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1 Introduction

Mapping the intrinsic spatial variability of rock mass

characteristics is an essential issue in geotechnical and

geomechanical engineering, as these characteristics have a

significant impact on the behavior of underground struc-

tures. Such mapping can be performed by recurrence of

geostatistical models, in which the geomechanical param-

eters are viewed as outcomes (realizations) of spatial ran-

dom fields whose properties can be inferred from the

available in situ measurements and laboratory tests. In this

context, several authors already applied geostatistics to

predict or simulate characteristics such as lithofacies

(Rosenbaum et al. 1997), rock quality designation (RQD)

(Madani and Asghari 2013; Ozturk and Simdi 2014; Ozturk

2002), rock mass rating (RMR) (Ryu et al. 2003; Seo-

khoom et al. 2004; Stavropoulou et al. 2007; Exadaktylos

and Stavropoulou 2008; Jeon et al. 2009; Egaña and Ortiz

2013) and geological strength index (GSI) (Ozturk and

Simdi 2014; Deisman et al. 2013).

In this work, the RMR system is used to geomechani-

cally characterize the rock mass. This empirical approach

allows classifying the rock mass by a value varying from 0

to 100, obtained by summing the weights attributed to six

parameters (Bieniawski 1989):

• P1—uniaxial compressive strength (UCS) of rock

material;

• P2—rock quality designation (RQD), measured along

the direction of greater fracture frequency;

• P3—spacing of discontinuities (FF), measured along

the direction of greater fracture frequency;

• P4—condition of discontinuities;

• P5—groundwater conditions;

• P6—orientation of discontinuities.

However, the RMR under consideration here is the so-

called basic RMR, which is obtained by accounting only

for the first five parameters. To map this basic RMR, in this

paper we propose to individually simulate parameters P1–

P5 and subsequently sum them to obtain the final RMR

value. A novelty of this approach with respect to existing

literature (Egaña and Ortiz 2013) is that the RMR is sim-

ulated through its underlying parameters and that these

parameters are modeled as random fields measured on a

discrete quantitative scale, as they only assume integer

values, using a specific geostatistical model (the so-called

truncated Gaussian model). The purpose of detailing the

five parameters is to obtain further information about the

rock mass characteristics and facilitate an overall view of

the most important parameters, i.e., the ones that most

contribute to the RMR (parameters with the highest sim-

ulated values) or the ones that are most responsible for the

uncertainty in the unknown RMR at unsampled locations

(parameters with a wide range of simulated values at a

given location are more significant for the uncertainty in
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the RMR than parameters with a narrow range of simulated

values). The model is implemented using real data and

validated using the split-sample technique.

2 Truncated Gaussian Simulation

The truncated Gaussian model (Armstrong et al. 2011)

allows simulating a random field with discrete values

through the truncation of a second-order stationary Gaus-

sian random field. The model is specified by one or more

truncation thresholds and by the covariance function or the

variogram of the Gaussian random field. In practice, the

thresholds are defined to reproduce the experimental pro-

portion of each class of discrete values, while the vari-

ogram is inferred on the basis of its relationship with the

class-indicator variograms (Emery and Cornejo 2010).

The discrete-valued random field can be simulated and

conditioned to a set of available data through the following

steps:

1. The Gaussian random field is simulated first at the data

locations, using an iterative algorithm known as the

Gibbs sampler (Armstrong et al. 2011; Lantuéjoul

2002).

2. The Gaussian random field is then simulated at the

target locations, conditionally to the Gaussian values

obtained at the previous step. At this stage, the turning

bands algorithm (Lantuéjoul 2002) is used.

3. The simulated Gaussian field is truncated back into a

discrete-valued random field.

3 Case study

Truncated Gaussian simulation was applied to a case study

to map the RMR in an epithermal gold deposit located in

the Cordillera de Los Andes, region of Atacama, northern

Chile, and surveyed through a set of exploration boreholes.

The regional geology of the area is characterized by a

group of intrusive, volcanic and sedimentary rocks, affec-

ted by fault zones that control the mineralization.

The available data comprised 3969 samples obtained

from boreholes with lengths ranging from 96 to 390 m.

According to the results of rock mechanics laboratory tests

and the RMR values obtained from the borehole samples,

the rock mass is classified with a quality of regular to good

(RMR values mostly in the range of 50–60). Concerning

the individual parameters, P1 varies within a short range,

meaning that the UCS of the intact rock is almost constant,

unlike P2 and P3 that vary in a much wider range showing

very different levels of rock mass fracturing. In contrast,

the fourth parameter (P4) is equal to 20 for all the samples,

so in the models it will be considered as constant in space

and not simulated. This parameter is related to the condi-

tion of the discontinuities, so they are all classified as

having slightly rough surfaces with a separation smaller

than 1 mm and a highly weathered wall rock. Lastly,

parameter P5 varies within a short range, with only two

different scores, representing a groundwater condition that

is mostly wet and punctually damp (Table 1).

The correlation matrix of the parameters (Table 2)

indicates a weak dependence between them (all the cor-

relation coefficients are\0.3 in absolute value), meaning

that the information on a parameter brings little informa-

tion on the other parameters. As such, the RMR parameters

can be simulated separately; joint simulation, which

enhances the simulation of a set of random fields to

reproduce their cross-correlation (Emery and Cornejo

2010), is not necessary in this case.

3.1 Modeling the Univariate Distributions

The data of P1 only present two different scores, 12 and 14,

with relative proportions of 0.468 and 0.532, respectively.

This distribution can therefore be modeled by truncating a

standard normal distribution, using a single truncation

threshold set to G-1(0.468) = -0.08, where G stands for

the standard normal cumulative distribution function.

Likewise, the data of P5 only assume two different scores,

7 and 10, with relative proportions of 0.989 and 0.011,

respectively. Again, in the model a single truncation

threshold, here equal to G-1(0.989) = 2.29, is used. In

contrast, the data of P2 and P3 assume many different

scores. As a result, a larger number of truncation thresholds

have to be defined (Tables 3, 4).

Table 1 Statistics of experimental data

Variable P1 P2 P3 P4 P5 RMR

Number of data 3969 3969 3969 3969 3969 3969

Minimum 12 1 5 20 7 48

Maximum 14 20 19 20 10 78

Mean 13.07 16.30 10.16 20.00 7.03 66.6

Variance 1.00 7.05 4.13 0 0.10 14.21

Table 2 Correlation matrix of experimental data

Variable P1 P2 P3 P4 P5

P1 1 -0.096 -0.164 0.000 -0.113

P2 -0.096 1 0.292 0.000 0.045

P3 -0.164 0.292 1 0.000 -0.032

P4 0.000 0.000 0.000 1 0.000

P5 -0.113 0.045 -0.032 0.000 1
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3.2 Modeling Spatial Continuity: Variogram

Analysis

The variograms of the Gaussian random fields to be sim-

ulated are inferred along the main directions of anisotropy,

which correspond to the horizontal plane and vertical

direction. These variograms are fitted using combinations

of basic nested structures (exponential, spherical, cubic and

Gaussian); the reader is referred to Chilès and Delfiner

(2012) for the mathematical definition of these basic

models. It should be noticed that none of the variograms

exhibit a nugget effect (discontinuity near the origin),

indicating that the underlying parameters are continuous in

space. Moreover, the variogram models for P1, P3 and P5

have a smooth behavior near the origin, which reflects that

the spatial variations of these parameters are very regular at

a short scale, whereas parameter P2 exhibits a more

irregular behavior at short scale.

3.3 Conditional Simulations Results

Truncated Gaussian simulation is performed with an

adaptation of a previously published computer program

(Emery 2007). The number of realizations is set to 100, so

that the post-processing outputs (average and conditional

probabilities) could be calculated with a reasonable

approximation. The realizations are conditioned to the

borehole data.

To facilitate the display, the locations targeted for

simulation correspond to a regular two-dimensional grid

placed at elevation 3439 m, with a mesh of 10 m 9 10 m

and a total of 150 nodes along both the east and north

directions. The average of the 100 realizations is calculated

to map the expected RMR over the region of interest

(Fig. 1a). Additionally, the first realization is also mapped

to demonstrate the actual spatial variability of RMR

(Fig. 1b). It is worth noticing that the map of the realization

average tends to blur the contrasts and that spatial hetero-

geneities appear as much more attenuated. Other outputs

can be mapped, such as the probability that RMR exceeds

or falls short of a predefined value. This representation is of

great value if one wants to identify regions where very high

or low geomechanical properties would be present, and

with which probability. As an example, for this case, a map

of the probability that the actual (unknown) RMR exceeds

a threshold of 70 is shown in Fig. 1c. One can also map the

standard deviation of the realizations (Fig. 1d), which

reflects the level of uncertainty in the true value of RMR:

the higher uncertainty occurs in regions with higher vari-

ability or with fewer boreholes, especially the northwestern

region for which one observes strong contrasts in the

mapped RMR values (Fig. 1a) and a lack of sampling

information.

Table 3 Calculated proportions for P2 with the corresponding

Gaussian thresholds

Category Cumulative

proportion

Lower

threshold

Upper

threshold

1 0.0030 -? -2.7478

2 0.0032 -2.7478 -2.7266

3 0.0033 -2.7266 -2.7164

4 0.0043 -2.7164 -2.6276

5 0.0073 -2.6276 -2.4422

6 0.0080 -2.4422 -2.4089

7 0.0150 -2.4089 -2.1701

8 0.0200 -2.1701 -2.0537

9 0.0250 -2.0537 -1.9600

10 0.0360 -1.9600 -1.7991

11 0.0510 -1.7991 -1.6352

12 0.0780 -1.6352 -1.4187

13 0.1120 -1.4187 -1.2160

14 0.1710 -1.2160 -0.9502

15 0.2710 -0.9502 -0.6098

16 0.4520 -0.6098 -0.1206

17 0.6200 -0.1206 0.3055

18 0.8180 0.3055 0.9078

19 0.9900 0.9078 2.3263

20 1.0000 2.3263 ??

Table 4 Calculated proportions for P3 with the corresponding

Gaussian thresholds

Category Cumulative

proportion

Lower

threshold

Upper

threshold

1 0 -? -?

2 0 -? -?

3 0 -? -?

4 0 -? -?

5 0.0500 -? -1.6449

6 0.0501 -1.6449 -1.6439

7 0.0502 -1.6439 -1.6429

8 0.1842 -1.6429 -0.8995

9 0.3432 -0.8995 -0.4037

10 0.5422 -0.4037 0.1060

11 0.8152 0.1060 0.8972

12 0.9182 0.8972 1.3931

13 0.9582 1.3931 1.7302

14 0.9762 1.7302 1.9809

15 0.9872 1.9809 2.2322

16 0.9912 2.2322 2.3739

17 0.9952 2.3739 2.5899

18 0.9998 2.5899 3.5401

19 1.0000 3.5401 ??

20 1.0000 ?? ??
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Figure 2 shows the maps of P1, P2 and P3 for the first

realization, which help to visualize the variability of the

intact rock strength and joints spatial distribution in the

rock mass. The individual analysis of fracturation param-

eters can, by itself, result in a powerful tool in underground

works to understand the regions where the rock mass can

be more or less fractured.

3.4 Split-Sample Validation

To validate the simulation model, the original data set is

randomly divided into two subsets, each containing one

half of the data. The first subset (training subset) is then

used to simulate the underlying RMR parameters at the

locations of the data belonging to the second subset (vali-

dation subset). Two types of validations are performed,

aimed at assessing the prediction capability and the mod-

eling uncertainty.

First, the prediction capability compares the expected

RMR, calculated as the average over 100 realizations of the

underlying parameters sum, with the actual values at the

locations of the validation subset. The coefficient of

determination (R2) between the expected and real RMR

values is calculated, resulting in a value of 0.74. This

indicates that the simulation allows a reasonably accurate

prediction of RMR (Fig. 3a). Accuracy is confirmed by

calculating the root mean-squared error (RMSE) of the

expected values. The RMSE value is 1.88 and, considering

that the RMR varies from 0 to 100, an error less than 2 is

almost residual.

With respect to uncertainty modeling, the validation

consists of a so-called accuracy plot (Goovaerts 2001). In

this plot, one considers a given probability p and, based on

the obtained realizations, defines at each target location an

interval with such a probability. Subsequently, the location

is assigned a value of 1 if the true data belongs to the

Fig. 1 Maps of RMR at

elevation 3439 m, for:

a average of 100 realizations;

b realization no. 1; c probability
that RMR exceeds a threshold

of 70; d standard deviation of

100 realizations. Data locations

have been superimposed
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interval and 0 otherwise. This procedure is applied with

p varying from 0.1 to 0.9. As a result (Fig. 3b), the

observed proportion is close to the theoretical probability

(points close to the diagonal line), indicating that the

realizations accurately assess the uncertainty in the actual

RMR values.

4 Conclusions

In this paper, a geostatistical approach for simulating RMR

is presented, which considers the individual simulation of

the underlying parameters constituting the RMR system

and their summation to obtain the simulation of RMR. The

split-sample validation technique shows good results in

terms of prediction accuracy and measurement of uncer-

tainty. The proposed approach provides information not

only on RMR, but also on its underlying parameters,

viewed as random fields measured on discrete quantitative

scales, which is consistent with the nature of these

parameters, which are ratings rather than variables defined

on a continuous scale. Additionally, one can map the

probability that RMR is higher or lower than a predefined

threshold, or the dispersion of the simulated RMR values.

These maps are useful for geotechnical analyses to quantify

uncertainties and risks because they can assist in defining

regions with contrasting quality and their probability of

occurrence, or regions with higher uncertainty in the actual

RMR values.

In future developments, the mapping of RMR and other

parameters (like GSI and Q) complemented by the results

of in situ and laboratory tests may be transformed into

maps of the spatial distribution of geomechanical param-

eters. It is intended that these maps can be used to develop

numerical models that explicitly consider the hetero-

geneities at all spatial scales, providing a more accurate

understanding of the rock mass behavior than with tradi-

tional interpolation approaches.
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