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Strain measurement using BOTDR (Brillouin Optical Time-Domain Reflectometry) is nowadays a standard
tool for structural health monitoring. In this context, weak data quality and noise, usually owed to defec-
tive fiber installation, hinders discriminating actual level shifts from outliers and might entail a biased
risk assessment. We propose a novel online adaptive algorithm for strain profile estimation in strain time
series with abrupt and gradual changes and missing data. It relies on a convolution filter in Brillouin spec-
trum domain and a smoothing technique in time domain. In simulated data, the convolution filter is
shown to reduce strain measurement uncertainty by up to 8 times the strain resolution. The two-stage
method is illustrated with systematic outliers removal from real data of a Chilean copper mine and
the improvement of the associated gain spectrum quality by up to 18 dB in SNR terms.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Distributed fiber sensors technology based on Brillouin scatter-
ing has attracted much attention for remarkable features such as
its high precision, high spatial resolution and long measuring range
[1]. Structural deformation monitoring based on Brillouin Optical
Time-Domain Reflectometry (BOTDR) allows the measurement of
the longitudinal strain applied along an optical fiber attached to
a structure, by means of the Brillouin gain spectrum [2]. If the
structure suffers a deformation, a change in the shape of the spec-
trum measured by the BOTDR system is observed. The behavior of
the structure subjected to strength can then be assessed by means
of suitable physical and statistical models. Among other uses, this
technique has been applied to civil structural monitoring [3,4],
roadworks [5,6], and mining [7–9].

It is well known that, when an optical pulse is launched into an
optical fiber, some backscattered signals come back to the input
end. The BOTDR system measures the power distribution in
frequency of the backscattered light at each point along to the opti-
cal fiber. This distribution, called Brillouin gain spectrum (BGS),
can be seen as a set of Lorentzian-like curves along the distance
coordinate. When a longitudinal strain � is applied to the fiber,
and as a result of the non-linear interaction between the incident
light and acoustic phonons of the crystal lattice of the semiconduc-
tor material, the backscattered light is shifted in frequency by an
amount mB, called Brillouin shift [10,11]. This applied longitudinal
strain � is related to the value of the frequency shift [12,13]
through the linear relationship mBð�Þ ¼ mBð0Þð1þ C�Þ, where mBð�Þ
stands for the Brillouin frequency shift after strain has been
applied, mBð0Þ is a referential Brillouin frequency shift and C is
the proportional coefficient of strain [14].

The frequency shift is standardly estimated by fitting a Lorent-
zian function to the spectrum at each point of the optical fiber and
determining its mode or central value. This fitting procedure is
usually done by means of suitable least squares minimization
algorithms [15]. This method presents an important drawback:
the accuracy of the estimation of the strain-BOTDR can be consid-
erably affected by measurement noise, which can bias the estima-
tion of mB and result in multiple outliers in the strain time series.
The presence of outliers could prevent from correctly discriminat-
ing whether a true level shift has occurred or not, and mislead the
instantaneous analysis of time series. Consequences of this could in
some cases be serious, especially if the sampling rate of the online
strain-BOTDR monitoring is low, since the confirmation or rectifi-
cation of the measured level shift by means of new measurements
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Fig. 1. An observed Brillouin gain spectrum frame, taken from of a sequence of real
data registered at El Teniente (Codelco) mine in Chile during 2008. The data
description and the BOTDR system setting is detailed in Section 5.3.
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could arrive too late. Therefore, there is strong a necessity for a
robust procedure that estimates strain profile consistently over
time and along the fiber.

To address this problem, this paper proposes an adaptive algo-
rithm for strain profile estimation from low-quality BOTDR data, in
the context of an online procedure. Our methodology is suitable for
forecasting the statistical behavior of Brillouin gain spectra with
both abrupt and gradual changes over time, and is robust against
outliers.

Spectral noise can be seen as a stochastic process following
some trivariate underlying joint distribution that depends on two
explanatory variables of the BGS, namely the distance x and the
frequency m, and on a time variable t inherent to the time series.
We are therefore faced a 3-dimensional estimation problem, which
we will address by means of the simultaneous use of two tech-
niques. The first technique consists in a convolution filter on the
ðx; mÞ domain whose main feature is the ability to keep the value
of mB unchanged at the observed spectral distribution. The second
one is an exponential smoothing technique for temporal noise
reduction, using a time series model consisting of a linear trend
with an additive noise term. In addition, our temporal estimation
technique is robust enough to deal with missing data and abrupt
changes in the level, a situation often found in practice which
affects the performance of standard filtering techniques.

Although some of the aforementioned papers deal with some
statistical aspects of Brioullin shift estimation, to our knowledge
the only available method which also addresses the problem of
global consistent space–time estimation, is the procedure based
on 3d Non Local Means (NLM) presented in the paper [16] (which
appeared while the present work was in its revision stage). Com-
parative discussions will be given later at several places, in partic-
ular when we will asses the performance and computational cost
of our method.

The remainder of this paper is organized as follows. In Section 2
we discuss the effect of noise on the BGS and the methodology pro-
posed to reduce it. We describe the observation data model in Sec-
tion 3. In Section 4 we propose a pseudo two-dimensional
convolution filter to estimate the underlying (unnoisy) spectral
distribution in the distance-frequency domain. Its performance is
assessed in Section 5 both theoretically and by means of Monte-
Carlo simulations. The temporal filtering method based on expo-
nential smoothing is described in Section 6. Section 7 presents
the algorithm combining the two previous stages. The algorithm
is applied on real data from El Teniente mine (Codelco, Chile) in
Section 8 and the obtained results are then discussed. The compu-
tational cost of our method in a general sensing framework is dis-
cussed in Section 9. Finally, Section 10 brings the conclusions of the
paper.
2. The problem of measurement-noise in Brillouin gain
spectrum

The intrinsic variations of the strain time series, in combination
with suitable forecasting models, are commonly used for structural
health monitoring or assessment of structural instabilities. How-
ever, the accuracy of these analysis heavily depend on the quality
of the measured Brillouin gain spectrum (BGS) which often con-
tains noise. The BOTDR system records a sequence of spectra with
a given sampling rate s, measured in hours. The observed BGS can
be seen as a frame of this sequence. A typical noisy BGS obtained
by the BOTDR system is shown in Fig. 1, which corresponds to a
frame of a sequence of real data taken from a Chilean underground
copper mine (a detailed description of this data and the BOTDR
system setting used to obtain it will be given in Section 5.3).
As mentioned in the introduction, if the spectral noise variance
is large enough, outliers owed to a biased Brillouin frequency shift
estimation can appear in the strain time series, which could
prevent the correct detection of true level shifts and entail a biased
risk assessment, with potentially serious consequences. This moti-
vates the development of statistical tools that simultaneously
reduce the effects of the spectral noise and provide coherent obser-
vation sequences in presence of temporally varying field
conditions.

The approach we propose to reduce the spectral noise is based
on separating the problem in two stages, developed in the follow-
ing sections: (1) applying a filtering technique in the distance-
frequency coordinate and (2) applying then a temporal filtering
technique. Firstly, the underlying BGS is estimated by applying a
pseudo 2-dimensional convolution filter designed in the
distance-frequency domain, and then, a temporal smoothing tech-
nique is carried out using a locally linear regression model, which
maintains over time the coherence of the distance-frequency coor-
dinates of the filtered data.
3. Observation model

We next introduce a simple model for the evolution of the
observed variations of the BGS. Let S and T be two sets such that
S � R2 and T � R. We consider the observed BGS as a noisy
2-dimensional sequence M : S � T ! R defined as

Mðs; tÞ ¼ Bðs; tÞ þ �ðs; tÞ; s 2 S; t 2 T ; ð1Þ

where Bðs; tÞ is the original BGS, ðs; tÞ represents the coordinate in
the S � T domain, with s ¼ ðx; mÞ, and eðs; tÞ � f e is an additive noise
that follows some trivariate distribution.

Notice we have not yet given a regression model for the tempo-
ral behavior of the rock mass itself, which is represented by the
sequence Bðs; tÞ and can be specified independently. Such a model
will be presented below.

According to the model, the aim of the proposed filtering

method is to provide an estimate eB of the original BGS, B, from
the observed data, M, separating the task into two fundamental
stages: a 2-dimensional filtering technique in the S-domain and
a smoothing technique for time series in the T -domain.



Fig. 2. A filtered Brillouin gain spectrum, resulting from applying the convolution
filter with Ch ¼ 20 MHz on the spectrum of Fig. 1.

342 G. Soto et al. /Measurement 92 (2016) 340–351
4. Filtering in the S-domain

4.1. The problem statement

The problem of the spectral estimation at a fixed time t, can be
stated as follows. Let s ¼ ðx; mÞ be the distance-frequency coordi-
nate. The observation model defined in (1) can be rewritten as

mðx; mÞ ¼ bðx; mÞ þ �ðx; mÞ; x 2 X ; m 2 V; ð2Þ

with S ¼ X � V � R2, where mðx; mÞ is a frame of the sequence
Mðs; tÞ corresponding to the observed BGS measured by the BOTDR
system at a fixed time t, and the additive noise � � f � follows some
bivariate distribution.

In addition to outliers removal, when estimating the original
spectrum b from a noisy observation m by applying a
2-dimensional convolution filter, the method we propose will keep
unchanged two fundamental features of the data, namely (a) the
central frequency md of the Lorentzian distribution at each point x
along to the optical fiber, and (b) the spatial resolution of the
BOTDR system.

4.2. The convolution filter

It is known that the implementation of a classical low-pass fil-
tering technique is highly affected by the tradeoff between noise
reduction and bias. The choice of a suitable value for the smoothing
parameter plays a rather crucial role. A too large value can exces-
sively blur some areas of high curvature, which results in a large
bias. This means that, if we applied a filter with this feature on
the distance domain of a noisy BGS, we then reduce the spatial res-
olution of the BOTDR system, and consequently, the estimate of
strain profile will be biased.

In order to prevent a large bias in the distance-frequency
domain, the proposed filter hðx; m;ChÞ consists in a Lorentzian func-
tion, centered at 0, defined as

hðx; m;ChÞ ¼
gh

p
Ch

m2 þ C2
h

ð3Þ

where gh is the gain of the filter and Ch is a smoothing parameter
that controls the filtering quality. This parameter is also called Full
Width at Half Maximum (FWHM). The filter (3) is applied in each
position x along the fiber, as a 1-dimensional convolution between
the (noisy) observed Brillouin distribution and this filter. In other
words, we only take into account the frequency domain for denois-
ing this 2-dimensional data, and this is the reason why the pro-
posed filter is referred as a ‘‘pseudo 2-dimensional technique”. In
this manner, our approach allows for reducing the spectral noise
without affecting the spatial resolution of the system, since the
filter does not smooth areas of high curvature in the distance
domain of the BGS.

On the other hand, since the accuracy of the central frequency
estimation by Lorentzian fitting depends on how noisy and
deformed the spectral distribution is, we have chosen this filter
because of a fundamental fact: the convolution between two Lor-
entzian curves results in a curve with Lorentzian distribution.

Indeed, suppose that the (unknown) original spectrum bðx; mÞ in
model (2) can be represented by a family of Lorentzian distribu-
tions with local central frequency mbðxÞ, as follows:

bðx; mÞ ¼ gbðxÞ
p

CbðxÞ
ðm� mbðxÞÞ2 þ C2

bðxÞ
ð4Þ

where CbðxÞ and gbðxÞ stand for the FWHM and the maximum value
of the original spectrum at the distance x along the fiber. We define
~bðx; mÞ, the estimate of the original BGS bðx; mÞ at instant t, in the fol-
lowing way
~bðx; mÞ ¼ mðx; mÞ � hðx; m;ChÞ; ð5Þ
where � is the convolution operator. Then, applying (3) in (2)
according to relationships (5) and (4), we obtain that
~bðx; mÞ ¼ bðx; m; hxÞ þ gðx; mÞ ð6Þ

bðx; m; hxÞ ¼
gbðxÞ
p

CbðxÞ
ðm� mbðxÞÞ2 þ C2

bðxÞ
; ð7Þ

gðx; mÞ ¼ hðx; m;ChÞ � �ðx; mÞ ð8Þ
with
hx ¼ ½mbðxÞ;CbðxÞ; gbðxÞ� ð9Þ
mbðxÞ ¼ mbðxÞ ð10Þ
gbðxÞ ¼ ghgbðxÞ ð11Þ
CbðxÞ ¼ CbðxÞ þ Ch; ð12Þ
where hx; mbðxÞ;CbðxÞ, and gbðxÞ stand for the estimated parameter
vector, the central frequency, the FWHM and the maximum value

of the filtered spectrum ~bðx; mÞ at the distance x, respectively. From
(6) and (7), the estimated spectrum is again given by a Lorentzian
distribution plus some noise. Therefore, the characteristic shape of
the estimated spectrum does not suffer from meaningful changes.
Most importantly, we have mbðxÞ ¼ mbðxÞ, that is, the central fre-
quency value of the Lorentzian curve is kept unchanged and, conse-
quently, the strain associated with the Brillouin frequency shift too.
In Fig. 2, we show the result of applying the filter hðx; m;ChÞ with
Ch ¼ 20 MHz to the spectrum of Fig. 1.

Furthermore, the noise level has been reduced by the convolu-
tion hðx; m;ChÞ � �ðx; mÞ, where the filtering performance is being
controlled by the parameter Ch. We also observe an increase of
the FWHM CbðxÞ when compared to the value CbðxÞ of the mea-
sured BGS, but this result does not affect, theoretically at least,
the estimation of the frequency shift. In Ref. [17], by using different
pump pulse widths, experimental results about the impact of the
FWHM on the frequency error are shown. Errors do not exceed
1 MHz (10�3 GHz), a relatively small value compared to typical val-
ues of the frequency shifts, which are the order of 10 GHz.
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5. The filtering performance

5.1. Signal-to-noise ratio

Signal-to-noise ratio (SNR) is a good measure of the filtering
performance, since it describes how much a signal has been cor-
rupted by noise. Let PS and PN be the discrete average power of
the Brillouin gain spectrum and the spectral noise, respectively.
Then, in decibels (dB), the SNR is defined as

SNR ¼ 10log10
PS

PN

� �
: ð13Þ

Note that, if the noise is zero mean, the power of noise is
defined by only its variance. In this manner, the SNR can written as

SNR ¼ 10log10
PS

r2

� �
; ð14Þ

where r2 stands for the noise variance.
This definition will be used later in the assessment of frequency

shift estimators respect to sensitivity to noise, and consequently,
respect to the impact of noise effects ondeformationmeasurements.

5.2. Estimator performance using synthetic data

It is important to determine quantitatively the magnitude of the
filter effect, in order to be able to reduce the possible effects of the
spectral noise, such as outliers. The Cramér-Rao theorem (see [18]
for background) provides a strict lower bound for the variance of a
quantity which is estimated from a set of noisy measurements,
and can be applied to determine the (theoretical) minimum uncer-
tainty in the determination of the Brillouin Frequency Shift or
deformation.

5.2.1. Cramér-Rao lower bound
Let us assume that a noisy spectrum with central frequency h

was generated by adding to it a Gaussian zero mean noise of vari-
ance r2. Thus, the Brillouin spectrum can be written as

mi ¼ biðhÞ þ r�i; i ¼ 1; . . . ; n ð15Þ

with �i � Nð0;1Þ, where

biðhÞ ¼
gb

p
Cb

ðmi � hÞ2 þ C2
b

; ð16Þ

is the unnoisy Brillouin spectrum, that is, the spectrum without
effects induced by the BOTDR system. Then, if we assume that
r; gb and Cb are known, it can be shown that the variance of any
unbiased maximum likelihood estimator ĥ is

varðĥÞP r2
CR ð17Þ

where r2
CR is called the Cramér-Rao Lower Bound (CRLB) (see [18]),

with

rCR ¼
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
dbiðhÞ
dh

� �2
r : ð18Þ

It is worth noting that if biðhÞ is the identity function (biðhÞ ¼ h), we
have that varðĥÞP r2=n, as might be expected. Now, computing the
derivate of biðhÞ respect to h, we finally have

rCR ¼
p

2gbCb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

mi�h
ðmi�hÞ2þC2

b

� �2
s r: ð19Þ

This theoretical bound will be used as a benchmark for assessing
the impact of the noise on deformation measurements.
5.2.2. Monte Carlo simulation
A simulation study was conducted to compare the performance

of the Lorentzian curve fitting respect to the sensitivity to noise,
when previously using, or not, a convolution filter for denoising.
The performance is assessed by comparing the Root Mean Squared
Error (RMSE) of the estimate ĥ, whose value corresponds to the
standard deviation of an unbiased estimator, with the CRLB, that
is, the theoretical bound for the standard deviation given by
Eq. (19). RMSE is computed as the expected value of the mean
squared difference between the estimated values ĥ and the under-
lying true value mo, using synthetic data fmi : i ¼ 1; . . . ;ng as follows

RMSEðĥÞ ¼ ðE½ðmo � ĥÞ2�Þ
1=2

: ð20Þ

The expected value E is approximated by the Monte Carlo
estimate

E½ðmo � ĥÞ2� ¼ 1
R

XR
r¼1
ðmo � ĥrÞ

2
; ð21Þ

where ĥr stands for the rth estimate of true value h ¼ mo.
Let giðhÞ be the fitting error, defined as follows

giðhÞ ¼ mi � hiðChÞ � biðhÞ; ð22Þ

where mi stands for the noisy spectrum, hi stands for the convolu-
tion filter defined as

hiðChÞ ¼
gh

p
Ch

ðmi � hÞ2 þ C2
h

: ð23Þ

and biðhÞ is the spectrum model defined as

biðhÞ ¼
ghgb

p
Cb þ Ch

ðmi � hÞ2 þ ðCb þ ChÞ2
: ð24Þ

Since we assume that the noise is governed by a Normal distri-
bution, the maximum likelihood estimation of h can be estimated
by non-linear least squares as follows

ĥ ¼ arg min
h2H

Xn
i¼1

g2
i ðhÞ: ð25Þ

Simulation were repeated R ¼ 1000 times to make results inde-
pendent of any particular observation. Noisy spectra are generated
using the model given by Eq. (15) using different values of noise
variance r2. From Eq. (14), and knowing that the power of biðmoÞ is

PS ¼
1
n

Xn
i¼1

b2
i ðmoÞ; ð26Þ

the noise variance is computed as

r2 ¼ PS10
�SNR

10 : ð27Þ

Fixed parameters were set to gb ¼ gh ¼ 1 by simplicity, and
Cb ¼ 25 MHz, according to the BOTDR system setting. The scan
interval of simulated spectra was set to 10 MHz in a range of fre-
quencies from 10.62 to 11.11 GHz. In Fig. 3 the result of computing
the CRLB on this range of frequencies is shown. Aside from
sequences close to the upper or lower bounds of the range, the rest
has the same value of CRLB. Therefore, we take a value from that
range for simulations. In this manner, we choose mo ¼ 10:85 GHz
as the value of the (true) Brillouin frequency shift to estimate,
because this value belongs to the range of minimum CRLB and it
also corresponds to the case when the fiber does not have deforma-
tion, according to the BOTDR system setting.

Fig. 4 shows results of the simulation in which the accuracy of
the unfiltered and pre-filtered estimator are only comparable for
SNR values greater than 2 dB, practically all estimators attaining
the CRLB after 5 dB. Although the performance of pre-filtered



Fig. 3. Cramér-Rao lower bound for m 2 [10.62,11.11] GHz.

Fig. 4. RMSE curves of the estimated frequency shift respect to the sensitivity to
noise using different values of Ch . Ch ¼ 0 MHz indicates that the noisy spectra was
not filtered.

Fig. 5. RMSE curves of the estimated strain respect to the sensitivity to noise using
different values of Ch . Ch ¼ 0 MHz indicates that the noisy spectra was not filtered.
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estimators are marginally worst than the unfiltered estimator for
SNR values greater than 2 dB, standard errors are still relatively
low. As we indicated above, when the spectral noise variance is
large enough, the estimate of mo can be biased. This can be seen
in the way that RMSE curves move away from the CRLB, for SNR
values less than 2 dB, and increasing the bias when SNR values
decrease. Pre-filtered estimators yield a RMSE value smaller than
10 MHz for low-SNR values (SNR = �1 dB), while the unfiltered
version has more than 20 MHz. In addition, the standard error for
SNR = �5 dB is approximately 25 MHz, when data is pre-filtered
using Ch ¼ 40 MHz, significantly smaller than the unfiltered esti-
mator whose error reaches over 60 MHz, six times the interval
scan. It seems that the accuracy of the estimate of mo is affected
by the numerical difficulty of the optimization algorithm to find
the true optimum value when the underlying regression function
biðhÞ and noisy data with large variance are far from matching each
other. But we have already shown that the standard error can be
reduced by means of a previous filtering applied to the noisy spec-
trum, without fixing the algorithm.

As regards the outliers problem, we have said that these can
appear in the strain time series due to a biased Brillouin frequency
shift estimation. In order to asses the impact of a biased estimation
of ĥ on the estimated strain �̂, we use also the RMSE. Recalling that
the applied longitudinal strain � is related to the value of the
frequency shift mBð�Þ through the linear relationship mBð�Þ ¼
mBð0Þð1þ C�Þ, where mBð0Þ is a referential Brillouin frequency shift
and C is the proportional coefficient of strain, we have
RMSEð�̂Þ ¼ 100
CmBð0Þ

RMSEðĥÞ; ð28Þ
where RMSEð�̂Þ stands for the Root Mean Square Error of the
estimated strain, both measured in %, with C = 4.46 and
mBð0Þ ¼ 10:85 GHz, according with the BOTDR system setting. The
scan interval of simulated strain covers a range of values from
�0.48% to 0.54%, with a resolution of 0.02%.

Fig. 5 shows the impact of a biased estimation of ĥ on the esti-
mated strain �̂, whose true value is � ¼ 0%. It is worth noting that
the standard error of the unfiltered estimator reaches approxi-
mately 0.13%, when SNR = �5 dB. This means that the confidence
interval for � ¼ 0% can be [�0.26,0.26]%, if we use a significance
level of 95%. This level of uncertainty is a basic characteristic of
what constitutes an outlier due to a biased frequency shift estima-
tion. On other hand, the standard error for SNR = �5 dB is approx-
imately 0.05% when data is pre-filtered using Ch ¼ 40 MHz, the
corresponding confidence interval significance level being of 95%
is [�0.10,0.10]%, that is, smaller than the unfiltered estimator by
0.16%. The accuracy of the estimated strain is thus improved in
eight times its resolution.

It is important to bear in mind that the intensity of the light
propagated within the fiber tends to be more attenuated the longer
the fiber is and, therefore, SNR values tend to decrease along the
fiber. Thus, the fact that our method reduces the uncertainty of
the strain estimate in low SNR environments, makes in principle
the pre-filtered estimator suitable for long fiber configurations,
including BOTDR sensing systems of lengths of tens of kilometers
commonly found in industrial applications.



Fig. 6. Variation of the SNR using a filtered BGS sequence with different values of
Ch . The curve Ch ¼ 0 MHz stands for the variation of the SNR using the unfiltered
sequence.
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5.3. Filtering performance using real data

We next assess the estimator when the convolution filter is
applied to a real time BGS sequence, obtained in a fiber section
installed inside El Teniente mine of Chilean state mining company
Codelco.

These measurements were carried out with a sampling rate of
s ¼ 4 h. In total there are 165 frames, which cover 728 h
(� 30 days) of regular samples, with some missing data. The fiber
under analysis is 4.94 m long, and a sampling rate of 10 cm was
used, making a total of 494 samples. The frequency resolution of
the BOTDR system was set to 10 MHz in a range of frequencies
from 10.62 to 11.11 GHz, which means we have 50 samples.
Through the linear relationship between strain and frequency shift,
the BOTDR system is able to measure deformation in intervals of
0.02%, from�0.48% to 0.54%, with a spatial resolution of 1 m, under
this setting.

Unlike the previous assessment, SNR will be used as an indica-
tor of improved data quality as well as of the stability of this
improvement over time.

Let PS and PN be the discrete average power of the Brillouin gain
spectrum and the spectral noise, respectively. These are computed
as follows:

PS ¼
1
jXjjVj

X
x2X

X
m2V
fbðx; mÞg2; ð29Þ

PN ¼
1
jXjjVj

X
x2X

X
m2V
fgðx; mÞg2: ð30Þ

Since values of PS and PN are unknown, we will estimate them via
Lorentzian-curve fitting using non-linear least squares.

Let gðx; m; hxÞ be the fitting error, whose expression is defined as
follows

gðx; m; hxÞ ¼ ~bðx; mÞ � bðx; m; hxÞ; ð31Þ

where ~bðx; mÞ stands for the measured spectrum, bðx; m; hxÞ is the
spectrummodel defined in (7) and hx is the parameter model at dis-
tance x. If we assume that the noise is governed by a Normal distri-
bution, the maximum likelihood estimation of hx can be estimated
by non-linear least squares as follows

hLFx ¼ arg min
hx2H

X
m2V
fgðx; m; hxÞg2; ð32Þ

where hLFx is the estimate of hx by means of Lorentzian-curve fitting
in the frequency domain. Taking into account definitions (29) and
(30), and the fact that the spectrum and the noise can be estimated
by

bðx; mÞ ’ bðx; m; hLFx Þ ð33Þ
gðx; mÞ ’ gðx; m; hLFx Þ ð34Þ

we can now estimate the SNR in Eq. (13), using the expression

SNR ’ 10log10

X
x2X

X
m2V
fbðx; m; hLFx Þg

2

X
x2X

X
m2V
fgðx; m; hLFx Þg

2

0BB@
1CCA: ð35Þ

Fig. 6 shows the filtering performance of the proposed filter for
different values of Ch, where SNR values are estimated using the
sequence of real data from El Teniente mine. It should also be
noted that the SNR value varies over time in the sequence, reaching
the lowest level at t = 608. These variations might have several
causes like, for instance, a faulty installation of the optical fiber
attached to the monitored structure. The curves show that the pro-
posed filter achieves an improvement at the data quality (high
SNR) as the value of Ch increases, as well as a reduction of temporal
variations of the noise variance, due to a slower SNR decay with
respect to unfiltered sequence, especially when using Ch P
20 MHz.

The proposed temporal smoothing technique, for maintaining
the spatial coherence of the filtered data over time, is detailed next.

6. Filtering in the T -domain

Recursive methods in time series consist in adaptation of a pre-
vious estimate by means of a correction term which depends both
on the previous estimate and on a new observation. Due to their
simplicity and good performance, they are successfully used for
estimation, smoothing and forecasting in time series analysis. In
this section, we describe our proposed method for temporal
smoothing, based on a particular robust version of the Holt–Win-
ters method. This version is able to estimate the model parameters
in presence of abrupt and gradual trends and when observations
are missing.

6.1. The Holt–Winters method

Suppose we have an univariate time series yn, which is observed
at n ¼ 1; . . . ;N. The observation model is given by

yn ¼ ln þ nn; nn � f n; ð36Þ

where ln stands for the original (unnoisy) observation at time n,
and nn is an additive noise that follows a one-dimensional distribu-
tion f n. In the case of exponentially weighted moving average
(locally constant regression), the value of the smoothed series at
time n, ~ln, is the solution of the following minimization problem
[19]:

~ln ¼ arg min
ln2H

Xn
k¼1
ð1� aÞn�kfyk � lng

2 ð37Þ

where a is a parameter taking values between 0 and 1 which con-
trols the degree of smoothing.

It is possible to show that the solution of the optimization prob-
lem (37) can be solved by means of the following recursive
equation
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~ln ¼ ayn þ ð1� aÞl̂njn�1; ð38Þ

where l̂njn�1, the one-step-ahead forecast of yn based on previous

observations fykg
n�1
k¼1 , is obtained as

l̂njn�1 ¼ ~ln�1: ð39Þ

The recursive Eq. (38) suggests that, if the underlying mean is sub-
ject to large changes, a should be taken close to 1 so as to quickly
attenuate the effect of old observations. However, if a is too close
to 1, ~ln is subject to much higher random variations, because of
an under-smooth estimated mean. The rate at which information
is discounted is characterized by the asymptotic sample length
(ASL), defined by

ASL ¼ 1
a
; ð40Þ

and corresponds to the number of samples per length unit of the
data window within which the contribution of the error values is
significant. Clearly, when a ¼ 0, the length of the data window
becomes infinite and we obtain the standard least squares method.
If we use values of a between 0.01 and 0.1, values of ASL lie in the
range of 10–100 time samples, which corresponds to 40–400 h of
data, according to the BOTDR system setting.

In order to improve theperformanceof themethod in presence of
trended time series,Holt [20] andWinters [21]proposed to includea
local linear trendvariable,with regressionmodel of the general form
ut þ v tt, by solving the following minimization problem:

ð~un; ~vnÞ ¼ arg min
un ;vn2H

Xn
k¼1
ð1� aÞn�kfyk � ðun þ vnksÞg2: ð41Þ

The recursive equations to solve (41) are

~un ¼ ayn þ ð1� aÞûnjn�1 ð42Þ

~vn ¼ b
~un � ~un�1

s
þ ð1� bÞ~vnjn�1 ð43Þ

where ~un y ~vn are the level and trend, respectively, s is the sampling
rate and a ¼ b in general, according to (41); nevertheless, different
values for smoothing the two parameters are commonly used in
practice. In a similar way as for exponential smoothing, the smooth-
ing parameters a and b take values between zero and one. Then,
ûnjn�1 and v̂njn�1, the one-step-ahead forecast of yn and of _yn, respec-
tively, are obtained as

ûnjn�1 ¼ ~un�1 þ s~vn�1 ð44Þ
v̂njn�1 ¼ ~vn�1: ð45Þ

where ~un�1 and ~vn�1 are the level and trend estimated at time n�1,
respectively.

Extending this method to the multidimensional case, where
Mðs; nÞ denotes the BGS measured by the BOTDR system at time
n, Eqs. (42) and (43) represent an adaptive filtering technique to
estimate Bðs;nÞ, the original (unnoisy) BGS, when changes in the
level of the observed sequence are gradual. Then, the observation
model (1) can be rewritten as

Mn ¼ Bn þ en; en � f e ð46Þ

where Mn � Mðs;nÞ;Bn � Bðs;nÞ, and en � eðs;nÞ.
Rewriting (42) and (43), the estimation of Bn at time n is carried

out using the following update equations:eBn ¼ aMn þ ð1� aÞbBnjn�1 ð47Þ

eDn ¼ b
eBn � eBn�1

s
þ ð1� bÞbDnjn�1 ð48Þ

where eBn denotes the estimation of Bn and eDn its temporal varia-
tion. Finally, the one-step-ahead forecast value of Bn based on
previous observations fBkgn�1k¼1 ;
bBnjn�1, and the forecast of its tempo-

ral variation, bDnjn�1, are given by

bBnjn�1 ¼ eBn�1 þ seDn�1 ð49ÞbDnjn�1 ¼ eDn�1: ð50Þ
6.2. Extended method for missing data

Sometimes, BOTDR data are missed, for instance because of an
accidental break of the optical fiber produced by mining activities
in the nearby area. If the smoothing parameters are taken to be
constant over time, this may result in estimation errors, due to
inadequate weights on older observations in the update equations.

To solve this problem, we use the extended Holt–Winters
method introduce in [22] to deal with time series observed at
irregular time intervals. If we assume that Mtn is the observed
BGS measured by the BOTDR system at time tn, Eq. (46) can be
rewritten as

Mtn ¼ Btn þ etn ; etn � f e ð51Þ

where Btn is the original (unnoisy) BGS and etn is a zero-mean addi-
tive noise at time tn. Then, the forecasting model is defined as

bBtn jtn�1 ¼ eBtn�1 þ ðtn � tn�1ÞeDtn�1 ð52ÞbDtn jtn�1 ¼ eDtn�1 ; ð53Þ

where bBtn jtn�1 stand for the one-step-ahead forecast value of Btn

based on the estimates of BGS at time tn�1, and bDtn jtn�1 is the forecast
of its temporal variation. Note that the factor tn � tn�1 weights tem-
poral variations according to the time-distance between two con-
secutive measurements.

To update the parameters of model (51), we need to modify the
recursive Eqs. (47) and (48) so that smoothing parameters can also
be updated as needed. In this manner, update equations are rewrit-
ten as follows

eBtn ¼ atnMtn þ ð1� atnÞbBtn jtn�1 ð54Þ

eDtn ¼ btn

eBtn � eBtn�1

tn � tn�1
þ ð1� btnÞbDtn jtn�1 ; ð55Þ

where eBt0 ¼ Mt0 and eDt0 ¼ 0 are initial conditions.
Taking into account the time span tn � tn�1 between two con-

secutive observations, and the sampling rate s, we update the
smoothing parameters as follows

atn ¼
atn�1

ð1� aÞ
tn�tn�1

s þ atn�1

ð56Þ

btn ¼
btn�1

ð1� bÞ
tn�tn�1

s þ btn�1

: ð57Þ

Initial conditions are fixed at at0 ¼ a and bt0 ¼ b. Clearly, if
observations are regularly sampled, with tn � tn�1 ¼ s, then
atn ¼ a and btn ¼ b;8tn.

Parameters a and b are commonly know as forgetting factors.
Values of a and b are chosen looking for trade-off between conver-
gence velocity of the algorithm and variance of the estimation.

The main assumption underlying this methodology is that the
parameters describing the data are either constant or slowly
time-varying. Therefore, abrupt level shifts in the strain time series
(see e.g. Fig. 7) cannot be suitably predicted, in which case the esti-
mates may fail. We next deal with this problem, proposing a mod-
ification of the update equations based on an analytical tool that
detects unusual or abrupt changes.



Fig. 7. A level shift in the strain time series.
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6.3. Extended method for abrupt changes detection

By abrupt change we understand a time instant at which
parameters suddenly change, from some constant, stationary, or
slowly time-varying regime, to another. It should also be noted
that although abrupt changes commonly imply changes with large
magnitude, many change detection problems are concerned with
the detection of small changes [23]. This notion serves as a basis
to the corresponding formal mathematical problem statement,
and to the formal derivation of algorithms for change detection.

Let us suppose that a strain-level shift at distance x along the
optical fiber occurs at time tn. If we analyze and compare the Bril-
louin gain spectra Btn�1 and Btn , the Lorentzian distribution of Btn at
distance x is abruptly shifted at a frequency value proportional to
the level shift. The difference of spectra Btn � Btn�1 will show some
energy variation at x, as shown in Fig. 8. We propose to use the
Fig. 8. Abrupt change detection using the Brillouin gain spectrum.The black line
denotes the curve of frequency shifts obtained at each distance x.
forecast error bEtn ðx; mÞ as discriminant information to design a suit-
able level-shift indicator, able to detect when the abrupt change
occurrences. The forecast error provides information on whether
the forecast model has been able to track intrinsic variations of a
time series. It is defined as follows:bEtn ðx; mÞ � bEðs; tnÞ ¼ Mðs; tnÞ � bBðs; tnjtn�1Þ: ð58Þ

withbBðs; tnjtn�1Þ ¼ eBðs; tn�1Þ þ ðtn � tn�1ÞeDðs; tn�1Þ; ð59Þ

where bBðs; tnjtn�1Þ stands for the one-step-ahead forecast of Bðs; tnÞ
given tn�1. When changes are gradual and forecast errors are

assumed homoskedastic, bEtn ðx; mÞ should be a zero-mean noise with
constant variance, of similar order as the measurement noise vari-
ance. However, an abrupt level-shift at some point of the optical

fiber should result in an observed forecast error bEtn ðx; mÞ of
increased variance, with respect to the usual situation.

Using this fact, we propose a level shift indicator wtn based on

the positive forecast error bEþtn ðx; mÞ, defined by

bEþtn ðx; mÞ ¼ bEtn ðx; mÞ bEtn ðx; mÞP 0;

0 bEtn ðx; mÞ < 0:

(
ð60Þ

We choose to measure the positive forecast error since it indi-
cates the new central frequency and thus provides more informa-
tion than, for instance, the absolute value of the error.
Nevertheless, for the purpose of the present algorithm, we could
also use shift indicators defined in terms of the absolute value or
of other positive functions of the forecast error.

Given the definition of bEþtn ðx; mÞ, and in order to detect level
shifts based on their time-varying spectral variations, we consider
first its sample standard deviation (ssd) Sv(x) at each point x in the
frequency domain:

SmðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
jVj � 1

X
m2V

bEþtn ðx; mÞ � AmðxÞ
� �2

s
; ð61Þ

where AmðxÞ denotes an average in the frequency domain, so that

AmðxÞ ¼
1
jVj

X
m2V

bEþtn ðx; mÞ: ð62Þ

Under the assumption that zones with large variations are those
where abrupt changes are detected, SmðxÞ is able to quantify and
locate shifts of the Lorentzian-like distribution that are relatively
abrupt, when compared to those of other points along the fiber.
In order to have values between 0 and 1, we now define Wtn ðxÞ
as the normalized version of Eq. (61), given by

WtnðxÞ ¼
SmðxÞ
S

; ð63Þ

where S is

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
jXjjVj � 1

X
ðx;mÞ2S

bEþtn ðx; mÞ � A
� �2

s
; ð64Þ

with A defined by

A ¼ 1
jXjjVj

X
ðx;mÞ2S

bEþtn ðx; mÞ: ð65Þ

Since we actually do not need to locate the zone where the level
shift was detected, the level shift indicator wtn , finally defined as

wtn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
jXj � 1

X
x2X

Wtn ðxÞ � �wtn

� �2s
; ð66Þ



Fig. 9. The algorithm performance using the SNR computed spectrum-by-
spectrum.

Fig. 10. A comparison between the observed and the estimated BGS at t = 608.
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with

�wtn ¼
1
jXj

X
x2X

Wtn ðxÞ

reduces the information contained in the change detection function
Wtn ðxÞ into a simple real-valued scalar function.

As regards theupdate equationsof themodel parameters,wewill
add a level shift condition of the form wtn < uwtn�1 , where u > 0 is a
detection threshold to be fixed. If the latter condition is true, param-
eters are updated according to Eqs. (54) and (55). If the condition is
false, parameters are updated according to the following ruleeBtnðx; mÞ ¼ M�tn ðx; mÞ ð67ÞeDtn ðx; mÞ ¼ eDtn�1 ðx; mÞ; ð68Þ
where M�tn ðx; mÞ is the BGS after being filtered using the convolution
filter in the S-domain. This rule is based on the assumption that
only the level can vary abruptly in the time series and that the
underlying trend function must be continuous over time.

7. Proposed algorithm

In summary, our online two-stage algorithm for strain profile
estimation with outliers removal, level shift detection and possibly
missing observations consists in the following steps:

	 Requirements: Ch;a; b;u.
	 Step 0: Adjustment of initial conditions:

– eBðs; t0Þ ¼ M�ðs; t0Þ
– eBðs; t1Þ ¼ M�ðs;t1ÞþM�ðs;t0Þ

2

– eDðs; t1Þ ¼ ~Bðs;t1Þ�~Bðs;t0Þ
t1�t0

– at1 ¼ a½ð1� aÞ
t1�t0
s þ a�

�1

– bt1 ¼ b½ð1� bÞ
t1�t0
s þ b�

�1

	 Step 1: n ¼ 2.
	 Step 2: Reading of data at time tn:
Mðs; tnÞ
	 Step 3: Filtering in the distance-frequency domain:
M�ðs; tnÞ ¼ Mðs; tnÞ � hðsÞ
	 Step 4: Normalization of the filtered BGS:

MNðs; tnÞ ¼
M�ðs;tnÞ�M�min
M�max�M�min

, such that 0 6 MNðs; tnÞ 6 1, where

M�min ¼minfM�ðs; tnÞg and M�max ¼ maxfM�ðs; tnÞg. Since the
temporal noise variance varies at each observation, an affine
transformation is applied, so that the filtered BGS M�ðs; tnÞ var-
ies between zero and one, in the S-domain.
	 Step 5: Estimation of the forecast error according to Eq. (58) and
computation of the level shift indicator (66).
	 Step 6: Parameters updating. This step checks if the condition
wtn < uwtn�1 is true or false:
– If it is true, parameters are updated according to Eqs. (54)

and (55).
– If it is false, parameters are updated according to Eqs. (67)

and (68).
	 Step 7: Updating of the smoothing parameters by means of Eqs.
(56) and (57).
	 Step 8: Set n nþ 1 and repeat steps from 2 to 8.

For each time and position along the fiber, the strain value can
then be obtained from the Brillouin frequency shift estimated by
fitting a Lorentzian function.

8. Results

In this Section, we present experimental results obtained with a
Python implementation of the proposed algorithm. The method is
applied to the real time BGS sequence obtained in a fiber section
installed inside El Teniente mine of Chilean state mining company
Codelco, (the description of which was given in Section 5.3).
Besides, we use the following parameters to configure the algo-
rithm: Ch ¼ 40 MHz, a ¼ b ¼ 0:1 (10 time samples, 40 h) and u = 2.

The algorithm performance is measured using the SNR using
definition (13). Fig. 9 shows the performance of the proposed algo-
rithm. SNR values are computed spectrum-by-spectrum. Note that
the SNR values of filtered spectra improved in at least 8 dB upon
those of observed spectra. In particular, the SNR value of the esti-
mated BGS at t = 608 is larger by about 18 dB that the correspond-
ing value for the noisy BGS. Also, SNR values tend to be temporally
constant in the sequence. Fig. 10 offers a visual comparison
between a noisy and an estimated BGS. Note that the quality of
processed data is consistently superior compared to the noisy data.

By means of a visual comparison between the noisy and the fil-
tered BGS at t = 608, Fig. 11 moreover shows the robustness of the
proposed algorithm against outliers. The effect of the filtering over
time on the strain profile is shown in Fig. 12: outliers are removed
while the characteristic shape of the strain profile is kept.



Fig. 11. A comparison between strain profiles obtained from the observed and the
estimated BGS at t = 608.

Fig. 12. Temporal smoothing. Top: Observed strain profile. Bottom: Estimated
strain profile.

Fig. 13. A comparison between time series extracted spectrum-by-spectrum from
noisy and estimated strain. The line denotes the time series extracted from the
estimated sequence. Circles stand for the time series extracted from the noisy
sequence.
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A comparison between strain time series extracted spectrum-
by-spectrum from noisy and from estimated strain by Lorentzian
fitting is shown in Fig. 13. Together with a systematic and time-
consistent removal of outliers, we observe how the algorithm
adapts itself to the gradual and abrupt changes of the time series.
9. Computational cost and performance

Thanks to the convolution theorem, the spectral filtering can be
done using Fourier Transform (FT) at each position on the fiber and
each time step. By using FFT (Fast Fourier Transform) the 1-
dimensional convolution at each position x can moreover be com-
puted with a computational complexity of OðjXjjVj log jVjÞ, where
jXj and jVj stand for the number of sample frequencies and posi-

tions, respectively (as opposite to a OðjXjjVj2Þ complexity using
standard FT.).

The algorithm is recursive in the time domain and the corre-
sponding matrix operations are carried out element by element.
These operations consists in multiplications and sums, whose com-
putational complexity is OðjXjjVjÞ.

Hence, the computational cost is of order of OðjXjjVj log jVjÞ for
each time step, and this which grants that the global computa-
tional cost will scale in a reasonable way when our method is
applied to sensing fiber systems much longer that the one consid-
ered in Section 8. In particular, if jVj 
 jXj or if jVj is fixed, the com-
plexity depends linearly on jXj. The recursive nature of the
algorithm grants on the other hand that the complexity also grows
linearly with time.

The processing time of our algorithm was compared with the
method proposed in [16], which is based on a 3-dimensional
NLM (Non Local Means) smoothing technique. These authors used
a data matrix of jXj ¼ 100;000� jVj ¼ 200 points taken from a
BOTDA sensor, considering 10 consecutive frames, that is,
100;000� 200� 10 points. Using a conventional computer with a
3.5 GHz processor and 8 GB RAM, they report in that setting a pro-
cessing time of about 4 min.

For a data matrix of the same size, that is, with 100;000� 200
simulated points, and considering 10 consecutive frames as well,
our recursive algorithm analyzed the data in about 5 s, using a con-
ventional computer with a 3.1 GHz processor and 4 GB RAM.

Unfortunately, we were not able to compare the two methods
simultaneously in terms of computational cost and estimations
results on real data, for a measuring configuration similar to the
one considered in [16] (we do not dispose by the moment of such
a sensing fiber facility).

Nevertheless, the theoretical and simulation results of Section 5
suggest that a significant relative quality improvement should be
expected in SNR terms, irrespective of the initial quality of the sig-
nal at each point of the fiber, and in particular of the length of the
fiber to which our method is applied.

It is also important to keep in mind that, in addition to the data
size and the degree of accuracy required to estimate the strain pro-
file, the choice of a method should also take into account the rela-
tion between the temporal evolution scale of the underlying
physical process under observation, and the data acquisition time
scale.
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10. Conclusions

We have proposed an easily implementable two-stage adaptive
algorithm for strain profile estimation from noisy and abruptly
changing BOTDR data. We have shown that data quality of a
sequence of noisy Brillouin gain spectra is significantly improved
by our proposed method. A pseudo 2-dimensional convolution fil-
ter, represented by a Lorentzian function centered at zero with
smoothing parameter Ch, was proposed for filtering the observed
BGS in the distance-frequency domain. The main characteristic of
this filtering is that it does not affect the value of the central fre-
quency of the Lorentzian function measured by the BOTDR system
and, as a consequence, the value of the strain associated with the
Brillouin frequency shift is preserved. This filtering technique
was used to remove outliers of the strain extracted from the BGS.

For filtering in the time domain, we have proposed a time series
model to estimate the variations of the sequence of BGS during the
analysis period. Since the deformation produced in the rock mass is
mainly gradual over time, we have proposed to track the changes
using a time series model at the level of spectrum, consisting of
a linear trend with an additive noise term.

The model parameters were estimated by means of updating
equations, in the context of an exponential moving average
method with two smoothing parameters. The original updating
equations of the Holt–Winters method were modified so that the
algorithm be robust when strain level shifts are observed and
when data is missed. The information provided by the forecast
error was used to design a level shift indicator to update the
parameters in a suitable way.

The algorithm performance was assessed by computing a
spectrum-by-spectrum SNR value, associated with each Brillouin
gain spectrum of the sequence. The proposed methodology has
improved data quality, increased the SNR in the whole sequence
and made its noise variations steady over time. Moreover, our
method is able to consistently discriminate genuine strain level
shifts from outliers due to the situation of low-quality data.

Since our approach allows for reducing the uncertainty of the
strain estimate in low SNR environments, our algorithm should in
principle be applicable even in long fiber configurations, where
the SNR values of the original signal might decrease over the dis-
tance. This, together with the different analysis and test we per-
formed on our method, suggest that it can in principle be used for
similar purposes as the procedure presented in [16] (despite we
couldnot test ourmethod in similar long rangefiber configurations).

One of the relevant features of the NLM method used in [16],
which makes it a suitable solution for robust filtering, is the use
of geometric information of the images and their time evolution,
in order to estimate without bias areas of both low and high curva-
ture. In our method, the geometric features of the data are dealt
with by modeling in specific ways the frequency, distance and time
variables.

This distinguished treatment of the variables is also the reason
why we are able to, for instance, identify frequency shift time-
trends at each position of the fiber, which is of significant value
for risk forecasting, and to do our analysis in a fast and computa-
tionally very efficient way. The presented estimation procedure
should therefore represent a viable alternative to the method in
[16], especially when samples are taken at short time intervals,
when the time evolution of the process under analysis is not slow
and/or if the processing time is too large to study particular tran-
sient behaviors.

We have shown that the proposed algorithm is suitable for effi-
ciently estimating the statistical behavior of strain time series with
both abrupt and gradual changes over time, and in a robust way
against high levels of measurement noise. In particular, this
methodology is useful when monitoring small sections of rock
mass by means of optical fiber sensors and BOTDR technology.
Our algorithm should thus contribute to a more accurate risk
assessment in mining activities, based on the statistical time anal-
ysis of rock mass behavior, but we also expect it to be useful in
more standard sensing configurations.

In principle, it should also be possible to extend the use of this
algorithm to other problems or sensoring systems, where the accu-
rate and robust measurement of spatially distributed physical
parameters is required over periods of time.
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