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A series of sedimentation experiments and numerical simulations have been con-12

ducted to understand the factors that control the final angle of a static sediment13

layer formed by quasi-monodisperse particles settling in an inclined container. The14

set of experiments includes several combinations of fluid viscosity, container angle15

and solids concentration. A comparison between the experiments and a set of two-16

dimensional numerical simulations shows that the physical mechanism responsible17

for the energy dissipation in the system is the collisions between the particles. The18

results provide new insights into the mechanism that sets the morphology of the sed-19

iment layer formed by the settling of quasi-monodisperse particles onto the bottom20

of an inclined container. Tracking the interface between the suspension solids and21

the clear fluid zone reveals that the final angle adopted by the sediment layer shows22

strong dependencies on the initial particle concentration and the container inclina-23

tion, but not the fluid viscosity. It is concluded that (1) the hindrance function plays24

an important role on the sediment bed angle, (2) the relation between the friction ef-25

fect and the slope may be explained as quasi linear function of the projected velocity26

along the container bottom, and (3) prior to the end of settling there is a significant27

interparticle interaction through the fluid affecting to the final bed organization. We28

can express the sediment bed slope as a function of two dimensionless numbers, a29

version of the inertial number and the particle concentration. The present experi-30

ments confirm some previous results on the role of the interstitial fluid on low Stokes31

number flows of particulate matter.32
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I. INTRODUCTION35

Sedimentation is a process by which solid particles are separated from a fluid under the36

action of the gravitational force. Such a process is one of the oldest known techniques used37

in petroleum, pharmaceutical, mining and chemical industry to clean fluids or, alternatively,38

to recover solid particles10,19. The sedimentation of particles at high concentrations has been39

studied from a kinematic perspective in the context of vertical gravitational settlers3,25. Dif-40

ferently from the case of settling in upright containers, where fluid-particle and interparticle41

interactions can be expressed as a function of the local concentration only10, settling on42

inclined planes also depends on local shear1,21,32. The impact of shear on particle dynam-43

ics in confined or inclined geometries can be further amplified by shear-induced diffusion44

occurring at sufficiently high particle sizes and concentrations26,32. The settling process at45

high concentrations has been studied in the context of sheared Couette cells as effectively46

Newtonian fluids 26,32, and also to explain the flow and particle organization process in47

flows over inclined planes with a constant particle supply23,30. In particular, the flow of a48

sediment layer that forms on an inclined surface as a consequence of the steady sedimen-49

tation of monodisperse spherical particles was investigated experimentally and theoretically50

by Kapoor and Acrivos 23 . They modified the model proposed by Nir and Acrivos 30 to51

include shear-induced diffusion due to gradients in the shear stress as well as a slip velocity52

along the wall due to the finite size of the particles.53

When sedimentation occurs in an upright container with vertical walls and a horizontal54

bottom, particles tend to be distributed in horizontal layers according to their size and55

relative volume fractions (e.g. Davis and Acrivos 10). In contrast with upright containers,56

iso-concentration lines are not necessarily aligned with an inclined lower boundary for the57

container and have been found to follow a power law of the bottom coordinate23,30.58

A related boundary-induced flow is driven by the Boycott effect, which results in the en-59

hancement of the sedimentation process due to the presence of an inclined upper boundary60

in the system that creates a clear fluid layer on top that accelerates the settling compared61

to the upright situation, where particles must settle over the entire depth into the bottom in62

a container with vertical walls. Around 30 years ago there were several investigations (e.g.63

Acrivos and Herbolzheimer 1 , Herbolzheimer and Acrivos 21 , Leung and Probstein 27 , Shaqfeh64

and Acrivos 35) that examined theoretically the flow fields within the various zones of inclined65
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geometries. Such researchers derived analytic expressions for the velocity profiles within the66

clear fluid layer underneath the downward facing wall and within the suspension for a wide67

range of parameters. The formation and flow of the sediment layer on the upward facing68

surface was neglected in most of these studies. Leung and Probstein 27 studied the sediment69

layer as an effective Newtonian fluid, but since no theory was available for determining the70

volume fraction of particles within the flowing concentrated sediment, such a model assumed71

a stepwise particle concentration distribution.72

Particle settling in viscous fluids upon inclined planes has been extensively investigated for73

small Stokes and particle Reynolds numbers21,23,31. Motivated by the study of submarine74

granular flows, Cassar et al. 4 have focused on the dense flow regime occurring when the whole75

sediment layer is flowing down the slope and when no deposition occurs4. They studied the76

variation of the mean velocity and the pore pressure below the avalanche as a function of the77

two control parameters, the surface inclination and the layer thickness. Such results were78

analysed using a theoretical model obtained from dry granular flows substituting the inertial79

time scale by a viscous time scale. Their model was expressed in terms of a so-called inertial80

number14, a dimensionless ratio of time scales that we shall employ in our interpretation of81

results.82

Courrech du Pont et al. 7 have suggested that granular avalanches can flow according to83

three different regimes depending on the time scale associated to the particle motion in the84

fluid. In particular, prior to the collision of a single particle with a neighbour, the particle85

may have not reached its terminal velocity, thus defining the free-fall regime. If the terminal86

velocity has been reached, it can be within a viscous or an inertial regime, depending on the87

balance of forces. The parameters controlling these dynamics are the Stokes number, the88

particle to fluid density ratio, and the particle Reynolds number. In particular, for small89

values of the Stokes number, they confirm the previous observation that the presence of a90

viscous fluid has the ability to exhaust the available kinetic energy after collisions, rendering91

them inelastic18,22. This is a key element to understanding the particle and fluid dynamics of92

dense mixtures flowing in liquids confined in rotating cylinders and on inclined planes. On93

one hand, the settling in an initially homogeneous suspension in an inclined container may94

be effectively the same as that in an upright container away from the bottom, where particle95

hindrance is a dominant effect during the settling. This behaviour has been observed in96

thickeners and clarifiers, whose bottom is often conical6. On the other hand, those particles97
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moving near the inclined boundary may experience close interactions via the interstitial fluid98

or direct contacts, which may cause particle velocity gradients. The result of these three99

stages with different dynamics form a particle bed that is not parallel to the bottom.100

In the present paper, we study the final shape of the particle bed within a large inclined101

container by means of numerical simulations and experiments. The particle motion is in the102

viscosity-dominated regime, and thus the particle Reynolds number, and the Stokes number,103

are small. We seek a relation between the angle of inclination of the container and the angle104

of the surface of the particle bed. The aforementioned flow characteristics —both away105

from and close to the sediment layer— are captured using scaling arguments to explain the106

prevailing mechanisms that control the final bed organization. In Section II, we detail the107

experimental procedure used to track the interface between the suspension and the clear108

region and measure the final angle of inclination of the sediment layer. Also, we present109

the mathematical model and the numerical procedure used for the numerical simulations.110

In Section III, we discuss the results of our experiments and numerical simulations, and111

conclude in Section IV.112

II. MATERIALS AND METHODS113

A. Experiments114

The experimental set-up is shown schematically in Fig. 1(a) and consists of an inclined115

transparent acrylic settling container of 25 × 21 × 3 cm3 (width × height × thickness)116

filled with an initially homogeneous suspension of negatively buoyant spheres in a viscous117

liquid. We considered different combinations of initial particle concentration (φ0), container118

inclination angle measured from the horizontal plane (θs), and liquid viscosity (ηf).119

A solution of glycerine (C3H8O3) and water was used in all experiments. The glycerine120

concentrations ranged from 45% to 55% by volume, resulting in dynamic viscosities between121

6.30 ± 0.08 mPa·s and 11.48 ± 0.15 mPa·s, and densities between 1.13 ± 0.02 g/cm3 and122

1.16± 0.02 g/cm3, 5. For all the experiments we kept the fluid at 20◦C, and thus controlled123

both the density and viscosity with the glycerine concentration.124

The particles used were spherical, partially translucent resin beads (Puroliter PCR833125

Gel SAC - Special Grading, Na+ Form) with radius a = 125 ± 13 µm and density ρs =126
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FIG. 1. (a) Schematic of the experimental setup. (A): acrylic container, (B): resin beads, shown

in grey, (C): video camera, (D): adjustable lab jack, (E): inclined support, (F): LED back lighting.

(b) General configuration of the problem. In all the experiments, the camera is aligned with the

bottom of the tank. The angle of the sediment layer measured respect to the base of the container

is θp.

1.31 ± 0.07 g/cm3. We measured a loose packing volume fraction of 0.61 ± 0.02, close to127

that expected for monodisperse spheres. We estimated this value by measuring the volume128

of water displaced when a known volume of packed particles was immersed in water. We129

measured the angle of repose of the dry particles with respect to the horizontal plane,130

θd = 19.9◦ ± 0.3◦. This has been measured as the cone angle obtained after releasing the131

particles from a height of 15 cm on a rough surface made of the same particles, stuck to the132

bottom, horizontal plane. This experiment has been repeated 20 times to obtain statistical133

convergence. The parameter θd has been used as a reference to define the reservoir inclination134

angles from 0 to 1.51θd, the former case corresponding to a horizontal sediment layer.135

We illuminated the flow trough an acrylic diffuser using a 24 W cool white LED panel136

consisting of 200 emitters giving a diffusive backlighting without significant heating. In137

the present measurements we used an 8-bit, 12 frames/sec UniqVision UP900DS-CL RGB138

camera with a spatial resolution of 640×480 pixels2, to record a region of 25×14 cm2. This139

region excludes a 7 cm length band at the top of the tank. Although the camera’s resolution140

precluded the use of pattern matching algorithms to obtain the downslope component of the141
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TABLE I. Set of experimental conditions.

Values

System angle θs (◦), ± 0.5◦ [0, 10, 20, 30]

Fluid viscosity ηf (mPa·s), ± 1.3% [6.30, 7.25, 8.40, 9.78, 11.48]

Initial volume fraction φ0 (%), ±0.1% [5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0]

particle velocity field, it allowed the measurement of the location of the solids interface with142

considerable accuracy, as was later verified with the output of the numerical simulations.143

The length of influence of the walls have been found to be of about 5 cm, whereas the edges144

of the interrogation windows are at a minimum distance of 10 cm from the walls. In addition,145

we have attached black tape to the bottom of the tank, where the transparent acrylic walls146

are joined, in order to minimize the light penetration from the walls into the particles. The147

image post-processing was undertaken with DigiFlow ver 3.49. We conducted a total of 140148

experiments, exploring all different combinations of 4 inclination angles, 5 fluid viscosities149

and 7 particle volume fractions, as listed in Table I.150

The procedure for each experiment is summarized as follows. The empty container was151

positioned on top of the inclined surface after this had been carefully set an angle of θs, with152

the same angle set for the camera. The suspension, previously stored in a beaker, is then153

poured into the inclined container. Immediately after, it was gently agitated for 2 min to154

keep the particles in suspension while allowing bubbles to rise to the surface. To minimize155

air entrainment, this step was undertaken avoiding sloshing or splashing of the mixture.156

We have tested the initial homogeneity of the suspension comparing different concentration157

profiles along the x axis for the case θs = 0. We started the video recording during the158

mixing process to ensure the whole settling experiment was captured. The particle settling159

process in the system with an inclined container took between 60 s and 240 s, depending on160

the glycerin/particle concentration combination. The settling process finally evolved into161

the formation of a sediment layer, whose upper surface was found to be approximately linear162

in most of the experiments (see Fig. 8, Section III). Previous work23 has suggested that the163

sediment layer can be modelled by, h(x) ∼ xa, a ≤ 1, with the coordinate x aligned with164

the tank bottom. The present set of experiments showed that a ≈ 1 gives a reasonable165

approximation of the finally settled condition in the central region of the container. This166
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allows a simple description of the settled bed using a uniform slope as a relevant single167

parameter. Once the settling process was completed, the sediment layer formed an angle168

θ = θs − θp with respect to the horizontal, where, θp is the angle measured from the base of169

the container, as depicted in Fig. 1(b). This angle was determined using linear regression on170

measurements of the height of the interface between the fluid and the sediment layer. The171

angle θ was, in general, less and equal to the angle of repose θd. The back lighting of the172

translucent particles in these quasi-two-dimensional experiments allowed the transmitted173

light intensity to be related to the particle concentration.174

Fig. 2 shows the experimental calibration curve obtained from the volume fraction of particles175

as a function of the mean normalized transmitted light intensity over the container, in =176

(1/NM)
∑

j

∑

k in(j, k), where in is the light intensity at the nodes i and j, with 1 ≤ i ≤ N177

and 1 ≤ j ≤ M . Here, N and M correspond to the vertical and horizontal number of nodes178

in the measurement window, respectively. The calibration experiment consisted of relating179

the mean normalized intensity of light at t = 0 in a centred 60× 60 mm2 window, with the180

mean concentration of particles, measured by a mass balance. We repeated these steps for181

different concentrations of particles and fluids. Each experiment was repeated three times.182

A relation between concentration and the normalized mean intensity over the container, in,183

is given by the empirical fit184

φ = α1in
α2 + α3in + α4 (1)

We determined the coefficients α1 to α4 using a Levenberg-Marquardt algorithm29, the185

results of which are given in Table II. In the same figure, the inset shows the mean normalized186187

transmitted light intensity as a function of the vertical axis in a calibration experiment using188

a vertical container, for a viscosity of ηf1 = 6.30± 0.08 mPa·s and an initial volume fraction189

of φ0 = 5.0± 0.1 %. The profile corresponds to the final state of the particle sedimentation.190

TABLE II. Fit coefficients for light intensity function (1). The values ∆αj
represent the corre-

sponding fit errors. The obtained correlation coefficient for the fit parameters is R2 = 0.9998.

Values 1 2 3 4

αj 0.0080 -2.21 −33.50 33.50

∆αj
0.0001 0.01 0.01 0.01
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For each initial volume fraction, vertical profiles of the light intensity (taken as the Euclidean191

norm of the RGB vector of the pixel values) were determined at 25 evenly spaced locations192

along the horizontal axis of the acrylic container. These profiles were then averaged and193

normalized to yield the transmitted light. The grey line represents the mean normalized194

intensity profile in(z) and the black lines correspond to the fluctuations in the concentration195

profiles. It shows that the scatter is small compared to the mean profile obtained.196

The mean normalized transmitted light intensity over the container in has an error of 1%197

for in > 0.20 and 0.3% for in ≤ 0.20. The corresponding uncertainties have been calculated198

as the standard deviation of intensity curves corresponding to the 25 light intensity profiles.199

This calibration allowed us to determine the concentration of quasi-monodisperse particles200

at any instant along the vertical axis, φ = φ (z, t). The error in the volume fraction has201

been calculated in terms of the error in the intensity measurement using the uncertainty202

theory. The model proposed for the volume fraction of particles has an error less than 1%203

for in ≤ 0.05, 0.2% for 0.05 < in < 0.40 and 5% for 0.40 < in < 0.80. Fig. 3 shows the volume204

fraction of particles and the mean normalized transmitted light intensity as a function of the205

vertical axis for different times. This profile, φ = φ (x = L/2, z), corresponds to the vertical206

centerline of the tank for an upright container (θs = 0.0 ± 0.5◦), an initial volume fraction207

φ0 = 5.0 ± 0.1% and a liquid phase dynamic viscosity of ηf1 = 6.30 ± 0.08 mPa·s. The208

concentration profiles were calculated from the normalized light intensity using equation209

(1).210

Given the relation between the light intensity and the local concentration, the upper sur-211

face of the sediment layer is found by simply identifying the normalized intensity contour212

where in = 0.0435, corresponding to φ ≈ 40%. The orientation θp of the deposit was then213

determined from the least squares fit of a straight line to the central 10 cm of the tank.214

B. Numerical simulations215

We have complemented the experiments with a set of two-dimensional numerical simulations216

using a mixture model. Although numerical models such as dynamic contact, molecular217

dynamics and discrete elements are capable of capturing more aspects of the interactions218

between the particles, such techniques are very expensive computationally for dry granular219

flows, and even more so if considering the interaction with a fluid33. Due to the favourable220
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FIG. 2. Experimental calibration curve, showing the volume fraction of particles as a func-

tion of the mean normalized transmitted light intensity over the container at t = 0, in =

(1/NM)
∑

j

∑

k in(j, k). Inset: Mean normalized transmitted light intensity as a function of

the vertical axis in a calibration experiment using a vertical container, for a viscosity of ηf1 =

6.30 ± 0.08 mPa·s and an initial volume fraction of φ0 = 5.0 ± 0.1 %. The profile corresponds to

the final state of the particle sedimentation.

relation between computational accuracy and economy 33,37, we have chosen this continuum221

approach. The objective of these simulations is two-fold. First, the numerical simulations222

allowed tracking of the settling process through the concentration and flow velocity output223

before the final settling condition. Second, the present mixture model does not have a built-224

in repose angle (or internal friction) condition. Consequently, this model allows us to assess225

whether or not the internal friction is an important mechanism for setting the final slope of226

the sediment layer.227228

The dynamics of the suspension can be modeled by two momentum equations, one for the229

particles and the other for the fluid, plus a continuity equation for each of the two phases230

present11. Assuming that there is no mass transfer between the two phases, the continuity231

equations for the continuous and dispersed phase are, respectively, ∂t (ρfφf)+∇·(ρfφfuf) =232

0 and ∂t (ρsφs) + ∇ · (ρsφsus) = 0. The subscripts f and s refer to quantities associated233

with the continuous phase (fluid) and the dispersed phase (solids). In this model, both234

the continuous and the dispersed phases are considered incompressible and, in the case of235

the dispersed phase, inelastic. In the present case, particle Reynolds numbers are within236
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FIG. 3. Volume fraction of particles as a function of the vertical axis for various times. Inset:

Mean normalized transmitted light intensity as a function of the vertical coordinate normal to the

bottom. Experimental conditions: θs = 0.0 ± 0.5◦, an initial volume fraction φ0 = 5.0± 0.1% and

a liquid phase dynamical viscosity of ηf1 = 6.30± 0.08 mPa·s. The curves correspond, from top to

bottom elapsed times between 1 s and 10 s after the start of the experiment, with 1 s increments.

The measurements between z = 0 and z = 10 mm have been discarded due to the reflection of

light at the junctions of the acrylic container.

(b)
w1
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y

FIG. 4. (a) Computational domain and Boundary conditions. (b) Detail of free triangular mesh

used in all numerical simulations (upper left corner).

the Stokes regime, which justifies the incompressibility assumption for both phases. An237

elasticity hypothesis of the dispersed phase would affect the particle motion after inter-238

particle collisions and their potential to squeeze fluid out of the sediment layer differently239

11



than in the rigid case. Here, as Stokes numbers are very small, all liquid-mediated collisions240

are indeed inelastic, as discussed below. On the other hand, particle elasticity would alter241

the loose packing fraction well below the sediment surface, due to the effect of lithostatic242

pressure. As our experiments and simulations include only relatively shallow particle layers,243

overburden pressures are not enough to deform the disperse phase at the bottom, thus244

allowing to plausibly assume that particles are effectively rigid. On the other hand, the245

intent of the present work is to study particle organization of natural sediments, which are246

rigid indeed. As the continuous and the dispersed phase are coupled by the total mass247

conservation requirement, φf + φs = 1, the following continuity equation for the mixture is248

obtained:249

∇ · (φsus + uf (1− φs)) = 0. (2)

The momentum equations for the continuous and disperse phase, using a non-conservative250

form12, are, respectively,251

ρf
∂uf

∂t
+ ρf (uf ·∇)uf = −∇p +∇ · τf +

∇φf · τf
φf

+ ρfg+
Fm,f

φf
, (3)

252

ρs
∂us

∂t
+ ρs (us ·∇)us = −∇p +∇ ·

(

τs

φs

)

+∇φs ·

(

τs

φ2
s

)

−
∇ps
φs

+ ρsg+
Fm,s

φs
. (4)

Here, p is the pressure of the mixture, which is assumed equal for both phases, and ps is a253

pressure term related to the contribution of the disperse phase to the total pressure, in this254

case attributed to a purely collisional mechanism, a function ultimately related to the local255

gradient of the solid fraction and an empirical function mimicking an effective modulus of256

elasticity, as used in fluidised systems28.257

The viscous stress tensor of each phase is indicated by τ in the momentum equations and258

g is the acceleration due to gravity. The momentum transfer between the phases, Fm, is a259

volume force exerted upon one of the phases on the other phase. In the momentum equations260

described above, the continuous phase is considered Newtonian. Hence, the viscous stress261

tensor is defined as,τf = ηf [∇uf + (∇uf)
T − 2 (∇ · uf) I/3] and τs = ηs[∇us + (∇us)

T −262

2 (∇ · us) I/3]
11, where ηf and ηs are the dynamic viscosities of the respective phases and I263

is the identity tensor. The dispersed phase requires a viscosity term to model the behaviour264

of the particles at low and high concentrations. Here, ηs = ηf (1− φs/φs,max)
−5/2φs,max is265
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calculated using the model proposed by Krieger and Dougherty 24 . If φd → 0, then ηs = ηf ,266

and if φs → φs,max, then ηs = ∞.267

The interphase momentum transfer is governed by the drag force modelled as Fm,f =268

−Fm,s = β (us − uf), where β is the drag coefficient. In the present set of simulations,269

the method proposed by Gidaspow 16 for the particle pressure term, and that of Wen and270

Yu 36 for the drag coefficient for fluids with a high concentration of particles in volume, are271

considered and detailed in the Appendix V.272

The continuity equation of the mixture (2) and momentum transport equations of both273

phases, (3) and (4), are discretized by the Galerkin finite element method 37. We have used274

COMSOL Multiphysics with the CFD package to solve the system of differential equations275

described above for the experimental conditions of the Table I.276

The boundary conditions associated with the computational domain are depicted in Fig. 4(a).277

First, we consider no-slip conditions and no penetration for both phases in all the domain278

borders, so that uf = us = 0 at wj , with j ∈ {1, ..., 4} (Fig. 4(a)). Regarding the dis-279

persed phase, we imposed a zero-outflow condition in the container, i.e., φsus · n = 0 at280

wj . Fig. 4(b) shows the free triangular mesh used in this work for the discretization of the281

differential equations. In order to choose the appropriate mesh size for the calculations, a set282

of simulations for different mesh sizes has been performed under three different numerical283

conditions, θs = 10◦, ηf = 6.30 mPa·s and φ0 = 0.05, 0.10 and 0.20. Fig. 5 shows an284

example of the sediment layer angle dependence with the number of mesh elements for the285

case with θs = 10◦, φ0 = 0.20 and ηf = 6.30 mPa·s. We see that the angle of the sediment286

layer reaches θp ≈ 8◦ with about 10, 000 mesh elements, increasing slightly to θp = 8.07◦287

when 20, 000 mesh elements are used and reaching a constant value θp = 8.09◦ when over288

25, 000 mesh elements are used in the calculations. A compromise between convergence289

and computational time has been used with 40, 000 triangular elements and a 0.10 s time290

step for the subsequent calculations. The latter corresponds to 1/4 of the time it takes291

one sphere to displace its own size at the Stokes settling velocity. Notably, the time step292

depends on the fluid viscosity, in our case requiring ∆t between 0.1 s and 0.2 s. All runs293

were set to simulate 500 s of real time, thus exceeding the overall bed formation times in294

the experiments, with output saved every 2 s.295

Convergence was assessed when the sediment layer angle, defined as the locus of a solids296

volume fraction equal 0.40, remained static. This concentration cut-off criterion is justified297
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FIG. 5. Convergence of free triangular mesh. θp as a function of number of mesh elements. The

solid line represents the trend points. Numerical conditions, θs = 10◦, φ0 = 20%, 2ηf = 6.30 mPa·s.

by the abrupt transition predicted by the mixture model at about this value of the particle298

concentration as the sedimentation progresses for sufficiently long times, as depicted in299

Fig. 6. The inset in Fig. 6 shows the component of the velocity of particles us parallel300

to the bottom of the container, for different times. An example showing the computed301

concentration field and the boundary of the sediment layer below is shown in Fig. 7. The302

upper, dashed white line in the bottom-right panel represents the sediment layer definition303

according to the threshold limit for φ = 0.40, defined herein. The grayscale bar represents304

the concentration of particles.305

The set of differential equations and the corresponding initial and boundary conditions used306

in this work represent a continuum mixture model, and therefore it provides a continuous307

description of the velocity and particle concentration field. In contrast, when the actual308

settling process is finished, a discontinuity on the particle concentration field appears at309

a finite time. This sharp change in the particle concentration may not be captured by310

the present continuum mixture model in detail. The result of equations (3) and (4) for311

steady state and the zero-velocity condition represent a hydrostatic particle concentration312

field, which contradicts the various final angles of the sediment layer found herein. The313

adjustment of the continuum model from the sloping sediment layer to a hydrostatic state314

occurs over a much longer time scale than the formation of the bed. The present continuum315
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mixture model is thus only useful during the transient process where the sediment layer is316

in progress. However, the identification of an abrupt change in the numerical output in the317

concentration as described above gives a robust and reasonable indication of such a settled318

condition. This is exposed by comparison with the experimental results in the next section.319
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FIG. 6. Particle concentration profile for φ0 = 15.0 ± 0.1%, ηf1 = 6.30 ± 0.08 mPa·s and θs =

10.0 ± 0.5◦, measured at (x = L/2, z) for various times. Inset: component of velocity us parallel

to the bottom of the container. The vertical, dashed line represents φ = 0.4.

III. RESULTS AND DISCUSSION320

A comparison between the experimental and simulated bed formation processes, summarized321

in Fig. 9, shows an excellent agreement between the experiments and the numerical output.322

The striking similarity between simulations and experiments suggests that the dominant323

mechanism of sediment formation is not given by interparticle friction, but by fluid-mediated324

collisions. The rationale for this conclusion is that while the numerical model determines the325

pressure in both the continuous (fluid) and discrete (solid) phases, and so determines pressure326

forces for collision, and determines viscous shear stresses, it does not provide the contact327

friction associated with settling the angle of repose for dry material. This is consistent with328

the experimental observation of inelastic collisions for Stokes numbers below about 10, the329

latter defined by Courrech du Pont et al. 7 as St = (1/9)[ρs(ρs − ρf )ga
3 sin(θs − θp)]

1/2/ηf ,330

whereas in the present set of experiments the Stokes and particle Reynolds number ranges331
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FIG. 7. Particle concentration field obtained from numerical simulations for 60 s, 120 s, 180 s

and 240 s. The upper, dashed white line in the bottom-right panel represents the sediment layer

definition according to the threshold limit for φ, equal 0.40, defined herein. The experimental

conditions are the same as shown in Fig. 6. The grayscale bar represents the concentration of

particles.

are 0.00721−0.001474 and 0.00370−0.03380, respectively. A consequence of such a particle332

interaction mode is that there is no available kinetic energy left for bouncing 18,22.333

Fig. 10 shows the numerical particle velocity field superimposed on the experimental particle334

concentration obtained using the light extinction method described above, for an initial vol-335

ume fraction of φ0 = 0.15, a viscosity of ηf = 6.30 mPa·s and two angle system (a) θs = 0◦336

and (b) θs = 20◦. The numerical simulation predicts velocities below 0.5 mm/s above the337

sediment layer, whereas within the high concentration zone (extending about 15 mm above338

the bottom), the velocity is almost zero, indicating the final settled configuration of particles339

is reached.340

341
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The corresponding integral has been calculated within the measurement window. Experimental

conditions: φ0 = 15.0 ± 0.1%, ηf1 = 6.30 ± 0.08 mPa ·s and θs = 10.0± 0.5◦.
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FIG. 10. Evolution of the interface of the suspension, from 10 s to 25 s after the start of the

experiment considering a frame of reference aligned with the bottom of the tank. θs corresponds

to the angle of the bottom of the tank measured from the horizontal plane. The experimental

conditions are φ0 = 0.15, ηf = 6.3 ± 0.08 mPa·s for (a) θs = 0.0 ± 0.5◦ and (b) θs = 20.0 ± 0.5◦.

The white arrows represent the computed particle velocity of the disperse phase, us from the

numerical simulation for the same experimental conditions.

The particle settling process that forms the sediment layer and controls its final angle is342

the consequence of three different processes that the particles experience in sequence, as343

anticipated in Section I. Figure 8 shows that the settling process finally evolves into the344

formation of a sediment layer, whose upper surface was found to be approximately linear in345

most of the experiments and simulations. The first process is the quasi-vertical sedimentation346
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of particles (Fig. 11) that drives the linear increase with time seen in the height of the347

deposit. As particles approach, the sediment layer they contribute to the second process,348

the formation of a particle flow at a concentration near the packing value. This down-349

slope flow redistributes the particles towards the lower parts of the container, leading to350

the observed θ < θs. Additionally, this layer introduces the possibility of some degree351

of reorganisation due to collisions and local mixture viscosity values26. The final settled352

condition is obtained, with θ less than the angle of repose, after concentration increases353

and finally the direct contacts among each other render the particles immobile. Despite354

the existence of velocity fluctuations as predicted by Ham and Homsy 20 (and references355

therein), for a many-particle interaction process and seen in the velocity fields of Fig. 10, a356

Kynch-like sedimentation process, where local shearing is not predominant (except by the357

fluid-particle shearing)25, gives a good description of the settling. The lower panel shows the358

sedimentation of quasi-monodisperse particles in a tilted container for different times. As359

the time passes, the particles begin to settle to the bottom of the container and progressively360

increase their angle θp, measured from the bottom of the container. Unlike the case when361

the container is upright, once the particles reach the bottom of the container, they start362

to move down due to the angle of inclination and gravity, until finally the motion ceases363

because of the increasing concentration of particles and the rapid dissipation of energy from364

the particle interactions18,22 and, the final layer of sediment is formed. The dominance365

of the hindered settling mechanism is shown to fit the experimental concentration profile366

correction to the settling velocity with the hindrance function proposed by Richardson and367

Zaki 34 , F = (1− φ0)
n (Fig. 12). In addition to the excellent fit between experimental data368

and this model, the fit parameter (n = 4.98) closely resembles the typical value n ≈ 5369

referred in the literature10,19. As the resulting dynamics of the sedimentation away from the370

container bottom (including the velocity fluctuations and particle self-diffusion) has been371

found to be independent of the container size19, the details of the flow near the boundaries372

of the container remain irrelevant for the purposes of the particle dynamics in the interior.373

The mean height of the sediment layer increases with the bottom plane slope. (Fig. 13). This374

result is consistent with the trend predicted by Kapoor and Acrivos 23 using boundary layer375

arguments. As in their work, the present observations show a quasi-linear thickness profile376

in the range φ ∈ [0.05, 0.20]. Fig. 14 shows the final angle of the settled layer measured with377

19



0 50 100 150 200
0

18

35

53

70

88

106

123

140

θ s = 0 . 0 ± 0 . 5 ◦

θ s = 10 . 0 ± 0 . 5 ◦

θ s = 20 . 0 ± 0 . 5 ◦

θ s = 30 . 0 ± 0 . 5 ◦

φ 0 = 5 . 0 ± 0 . 1 %

η f 1= 6 . 30 ± 0 . 08 mPa · s

t ( s )

z
(
m
m
)

0 5 10 15 20 25
0

10

20

30

40

50
θ s = 0 ◦

θ s = 1 0 ◦

θ s = 2 0 ◦

θ s = 3 0 ◦

φ 0 %

h
F
(
m
m
)
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container angles, φ0 = 5% and ηf = 6.30±0.08 mPa·s. The black solid lines represent the numerical
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respect to the horizontal, θ = θs−θp, as a function of the initial volume fraction of particles,378

φ0, for different viscosities, ηf , and container angles of inclination θs.379
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FIG. 13. Mean height of the sediment layer, hmean, as a function of the initial volume fraction and

container inclination. The solid lines are for visual aid purposes.
380

381

While for the smaller values of θs the final angle of the sediment layer tends to change382

linearly with the initial concentration, at the highest bottom angle, θ tends to decrease more383

abruptly with concentration. This is explained by both the nonlinearity of the individual384

particle velocity projection on the bottom slope and the increasingly important effect of385

the particle concentration on the settling bottom. Fig. 14(a) shows that increasing the386

initial concentration towards the packing limit causes the difference between the angle of387

the sediment layer and the container to decrease to zero, implying that the sediment layer388

evolves to a position parallel to the bottom. An interpretation of this trend is that for initial389

concentrations approaching the packing limit, the mean free path between particles is on390

the order of one particle diameter. A time scale for the encounter of two of them, before391

an inelastic contact occurs, is 4ρfa
2/ηf . Assuming that the prevailing energy dissipation392

precludes the occurrence of interparticle friction, then at volume fractions near the maximum393

packing fraction, particles tend to end their motion near their starting point, and thus394

θ → 0 in this limit. However, for volume fractions much smaller than the packing limit, it is395

possible to see, in light of the present numerical simulations and experimental results, that396

the vertical settling stage accounts for a significant part of the overall effect of the particle397
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concentration in the formation of the final angle of the sediment layer. Fig. 14(b) shows that398

θ is independent of viscosity in the viscous flow experiments range investigated. Courrech399

du Pont et al. 7 have explained this as the result of the flow of particles for small Stokes400

numbers.401
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403

During the final stages of the particle motion, the individual particle momentum decays due404

to the collisions with their neighbours and due to the interaction with the ambient fluid.405

This process may be explained following a rheological constitutive model relating particle406

microscopic rearrangements with the time scale resulting from the (macroscopic) shear rate,407

modelled by Forterre and Pouliquen 14 (and references therein) as408

τ = Pµ(I). (5)

Here, τ is the shear stress, P is the pressure and µ is a friction coefficient, expressed in terms409

of I = 2aγ̇/
√

P/ρs. The dimensionless variable I can be interpreted as the ratio between two410

time scales: (a) a microscopic time scale 2a/
√

P/ρd, which represents the time it takes for a411

single particle to fall in a hole of size 2a under the pressure P and which gives the typical time412

of rearrangements, and (b) a macroscopic time scale 1/γ̇ related to the mean deformation.413

Here, γ̇ is the shear rate and a is the particle radius. It has been recently shown that both (5)414

and the dimensionless number I are useful not only for characterising dry granular flows,415
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but also for granular flows when the ambient fluid is viscous 4,7. An example is given by416

Courrech du Pont et al. 7 , where they used a rotating drum geometry to predict the final417

angle of both dry and liquid-immersed spheres: the corresponding equilibrium angles have418

been effectively expressed in terms of I using the Stokes number as a means to distinguish419

whether the particle motion is dominated by gravity, inertia or viscous dissipation. While in420

the first case the particles keep accelerating, in the last they effectively reach their terminal421

velocities.422

In the present experiments, the spheres fall and feed a dense layer until all the particles are423

within the sediment layer. A downward motion occurs until the overall system energy is424

exhausted and a static layer of angle θs−θp is formed. It is observed that a relevant velocity425

scale in the problem is the sedimentation velocity, ws = w0F (φ0) (w0 is the settling velocity426

of an individual particle in an infinite medium), with F a hindrance function as described427

above. In the present flow, the sheared region near the bottom is a few spheres thick, and428

so the particle radius will be considered as a characteristic length scale. Although during429

the particle vertical descent phase (before the influence of the inclined bottom) there is no430

significant shear, the bottom of the container induces some vorticity in its vicinity and a431

thin, particle-rich layer develops to carry the particles down slope as they sediment onto432

the sediment layer. In this layer, the shear rate scales with γ̇ ∼ ws sin θs/a, the settling433

velocity projection parallel the container bottom. This flowing layer provides a scale for434

the granular pressure from the immersed weight and projected area of the particles giving435

P ∼ (4/3)g(ρs−ρf )a. The dimensionless parameter I may be then expressed in this viscosity436

dominated system as I = Rep (I0r)
1/2 sin θs, where Rep = 2aρfws/ηf is the usual definition437

for the particle Reynolds number, r = ρs/ρf and I0 = (3/4)η2f/ρfg(ρs − ρf )a
3. In the438

present set of experiments the particle Reynolds numbers are in the Stokes regime. The439

weak dependence of the final angle of the sediment layer on the ambient fluid viscosity,440

along with the fundamental idea in the constitutive model of Cassar et al. 4 that the friction441

coefficient is a simple function of the dimensionless parameter I, suggests a relation µ ∼ I =442

(Rep sin θs)
c1 (I0r)

c2
2 , where for c1 = c2 = 1 the expression becomes independent of the fluid443

viscosity within Stokes flow.444

Near the bottom, the inertia of the layer flowing down slope is likely to scale with buoy-445

ancy. If vb is the velocity of this layer, then g(ρs − ρf ) ∼ ρfv
2
b/ℓ, where the correspond-446

ing length scale is taken as the interparticle distance near the bottom, ℓ = 2a(φm/φ)
1/3

447
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2,8. Thus,
2ag(ρs−ρf )/ρf

v2
b

∼ (φ/φm)
1/3. Again, adding a monomial function to µ yields448

µ ∼ (Rep sin θs)
c1 (I0r)

c2
2 (φ/φm)

c3
3 , where this time c3 = 1 reflects the proposed scaling.449

Fig. 15 shows the best fit for this model in terms of the slope of the final angle of the450

sediment layer, µ = tan θ, and the dimensionless combination (Rep sin θs)
c1 (I0r)

c2
2 (φ/φm)

c3
3 .451

The results indicate an excellent fit, with c1 = 1.09±0.01, c2 = 1.03±0.02 and c3 = 1.11±0.02452

with a prefactor close to 2.4. The fact that the parameters c1, c2 and c3 are close to the453

unity confirms that the viscosity does not play a significant role, provided it is high enough454

to ensure that the particle Reynolds number is well below the unity.455
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IV. CONCLUSIONS456

The work presented here provides new insight into the mechanism that sets the morphology457

of the sediment layer formed by the settling of quasi-monodisperse particles onto the bottom458

of an inclined container. A key finding is that the final angle adopted by the sediment layer459

shows strong dependencies on the initial particle concentration and the container inclination,460

but not the fluid viscosity. The idea of hindered settling is central to understanding these461

results as it allows the formation of a particle-rich layer that advects particles down-slope462

just above the sediment layer as it forms. Indeed, our results suggest that the result of463
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this mechanism scales directly with the projection of the hindered settling velocity onto the464

sloping deposit.465

While hindered settling depends on viscous forces as well as continuity requirements, the466

fluid viscosity does not play a direct role in setting the final morphology for low particle467

Reynolds numbers as it enters the settling velocity ws = w0F (φ), and consequently the468

settling flux φws, only through w0. Viscosity does, however, control the time scale over469

which the morphology is established. In contrast, the final state depends strongly on the470

initial concentration as this enters the settling flux in a nonlinear manner. That fluid-471

mediated particle interactions (via the hindrance function) dominate over solid friction is472

demonstrated through our numerical simulations. These simulations that reproduce the473

experimental results despite using a mixture model that is devoid of any solid friction term474

and considers the granular material as incompressible. This, in turn, confirms that the475

dissipation is dominated by viscous forces as the particles approach rather than solid friction476

after they collide.477

Although the present study has been performed in a container with a fixed aspect ratio,478

it is reasonable to speculate how this may affect the morphology of the sediment layer.479

For a given initial concentration and container width, increasing the container height will480

increase the period of time during which the particle-rich layer flows down slope above481

the developing sediment deposit, and so we would expect the surface of the final deposit482

to be more horizontal in a manner similar to the decrease in θ seen here by increasing483

the initial concentration. Conversely, increasing the width of the container (while keeping484

the height constant) will not significantly alter the down-slope flux while increasing the485

volume of particles needing to be transported to achieve a given θ. Thus, we would expect486

θ to increase towards θs and the deposit to be of a more uniform thickness (for extreme487

high or low aspect ratios, the Boycott effect may become important and contribute to the488

final slope in a manner not described here). Additionally, simply changing the size of the489

container while maintaining the same aspect ratio will change the time scale over which490

the sediment layer is created, but not its morphology. Finally, from a practical point of491

view, these results are important for future application in engineering sciences, specifically492

in chemical and pharmaceutical industry (e.g., the application of blood cell sedimentation493

for monitoring of the bioequivalence of drugs based on acetylsalicylic acid), petroleum and494

mining industry (e.g., transporting of copper concentrates and mining waste), as well as in495
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many kinds of industrial separation processes of granular material from a fluid (e.g., water496

treatment). In mineral processing, the concentration stage uses water as a carrier fluid497

for comminution products, where an important part of the fluid is recovered in thickeners.498

Although the settling mechanism in the mid section of thickeners is vertical, the bottom of499

these equipment is conical, inducing a particle flow component parallel to the bottom. On500

the other hand, in the wastewater treatment industry it is common to find lamella settlers,501

whose working principle is the Boycott effect. Knowing that the final angle adopted by502

the sediment layer shows strong dependencies on the initial particle concentration and the503

container inclination, but not the fluid viscosity in this Stokes number range, might improve504

the design and operation in these examples.505
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V. APPENDIX513

To characterize the drag coefficient β for the drag force Fm,f = −Fm,s = β (us − uf) in the514

numerical model, the method proposed by Gidaspow 16 along with the model by Wen and515

Yu 36 has been used. Specifically,516

β =























150ηfφ
2
s

φfd2s
+

1.75φsρf |uslip|
ds

φd < 0.20

3φfφsρf cD|uslip|φ−2.65
f

4ds
φs > 0.20,

(6)
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where uslip = us − uf , the diameter of the particles is ds and cD is the drag coefficient for517

a single particle. The drag coefficient is a function of the particle Reynolds number, and is518

determined from,519

cD =











24
Rep

[

1 + 0.15Re0.687p

]

Rep < 1000

0.44 Rep > 1000.
(7)

The particle Reynolds number in the model is defined as Rep = φfdsρf |uslip| /ηf . Finally,520

for mixtures of particles and fluid, it is necessary to have a model for the solid pressure,521

ps in (4). The solid pressure models the particle interaction due to collisions and friction522

between the solid particles. The implemented approach uses a gradient-based diffusion model523

expressed as ∇ps = −χ (φf)∇φf , where the empirical function χ (φf) has the form χ (φf) =524

10a1φf+a2 . The function χ (φf) represents the modulus of elasticity for the dispersed phase525

and has dimensions of pressure in the international system of units13. Here, a1 = −10.50526

and a2 = 9.00 17.527
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