→ R ∪ {+∞}, k, m ≥ 1, be convex functions 
satisfying

f1 + · · · + fk + g1 + . . . + gm = f̄1 + · · · + f̄k + ḡ1 + · · · + ḡm. (51)

Given x ∈ X where functions gi are finite, we assume
either (i) R+(epi gi − (x, gi(x))) is closed for i = 1, . . ., m,

or (ii)
(⋂k

i=1
dom fi

)⋂(⋂m

i=1
ri(dom gi)

)
�= ∅ and gi|aff(dom gi) is continuous 

on ri(dom gi), for i = 1, . . . , m.
Then,

∂(f1 + · · · + fk + g1 + · · · + gm)(x)

=
⋂
ε>0

cl(∂εf1(x) + · · · + ∂εfk(x) + ∂g1(x) + · · · + ∂gm(x)). (52)

Proof. We use an inductive argument on the number of functions by considering the 
following relation:

(Rn) : Every family of convex functions f1, .., fk, g1, .., gm, k,m ≥ 1, k + m ≤ n,

satisfying (51) and either (i) or (ii), verifies (52) when

∂(f1 + · · · + fk + g1 + · · · + gm)(x) �= ∅.

Observe that (52) holds trivially when ∂(f1 + · · ·+ fk + g1 + · · ·+ gm)(x) = ∅ since that 
the inclusion “⊃” is always true.

On the other hand, following the same argument as in Lemma 1, we get that all the 
functions f1, .., fk, g1, .., gm must be lsc at x, and that their closures f̄1, .., f̄k, ḡ1, .., ̄gm, 
must be proper. From the assumption on the closures we also have

ϕ + ψ = ϕ + ψ, (53)
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for any fixed pair of functions {ϕ, ψ} within the family f1, .., fk, g1, .., gm, and as a con-
sequence of that, if, for instance, ϕ = f1 and ψ = fk, we deduce that

ϕ + ψ + f2 + · · · + fk−1 + g1 + · · · + gm = ϕ + ψ+f2 + · · ·+ f̄k−1 + ḡ1 + · · ·+ ḡm, (54)

and similarly when ϕ = fi, ψ = gj , or ϕ = gi, ψ = gj . Moreover, by (18) and the 
discussion following (18), for every ε > 0 we have that

∂ε(f + g)(x) ⊂ cl(∂2εf(x) + ∂2εg(x)). (55)

Now relation (R2) is true due to Theorems 12 and 15. Assume that (Rn) is true 
and consider a family of functions f1, .., fk, g1, .., gm, h, with k, m ≥ 1 and k + m ≤ n, 
satisfying (51) and either (i) or (ii).

Let assume first that (i) holds. If the function h is such that R+(epih − (x, h(x))) is 
closed, then by Lemma 9 the set R+(epi(gm + h) − (x, gm(x) + h(x))) is also closed. So, 
since (54) holds, by applying the induction argument to the family of functions f1, .., fk, 
g1, .., gm−1, gm + h we infer that

∂

(
k∑

i=1
fi +

m∑
i=1

gi + h

)
(x) =

⋂
ε>0

cl
(

k∑
i=1

∂εfi(x) +
m−1∑
i=1

∂gi(x) + ∂(gm + h)(x)
)
.

Hence, since ∂(gm + h)(x) = cl (∂gm(x) + ∂h(x)), by Theorem 15, we infer that

∂

(
k∑

i=1
fi +

m∑
i=1

gi + h

)
(x) =

⋂
ε>0

cl
(

k∑
i=1

∂εfi(x) +
m∑
i=1

∂gi(x) + ∂h(x)
)
. (56)

Now, if R+(epih − (x, h(x))) is not closed, so that h is of type f , we apply the induction 
argument to the family f1, .., fk−1, fk + h, g1, .., gm to get

∂

(
(fk + h) +

k−1∑
i=1

fi +
m∑
i=1

gi

)
(x) =

⋂
ε>0

cl
(
∂ε(fk + h)(x) +

k−1∑
i=1

∂εfi(x) +
m∑
i=1

∂gi(x)
)
,

and, so, by (55) it follows that

∂

(
(fk + h) +

k−1∑
i=1

fi +
m∑
i=1

gi

)
(x) =

⋂
ε>0

cl
(
∂εh(x) +

k∑
i=1

∂εfi(x) +
m∑
i=1

∂gi(x)
)
. (57)

Now we consider the case in which the family of functions f1, .., fk, g1, .., gm−1, gm, h
satisfies condition (ii). If the function h is of type f ; that is, the current assumption relies 
merely on its domain, then we conclude as in (57). Otherwise, if h is of type g; that is, 
the current assumption relies on the relative interior of its domain, by Proposition 21 we 
deduce that ri(dom(gm + h)) = ri(dom gm) ∩ ri(domh) �= ∅ and
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(gm + h)|aff(dom gm∩dom h) is continuous on ri(dom gm ∩ domh).

Hence, by applying the induction argument to the family f1, .., fk, g1, .., gm−1, gm +h we 
get (using (54))

∂

(
k∑

i=1
fi +

m∑
i=1

gi + h

)
(x) =

⋂
ε>0

cl
(

k∑
i=1

∂εfi(x) +
m−1∑
i=1

∂gi(x) + ∂(gm + h)(x)
)
.

But, according to Theorem 15 we have that ∂(gm + h) = cl (∂gm(x) + ∂h(x)), so that 
the last equality leads us to (56), and this shows that (Rn+1) holds true. �

The following corollary deals with a typical situation where finite and infinite settings 
are put together. We consider a continuous linear mapping A : X → Rn with continuous 
adjoint A∗, and two convex functions f , g defined on Rn and X, respectively. The 
Rockafellar’s usual condition [23, Theorem 23.8] for the subdifferential of the function 
g + f ◦A, adapted to the current setting in [5, Theorem 4.2], reads

ri(A dom g) ∩ ri(dom f) �= ∅.

This condition has been translated in terms of the so-called quasi-relative interior as [5, 
Corollary 4.3]:

A(qri(dom g)) ∩ ri(dom f) �= ∅;

observe that ri(A dom g) = A(qri(dom g)) provided that qri(dom g) is nonempty. How-
ever, qri(dom g) is always nonempty [5, Theorem 2.19] when the underlying space X is 
a separable Fréchet space (in particular, a separable Banach space) and C is cs-closed 
(see, also, [28, Proposition 1.2.9]).

The following result only requires the condition A(dom g) ∩ ri(dom f) �= ∅, and so it 
makes sense for any space X. The resulting formula uses the exact subdifferential of the 
qualified function g.

Corollary 23. Let us consider a continuous linear mapping A : X → Rn, with continuous 
adjoint A∗, and two lsc convex functions f and g defined on Rn and X, respectively. 
Assume that, for x ∈ dom g such that f(Ax) ∈ R,

either (i) R+(epi f − (Ax, f(Ax))) is closed
or (ii) A(dom g) ∩ ri(dom f) �= ∅.
Then,

∂(g + f ◦A)(x) =
⋂
ε>0

cl(∂εg(x) + A∗∂f(Ax)).

In addition, if R+(epi g − (x, g(x))) is closed, then the last formula reduces to
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∂(g + f ◦A)(x) = cl(∂g(x) + A∗ (∂f(Ax))).

Proof. We suppose that ∂(g + f ◦A)(x) �= ∅ so that, according to Corollary 17,

∂(f ◦A)(x) = cl(A∗∂f(Ax)). (58)

Hence, we only need to check that f ◦ A and g satisfy the conditions of Theorem 12, 
with f ◦ A being the qualified function. First we assume that (i) holds, and take nets 
(αi)i∈I ⊂ R+ and (xi, λi)i∈I ⊂ epi f ◦A such that

αi((xi, λi) − (x, f(Ax))) → (u, μ),

for some (u, μ) ∈ X × R; hence, αi((Axi, λi) − (Ax, f(Ax))) → (Au, μ) so that 
(Au, μ) ∈ R+(epi f−(Ax, f(Ax))), due to (i). This shows that the function f ◦A satisfies 
condition (i) of Theorem 12.

If (ii) holds we choose x0 ∈ dom g such that y0 = Ax0 ∈ ri(dom f). Hence, there are 
some constant m ≥ 0 and an θ-neighborhood V ⊂ Rn such that

f(y0 + y) ≤ m for all y ∈ V ∩ aff(dom f).

Let U ⊂ X be a θ-neighborhood such that AU ⊂ V . Then, for every z ∈ U ∩
aff(dom f ◦A) it holds that

f ◦A(x0 + z) = f(y0 + Az) ≤ m,

which implies that f ◦A satisfies condition (ii) of Theorem 12. Consequently, taking into 
account (58),

∂(g + f ◦A)(x) =
⋂
ε>0

cl(∂εg(x) + ∂(f ◦A)(x))

=
⋂
ε>0

cl(∂εg(x) + cl(A∗∂f(Ax)))

=
⋂
ε>0

cl(∂εg(x) + A∗∂f(Ax)),

yielding the main conclusion. If, in addition, the set R+(epi g− (x, g(x))) is closed, then 
we conclude by using Theorem 15 in a similar way. �

The following result establishes a rule with a sequential flavor in the spirit of [26]
(see also [10] for other results). Here, we only use the exact subdifferential at the ref-
erence point of the qualified function (the one whose relative interior or epigraph is 
involved in the assumption), meanwhile the subdifferential of the other function is taken 
at nearby points. The result is stated in Banach spaces because it is the requirement 
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of the Brøndsted–Rockafeller theorem, which is needed in the proof; the reflexivity as-
sumption comes to justify the use of sequences rather than nets. We denote by

lim sup
z�x

(∂f(z) + ∂g(x))

the set of elements x∗ ∈ X∗ such that there are sequences xn → x with f(xn) → f(x), 
x∗
n ∈ ∂f(xn), and y∗n ∈ ∂g(x) such that 〈x∗

n, xn − x〉 → 0 and

x∗
n + y∗n → x∗.

Corollary 24. Assume that X is a reflexive Banach space, and let f, g be two lsc proper 
convex functions. Given x ∈ dom f ∩ dom g, we assume

either (i) R+(epi g − (x, g(x))) is closed,
or (ii) dom f ∩ ri(dom g) �= ∅ and g|aff(dom g) is continuous on ri(dom g).
Then,

∂(f + g)(x) = lim sup
z�x

(∂f(z) + ∂g(x)) .

Proof. Fix x ∈ dom g ∩ dom f and x∗ ∈ ∂(f + g)(x). Then, using Theorem 12, for each 
integer n ≥ 1 there are z∗n ∈ ∂1/n2f(x) and y∗n ∈ ∂g(x) such that

x∗ ∈ z∗n + y∗n + (1/n)B∗,

where B∗ represents the closed unit ball for the (dual) norm in X∗. Now, appealing to 
Brøndsted–Rockafellar’s Theorem (e.g. [22]), we find xn ∈ x + (1/n)B (here, B is the 
closed unit ball in X) and x∗

n ∈ ∂1/nf(xn) such that

|f(xn) − f(x)| ≤ 1
n
, |〈x∗

n, xn − x〉| ≤ 1
n
, and x∗

n ∈ z∗n + (1/n)B∗.

Therefore, x∗ ∈ x∗
n + y∗n + (2/n)B∗ and the conclusion follows. �

4. Application to optimization

Let us consider next the convex programming problem:

(P ) Min f(x)
s.t. ft(x) ≤ 0, t ∈ T,

x ∈ C,

(59)

where T is an arbitrary infinite index set, C is a nonempty closed convex subset of a 
(real) separated locally convex space X, and all the involved functions f , ft, t ∈ T , 
belong to Γ0(X). We assume that the (convex) constraint system
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σ := {ft(x) ≤ 0, t ∈ T ; x ∈ C}, (60)

is consistent; i.e. the feasible set of (P ), which is denoted by F , is nonempty (F �= ∅).
The convex infinite-dimensional version of Farkas lemma (see, for instance, [11, The-

orem 4.1], extending [17, Theorem 3.2]) establishes that, given u ∈ X∗ and α ∈ R,

〈u, x〉 ≤ α is a consequence of σ if and only if (u, α) ∈ clK,

where

K := cone co
{⋃

t∈T

epi f∗
t ∪ epiσC

}

= cone co
{⋃

t∈T

epi f∗
t

}
+ epiσC ,

since epiσC is a convex cone. The system σ is said to be Farkas–Minkowski if K is closed.
Next we provide optimality conditions for (P ). Before, let us introduce some additional 

notation. We represent by R(T )
+ the cone of all the functions λ : T → R+ such that 

λt := λ(t) is zero except for finitely many t’s.

Theorem 25. Given problem (P ), let us assume that X is reflexive, that σ is Farkas–
Minkowski and that ri(F ) ∩dom f �= ∅. Then, x ∈ F ∩dom f is a global minimizer of (P )
if and only if for each fixed ε > 0 we have that, for every ρ > 0, there exists λρ ∈ R

(T )
+

such that the following condition holds:

θ ∈ ∂fε(x) + ∂

⎛
⎝ ∑

{t∈T |λρ
t>0}

λρ
t ft + IC

⎞
⎠ (x) + ρB∗, (61)

where ft(x) = 0 for all t ∈ T such that λρ
t > 0.

Proof. The point x ∈ F ∩ dom f is a minimizer of (P ) if and only if

θ ∈ ∂(f + IF )(x). (62)

The assumption ri(F ) ∩ (dom f) �= ∅ and Corollary 5 yield

θ ∈
⋂
ε>0

cl(∂fε(x) + NF (x)); (63)

then, for each ε > 0 we have θ ∈ cl(∂fε(x) + NF (x)). Since X is reflexive, cl(∂fε(x) +
NF (x)) coincides with the closure of ∂fε(x) +NF (x) for the topology of the (dual) norm 
in X∗ and, so, for every ρ > 0,
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θ ∈ ∂fε(x) + NF (x) + ρB∗.

The last relation entails the existence of uρ ∈ NF (x) such that θ ∈ ∂fε(x) + uρ + ρB∗. 
Moreover uρ ∈ NF (x) is equivalent to say that 〈uρ, x〉 ≤ 〈uρ, x〉 is a consequence of σ. 
By Farkas lemma, and thanks to the fact that σ is FM, we have

(uρ, 〈uρ, x〉) ∈ clK = K = cone co
{⋃

t∈T

epi f∗
t

}
+ epiσC .

This yields (see [12, p. 130]) the existence of λρ ∈ R
(T )
+ such that

uρ ∈ ∂

⎛
⎝ ∑

{t∈T |λρ
t>0}

λρ
t ft + IC

⎞
⎠ (x),

with ft(x) = 0 for all t ∈ T such that λρ
t > 0. The necessity is proved.

Conversely, if (61) holds then there exists zρ ∈ X∗ such that ‖zρ‖∗ = 1 and

ρzρ ∈ ∂fε(x) + ∂

⎛
⎝ ∑

{t∈T |λρ
t>0}

λρ
t ft + IC

⎞
⎠ (x).

Thus,

f(x) +
∑

{t∈T |λρ
t>0}

λρ
t ft(x) ≥ f(x) +

∑
{t∈T |λρ

t>0}
λρ
t ft(x) + 〈ρzρ, x− x〉 − ε, ∀x ∈ C. (64)

Since ft(x) = 0 for all t ∈ T such that λρ
t > 0, (64) implies

f(x) +
∑

{t∈T |λρ
t>0}

λρ
t ft(x) − f(x) ≥ 〈ρzρ, x− x〉 − ε, ∀x ∈ C.

Then, for a fixed x ∈ F

f(x) ≥ f(x) +
∑

{t∈T |λρ
t>0}

λρ
t ft(x) ≥ f(x) + 〈ρzρ, x− x〉 − ε,

and taking limits first for ρ → 0 and after for ε → 0, we have proved that x is a global 
minimizer of (P ). �
Remark. In [12] it was shown that if σ is Farkas–Minkowski and

epi(f∗) + K is a closed set, (65)
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then x ∈ F ∩ dom ∂f (e.g., ∂f(x) �= ∅) is a minimizer of (P ) if and only if there exists 
λ ∈ R

(T )
+ such that the exact Karush–Kuhn–Tucker condition holds,

θ ∈ ∂f(x) + ∂

⎛
⎝ ∑

{t∈T |λt>0}
λtft + IC

⎞
⎠ (x) (66)

and ft(x) = 0 for all t ∈ T such that λt > 0. If, in addition, the ft’s are continuous at 
some point of C, then (66) gives

θ ∈ ∂f(x) +
∑

{t∈T |λt>0}
λt∂ft(x) + NC(x)

and ft(x) = 0 for all t ∈ T such that λt > 0. This constitutes an exact optimally condition 
for (P ) involving only the exact subgradients, but under stronger assumptions, namely 
the closedness of the set in (65) and the nonemptyness of ∂f at x.

Acknowledgments

We would like to thank the referee for his (her) careful reading and for providing 
valuable suggestions which definitely allowed us to improve the manuscript, to include 
some better proofs, and to avoid some incoherences.

References

[1] E.J. Anderson, M.A. Goberna, M.A. López, Locally polyhedral linear inequality systems, Linear 
Algebra Appl. 270 (1998) 231–253.

[2] H. Attouch, H. Brézis, Duality for the sum of convex functions in general Banach spaces, in: Aspects 
of Mathematics and Its Applications, North-Holland, Amsterdam, 1986, pp. 125–133.

[3] D. Azé, Duality for the sum of convex functions in general normed spaces, Arch. Math. (Basel) 
62 (6) (1994) 554–561.

[4] J.M. Borwein, Adjoint process duality, Math. Oper. Res. 8 (1983) 403–434.
[5] J.M. Borwein, A.S. Lewis, Partially finite convex programming, part I: quasi relative interiors and 

duality theory, Math. Program. 57 (1992) 15–48.
[6] J. Borwein, J.D. Vanderwerff, Convex Functions: Constructions, Characterizations and Counterex-

amples, Cambridge University Press, Cambridge (UK), 2010.
[7] A. Brøndsted, On the subdifferential of the supremum of two convex functions, Math. Scand. 31 

(1972) 225–230.
[8] R.S. Burachik, V. Jeyakumar, A dual condition for the convex subdifferential sum formula with 

applications, J. Convex Anal. 12 (2005) 279–290.
[9] C. Combari, M. Laghdir, L. Thibault, On subdifferential calculus for convex functions defined on 

locally convex spaces, Ann. Sci. Math. Québec 23 (1) (1999) 23–36.
[10] A. Correa, R. Jourani, A. Hantoute, Characterizations of convex approximate subdifferential calcu-

lus in Banach spaces, Trans. Amer. Math. Soc. 368 (2016) 4831–4854.
[11] N. Dinh, M.A. Goberna, M.A. López, From linear to convex systems: consistency, Farkas’ lemma 

and applications, J. Convex Anal. 13 (2006) 279–290.
[12] N. Dinh, M.A. Goberna, M.A. López, T.Q. Son, New Farkas-type constraint qualifications in convex 

infinite programming, ESAIM Control Optim. Calc. Var. 13 (2007) 580–597.
[13] A. Hantoute, M.A. López, A complete characterization of the subdifferential set of the supremum 

of an arbitrary family of convex functions, J. Convex Anal. 15 (2008) 831–858.

http://refhub.elsevier.com/S0022-1236(16)30119-7/bib676F6D61s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib676F6D61s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib417442723836s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib417442723836s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib6331s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib6331s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib6332s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib426F727765696E4C65776973s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib426F727765696E4C65776973s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib426F56616E3130s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib426F56616E3130s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib42726F6E64737465643732s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib42726F6E64737465643732s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib4A653035s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib4A653035s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib6333s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib6333s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib4A4348s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib4A4348s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib44474C3035s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib44474C3035s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib44696E68s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib44696E68s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib48616E4C6F703038s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib48616E4C6F703038s1


1212 R. Correa et al. / Journal of Functional Analysis 271 (2016) 1177–1212
[14] A. Hantoute, M.A. López, C. Zălinescu, Subdifferential calculus rules in convex analysis: a unifying 
approach via pointwise supremum functions, SIAM J. Optim. 19 (2) (2008) 863–882.

[15] J.-B. Hiriart-Urruty, R.R. Phelps, Subdifferential calculus using epsilon-subdifferentials, J. Funct. 
Anal. 118 (1993) 154–166.

[16] J.-B. Hiriart-Urruty, M. Moussaoui, A. Seeger, M. Volle, Subdifferential calculus without qualifica-
tion conditions, using approximate subdifferentials: a survey, Nonlinear Anal. 24 (1995) 1727–1754.

[17] V. Jeyakumar, Characterizing set containments involving infinite convex constraints and reverse-
convex constraints, SIAM J. Optim. 13 (2003) 947–959.

[18] M. Kaiwen, R. Vera, Y. Xiaoqi, On local coincidence of a convex set and its tangent cone, J. Optim. 
Theory Appl. 164 (2015) 123–137.

[19] J.-P. Laurent, Approximation et Optimisation, Hermann, 1972.
[20] J.J. Moreau, Fonctionnelles Convexes, in: Séminaire sur les équations aux dérivées partielles, Collège 

de France, 1966.
[21] M. Moussaoui, M. Volle, Quasicontinuity and united functions in convex duality theory, Comm. 

Appl. Nonlinear Anal. 4 (4) (1997) 73–89.
[22] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, second edition, Springer-

Verlag, Berlin, 1993.
[23] R.T. Rockafellar, Convex Analysis, Princeton Math. Ser., vol. 28, Princeton University Press, 

Princeton, NJ, 1970.
[24] R.T. Rockafellar, R. Wets, Variational Analysis, Springer, Berlin, 1998.
[25] S. Simons, The occasional distributivity of ◦ over � and the change of variable formula for conjugate 

functions, Nonlinear Anal. 14 (12) (1990) 1111–1120.
[26] L. Thibault, Sequential convex subdifferential calculus and sequential Lagrange multipliers, SIAM 

J. Control Optim. 35 (1997) 1434–1444.
[27] C. Zălinescu, A comparison of constraint qualifications in infinite-dimensional convex programming 

revisited, J. Aust. Math. Soc. Series B 40 (3) (1999) 353–378.
[28] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co., Inc., River 

Edge, NJ, 2002.

http://refhub.elsevier.com/S0022-1236(16)30119-7/bib48616E4C6F705A616C32303038s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib48616E4C6F705A616C32303038s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib48755068656C7073s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib48755068656C7073s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib484D53563935s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib484D53563935s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib4A653033s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib4A653033s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib76657261s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib76657261s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib4C617572656E74s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib4D6F72656175626F6F6Bs1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib4D6F72656175626F6F6Bs1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib6334s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib6334s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib5068656C7073426F6F6Bs1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib5068656C7073426F6F6Bs1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib526F636B6166656C6C61723730s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib526F636B6166656C6C61723730s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib526F636B77657473626F6F6Bs1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib6335s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib6335s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib5468696261756C743937s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib5468696261756C743937s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib6336s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib6336s1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib5A616C696E65736375426F6F6Bs1
http://refhub.elsevier.com/S0022-1236(16)30119-7/bib5A616C696E65736375426F6F6Bs1

	Weaker conditions for subdifferential calculus of convex functions
	1 Introduction
	2 Notation and preliminary results
	3 The sum rules
	4 Application to optimization
	Acknowledgments
	References


