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1. Introduction

The Mathews method1 is widely used in underground hard
rock mines in order to design open stopes and evaluate the sta-
bility of their geometry. The method consists in the construction of
a stability graph that relates two calculated parameters: the shape
factor, S and the stability number, N. The stability number N re-
presents the ability of the rock mass to resist under a given stress
condition. The shape factor S, or hydraulic radius, takes into ac-
count the size of the stope faces. The combination of these two
parameters defines the stability of planned excavations. Four sta-
bility zones have been defined.4 First, the Stable Zone represents
the excavation which stand unsupported, or with localized sup-
port. Then, the Failure Zone represents the excavation where lo-
calized unravelling occurs, but a stable arch forms. Modifying the
design or installing cable support may reduce the extent of the
unravelling. The Major Failure Zone represents the cases where the
extent of back or wall failure was greater than about fifty per cent
of the smaller dimension of the opening. Finally, the Caving zone is
defined. The cases falling in this zone indicate that the face of the
stope under consideration is probably unsupportable and will fail
and continue to fail until the void is completely filled or surface
breakthrough occurs, i.e. a true caving situation.

The shape factor, S, and the stability number, N, are defined as
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follows:

( ) ( )( ) = ( )S m stope face area / stope face perimeter 1

= ′ × × × ( )N Q A B C 2

where Q′ is defined by3:

( )( )′ = ( )Q RQD J J J/ / 3n r a

and where RQD is the rock quality designation, Jn is the joint set
number, Jr is the joint roughness number, and Ja is the joint al-
teration number. In Eq. (2), A, B, and C are respectively defined as
the stress factor, the joint adjustment orientation factor, and the
gravity factor. The rock stress factor, A, is a function of the ratio
between the intact rock uniaxial compressive strength, σc , and the
induced compressive stress, σ1, estimated at the center of the stope
face by

σ σ= ( )ratio / 4c 1

The induced stress σ1 can be found by numerical stress analysis
or estimated from published stress distributions. The rock stress
factor is determined from an empirical chart (Fig. 1a). The joint
orientation adjustment factor, B, is a function of the relative dif-
ference in dip angle between the stope face and the critical joint
set affecting stability (α), and is estimated using Fig. 1b. The
gravity adjustment factor, C, reflects the stability of the orientation
of the stope face under the influence of gravity, and it is de-
termined from Eq. (5) or Fig. 1c.
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Fig. 1. Adjustment factors for determination of the Mathews stability number.1
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( )= – ( )C 8 7 cos dip of stope face 5

As an empirical method, the stability graph presents some
limitations. The most significant ones are4: the subjectivity in the
definition of the stability zones, the absence of standardization of
the extended database,5 the non-representation of the rock stress
factor, A, for instabilities caused by low confinement conditions,
and the poor representation of the sliding failure modes by the
gravity adjustment factor C. In the past three decades, several
studies have addressed these limitations. Redefinition of the
transition zones2,6 and statistical analysis using a Bayesian like-
lihood statistic7 have been proposed. The extension of the stability
database1 allowed to define statistically the Stable/Failure and
Failure/Major-Failure boundaries using logistic regression.8

Modifications of the A, B, and C factors have also been
proposed.2,9–11 However, none of these studies have evaluated the
impact of the proposed modifications on the performance of the
method. Thus there is no evidence that the modifications are
statistically significant.

Stewart and Trueman12 investigated the goodness of the fit of
logit models for different versions of the rock stress factor A for
low stresses. Five rock stress factors were included in the analysis:
the original Mathews stress factor, the Diederichs and Kaiser
modified stress factor,13 a reflected stress factor, Stewart's mod-
ified stress factor, and a fixed stress factor of 0.5.5 This study
concluded that the alternative stress factors did not improve the
performance of the stability boundaries defined relative to the
original stress factor.

Mawdesley et al.18 used logistic regression to improve the de-
finition of the stability boundaries. Three stability zones were
defined: stable, failure and major failure. In a further study,
Mawdesley5 concluded that the failure – major failure boundary
could not be correctly determined from the statistically analysis.
Therefore, only the stable state from the other states of stability
can be properly identified.

In this paper, statistical analysis is used to evaluate the per-
formance and significance of the factors A, B, and C leading to the
calculation of the stability number N. Based on a literature review
and to the author's knowledge several adjustment factors are
tested. The impact of these factors on the performance of the
stable boundary is evaluated using a contingency matrix and a
performance metrics analysis. The indicator of performance
(Peirce Skill Score14) of the model, obtained for different combi-
nation of factors of adjustment, is maximized to define the most
representative boundary of stability. The extended Mathews
database8 is considered as the reference for the analysis. The re-
sults lead to the proposal of a new rock stress factor that is less
conservative than the original one for high stress conditions. The
performance evaluation of different B and C factors did not im-
prove the significance of the stability graph method compared to
the original. The implications for underground mine design are
evaluated and discussed in the last part of the paper.
2. Modifications to the stability number

The first modification of the stability graph method was pro-
posed by Potvin9 after collecting a significant amount of case
histories for a range of mining depths (175 cases histories from 34
mines). The rock stress factor, A, is based on the proposal of



Table 1
Summary table of the number and stability condition of the case histories of the
extended stability database. Stability of the stope face has been classified: S for
Stable, F for Failure and MF for Major Failure. After Mawdesley.5

Walls Backs

S F MF Total S F MF Total

Mathews et al. 2 2 – 4 4 9 2 15
Potvin 31 8 5 44 23 4 13 40
Nickson 4 2 3 9 2 – 2 4
Mount Charlotte 152 18 1 171 10 16 17 43
Cannington South Crofty 73 5 3 81 6 – – 6
Complexe Bousquet 4 10 2 16 3 1 – 4
Newcastle – – – – – 16 2 18
Caving Cases – – – – – – 11 11
Total (All) 266 45 14 325 48 46 47 158

Total walls and backs 314 91 61 465
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Mathews et al.1 except for the case where the value of the ratio
(intact rock strength/induced compressive stress) is lower than 2,
where A becomes constant and equal to 0.1. The joint orientation
adjustment factor, B, proposed by Potvin is also different from the
one proposed by Mathews for angles between the stope face and
the critical joint set between 0° and 45°. The gravity adjustment
factor, C, was also modified by Potvin and is calculated by:

( )= – ( )C 8 6 cos dip of stope face 6

In addition, Potvin considered the failure mode in the analysis.
The failure mode can be represented by the form of gravity fall,
sliding or slabbing.

Recently, Bewick and Kaiser10 proposed an adjustment to the
joint orientation factor, B, based on two-dimensional continuum
numerical modeling.

Mitri et al.11 proposed an adjustment of the rock stress factor, A.
They reported that the stability graph method is reliable
in situations where the maximum induced tangential stress cre-
ates adequate compressive stress, keeping the face in a state of
confinement. They thus proposed a new rock stress factor, which
reflects the impact of low confinement on critical face stability.

The new rock stress factor, A′, is determined by an asymptotic
function as follows:

< ′ = ( )MSF AFor 0.0, 0.1 7

)( ( )( )
≤ ≤ ′=

+ − − − + ( )
− −⎡⎣ ⎤⎦

MSF AFor 0. 0 1. 0, 0. 1

0. 9e e MSF 0. 3 /0. 09 1 8
MSF 0.3 /0.09

> ′ = ( )MSF AFor 1.0, 0.1 9

whereMSF¼1/ratio¼(σ σ/ c1 ) is the maximum stress factor. Factor A′
reaches a peak value of 1 when the value of MSF is 0.3 and de-
creases when the value of MSF is less than 0.1 or greater than 1.0.
3. Data and methods

3.1. Extended stability database

The extended stability database5 is a combination of the original
Mathews database and other cases reported elsewhere.1,6,9,11,12,15

The extended stability database contains 465 case histories from over
38 mines in North America, Australia, Chile, and England (Table 1).

The extended database has been compiled from different mines
around the world. Then, some subjectivity in the definition of the
stability classes has to be recognized. However, the complete da-
tabase is considered for this study as it represents the most re-
presentative collection of case histories to date.

3.2. The contingency matrix and performance metrics

The contingency matrix is used to test the performance of a
classifier by comparing the prediction outcomes of the model to
known values. For a two-class prediction problem, there are four
possible situations.16 If the actual value is positive and is classified
as positive, it is counted as a true positive (TP); if it is classified as
negative it is counted as a false negative (FN). If the actual value is
negative and is classified as negative, it is counted as a true ne-
gative (TN); if it is classified as positive, it is counted as a false
positive (FP). The information can be displayed in a two-by-two
contingency matrix.

Based on the matrix, the following metrics are defined:
( ) ( )
( ) ( )

= + = +

= + + + + ( )

TPR TP TP FN FPR FP FP TN

ACC TP TN TP FP TN FN

/ ; / ;

/ 10

The True Positive Rate (TPR) defines the percentage of positive
cases that are correctly classified. Reversely, the False Positive Rate
(FPR) defines the percentage of negative cases that are incorrectly
classified. The Accuracy (ACC) defines the total percentage of cor-
rectly predicted outcomes. To measure the performance of the
model, the Peirce Skill Score (PSS)14 is used:

= – ( )PSS TPR FPR 11

For a perfect classifier, TPR¼ACC¼PSS¼1 and FPR¼0. A PSS
equal to zero corresponds to a random classifier.

3.3. Optimization procedure

To evaluate the performance of the adjustment factors, an op-
timization procedure has been developed based on the con-
tingency matrix and performance metrics analysis. The stability
boundaries are represented by the following general form4,5:

β= * ( )γN S 12

where N is the Mathews stability number, S is the shape factor, and
γ and β are parameters obtained by optimization.

The proposed optimization procedure is defined by the fol-
lowing three steps. First, three scenarios of analysis are defined to
distinguish the positive and negative values of the predicted out-
come. The scenario 1 considers that the positive value correspond
to the stable cases, while the negative value correspond to the
failureþmajor failure cases. The scenario 2 considers the failure
cases as positive value, and the stableþmajor failure cases as ne-
gative value. The scenario 3 considers the major failure cases as
positive value, and the stableþ failure cases as negative value.
Next, for each scenario the TPR, FPR, and PSS are evaluated ((Eqs.
(10) and 11)). Finally, in order to define a representative boundary,
the γ and β parameters of Eq. (12) are changed until the PSSmetric
is maximized.

3.4. Considered adjustment factors for the analysis

3.4.1. Rock stress factor A
The following rock stress factors are considered for the per-

formance evaluation of the stability boundaries (Fig. 2): (1) a factor
A equal to 1 independent of the ratio sc/s1. This case assumes that
there is no influence of the factor A; (2) the factor A proposed by
Potvin9. This factor is considered as the original one in this study;
(3) a modified version of the Stress Reduction factor (SRF)



Fig. 2. Considered adjustment factors for the analysis and evaluation of performance of the stability boundaries.
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proposed by Barton,17 given by: A¼(1/(2� SRF)); (4) the factor A
proposed by Mitri et al.11 and (5) the original factor A raised to
different exponents: A0.1, A0.25, A0.5.
3.4.2. Joint orientation factor B
The following joint orientation factors are considered for the

performance evaluation of the stability boundaries (Fig. 2): (1) a
factor B equal to 1. This case assumes that there is no influence of
joint orientation; (2) the factor B proposed by Mathews et al.1

(Fig. 1b). This factor is considered as the original one in this study;
(3) the factor B proposed by Potvin9; (4) the factors B proposed by
Bewick and Kaiser10 and (5) the original factor B raised to different
exponents: B0.25and B0.5.
Fig. 3. Combinations of adjustment factors considered for the analy
3.4.3. Gravity factor C
The following gravity factors are considered for the perfor-

mance evaluation of the stability boundaries (Fig. 2): (1) a factor C
equal to 1. This case assumes that there is no influence of the
factor C; (2) the factor C proposed by Mathews et al.1 (Fig. 1c). This
factor is defined as the original one in this study and (3) the factor
C proposed by Potvin.9

3.5. Combinations of adjustment factors

Different combinations of the adjustment factors are defined
(Fig. 3). Firstly, the original adjustment factors are considered. The
performance of the stability boundaries proposed by Mawdesley8

are evaluated. In addition, the stability boundaries are determined
by the optimization procedure proposed in this paper and
sis and evaluation of performance of the stability boundaries.
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compared to the ones obtained in8 (Fig. 3a). Secondly, basic cases
are defined to test the influence of combinations of the original
adjustment factors by setting them individually or in groups to
values equal to one (Fig. 3b). Thirdly, different combinations of the
considered adjustment factors defined in Section 3.4 are evaluated
(Fig. 3c).

3.6. Impact on stope design

To evaluate the influence of the adjustment factors on stope
design, the maximum admissible shape factor Smax is defined. It
represents the maximum shape factor for a face to be classified as
stable and is defined by:

( ) β= ′ × × × ( )γS Q A B C / 13max

where Q′ is the rock quality designation and A, B, and C are the
adjustment factors. γ and β are the parameters of the boundary
between the stable state and the other states of stability.

The admissible length per face L for both the back and the wall
are defined by Eqs. (14) and (15), respectively. They represent the
maximum length in which both faces are stable independently.

=
− ( )

L
wS

w S
2

2 14back
max back

max back

=
− ( )

L
hS

w S
2

2 15wall
max wall

max wall

where w is the width and h is the height of the stope, respectively.
Smax back and Smax wall correspond to the maximum shape factor of
the back and the wall, respectively.

In order to evaluate a relationship between the maximum ad-
missible shape factor per face and the final geometry of the stope,
the admissible length of the stope Lstope is defined. It represents the
length in which both faces are stable simultaneously

= ( ) ( )L L Lmin , 16stope back wall

Then, the admissible shape factor S for both faces is defined by
the following equations:

( )=
+ ( )

S
wL

w L2 17
back

stope

stope

( )=
+ ( )

S
hL

h L2 18
wall

stope

stope

The variation of the admissible length of the stope, ΔL, and the
shape factor evaluated for both faces, ΔS, are defined by

Δ = − ( )L L L 19original considered

Δ = − ( )S S S 20original considered

where Loriginal and Soriginal are the admissible length and shape
factor obtained using the original adjustment factors. Lconsidered and
Sconsidered corresponds to the admissible length and shape factor
derived from the considered adjustment factors (Section 3.4).

The average percentage of variation of the admissible length,
PVL, and the shape factor, PVS, are given by the following Equa-
tions.

=
∑ (∆ )

( )
L L

n
PVL

/
21

n
original1
=
∑ (∆ )

( )
S S

n
PVS

/
22

n
original1

where n is the number of cases in the database used to evaluate
the performance of the considered adjustment factors.
4. Results

4.1. Original adjustment factors

Table 2 presents the parameters and associated performance
metrics for the stability boundaries established in18 and those
determined by applying the proposed optimization procedure
presented in Section 3.3. In accordance to Section 3.3 three sce-
narios are defined.

From Table 2 it can be concluded that the failure cases (scenario
2) in the database are not correctly identified (low PSS). In addi-
tion, the identification of stable cases (scenario 1) and major fail-
ure cases (scenario 3) have the higher PSS. The conclusion de-
termined from the performance metrics analysis is similar to the
one proposed by in5: the failure cases cannot be correctly identi-
fied. Note, that the ACC values for the three scenarios are high,
which is not the case for the PSS. Therefore, the accuracy metric is
limited for testing the randomness of the classifier, and it will not
be included in the following analysis.

From Table 2 it can also be observed that the γ and β para-
meters of the boundary between the stable and the others cases
determined using the developed optimization procedure are equal
to those proposed in18 using logistic regression. Fig. 4 presents the
resulting stability boundaries.

4.2. Basic cases

Table 3 presents the determined parameters (γ and β) of the
stable boundary and the associated performance metrics for the
basic cases defined in Fig. 3a. The first exercise is to set all the
factors equal to one. Next, two of the three factors are defined
equal to one. Finally, only one of the factors is considered equal to
one.

The results from Table 3 clearly indicate that the factor C is the
most significant parameter (higher PSS) on the delimitation of the
stable boundary. If the factor C is set equal to one, then factor A is
more significant than the factor B. Finally, when only the A or B
factors are set equal to one, the performance of the stability
boundary does not change significantly.

4.3. Considered adjustment factors

4.3.1. Influence of factor A
In this section, the impact on the determined parameters (γ and

β) of the stable boundary and the associated performance metrics
for the different considered A factors is evaluated. First, the in-
fluence of the factor A is studied individually by considering the
factors B and C equal to 1. The results are presented in Table 4a. It
can be observed that for this case the original factor has the best
performance metric. On the other hand, the A factor proposed by
Mitri11 has the lower PSS.

Table 4b presents the results by combining the different con-
sidered A factors with the original B and C factors. It can be ob-
served that there is a small improvement of the PSS value when
A0.25 or A0.5 are considered.

To further evaluate the influence of the factor A on the per-
formance of the stable boundary, the ratio σc/σ1 is divided into five
intervals: (1) equal to or below 2, (2) between 2.01 and 4.22,
(3) between 4.23 and 6, (4) between 6.01 and 10, and (5) higher



Table 2
Parameters γ and β, and associated performance metrics for; (a) the stability boundaries established by Mawdesley et al. 18 and (b) determined by applying the proposed
optimization procedure. The higher values of PSS are highlighted in bold.

(a) Parameters (b) Performance metrics

Boundary Scenario

Mawlesdey et al.18 Proposed optimization procedure Mawlesdey et al.18 Proposed optimization procedure

γ β γ β PSS ACC PSS ACC

Stable/Failure 1.82 0.32 1.82 0.32 1 0.64 0.80 0.64 0.80
Failure/Major-Failure 1.82 0.07 1.76 0.26 2 0.27 0.75 0.06 0.79

3 0.65 0.89 0.65 0.80

Table 3
Determined parameters (γ and β) of the stable boundary and the associated per-
formance metrics for the basic cases. The two higher values of PSS are highlighted
in bold.

Basic cases Stable boundary parameters Metric

Case Combination γ β PSS

1 A¼B¼C¼1 1.19 0.55 0.33
2 A or.; B¼C¼1 1.39 0.37 0.48
3 B or.; A¼C¼1 1.23 0.72 0.41
4 C or.; A¼B¼1 1.13 5.39 0.64
5 A, B or.; C¼1 1.92 0.04 0.52
6 B, C or.; A¼1 0.93 5.39 0.64
7 A, C or.; B¼1 1.49 1.03 0.62

or.¼original.

Table 4
Determined parameters (γ and β) of the stable boundary and the associated per-
formance metrics for the different versions of A, considering: (a) B¼C¼1 and
(b) the original versions of B and C. The higher values of PSS are highlighted in bold.

Considered factor A (a) B¼C¼1 (b) Original versions of B and C

γ β PSS γ β PSS

Original 1.39 0.37 0.48 1.41 0.59 0.64
A0.1 1.17 1.07 0.46 1.36 1.35 0.64
A0.25 0.75 3.60 0.42 1.26 1.68 0.67
A0.5 0.80 3.64 0.39 1.30 1.22 0.67
A Mitri 0.83 0.30 0.30 0.53 1.94 0.40
A SRF 0.76 1.62 0.39 1.35 0.90 0.62
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than 10. These intervals were selected in order to obtain equal
number of cases for each interval. Note that for the first and last
interval the A factor is constant and equal to 0.1 and 1, respectively.

Table 5 presents the performance metrics of the stable
boundaries established in Table 4 divided by intervals. For the first
interval, the best PSS is obtained for the factor A0.5. For the second
interval, there are two maximum: for the factors A0.25 and A0.5. For
the third interval, the maximum value of PSS is reached for an A
value equal to A0.25. For the fourth interval, there are two max-
imum: for the factors A0.1 and A0.5. Finally, for the last interval, the
best PSS is reached for the rock stress factor equal to A0.1.

This analysis enables to identify local improvements in the
definition of the A factor which are used to guide the definition of
a new rock stress factor in Section 5.

4.3.2. Influence of factor B
The same analysis is realized considering the joint orientation

factor B. First, the influence of the factor B is studied individually
by considering the factors A and C equal to 1 (Table 6a). It can be
observed that regardless the value of B, the PSS is low. Table 6b
presents the results by considering the different B factors with the
original A and C factors. Considering the original factor, the PSS is
equal to 0.64. This value is obtained in five out of eight cases. This
analysis does not lead to conclude that the joint orientation factors
considered in the evaluation are better than the original one.

Table 6c presents the analysis by considering intervals to
evaluate in more detail the influence of the factor B. The interval
No. 1 considers values of α comprised between 20° and 50°. The
interval No. 2 considers values of γ comprised between 0° and 20°,
and 50° and 90°. The results show that there is no improvement in
the PSS value compared to the initial one (PSS¼0.64).

4.3.3. Influence of factor C
Finally, the influence of the factor C is studied. First the factors A

and B are considered equal to 1 (Table 7a). Then, the original values
Fig. 4. Extended stability database on a log-log graph and the stability boundaries establ
of A and B are considered (Table 7b). The higher PSS is obtained
using the original factor C. This analysis does not allow to evaluate
the considered gravity factors better than the original one. Based on
this result, no further analysis using intervals is performed.
ished by: (a) Mawlesdey et al.,18 (b) applying the developed optimization procedure.



Table 5
Determined performance metrics of the stable boundary for different version of the
considered A factors by dividing the data into intervals. Original values of B and C
are considered. The higher values of PSS are highlighted in bold.

Interval sc/s1 Data A or. A¼1 A0.5 A0.25 A0.1 A Mitri A SRF

1 ≤2 58 0.37 0.48 0.56 0.48 0.37 0.33 0.22
2 (2, 4.22) 83 0.68 0.76 0.79 0.79 0.73 0.40 0.63
3 (4.22, 6) 84 0.46 0.45 0.46 0.49 0.46 0.26 0.23
4 (6, 10) 85 0.64 0.70 0.78 0.75 0.78 0.47 0.41
5 ≥10 155 0.55 0.61 0.60 0.63 0.65 0.10 0.47
Global PSS 0.64 0.64 0.67 0.67 0.64 0.40 0.62

or.¼original.

Table 6
Determined parameters (γ and β) of the stable boundary and the associated per-
formance metrics for different version of B, considering (a) A¼C¼1 and (b) the
original values of A and C, and (c) two different intervals. The higher values of PSS
are highlighted in bold.

Considered
factor B

(a) A¼C¼1 (b) Original va-
lues of A and C

(c) Intervals of γ

No. 1
20°oαo50°

No. 2
0°≤α≤20°
&
50°≤α≤90°

γ β PSS γ β PSS PSS PSS

Original 1.22 1.01 0.41 1.41 0.59 0.64 0.64 0.64
Potvin 1.35 0.36 0.43 1.38 0.49 0.64 0.64 0.60
B1 1.55 0.31 0.39 1.35 1.21 0.63 0.62 0.60
B2 1.55 0.16 0.35 1.61 0.35 0.61 0.59 0.61
B0.5 0.64 4.60 0.40 1.88 0.41 0.64 0.60 0.64
B0.25 1.46 0.46 0.38 1.83 0.52 0.64 0.62 0.63

Table 7
Determined parameters (γ and β) of the stable boundary and the associated per-
formance metrics for different version of C, considering (a) A¼B¼1 and (b) the
original factors A and B. The higher values of PSS are highlighted in bold.

Considered factor C (a) A¼B¼1 (b) Original factors A and B

γ β PSS γ β PSS

Original 1.13 5.39 0.64 1.41 0.59 0.64
Potvin 1.34 3.58 0.61 1.54 0.76 0.63
C¼1 1.19 0.55 0.33 1.45 0.65 0.63

Fig. 5. Proposed new rock stress factor A.

Table 8
Determined parameters (γ and β) of the stable boundary and the associated per-
formance metrics by interval for the original and proposed factor A.

Considered
Factor A

γ β PSS for each sc/s1 interval Global

0.32 (0.32,
0.75)

(0.75,
0.85)

(0.85, 1) 1 PSS

Original factor 1.82 0.32 0.37 0.68 0.46 0.64 0.55 0.64
Proposed stress
factor

1.48 0.46 0.56 0.79 0.49 0.78 0.65 0.68
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5. Proposal of a new rock stress factor

Following the results of the analysis performed in Section 4.3.1,
a new rock stress factor A is defined (Fig. 5). The implication from
Fig. 5 is that when the values sc/s1 of are equal to or below 2, the
value of A is equal to 0.32. This value is higher than the one con-
sidered by the original A factor. Moreover, when sc/s1 values are
between 2 and 10, the new rock stress factor is higher than the
original. Finally, when sc/s1 values are equal to or higher than 10,
the value of the factor A is constant and equal to 1, resembling the
original factor.

The performance of the new rock stress factor is tested using
the optimization procedure. The results are presented in Table 8.
The global PSS is equal to 0.68, which is marginally better than the
best PSS value (0.67) of the considered adjustment factors of A0.25

and A0.5 (Table 4). However, the performance by interval of the
stable boundary with the new rock stress factor has significantly
improved.

Fig. 6 presents the boundaries of the stability zones established
by Mawdesley et al.18 using logistic regression and the boundary
between the stable and the other cases using the new rock stress
factor A. It can be observed that the new boundary has a lower
slope in the log-log graph indicating that larger admissible shape
factor can be obtained for some values of N. This will be addressed
in more detail in Section 6.
6. Implications for underground mine design

In this section, the implications for underground mine design
of using the proposed rock stress factor are evaluated. For this
purpose 1000 synthetic cases of open stopes are defined. The
transversal dimensions and the site conditions for each stope are
considered to follow uniform probability distributions between an
upper and lower limits (Table 9). Kh and Kv are the ratio of the
horizontal and vertical stresses respectively.

The lower and upper values of Q′ are established with respect
to the limits presented in the extended Mathews stability
database,5 and range from 0.4 to 90. The values of the B factor are
fixed and equal to 0.52 for the back and 0.53 for the wall. These
values correspond to the average B values in the extended Math-
ews stability database.5 The values of the C factor are equal to 1 for
the back and 8 for the wall, based on the definition of the C factor.

For the evaluation, two different rock stress factor are con-
sidered: the original factor, A, and the proposed factor, A̅ . Firstly,
the induced stresses per face are calculated using published
curves.1 Based on these stresses, the rock stress factor A and the
stability number per face are calculated. The maximum admissible
shape factor Smax (Eq. (13)), the admissible length per face L (Eqs.
(14) and (15)) and the admissible length of the stope Lstope (Eq.
(16)) are also calculated.

Finally, the average of the admissible shape factor S for both
faces ((Eqs. (17) and 18)) is evaluated. Then, the average



Fig. 6. Stability log-log graph presenting: (a) the boundaries of the stability zones established by Mawdesley et al.18 using logistic regression and (b) the boundary between
the stable and the other cases using the new rock stress factor A.

Table 9
Considered upper and lower limits for the transversal dimensions and site condi-
tions for each stope.

Width [m] Height [m] Depth [m] Kv Kh UCS [MPa]

Lower limit 5 Width 500 0.5 0.5 50
Upper limit 30 8.Width 1000 2.0 2.0 150
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percentage of variation of the admissible length, PVL, and the
shape factor, PVS (Eqs. (21) and (22), respectively), as well as their
associated standard deviation are evaluated (Table 9).

Table 10a shows that the average of the admissible stope length
Lstope increase when the factor A̅ is considered instead of the ori-
ginal one. It can be seen, that the average of the PVL highlights a
difference of 84% in the admissible length between the original
factor and the proposed one. This analysis demonstrates that the
design of open stopes is remarkably impacted when considering
the factor A̅ and the new stability boundary. On average, the
maximum length of the open stopes can be 84% larger.

Table 10b shows that both the averages of the admissible shape
factor and the average percentage variation of the admissible
shape factor PVS increase for each face when the factor A̅ is con-
sidered. The PVS average highlights a difference between the ori-
ginal and the proposed factor A of 18% and 55% in the admissible S
for the back and the wall, respectively.
Table 10
Average of (a) admissible stope length and PVL and (b) admissible shape factor and PVS fo
of open stopes.

(a) Admissible length of stope

Factor PSS γ β Average of admissible length (m

A 0.64 1.82 0.32 61.8

A̅ 0.68 1.48 0.46 103.5

(b) Admissible shape factor per face of the stope

Factor PSS γ β Average of admissible shape factor (m) Sd of

Back Wall Back

A 0.64 1.82 0.32 5.03 12.08 2.49

A̅ 0.68 1.48 0.46 5.88 17.04 2.93

PSV¼percentage variation of admissible values of S. Sd¼Standard deviation

A: original factor A. A̅: proposed factor A.
7. Discussion and conclusions

The objective of the study presented in this paper is to evaluate
the performance and significance of the adjustment factors used in
the stability graph method. Several adjustment factors are con-
sidered, based on a literature review and to the authors knowl-
edge. The performance of theses factors is evaluated using a con-
tingency matrix and a performance metrics analysis. For each case
of the considered adjustment factors, the performance metric is
maximized to define the most representative boundary of stability.

The results and conclusions obtained using the proposed op-
timization procedure based directly on performance metrics ana-
lysis are similar to the ones reported in the literature using a lo-
gistic regression approach.5,18

Concerning the performance of the adjustment factors, the
study highlights that there is no statistical evidence that the use of
a modified factor of adjustment B or C is statistically significant.
However, it seems that the factor C is the most significant para-
meter on the delimitation of the stable boundary. The use of a
modified factor A is statistically significant, considering the origi-
nal B and C factors. In particular, there is an improvement on the
performance of the stable boundary model when the A factors are
equal to A0.25 or A0.5.

Based on the statistical analysis performed in this study, a new
rock stress factor A is proposed. The use of the proposed factor A
leads to a modification of the stable boundary. This modification
implies changes in the underground mine design. It leads to an
r the original and proposed rock stress factors and considering 1000 synthetic cases

) Sd of admissible length (m) Average of PVL% Sd of PVL%

46.5 – –

52.5 �83.7% �85.2%

admissible shape factor (m) Average of PVS % Sd of PVS%

Wall Back Wall Back Wall

7.45 – – – –

10.09 �18.0% �54.8% �22.9% �45.7%
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increase of the admissible length and the admissible shape factor,
resulting in a significant increase in the size of the open stope.
Thus, the proposed factor A improves the predictive capabilities of
the stability graph method.

In despite of these results, the reader has to note that the
stability graph method and the proposed rock stress factor A do
not consider rockbursting conditions. At depth, the risk for rock-
bursting and major seismic events increases and thus typically
becomes the criteria for stope sizing and not the stability graph
method. Therefore the proposed rock stress factor has to be used
with caution when dealing with deep underground mines.

It has to be accepted that the empirical data is subjected to
subjectivity and non-accurate measurements. However, several
statistical analysis of the stability database have been
performed5,6,8,9,12,15,18 as summarized in.4 All of these statistically
analysis have improved the predictive capabilities of the approach
and have directed to a better understanding and development of
the design approach.

To improve the definition of the adjustment factors and the
predictive capabilities of the stability graph method, it is re-
commended to develop a standardized database. A standardized
database is defined here as a combination of cases histories from
multiple sources that has been collected, processed and analyzed
with a standardized procedure. Moreover, the sustainable growth
of mining requires a review and standardization of the design
methods. With this objective, an integrated technological platform
MineRocs19 is under development. MineRoc includes an acquisi-
tion platform for mine data and geotechnical information, a geo-
mechanical design module for stopes, and a back-analysis platform
for calibrating mine design tools. The application and benefits of
MineRoc have been illustrated for sublevel open stope Chilean
mining operations.
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